
Live Data Structure Programming
Akio Oka

School of Computing
Tokyo Institute of Technology

Tokyo, Japan
a.oka@prg.is.titech.ac.jp

Hidehiko Masuhara
School of Computing

Tokyo Institute of Technology
Tokyo, Japan

masuhara@acm.org

Tomoki Imai
School of Computing

Tokyo Institute of Technology
Tokyo, Japan

tomo832@gmail.com

Tomoyuki Aotani
School of Computing

Tokyo Institute of Technology
Tokyo, Japan

aotani@is.titech.ac.jp

ABSTRACT
When we write a program that manipulates data structures, we
often draw and manipulate a visual image of the structures in our
mind. In order to immediately connect those mental images with
the data objects created by the program, we propose a live program-
ming environment, called Kanon, specialized for data structure pro-
gramming. It automatically executes a program being edited, and
draws objects and their mutual references as a node-link diagram.
In order to visualize information relevant to the programmer’s con-
cern, it offers two visualization modes based on the cursor position
in the editor. It also offers two interactive mechanisms that relate
elements in the program to elements on the diagram, and vice versa.
The implementation includes a novel technique for mental map
preservation of visual diagrams.

CCS CONCEPTS
• Software and its engineering → Integrated and visual de-
velopment environments;

KEYWORDS
Live programming, data structures, object graph
ACM Reference format:
Akio Oka, Hidehiko Masuhara, Tomoki Imai, and Tomoyuki Aotani. 2017.
Live Data Structure Programming. In Proceedings of Programming Experience
Workshop, Brussels, Belgium, April 4, 2017 (PX/17), 7 pages.
DOI: 10.1145/3079368.3079400

1 INTRODUCTION
Live programming [7, 16] is helpful to the programmer by giving
“immediate connection” from a program to its execution result with-
out letting the programmer run the program in his or her mind.
Most of past demonstrations of live programming target programs
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PX/17, Brussels, Belgium
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-4836-2/17/04. . . $15.00
DOI: 10.1145/3079368.3079400

whose results are not obvious from their texts, including the pro-
grams for drawing pictures [16], for synthesizing music [1], for
animating game characters [14], and for teaching algorithms [11].

Data structure programs fall in the same category, and hence we
believe live programming can be helpful as well. By data structure
programs, we here mean definitions of data structures and their op-
erations at various levels of abstractions, ranging from generic ones
like a doubly-linked list to application-specific ones like “data for a
hospital medical record system.” In object-oriented programming
languages, data structure programs are usually defined as class and
method definitions.

We propose a live data structure programming environment
that helps immediate connection between the program text and
graphical images of data structures in the programmer’s mind.
Though the programmers could have variety of mental images for
data structures, we assume that images with boxes and arrows are
common enough. Figure 1 is an example of such an image for a
doubly-linked list.

3 1 4 1

Figure 1: A mental image of a doubly-linked list.

While it is a straightforward idea and there is tremendous amount
of research that visualizes data structures, it is not obvious what
features programming environments should provide in the con-
text of live programming. Though there are many programming
environments, like ZStep [13], jGRASP [8] and Python Tutor [6],
that visualize user-defined data structures, they mainly focus on
the situation when the developer tries to examine behavior of pro-
grams in a post-mortem fashion. In other words, development and
examination are separated processes in those environments.

In order to provide more live experiences with data structure pro-
gramming, we need to consider visualization while the developer
is writing and changing a fragment of code1. In the following sec-
tions, we discuss the characteristics of data structure programming
1While we primarily focus on the activities of writing and modifying code for data
structures, we do not exclude the situations of debugging and code-understanding.
When writing a new code fragment often involves with identifying problems in the
written code, and understanding the existing code related to the one being written.
This would be especially true with live programming.

1

PX/17, April 4, 2017, Brussels, Belgium Akio Oka, Hidehiko Masuhara, Tomoki Imai, and Tomoyuki Aotani

Listing 1: Insertion of a node into the middle of a doubly-
linked list
// insert the given value after the node with the given key
function insertAfter(dlist , key , value) {

var cursor = dlist.head; //the first node of the list
...(move cursor to the node with key)...
var temp = new Node(value);
// insert temp after cursor
temp.prev = cursor;
temp.next = cursor.next;
cursor.next.prev = temp;
cursor.next = temp;

}

(Section 2) and the design space of live date structure programming
(Section 3), followed by the design our proposed programming
environment, Kanon (Section 4) and its implementation issues (Sec-
tion 5).

2 CHARACTERISTICS OF DATA STRUCTURE
PROGRAMMING

Before discussing features of live programming, we here discuss
characteristics of data structure programming, compared to other
kinds of programming.

2.1 Difficulties with Textual Representations
While textual representations are the primary means of presenting
data structures, they are not as easy as textual representation of
other basic data types. For example, a textual representation of a
list with 3, 1, 4 and 1 would be like this.
Node(val=3,

next=Node(val=1,
next=Node(val=4,

next=Node(val=1,next=Nil))))

This representation is verbose as it shows information at the field
level2.

When there are circular or shared references, textual representa-
tions become much more verbose. For example, a textual represen-
tation3 of a doubly-linked list would become like this.
#1=Node(val=3, prev=Nil,

next=#2=Node(val=1, prev=#1#,
next=#3=Node(val=4, prev=#2#,

next=Node(val=1, prev=#3#,
next=Nil))))

2.2 Manipulation of References
Data structure programming often involves with manipulation of
references. For example, the bottom-half of the JavaScript function
in Listing 1 inserts a node in the middle of a doubly-linked list. As

2We here use a linked-list as an example of user-defined data structures. Though one
might think that many languages can print lists in a more concise format, it is not the
case for user-defined data structures in general.
3We here use a Common Lisp like notation with sharp symbols for showing shared
references.

we see, we need to manipulate forward and backward references
of multiple objects, which can easily be mistaken.

3 DESIGN PARAMETERS
There are many parameters to consider when we design a live
programming environment for data structures. We here discuss
those parameters based on the design of existing live programming
environments. We will discuss our actual design decisions in the
next section.

3.1 How Programs Should be Written
There are two types of live programming, namely immediate ex-
ecution upon modification and modification of running programs.
The former type just executes a program whenever a piece of the
program is modified. The runtime of a program is expected to be
short, so that the result can be displayed immediately. The latter is
realized by a language runtime that allows hot-swapping, where a
part of running program can be replaced without termination. This
type is useful for long-running and interactive programs.

With both types, a program needs top-level expressions (i.e., the
main function) that specify entry points and initial parameters of a
program.

3.2 How Data Structures Should be Visualized
In order to construct immediate connection to programmer’s mental
images, visual representation should be intuitive. Existing live pro-
gramming environments mainly use textual representation unless
a program is written to draw visual images.

For data structures, a node-link diagram like the one shown in
Figure 1 would be a suitable representation. Although there are
many possibilities, it is common to draw one graphical element for
each data element (object), and to draw an arrow from one graphical
element to another when the former data element has a reference
to the latter. For example, UML object diagram is a standardized
node-link diagram.

Customized visual representation can be more efficient with
respect to space and cognitive load. When we are using a list, we
only concern the order of stored elements in most cases. Low-level
information such as links between cons-cells would be too detailed
and puts additional cognitive burden to users.

3.3 Which Data Should be Visualized
Live programming environments should choose an appropriate
set of data elements to be displayed. Since too much displayed in-
formation could increase cognitive load of the programmer, some
environments let the programmer to choose elements, and some
other environments display elements that can fit within a program-
ming editor window. For example, YinYang merely displays values
of expressions that have probes attached by the programmer [14].
Swift Playground displays one value for each program line.

For data structures, selection of visualization target can be more
important since their graphical representations consume larger
area on the screen.

2

Live Data Structure Programming PX/17, April 4, 2017, Brussels, Belgium

3.4 How Changes Should be Visualized
When a live programming environment visualizes data, the data
can be changing during a program execution. For example, given
a program that repeatedly approximates a mathematical function,
we want to see the changes of intermediate results during a run.
Existing environments can show such changes as a series of val-
ues [9, 14] or as a line chart [3]. For programs that produce visual
images (i.e., drawing programs), there are attempts to use a strobo-
scopic visualization [5] or a timeline visualization [10].

For data structures, there is no definitiveway to visualize changes.
Though there have been amount of studies on algorithm animation,
those studies tend to develop techniques specialized to specific
algorithms.

3.5 How to Preserve a Mental Map when
Program Changes

Live programming environments should preserve the mental map
when a program is modified. Here, the mental map is correspon-
dences between a visual representation and data elements in the
programmer’s mind. When a program is modified, the data ele-
ments produced by a new version of the program are different from
the ones produced by the old version. However, in many cases,
especially in live programming, a small modification to a program
will change only a small part of the data elements produced by a
program.

For example, adjusting constant parameters in a drawing pro-
gram is one of well known demonstrations of live programming. By
immediately executing (i.e., drawing pictures) a modified program,
the programmer can observe the effect of changes as animation.
Some environments provide special mechanisms like slider bars for
continuously modifying constant values [11].

For data structures, preservation of themental map is not a trivial
task. Assume there is a program that creates two node objects;
e.g., “new Node(1); new Node(2)”, which are visualized as two
graphical elements. When the programmer inserts “new Node(3)”
in between the two new expressions, one more graphical element
shall be added. Since the programmer considers the second new
expression in the modified program is newly added, this should be
drawn as an additional graphical element to preserve the mental
map. However, by comparing two versions of program texts, it is
not obvious whether the second new expression in the new version
is newly added, or is a result of a parameter change. The problem
can be more complicated when a modification of a method call
indirectly causes changes of object creation, for example.

3.6 How to Relate Visualized and Program
Elements

It is important to the programmer that he or she can establish
connection between visualized information and program elements.
Assume that an environment visualizes a time-series of values of
multiple variables in a program. We then need to find out corre-
spondence between a series of values to a variable, as well as a
value in a series to a specific moment in an execution.

YinYang’s solution to this issue is a probe that displays a value
of an expression just below the expression, and a tracing construct

Figure 2: A Screenshot of Kanon.

that produces a clickable output, which rewinds the program state
to the time when the output is produced.

For data structures, since a visual representation (i.e., a node-link
diagram) has a structure, environments should help establishing
connection between those visual elements and program elements.

4 KANON: A LIVE DATA STRUCTURE
PROGRAMMING ENVIRONMENT

We designed a JavaScript-based live programming environment,
Kanon, for data structures. Here, we first give an overview of the
environment followed by the design parameters discussed in the
previous section. We then explain specific features in detail.

4.1 Overview
Figure 2 is a screenshot of Kanon. The left- and right-hand sides
are the editor pane where a program is written in, and a visualiza-
tion pane that displays data structures, respectively. For simplicity
reasons, it currently supports single program file. The editor has
a syntax highlighting feature (including showing syntax errors).
Each circle in the visualization pane represents an object that is
created during an execution. The label on the circle is the class
name of the object. Arrows from a circle show the field values in
the object, which either point to other objects or primitive values.

4.2 Design Decisions
How Programs Should be Written. We take the immediate execu-

tion upon modification style. This is because we mainly consider
definitions of data structures and methods that manipulate those
structures. With an adequately modularized design, execution of
each method should be short-lived, and can easily be driven by unit
test cases.

In our current implementation, a program is merely executed
from top to bottom. Therefore, test cases should be written after
the definitions of the data structures.

How Data Structures Should be Visualized. As we can see in Fig-
ure 2, we draw an oval and an arrow for an object and a value in a
field, respectively. The labels on an oval and on an arrow show the
class and field names, respectively.

We currently use an automated graph layout algorithm available
in a visualization toolkit (vis.js) so as to arrange ovals with some
distance, and without much overlapping. Current implementation

3

PX/17, April 4, 2017, Brussels, Belgium Akio Oka, Hidehiko Masuhara, Tomoki Imai, and Tomoyuki Aotani

does not use information such as classes and object ownerships,
which should certainly be improved in future as the generated
layouts often require manual rearrangements. (In fact, we manually
rearranged objects in Figure 2.)

For the ease of implementation, an array of n elements is visu-
alized as an object that has n fields. As this is certainly awkward,
future implementation will consider alternative representations.

Which Data Should be Visualized. We basically show all objects
created in a run of a program. The visualization is implicit, i.e., the
programmer does not need to specify objects to be displayed.

While it could lead to a situation where the visualization is
flooded by too many objects, it is convenient for the programmer
to write small definitions. With the notion of context (which is
explained later), it would also be easy to introduce a mechanism to
filter objects created in a specific test case.

How Changes Should be Visualized. We provide two ways of
showing changes in a program run: the one is to animate the graph-
ical representation by using cursor movement in the text editor, and
the other is to show summarized effects of changes in one graphical
representation. Both are explained in Section 4.3.

How to Preserve a Mental Map when Program Changes. As for
changes caused by program modification, we proposed an imple-
mentation technique to cope with a technical problem, namely the
mental map preservation. We discuss this issue in Section 5.2.

How to Relate Visualized and Program Elements. We provide two
mechanisms that help connecting program elements to visual ele-
ments and vice versa. The first mechanism is a probe that displays
a value of a variable on the graphical representation. The second
mechanism is called jump-to-contruction, which is invoked by a
click on a graphical element, and moves the cursor position to the
program element that corresponds to the graphical element. Those
two mechanisms are explained in Section 4.4.

4.3 Snapshot and Summarized View Modes
Kanon provides two view modes for object graphs, namely the
snapshot view mode and the summarized view mode.

With the snapshot view mode, the view shows the object graph
when the program execution reached at the cursor position. If
the execution reaches the cursor position multiple times (due to
multiple function calls or loops), the execution of a specific context
is chosen4.

Figure 3 is an example of a snapshot view for the program text
in Listing 2 (in which the cursor position is denoted by a black
rectangle), in the context of list.add(4). In this example, the
programmer is defining the addmethod for doubly-linked lists, and
has finished defining the case when the list is empty. The view
shows the object graph when the execution of l.add(4) reaches
at the cursor position. Note that the node for 5 is not yet created in
this view.

With the summarized view mode, the view shows effects of a
command (such as assignment to an object field and construction

4The current implementation does not show the function calls that form the context,
which is left for future work. Drawing a segmented line that connects the call sites as
done in Dr. Racket (https://racket-lang.org/) is one possibility.

Figure 3: A snapshot view in the context of l.add(4).

Listing 2: Partially defined add.
// add the given val at the end of the list
DLList.prototype.add = function(val) {

var temp = new Node(val);
if (this.head === null) { // when the list is empty

this.head = temp;
this.tail = temp;

} else { // when the list is not empty

}
}
var l = new DLList ();
l.add (3); l.add (4); l.add (5);

Figure 4: A summarized view for the program in Listing 3.

of an object) at the cursor position on top of the object graph at the
end of the execution.

4

https://racket-lang.org/

Live Data Structure Programming PX/17, April 4, 2017, Brussels, Belgium

Listing 3: Finished (yet incorrect) definition of add.
// add the given val at the end of the list
DLList.prototype.add = function(val) {

var temp = new Node(val);
if (this.head === null) { // when the list is empty

this.head = temp;
this.tail = temp;

} else { // when the list is not empty
temp.prev = this.tail;
this.head.next = temp;
this.tail = temp;

}
}
var l = new DLList ();
l.add (3); l.add (4); l.add (5);

Figure 4 is an example of a summarized view for the program
text in Listing 3, where the programmer finished definition of add.
This view shows an object graph at the end of execution. At the
same time, the view illustrates the effects of the code at the cursor
position, in this case the assignment “this.head.next = temp;”,
where the orange solid arrow shows the reference found at the end
of execution. The dash arrows denote the overwritten references,
i.e., once created by this (orange) or other (green) assignment, and
then disappeared due to later assignments.

From the diagram, we can observe that the final graph is not
right. The next field of the leftmost Node should reference the mid-
dle Node, whereas it references the rightmost Node in the final state.
From the view, we can also see that the reference was initially cor-
rect (as shown with the green dashed arrow) and then overwritten
by the assignment at the cursor position. In fact, the cursor line
should assign to this.tail.next, instead of this.head.next.

4.4 Bidirectional Connection between Code
and Graphical View

Kanon offers two mechanisms, namely a probe and the jump-to-
construction mechanism, that help the programmer to grasp the
connection between code elements and graphical elements.

A probe, which is a $ symbol attached at the beginning of a
variable declaration, adds the variable name in the graphical view
with an arrow pointing to the object that the variable references to.

For example, when we add a $ symbol to temp in Listing 2 (i.e.,
changing the second line to “var $temp = new Node(val);”), the
view will have an arrow that points to the value in the variable.

A click on a node or an edge in the graphical view invokes the
jump-to-construction mechanism, which moves the cursor to the
command in the program that created the clicked graph element
(either a new expression or a field-assignment statement).

5 IMPLEMENTATION
We implemented a prototype of Kanon for JavaScript running on
web browsers. It is available online5. Below, we first overview the

5https://github.com/prg-titech/Kanon (source code), https://prg-titech.github.io/
Kanon/ (executable in web browsers)

Figure 5: A snapshot view with a probe.

Figure 6: Overview of the Implementation

implementation and then describe our novel technique to preserve
mental map.

5.1 Overview
Figure 6 overviews the implementation. We explain the structure by
following the operations taken place upon a program modification.

We use a modified version of the Ace editor6 for editing a pro-
gram text. When the programmer edits a piece of text, it notifies
the visualization engine.

The visualization engine parses the program text in the editor
by using Esprima7. It then traverses the syntax tree by applying
the following modifications.

• It inserts declarations of global variables for keeping track
of calling contexts and the virtual timestamp.

• For each new expression, it appends a piece of code that
records object ID in a special field of the created object.

• For each new and field assignment expression, it inserts
checkpointing code before and after the expression. The

6https://ace.c9.io/
7http://esprima.org/

5

https://github.com/prg-titech/Kanon
https://prg-titech.github.io/Kanon/
https://prg-titech.github.io/Kanon/
https://ace.c9.io/
http://esprima.org/

PX/17, April 4, 2017, Brussels, Belgium Akio Oka, Hidehiko Masuhara, Tomoki Imai, and Tomoyuki Aotani

checkpointing code is an expression that applies a list of
global and local variables to the object traversal function.

• At the beginning of each loop body and function body, it
inserts counting code.

• For a variable declaration with $ (a symbol for probing), it
removes the symbol from the variable name, and records
the variable name in the traversal environment.

The engine then transforms the syntax tree back to a program
text, and evaluates it by using eval. The checkpointing code in
the program, when executed, records JavaScript objects that can
be reachable from the provided objects. We use the object reflec-
tion mechanism to obtain field values from an object. The objects
and their references are recorded as a graph data (i.e., nodes and
links) with a virtual timestamp that increases every checkpointing
execution.

To update a graphical representation, the engine first obtains
the cursor position from the editor, and then identifies the nearest
checkpoint to the cursor position. It then calculates a range of
virtual timestamps that corresponds to the current visualization
context. Finally, it selects the object graph that is recorded at the
nearest checkpoint within the calculated timestamp range.

The object graph is visualized by using the vis.js visualization
library8. It specifies geometric locations of object nodes by using
the locations of the currently displayed graph. When there are
objects that do not exist in the current graph, their locations are
automatically determined by using the physics layout algorithm is
vis.js.

5.2 Mental Map Preservation
Kanon updates the graphical view without breaking the mental
map. Here we first explain the requirements, and then describe the
mechanism for the preservation.

When a program is modified, the new program may construct
a different object graph from the previous one. In most cases, the
modification in the program merely makes partial change in the
object graph (for example, addition of a new object, and change of
references between objects). Hence the programmer expects that
the visual change is also partial, i.e., only some part of the graphical
representation is changed while preserving others. (Of course, there
are situations where a small modification can drastically change the
entire program behavior. A change in an algorithm is an example.
We do not consider such situations.)

A problem is that there is no simple way to identify changed
and unchanged elements in object graphs obtained from the ex-
ecutions of the two versions of the program. (There are possible
approaches, for example to compute a maximal graph matching,
which is computationally expensive.)

Here, we propose a novel technique, called the calling-context sen-
sitive object identification, to layout object graphs with preserving
mental map. The technique is based the following ideas.

• We give a unique ID to each program location (precisely,
we only maintain IDs for new expressions and method call
expressions.) We preserve the ID even if the programmer
edits the program text.

8http://visjs.org/

• We give a context-sensitive ID of an execution of an expres-
sion. A context-sensitive ID of an execution of an expres-
sion is a triple of a program location ID, execution counts of
(syntactically) enclosing loops, and the context-sensitive ID
of the execution of a method call expression that invoked
the enclosing method of the current execution.

• When there is an execution of a new expression, we use
the context-sensitive ID of the execution as the ID of the
created object.

• Whenwe draw an object graph obtained from an execution
of a modified program, we layout it so that an object will
be placed at the same position of an object with the same
ID in the execution of the previous program.

Intuitively, we consider two objects are the same when they are
created by the same expression, and the execution of the new ex-
pression has the same calling context and the same loop counts.

6 RELATEDWORK
Among the programming environments with data visualization,
Python Tutor [6] has a ‘live’ feature. When a program is edited,
it automatically re-executes the program and updates the visual
representations. However, there are several limitations. (1) There is
no mechanism to synchronize the cursor position and the program
execution point to visualize. Hence the developer needs to specify
a program point only by using forward and backward buttons.
(2) Visual representation of data structures is not stable when a
program is changed. (3) A point of program execution to visualize is
also not stable. As far as the authors observed, when the system is
showing at theN -th step a program, it will show, when the program
is changed, at N -th step of the modified program. Therefore, a
change to the code that has been executed until the N -th step can
lead the system to an unexpected point of execution.

The Morphic environment in Self [15] lively integrates the code
editor and the object inspector, which displays objects as a node-
link diagram. The selection of visualized objects is manual. It always
displays the current state of objects; i.e., it is not possible to show
the paste state in an execution without resorting to a breakpoint
debugger.

The calling-context sensitive identification technique (Section 5.2)
can be used for problems that need to align executions of two ver-
sions of a program. For example, example-centric programming [4]
uses a similar technique to identify a context of a test case that is
created for an older version of a program.

Zimmermann and Zeller propose to display a visual object graph
in a debugger [17]. They also propose to highlight difference be-
tween two object graphs. Their approach calculates a correspondence
graph to determine the same objects.

Back-in-time debuggers [12] can show a state of a program at
an arbitrary time in the execution. Similar to Kanon, they record
program execution through program instrumentation. However,
research in debuggers mainly focuses on recording more detailed
information than mere object graphs. It is not clear if those tech-
niques can be directly applied to live programming environments,
where programs are frequently modified.

Kanon assumes that the programmer writes a program in a
test-driven development [2] style. Such a style can be commonly

6

http://visjs.org/

Live Data Structure Programming PX/17, April 4, 2017, Brussels, Belgium

found in live programming [9, 16] as well as in example-centric
programming [4].

7 CONCLUSION
We propose Kanon, a live data structure programming environment.
The notable features are themechanisms that help connecting the vi-
sual representation and the program code. The snapshot view mode
shows the object graph when the program execution is reached at
the cursor position, which should be relevant to the programmer’s
mental state. The summarized view mode shows the effect of an
expression under the cursor throughout the execution. This helps
the programmer to check whether the current expression behaves
as expected. A probe on a variable helps connecting a variable
in the program to a graphical element. The jump-to-construction
mechanism helps connecting a graphical element to an element in
a program. Finally, we proposed the calling-context sensitive object
identification technique to preserve mental map of representation
between the graphs generated by modified programs.

Future work includes development of a better object graph lay-
out algorithm that is closer to the programmer’s expectations, im-
provement of feedback performance, and a selective visualization
mechanism for larger object graphs.

ACKNOWLEDGEMENTS
The authors would like to thank Jun Kato for his valuable com-
ments. This work was supported by JSPS KAKENHI Grant num-
ber 26330078.

REFERENCES
[1] Samuel Aaron and Alan F. Blackwell. 2013. From Sonic Pi to Overtone: Creative

Musical Experiences with Domain-specific and Functional Languages. In Pro-
ceedings of the First ACM SIGPLAN Workshop on Functional Art, Music, Modeling
& Design (FARM ’13). 35–46.

[2] Kent Beck. 2003. Test-Driven Development: by Example. Addison-Wesley Profes-
sional.

[3] Apple Computer. Swift Playgrounds. http://www.apple.com/swift/playgrounds/.
Accessed Ferburary 2017.

[4] Jonathan Edwards. 2004. Example Centric Programming. In Proceedings of Object-
Oriented Programming Systems, Languages, and Applications (OOPSLA’04), 84–91.

[5] Chris Granger. 2012. Light Table. http://www.chris-granger.com/lighttable/.
(2012). Accessed February 2017.

[6] Philip J Guo. 2013. Online Python Tutor: Embeddable Web-based Program Visu-
alization for CS Education. In Proceeding of the 44th ACM Technical Symposium
on Computer Science Education. 579–584.

[7] Christopher Michael Hancock. 2003. Real-time Programming and the Big Ideas of
Computational Literacy. Ph.D. Dissertation. Massachusetts Institute of Technol-
ogy, Cambridge, MA, USA.

[8] T. Dean Hendrix, James H. Cross, II, and Larry A. Barowski. 2004. An Extensible
Framework for Providing Dynamic Data Structure Visualizations in a Light-
weight IDE. SIGCSE Bull. 36, 1 (March 2004), 387–391.

[9] Tomoki Imai, Hidehiko Masuhara, and Tomoyuki Aotani. 2015. Making Live
Programming Practical by Bridging the Gap Between Trial-and-error Develop-
ment and Unit Testing. In Companion Proceedings of the 2015 ACM SIGPLAN
International Conference on Systems, Programming, Languages and Applications:
Software for Humanity (2015-10-25), 11–12.

[10] Jun Kato, Sean McDirmid, and Xiang Cao. 2012. DejaVu: Integrated Support
for Developing Interactive Camera-based Programs. In Proceedings of the 25th
annual ACM symposium on User Interface Software and Technology (UIST’12).
189–196.

[11] Khan Academy. Intro to JS: Drawing & Animation. https://www.khanacademy.
org/computing/computer-programming/programming. Accessed Ferburary
2017.

[12] Bil Lewis. 2003. Debugging Backwards in Time. In Proceedings of the Fifth Interna-
tional Workshop on Automated Debugging (AADEBUG 2003). arXiv:cs.SE/0310016
http://arxiv.org/abs/cs.SE/0310016

[13] Henry Lieberman and Christopher Fry. 1995. Bridging the Gulf Between Code
and Behavior in Programming. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’95). ACM Press/Addison-Wesley Publishing
Co., 480–486.

[14] Sean McDirmid. 2007. Living it Up with a Live Programming Language. In
In Proceedings of Symposium on New Ideas, New Paradigms, and Reflections on
Programming and Software (Onward!). 623–638.

[15] David Ungar and Randall B. Smith. 1987. Self: The Power of Simplicity. In
Proceedings of Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA’87) (ACM SIGPLAN Notices), Vol. 22(12). 227–242.

[16] Bret Victor. 2012. Inventing on Principle. Keynote Talk at the Canadian University
Software Engineering Conference (CUSEC). (Jan. 2012).

[17] Thomas Zimmermann and Andreas Zeller. 2002. Visualizing Memory Graphs.
In Software Visualization. Springer, 191–204.

7

http://www.apple.com/swift/playgrounds/
http://www.chris-granger.com/lighttable/
https://www.khanacademy.org/computing/computer-programming/programming
https://www.khanacademy.org/computing/computer-programming/programming
http://arxiv.org/abs/cs.SE/0310016
http://arxiv.org/abs/cs.SE/0310016

	Abstract
	1 Introduction
	2 Characteristics of Data Structure Programming
	2.1 Difficulties with Textual Representations
	2.2 Manipulation of References

	3 Design Parameters
	3.1 How Programs Should be Written
	3.2 How Data Structures Should be Visualized
	3.3 Which Data Should be Visualized
	3.4 How Changes Should be Visualized
	3.5 How to Preserve a Mental Map when Program Changes
	3.6 How to Relate Visualized and Program Elements

	4 Kanon: A Live Data Structure Programming Environment
	4.1 Overview
	4.2 Design Decisions
	4.3 Snapshot and Summarized View Modes
	4.4 Bidirectional Connection between Code and Graphical View

	5 Implementation
	5.1 Overview
	5.2 Mental Map Preservation

	6 Related Work
	7 Conclusion
	References

