
CodeMap: A Graphical Note-Taking Tool Cooperating with an
Integrated Development Environment

Rikito Taniguchi
rtaniguchi@prg.is.titech.ac.jp
Tokyo Institute of Technology

Tokyo, Japan

Hidehiko Masuhara
masuhara@acm.org

Tokyo Institute of Technology
Tokyo, Japan

ABSTRACT
Program comprehension is an important yet difficult activity in
a software development process. One of the main causes of the
difficulty is its cognitive overhead for maintaining the mental mod-
els, which consist of roles of program elements and relationships
between them. Though researchers have been working on tools to
help maintaining the mental models, existing tools have high adop-
tion barrier and support only a few programming languages, which
hinders wide-range of programmers from using the program com-
prehension tools. We propose CodeMap, a graphical note-taking
tool for offloading the mental models onto a visual representation.
We designed CodeMap by considering familiarity and availability
for practitioners. Our tool allows programmers to extract inter-
ested information into a graphical note with a few keyboard/mouse
operations, and support many programming languages by using
the language server protocol. In this paper, we present the design
and implementation of CodeMap, and discuss possible features that
could be useful for program comprehension.

CCS CONCEPTS
• Software and its engineering;

KEYWORDS
program comprehension, code navigation, software engineering
ACM Reference Format:
Rikito Taniguchi andHidehikoMasuhara. 2022. CodeMap: AGraphical Note-
Taking Tool Cooperating with an Integrated Development Environment.
In Companion Proceedings of the 6th International Conference on the Art,
Science, and Engineering of Programming (‹Programming› ’22 Companion),
March 21–25, 2022, Porto, Portugal. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3532512.3535225

1 INTRODUCTION
1.1 Program Comprehension in Software

Development
Program comprehension is an important yet difficult task in soft-
ware development. It is an activity to construct a mental model of a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
‹Programming› ’22 Companion, March 21–25, 2022, Porto, Portugal
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9656-1/22/03. . . $15.00
https://doi.org/10.1145/3532512.3535225

software system, which consists of the roles of programming ele-
ments such as modules and functions and the relationships among
those elements [6, 12]. It is mandatory to do this when we add a
new feature, fix a bug, and refactor a software system.

Program comprehension is a difficult and time-consuming task,
especially for a large software system. Xia et al. identified that
professional programmers spend 58% of their development time for
program comprehension [15].

One of the sources of the difficulty is the cognitive overload
to maintain a mental model when exploring a large software sys-
tem [14]. Since the construction of a mental model is an exploratory
process, the programmers have to visit many programming ele-
ments regardless of the relevance of the elements to their specific
task. As a result, when a programmer visits one element after a long
course of exploration, he/she can forget the initial motive of the
exploration and tends to visit the same elements again and again.

1.2 Graphical Note-Taking Tools for Drawing
Mental Models

Taking a graphical note, which illustrates program elements and
their relationships, is a common approach to keep track of the
course of exploration during a program comprehension activity.
It can be done by using paper and a pen, or by using a software
tool, which can be a stand-alone tool, or an integrated with a soft-
ware development environment. Though those tools use different
graphical representations, they commonly incorporate selected pro-
gram elements during exploration, and graphically organize those
elements based on the relations between the elements.

Mylin [7] is an IDE integrated tool that creates and maintains a
task specific view of program elements. Its graphical representation
reuses the package explorer view by only showing relevant ele-
ments in a tree structure. When the programmer explores program
elements in the code editor, it automatically incorporates the visited
elements into the view, while the programmer can give a name to
the view, and switch the saved views in the past.

JASPER [4], Code Bubbles [3] and Synectic [1] are IDEs that have
a large space (i.e., canvas) that contains small editor windows, each
of which shows a small program element (e.g., methods). In those
systems, the systems and the programmer can freely layout those
elements so that related elements come closer to each other. We
call such a system a canvas-based IDE. The programmers explore by
using common IDE functions, such as “go to definition,” which will
create a new element on a canvas. Not only program elements, those
systems allow the programmer to place non-code artifacts such as
documentation, issue reports, sample code, and design rationale on
the canvas.

54

https://doi.org/10.1145/3532512.3535225
https://doi.org/10.1145/3532512.3535225

‹Programming› ’22 Companion, March 21–25, 2022, Porto, Portugal Rikito Taniguchi and Hidehiko Masuhara

CodePad [11] is a stand-alone note-taking tool for program com-
prehension. It is motivated by the observation that the programmers
use paper and other media to maintain their mental model [10].
Though it is a stand-alone tool (it is even designed to be used on a
different console alongside with a console for coding), it is designed
to work with an IDE by retrieving the currently browsing pro-
gram elements from the IDE, and by navigating the IDE to program
elements that was recorded in a CodePad’s memo.

1.3 Familiarity and Availability
We argue that the existing note-taking tools are limited in familiar-
ity and availability, which hinders from being used by wide-range
of programmers.

In terms of familiarity, some of the aforementioned tools require
the programmers to use different user-interface from that they are
usually using for daily development. In fact, many of code navi-
gation features, such as “go to definition”, provided by those tools
have different user-interface from those in common IDEs. Since
modern IDEs are rapidly evolving to embrace many useful features,
it is almost impossible for those tools to catch up. Therefore, this
can lead to lower acceptance from practitioners as pointed out by
Roehm et al. [13].

In terms of availability, some of the tools support one or a few
programming languages. For example, Code Bubbles and Synectic
only support Java. This makes those tools difficult to be used in the
age where many industrial projects use more than one program-
ming language in recent years [9].

1.4 Our Approach: IDE Plugin with Language
Servers

To address the familiarity and availability issues, we advocate to
build a note-taking tool as an IDE plugin connected to language
servers, and designed and implemented a prototypical tool called
CodeMap. Our contributions in this paper are summarized as fol-
lows.

• We presented a user-interface design of CodeMap that en-
ables the programmer to explore source code by using exist-
ing IDE functions, while extracting interested information
into a graphical note with a few keyboard/mouse operations.
This will offer better familiarity compared to the tools with
their own editor functions.

• We identified a set of IDE-plugin API that is required to im-
plement CodeMap. Although our implementation currently
assumes only Visual Studio Code (VSCode), we believe that
it can also be easily implemented for other IDEs that offer
the required APIs.

• We resolved dependency on programming languages by us-
ing the language server protocol (LSP)1. Even thoughCodeMap
requires semantic level information of the programs being
explored, the LSP-based implementation reduces the cost of
adapting the tool to new languages and will improve avail-
ability of the tool. CodeMap is also an interesting use of LSP
for constructing a non-trivial IDE feature.

1https://microsoft.github.io/language-server-protocol/

2 CODEMAP
We set the following two design goals for CodeMap.

• It uses a graphical representation that can intuitively match
the programmers’ mental model of a system, and can relate
back the graphical elements onto the program elements in
the code editor.

• Its implementation exploits existing code editors and lan-
guage systems as much as possible so that it increases famil-
iarity and availability.

In this section, we first summarize the characteristics of the
programmer’s mental model during the code comprehension and
howwe designed CodeMap based on it. Then, we introduce the user-
interface design of CodeMap, and the implementation to achieve
familiarity and availability. Finally, we illustrate programmers’ code
comprehension activity with a CodeMap using a scenario.

2.1 Graphical Note-Taking for Program
Comprehension

2.1.1 ProgramComprehensionModel. Ko et al. proposed a program
comprehension model consists of the three phases: Search, Relate
and Collect [8]. In this model, programmers search for a starting
point of program comprehension, and move back and forth between
those three phases until they collect all the necessary information
to complete the program comprehension task.

In the Search phase, programmers look for a source program
element that is relevant to the task as a starting point of the pro-
gram comprehension. For example, if the programmer attempts to
understand a specific feature’s behavior, the starting point would
be an API endpoint or a specific method. To find such an element,
they use a lexical search on various information through the de-
velopment environment, such as identifier names, comments, and
documentation, to identify their relevance to the task.

After finding a starting point for the program comprehension, in
the Relate phase, they attempt to understand the program element
by exploring related program elements from the starting point,
such as dependent functions and modules. To do so, they use a
structural code navigation function (like “go to definition“ and
“find references“ provided by IDE) or a lexical search function (like
grep).

During the program exploration, programmers collect the nec-
essary information for the program comprehension and construct
a mental model in the Collect phase. While the mental models for
program comprehension can be different between programmers, Ko
et al. argue that the mental model consists of the roles of program
elements such as function and modules, how they work, and their
relationships, such as how they interact with each other. In this
paper, we design CodeMap based on Ko’s model.

2.1.2 Design and Implementation. Based on Ko’s program com-
prehension model, programmers construct a mental model during
program exploration. However, maintaining a mental model in their
head would be a huge cognitive overhead, and he/she can forget
the initial motive of the exploration.

CodePad supports programmers maintaining the mental model
by allowing them to take graphical notes integrated with source
code. However, programmers have to arrange the graphical notes

55

https://microsoft.github.io/language-server-protocol/

CodeMap: A Graphical Note-Taking Tool Cooperating with an Integrated Development Environment ‹Programming› ’22 Companion, March 21–25, 2022, Porto, Portugal

Figure 1: Screenshot of CodeMap

by hand, and they have to switch back and forth between IDE
and CodePad’s display. This can distract programmers from code
reading and exploration.

Using CodeMap, programmers can concentrate on code read-
ing and exploration as we can arrange nodes in CodeMap with a
few keyboard/mouse operations. Figure 1 shows the overview of
CodeMap. The left-hand side depicts the canvas where program-
mers can freely arrange the graphical notes. We can add a node to
the canvas that corresponds to the program element by clicking
the CodeLens 2 that shows above the program elements as shown
in Figure 1-1, and we can click the nodes to add a custom com-
ment. On the other hand, when we want to recall the details of
a node, we can jump to the corresponding source code position
by double-clicking the node. Thus, we can move back and forth
between the editor and canvas without a cognitive overhead. On
top of that, CodeMap captures the IDE’s navigation events and au-
tomatically constructs relationships between nodes on the canvas.
Hence, we do not need to take care of arranging the relationships
on the canvas during the program exploration.

2.2 Design for Familiarity and Availability
To achieve familiarity, we developed CodeMap as an extension to
an existing IDE VSCode, and enabled programmers to use VSCode
editor for code reading, editing, and exploration as they do for daily
development.

We use LSP functions for various features such as showing Code-
Lens and capturing the code navigation events. For example, we
2https://code.visualstudio.com/blogs/2017/02/12/code-lens-roundup

retrieve the symbol information using textDocument/documentSym-
bols to show the CodeLens on program elements such as class and
function, andwe use the combination of the symbol information and
textDocument/definition request, textDocument/references request,
and so on for capturing the code navigation events in VSCode.

When programmers use code navigation, CodeMap automati-
cally adds nodes that correspond to the symbols we jump from
and to. LSP does not have an interface to specify which symbols
programmers navigate from and to, they only know the positional
information such as file path, line, and column of where it comes
from and jump to. To specify them, we search for the minimum
bounding symbols that contain the navigation positions, from all
the symbols in the files given by textDocument/documentSymbols
request.

Thus, even though CodeMap features require semantic level
information of programming languages, CodeMap is available in
any programming language as CodeMap implements those features
based on LSP.

2.3 Program Comprehension Scenario
To illustrate how CodeMap supports programmers’ comprehension
tasks, we use a scenario where we attempt to understand how
Dotty 3 compiler’s code completion API works. In this scenario, we

3https://dotty.epfl.ch/

56

https://code.visualstudio.com/blogs/2017/02/12/code-lens-roundup
https://dotty.epfl.ch/

‹Programming› ’22 Companion, March 21–25, 2022, Porto, Portugal Rikito Taniguchi and Hidehiko Masuhara

Figure 2: Programmers can add a node corresponding to the
completion method by clicking the CodeLens

.

explore the lampepfl/dotty 4 repository 5 usingMetals 6 language
server implementation for Scala programming language.

def completions(pos: SourcePosition)(using Context) = {
val path = Interactive.pathTo(

ctx.compilationUnit.tpdTree ,
pos.span

)
computeCompletions(pos , path)(

using Interactive.contextOfPath(path))
}

Listing 1: completions method in Completion.scala

Following the Ko’s program comprehension model (Section 2.1),
we begin with searching for a starting point. In this case, we found
an endpoint of the code completion API by lexical search (List-
ing 1). After finding the starting point, to take a note about how
completions method works, we added a node corresponding to
the method on the canvas by clicking the CodeLens (Figure 2).

Figure 3: CodeMap automatically adds a node for the pathTo
method and connects it with the node for the completions
method.

Following the program comprehension model, we explore linked
program elements by accessing definition of pathTo method to
4https://github.com/lampepfl/dotty
5Revision: b472e2662ed1da9c896246adf69b07f61d7fe2f6
6https://scalameta.org/metals/

understand how this method works and what it returns. When we
access the pathTomethod using “go to definition“ feature, CodeMap
automatically adds a node for pathTo method and connects the
nodes with an edge (Figure 3). CodeMap automatically adjust a
position of the new node using a graph layout algorithm. Therefore,
we do not need to consider the layout of the nodes during code
exploration.

Figure 4: CodeMap constructs a graphical network.

According to the program comprehension model, we construct a
mental model during the code exploration in our head, which leads
to a cognitive overhead. Using CodeMap, the relationships of the
program elements related to the completions method are visual-
ized in the canvas (Figure 4), and this visual representation supports
maintaining the mental model. In addition, we can instantly access
the relevant program elements for the program comprehension
tasks by double clicking the node in the canvas (Figure 1). This fea-
ture reduces the cognitive overhead for reconstructing the forgotten
elements of the mental model in our head.

3 DISCUSSION
In this section, we discuss challenges that we learned from our
initial prototype.

3.1 Canvas Space Scarcity
As Bradley et al. pointed out in their work on Code Bubbles, desk-
top space scarcity limits the number of nodes displayed [2]. As
CodeMap shows its canvas in a Visual Studio Code’s tab, the canvas
space, especially its width, is too small to display many nodes. This
limitation may prevent programmers from simultaneously viewing
all the information necessary for a task, which is one of the main
causes of difficulty in program comprehension [5].

One possible solution for this limitation would be to place can-
vas in a separate window instead of a VSCode tab. For example,
we can provide a wider canvas by implementing the canvas user-
interface as a separate web application that runs on a web browser
and communicates with an IDE. However, this solution requires
programmers to have an additional setup for CodeMap.

57

https://github.com/lampepfl/dotty
https://scalameta.org/metals/

CodeMap: A Graphical Note-Taking Tool Cooperating with an Integrated Development Environment ‹Programming› ’22 Companion, March 21–25, 2022, Porto, Portugal

3.2 Geometric Information of the Graph Layout
Since CodeMap automatically places nodes by using a graph layout
algorithm, their positions reflect only the distance with respect
to program relations (e.g., caller/callee), but not the proximity in
the source code. It could be meaningful if CodeMap calculates the
position of the new node based on the proximity in the source code.

Figure 5: Placing node closer if two nodes have close proxim-
ity

For example, Figure 5 shows a layout after explored callees from
quickSort function, where quickSort, compare and partition
are placed close to each other, and log is placed a bit far away. We
believe this layout is more informative as it reflects the proximity in
terms of modularity. Even though our current implementation does
not use information other than the edges on the graph, there should
be a number of techniques that estimate semantic proximity and
structure of program elements that can be used for better layouts
in the future.

3.3 Degree of Interest Model
Programmers can freely change the size and color of the nodes. This
will allow us to emphasize the importance of nodes, but it depends
on programmers’ manual involvement. It could be beneficial for
programmers if CodeMap automatically resizes or sets color based
on the degree of interest score for the node [7], which is calculated
based on the frequency of interaction with the element and an
interactions’ recency.

For example, as shown in Figure 6, CodeMap would highlight the
partition method if programmers frequently access the method,
which means they are interested in partitionmethod. Meanwhile,
CodeMap would automatically lighten and shrink the log node if
CodeMap calculates that programmers’ low interest in this method.
With this feature, programmers can recall the context about the
important parts of the system and where are unimportant details
at a glance.

4 CONCLUSION
We proposed a prototype tool called CodeMap, a VSCode exten-
sion for supporting program comprehension in a large software
system. The design goals of CodeMap are twofold: use a graphical
representation that can intuitively match the programmers’ mental
model of a system and design considering familiarity and avail-
ability for practitioners. To achieve the first design goal, CodeMap

Figure 6: partition node will be highlighted as a programmer
frequently accesses it

allows programmers to take graphical notes integrated with source
code with a few keyboard/mouse operations. For the second goal,
CodeMap exploits existing code editors and language systems as
much as possible. Thus, programmers can use VSCode editor for
code reading, editing, and navigation which they usually use for
daily development. Furthermore, we resolved dependency on pro-
gramming languages by using the LSP. Therefore, CodeMap is
available in many programming languages, which shall encourage
programmers to adopt our tool in an environment that consists of
multiple programming languages. We believe CodeMap to bridges
program comprehension research and industrial needs.

REFERENCES
[1] Marjan Adeli, Nicholas Nelson, Souti Chattopadhyay, Hayden Coffey, Austin

Henley, and Anita Sarma. 2020. Supporting code comprehension via annotations:
Right information at the right time and place. In 2020 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC). IEEE, 1–10.

[2] Daniel R Bradley and Ian J Hayes. 2013. Visuocode: A software development
environment that supports spatial navigation and composition. In 2013 First IEEE
Working Conference on Software Visualization (VISSOFT). IEEE, 1–4.

[3] Andrew Bragdon, Robert Zeleznik, Steven P Reiss, Suman Karumuri, William
Cheung, Joshua Kaplan, Christopher Coleman, Ferdi Adeputra, and Joseph J LaVi-
ola Jr. 2010. Code bubbles: a working set-based interface for code understanding
and maintenance. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. 2503–2512.

[4] Michael J Coblenz, Amy J Ko, and Brad A Myers. 2006. JASPER: an Eclipse plug-
in to facilitate software maintenance tasks. In Proceedings of the 2006 OOPSLA
workshop on eclipse technology eXchange. 65–69.

[5] Brian De Alwis and Gail C Murphy. 2006. Using visual momentum to explain dis-
orientation in the Eclipse IDE. In Visual Languages and Human-Centric Computing
(VL/HCC’06). IEEE, 51–54.

[6] Vikki Fix, Susan Wiedenbeck, and Jean Scholtz. 1993. Mental representations of
programs by novices and experts. In Proceedings of the INTERACT’93 and CHI’93
conference on Human factors in computing systems. 74–79.

[7] Mik Kersten and Gail CMurphy. 2006. Using task context to improve programmer
productivity. In Proceedings of the 14th ACM SIGSOFT international symposium
on Foundations of software engineering. 1–11.

[8] Amy J Ko, Brad A Myers, Michael J Coblenz, and Htet Htet Aung. 2006. An
exploratory study of how developers seek, relate, and collect relevant information
during software maintenance tasks. IEEE Transactions on software engineering
32, 12 (2006), 971–987.

[9] Philip Mayer and Alexander Bauer. 2015. An empirical analysis of the utilization
of multiple programming languages in open source projects. In Proceedings
of the 19th International Conference on Evaluation and Assessment in Software
Engineering. 1–10.

[10] Chris Parnin and Robert DeLine. 2010. Evaluating cues for resuming interrupted
programming tasks. In Proceedings of the SIGCHI conference on human factors in

58

‹Programming› ’22 Companion, March 21–25, 2022, Porto, Portugal Rikito Taniguchi and Hidehiko Masuhara

computing systems. 93–102.
[11] Chris Parnin, Carsten Görg, and Spencer Rugaber. 2010. CodePad: interactive

spaces for maintaining concentration in programming environments. In Proceed-
ings of the 5th international symposium on Software visualization. 15–24.

[12] Nancy Pennington. 1987. Stimulus structures and mental representations in
expert comprehension of computer programs. Cognitive psychology 19, 3 (1987),
295–341.

[13] Tobias Roehm, Rebecca Tiarks, Rainer Koschke, and Walid Maalej. 2012. How
do professional developers comprehend software?. In 2012 34th International

Conference on Software Engineering (ICSE). IEEE, 255–265.
[14] Jonathan Sillito, Kris De Voider, Brian Fisher, and Gail Murphy. 2005. Managing

software change tasks: An exploratory study. In 2005 International Symposium
on Empirical Software Engineering, 2005. IEEE, 10–pp.

[15] Xin Xia, Lingfeng Bao, David Lo, Zhenchang Xing, Ahmed E Hassan, and Shan-
ping Li. 2017. Measuring program comprehension: A large-scale field study with
professionals. IEEE Transactions on Software Engineering 44, 10 (2017), 951–976.

59

	Abstract
	1 Introduction
	1.1 Program Comprehension in Software Development
	1.2 Graphical Note-Taking Tools for Drawing Mental Models
	1.3 Familiarity and Availability
	1.4 Our Approach: IDE Plugin with Language Servers

	2 CodeMap
	2.1 Graphical Note-Taking for Program Comprehension
	2.2 Design for Familiarity and Availability
	2.3 Program Comprehension Scenario

	3 Discussion
	3.1 Canvas Space Scarcity
	3.2 Geometric Information of the Graph Layout
	3.3 Degree of Interest Model

	4 Conclusion
	References

