
An AOP Implementation Framework
for Extending Join Point Models

Naoyasu Ubayashi
Kyushu Institute of
Technology, Japan

ubayashi@acm.org

Hidehiko Masuhara
University of Tokyo, Japan

masuhara@acm.org

Tetsuo Tamai
University of Tokyo, Japan

tamai@acm.org

ABSTRACT
Mechanisms in AOP (aspect-oriented programming) can be
characterized by a JPM (join point model). AOP is effec-
tive in unanticipated software evolution because crosscutting
concerns can be added or removed without making invasive
modifications on original programs. However, the effective-
ness would be restricted if new crosscutting concerns cannot
be described with existing JPMs. Mechanisms for extending
JPMs are needed in order to address the problem. In this
paper, an implementation framework for extending JPMs is
proposed. Using the framework, we can introduce new kinds
of JPMs or extend existing JPMs in the process of software
evolution.

1. INTRODUCTION
Mechanisms in AOP (aspect-oriented programming) can be
characterized by a JPM (join point model) consisting of the
join points, a means of identifying the join points (point-
cuts), and a means of raising effects at the join points (ad-
vice). Crosscutting concerns may not be modularized as
aspects without an appropriate join point definition that
covers the interested elements in terms of the concerns, and
a pointcut language that can declaratively identifies the in-
terested elements. Each of current AOP languages is based
on a few fixed set of JPMs. Many different JPMs have been
proposed, and they are still evolving so that they could bet-
ter modularize various crosscutting concerns.

AOP is effective in unanticipated software evolution be-
cause crosscutting concerns can be added or removed with-
out making invasive modifications on original programs. How-
ever, the effectiveness would be restricted if new crosscut-
ting concerns cannot be described with JPMs supported by
current AOP languages. Mechanisms for extending JPMs
are needed in order to address the problem. Masuhara and
Kiczales presented a modeling framework that captures dif-
ferent JPMs by showing a set of interpreters[7]. We call
this the M&K model. Based on the M&K model, we pro-
pose a framework, called X-ASB (eXtensible Aspect Sand
Box), for implementing extensible AOP languages in which
different JPMs can be provided as its extension. The term
framework in this paper indicates provision of common im-
plementations and exposure of programming interfaces for
extending base languages. X-ASB is based on contributions
of ASB[1] that is a suite of aspect-oriented interpreters such
as PA (pointcuts and advice as in AspectJ) , TRAV (traver-
sal specifications as in Demeter), and COMPOSITOR (class
hierarchy composition as in Hyper/J). Advantages of X-

ASB are: language developers can easily prototype new or
extended JPMs in the process of software evolution; more
than one JPM can be provided at the same time like com-
bining Demeter-like traversal mechanism in AspectJ-like ad-
vice. Most of current extensible AOP languages allows the
programmers to extend the elements of the JPMs in their
language, not to introduce new JPMs. Our final goal is
computational reflection for AOP. We consider facilities of
adding new JPMs or changing existing JPMs from base level
languages as reflection for AOP. The effectiveness in soft-
ware evolution would be restricted if language developers
must extend JPMs whenever application programmers need
new kinds of JPMs. Reflective mechanisms will address this
problem.

In this paper, issues on implementing AOP languages are
pointed out in section 2. In section 3, X-ASB is introduced
to tackle the issues. We show a JPM development process
from the viewpoint of software evolution. In section 4, we
show advanced topics towards computational reflection for
AOP. In section 5, we discuss the effectiveness of X-ASB
in software evolution. We introduce some related work in
section 6, and conclude the paper in section 7.

2. ISSUES ON IMPLEMENTING AOP LAN-
GUAGES

Designing and implementing a new language is not easy. Al-
though extensible languages, such as computational reflec-
tion[6] and metaobject protocols would be useful for software
evolution, providing an extensible AOP language that covers
possible JPMs is not easy because the JPMs are drastically
different from the viewpoint of implementation.

The M&K model shows the semantics of major JPMs by
modeling the process of weaving as taking two programs
and coordinating them into a single combined computation.
A critical property of the model is that it describes the join
points as existing in the result of the weaving process rather
than being in either of the input programs. The M&K model
explains each aspect-oriented mechanism as a weaver that
is modeled as a tuple of 9 parameters:

< X, XJP , A, AID, AEFF , B, BID, BEFF , META > .

A and B are the languages in which the programs pA and
pB are written. X is the result domain of the weaving pro-
cess, which is the third language of a computation. XJP is
the join point in X. AID and BID are the means, in the
languages A and B, of identifying elements of XJP . AEFF



�����������
	 ��
�� 
���
������ ��� ���

� ����
�� ��� ��� ������� ��� � 
� 
���� � ��
 � ������
�� � 
 � 
���� � ��
 � ������
���
 ���


���� ��� � � ������� � ��� 
��


������ ��
 � ��� � ���

��
���
 � � ��� �

� 
���� � ��
 � ��� 
 � 
���� � ��
 � ��
 ���

� ��������
��� !��	 "

� ��������
���#$��	 "


�% % 
 � ���� 


�% % 
 � ����#

� ��������
�� � 
�����
���
 � � ��� �


������ ��� ��� �
� 


& � ��� � ������� ���
& � � ��� � ���

'

' � ' ' ��(

(

(�� '(���(

)

*

*�� '

*���(

*���)

+

, - .

/�����
0� ������������

� � ��
 � 
 � 
���
 �

� ��� �

� ��
�� �213��� ��
����

Figure 1: X-ASB overview

and BEFF are the means of effecting semantics at the iden-
tified join points. META is an optional meta-language for
parameterizing the weaving process. A weaving process is
defined as a procedure that accepts pA, pB, and META, and
produces either a computation or a new program. In terms
of the M&K model, PA is modeled as follows: X: execution
of combined programs; XJP : method calls, field gets, and
field sets; A: class, method, and field declarations; AID:
method and field signatures; AEFF : execute method; B:
advice declarations with pointcuts; BID: pointcuts; BEFF :
execute advice before, after, and around method.

Although the M&K model parameterizes major JPMs, it
makes no mention of implementation structures. In the
current ASB implementation based on the M&K model,
weavers are developed individually, and there is no com-
mon implementation among these weavers. It is impossible
to add new kinds of JPMs unless the code of each weaver is
re-implemented, and code regions to be modified are scat-
tered. Although several differences among JPMs may make
it difficult to actually implement a single parameterizable
procedure, we believe that there is some kind of implemen-
tation structures that can be commonly applied to major
JPMs. In the next section, we propose X-ASB as one of the
common implementation structures.

3. X-ASB: A FRAMEWORK FOR EXTEND-
ING JPMS

There are multiple framework layers for implementing or ex-
tending JPMs. The level 1 framework provides the common
implementation for all kinds of JPMs and programming in-
terfaces that must be implemented by JPM developers. The
interfaces expose hot-spots for extending JPMs. This level
gives JPM developers basic architecture for implementing
JPMs. The level 2 framework provides advanced toolkit
for implementing specific weavers such as PA-like weavers
and TRAV-like weavers. Using the toolkit, JPM developers
can implement individual weavers as well as multi-paradigm
weavers that support several JPMs. For example, COM-
POSITOR that supports PA-like before/after advice can be
implemented. In this section, we explain the overview of
the level 1 framework that is currently provided by X-ASB.
We show a JPM development process using the code skele-
ton of the PA weaver and the extended PA weaver from the
viewpoint of software evolution.

3.1 X-ASB overview
The overview of X-ASB, which is implemented in Scheme,
is shown in Figure 1. The bottom half is a common imple-
mentation provided by X-ASB, and the top half is a set of
programming protocol interfaces that must be implemented
by JPM developers. The common implementation includes
a base language interpreter, libraries provided for JPM de-
velopers, and other common implementations that are not
shown here. Table 1 shows programming protocols as func-
tion names with their parameter name lists. Using the inter-
faces, a new kind of JPM can be added to the base language.
The interfaces expose hot-spots for defining and registering



No. Signature Ret val M&K
1. (eval-program pgm meta) none X

2. (register-jp tag generator) none XJP

3. (register-pcd tag evaluator) none XJP

4. (lookup-A-ID jp param) AID AID

5. (lookup-B-ID jp param) BID BID

6. (effect-A A-ID jp param) none AEFF

7. (effect-B B-ID jp thunk param) none BEFF

Table 1: X-ASB programming protocol

No. Signature Ret val
1. (register-one-jp tag generator) none
2. (lookup-jp-generator tag) generator
3. (register-one-pcd tag evaluator) none
4. (pointcut-matches ptc jp) #t or #f
5. (computation-at-jp jp param) none

param: optional information

Table 2: X-ASB library

join points (no.2), pointcuts (no.3), and advice (no.4, 5, 6,
7) because a JPM is characterized by these three compo-
nents. The interfaces also expose hot-spots for defining a
weaver body that mediates these components (no.1). Table
2 shows X-ASB libraries.

In X-ASB, JPMs can be systematically introduced or ex-
tended as follows: 1) define kinds of join points; 2) de-
fine kinds of pointcuts; and 3) define a body of weaver,
and computation at join points. The base language inter-
preter calls the functions register-jp, register-pcd, and
eval-program implemented by JPM developers as follows:

(define weaver
(lambda (pgm meta)
(register-jp)
(register-pcd)
(eval-program pgm meta)))

We show a JPM development process using the code skeleton
of the PA weaver that have only method call join point and
call pointcut designator. The PA weaver processes, for
example, the following program that calculates the factorial
of n. Calls to procedure fact is declared as a pointcut, and
after advice is executed at the join point corresponding to
the pointcut.

(class sample-fact object
(method void init () (super init))
(method int main () (send this fact 6)) ;call method
(method int fact ((int n))
(if (< n 1) 1

(* n (send this fact (- n 1)))))
;pointcut & advice
(after (call fact) (write ’after) (newline)))

Step 1: define kinds of join points.
First, JPM developers have to define kinds of join points and
the related data structures including an AST (Abstract Syn-
tax Tree) in PA, an object graph in TRAV, and so on. The

interface register-jp and its parameter generator are used
in the step 1 (see 1, 1-1, 1-2 in Figure 1). The register-jp

interface registers a new kind of join point. Each join point
is managed by the structure composed of a join point tag
name and a generator that generates a join point. In the
base language interpreter, there are several hook-points such
as call-method, var-set/get, field-set/get, if, and so
forth. A set of join points can be selected from these hook
points. Crosscutting concerns such as loop structures can
be extracted by selecting hook points concerning control ex-
pressions as join points. Crosscutting concerns such as data
flows, on the other hand, can be extracted by selecting data
access hook points. In general, data structures related to
join points tend to be different drastically among JPMs. The
generator parameter abstracts differences among these data
structures. The register-one-jp library function helps
JPM developers to implement the register-jp interface.
The following is the code skeleton of the PA weaver.

(define register-jp
(lambda ()
(register-one-jp ’call-method generate-call-jp)))

(define generate-call-jp ...)

Step 2: define kinds of pointcuts.
Next, kinds of pointcut designators must be defined as a
boolean function using the register-pcd interface (see 2,
2-1, 2-2 in Figure 1). Each pointcut designator is managed
by the structure composed of a pointcut tag name and an
evaluator that checks whether a current join point is an ele-
ment of a pointcut set. The register-one-pcd library func-
tion helps JPM developers to implement the register-pcd

interface. The following is the code skeleton of the PA
weaver.

(define register-pcd
(lambda ()
(register-one-pcd ’call call-pcd?)))

(define call-pcd? ...)
; compare method name of pointcut designator
; and method name of method call join point

Step 3: define a body of weaver, and computation at
join points.
Lastly, JPM developers have to implement a body of a
weaver using the exec-program interface that corresponds
to the X parameter in the M&K model (see 3 in Figure 1).
In the case of the PA weaver, the internal data structure
related to join points is an AST. The eval-program creates
an AST, walks it, and checks if the visited node is regis-
tered as a join point. At the method call join point, the
call-method function related to the AST is called. Figure 2
illustrates the architecture of the PA weaver. The following
is the body of the PA weaver.

(define eval-program
(lambda (pgm meta)
(walk-ast (generate-ast pgm meta))))

(define walk-ast
(lambda (ast)

...
; computation at method call join point
(call-method mname obj args)
...))



� � ��� ����� 	 
 � ���


 ������� � 
 	��
� � 
�� � 
 ��� � � �

� � 
�� � 
 ��� �������

� 	�	�� ��� � ����� �

� 	�	�� ��� ������� �

� � � ��� 
 � �

� � � ��� 
 ���

� � ��� � � 
 	��

��� ��!�" !�# $�% !&$'")(+*-,
.���/0$�1 23% 4 !5(6*�,

7 � !�" !�# $�% ! 8�9�$�1 1 8 : ;�<

7 9 $�1 1 8=;'9 >'? <

1 @'@�2 A ;CB+! % 4 @�>

1 @'@�2 A ;&$ >�D=E 9�!

! F !'9�A�% !GBH!�% 4 @'>

! F !'9�A�% !I$ >�D=E 9 !

/J$�1 2

9�$�1 1 8-BH!�% 4�@�>
K : @=E "&;'@�E "�% L

��	��0��� 
 � 
 � 	�� ��� 
 � � �

MONQP

Figure 2: PA weaver overview

The computation at the method call join point, the call-

method function, can be defined using the computation-at-jp
library function, a generic (template) function as shown be-
low (see 5, 6 in Figure 1). The jp parameter (see 4-3 in
Figure 1) is an instance of a current join point generated
by the generator (see 4-2 in Figure 1) that is registered by
register-jp (see 1-2 in Figure 1). The registered join point
generator can be searched using the lookup-jp-generator

library function (see 4, 4-1 in Figure 1). The lookup-A-ID/
lookup-B-ID and effect-A/effect-B interfaces corresponds
to AID/BID and AEFF/BEFF in the M&K model, respec-
tively. These interfaces must be implemented by JPM de-
velopers. Implementing the interfaces, a new kind of advice
can be introduced. In call-method, the call pointcut eval-
uator call-pcd? is executed in the pointcut-matches (see
8 in Figure 1) invoked from the lookup-B-ID (see 7 in Figure
1), and the advice executor effect-B is executed.

;; X-ASB library
(define computation-at-jp

(lambda (jp param)
(let* ((A-ID (lookup-A-ID jp param))

(B-ID (lookup-B-ID jp param)))
(effect-B B-ID jp

(lambda ()
(effect-A A-ID jp param)) param))))

(define pointcut-matches

... search a pointcut evaluators corresponding
to a join point, and execute a found evaluator.)

;; define computation at call method join point
;; using X-ASB library
(define call-method

(lambda (mname obj args)
(computation-at-jp
((lookup-jp-generator ’call-method) mname obj args)
null))) ; no additional parameter

(define lookup-A-ID ...) ; lookup method
(define lookup-B-ID ...) ; lookup advice

; (check if the join point
; satisfies the pointcut
; conditions
; using pointcut-matches.
; return advice if true.)

(define effect-A ...) ; execute method
(define effect-B ...) ; execute-advice

As shown in step 1, 2, and 3, the PA weaver is constructed
modularly using X-ASB. JPM developers have only to mod-
ify specific code regions such as register-jp and register-

pcd when a new kind of join point and pointcut are needed.
On the other hand, JPM developers must modify several
code regions in order to add a new JPM element in the case
of the current ASB implementation. We can separate JPM
implementations using X-ASB. Separation of implementa-
tion concerns contributes to evolution of JPMs.

3.2 Extending existing weaver
It is desirable that one can extend an existing weaver slightly
when JPMs that the weaver provides are insufficient for de-
scribing new kinds of features required in the process of soft-
ware evolution. It is relatively easy to deal with this prob-
lem using X-ASB. The following is an example in which
the PA weaver is extended in order to support context-
sensitive calling sequences. The example is a communica-
tion program in which a protocol —an order of exchanged
messages— is important. This program, written in the base
language of X-ASB, separates a situation in which a pro-
tocol error might occur by defining a new kind of pointcut
construct. Suppose that the order of message sequences is
<m1, m2, m3>. The pointcut definition (calling-sequence

(not (list ’m1 ’m2 ’m3))) catches the crosscutting con-
cern that violates the order.

(class sample-protocol-error-detection object
(method int m1 () (...))
(method int m2 () (...))
(method int m2 () (...))
(after (calling-sequence (not (list ’m1 ’m2 ’m3)))

(write ’invalid-calling-sequence) (newline)))

This pointcut designator can be added to the existing PA
weaver as follows.

(define register-pcd
(lambda ()
(register-one-pcd ’calling-sequence

calling-sequence-pcd?)))
(define calling-sequence-pcd? ...)



4. TOWARDS REFLECTION
X-ASB exposes two kinds of programming interfaces for
adding JPMs to the base language. The first is a set of pro-
gramming interfaces provided for language developers that
implement weavers as shown in section 3. The second is a set
of programming interfaces provided for programmers that
develop user applications and want to add JPMs specific to
these applications. In the implementation style illustrated
in subsection 3.2, only language developers can extend the
PA weaver. It would be better for application programmers
to be able to add new aspect-oriented features using X-ASB
programming interfaces within the base language, as follows.

(class sample-calling-sequence object
(method void register-pcd ()
(meta register-one-pcd ’calling-sequence

calling-sequence-pcd?)
(super register-pcd))

(method boolean calling-sequence-pcd? ...)

Application programmers may override the register-pcd

method defined in the object class. To call procedures de-
fined in the framework provided by X-ASB, programmers
may use the meta call. Although the power of the extension
is still limited, this brings to mind the reflective program-
ming. The base language programming interfaces in X-ASB
correspond to metaobject protocols in reflective OOP lan-
guages. Using reflective mechanisms, application program-
mers can extend JPMs in order to deal with unanticipated
application-specific requirements in the process of software
evolution.

5. EFFECTIVENESS IN SOFTWARE EVO-
LUTION

As mentioned in previous sections, X-ASB is effective in
unanticipated software evolution. We may face new kinds
of crosscutting concerns, which cannot be handled by exist-
ing JPMs, in the process of software evolution. New kinds
of JPMs will be needed when we face the following situa-
tions: 1) we want to extend existing JPMs slightly in order
to adapt to application-specific purposes; 2) we want to use
more than one JPM simultaneously. As an example of the
first case, we showed a JPM development process of the ex-
tended PA weaver in section 3. The extended PA weaver was
developed modularly to support context-sensitive calling se-
quences that are not provided by the original PA weaver.
As an example of the second case, it may be necessary to
combine PA-like JPMs with TRAV-like JPMs. This can be
realized using the level 2 framework of X-ASB. Using X-
ASB, we can extend new kinds of JPMs according to soft-
ware evolution.

6. RELATED WORK
Shonle, Lieberherr, and Shah propose an extensible domain-
specific AOP language XAspect that adopts plug-in mech-
anisms[8]. Adding a new plug-in module, we can use a new
kind of aspect-oriented facility. CME (Concern Manipula-
tion Environment)[3], the successor of Hyper/J, adopts an
approach similar to XAspect.

Although pointcut languages play important roles in AOP
paradigms, current AOP languages do not provide sufficient

kinds of pointcut constructs. In an effort to address this
problem, several previous investigations have attempted to
enrich the pointcut constructs. Kiczales emphasizes the ne-
cessity of new kinds of pointcut constructs such as pcflow

(predictive control flow) and dflow (data flow)[5]. Gybels
and Brichau point out problems of current pointcut lan-
guages from the viewpoint of the software evolution, and
propose robust pattern-based pointcut constructs using logic
programming facilities[4]. These approaches introduce new
pointcut constructs in order to deal with new kinds of cross-
cutting concerns. However, adopting these approaches, we
need to add another pointcut construct to existing AOP
languages whenever we face another kind of problem. As a
consequence, the syntax of AOP languages would become
very complex. Chiba and Nakagawa propose Josh[2] in
which programmers can define a new pointcut construct as
a boolean function. Using X-ASB, we can add not only new
pointcut constructs but also new kinds of join points and
advice.

7. CONCLUSION
The paper proposed mechanisms for extending JPMs in or-
der to support unanticipated software evolution. Using X-
ASB, we can introduce new kinds of JPMs when we face
new kinds of crosscutting concerns that cannot be handled
by existing JPMs.

8. ACKNOWLEDGEMENT
This research has been conducted under Kumiki Project,
supported as a Grant-in-Aid for Scientific Research (13224087)
by the Ministry of Education, Science, Sports and Culture.

9. REFERENCES
[1] ASB(Aspect SandBox),

http://www.cs.ubc.ca/labs/spl/projects/asb.html.

[2] Chiba, S. and Nakagawa, K.: Josh: An Open AspectJ-like
Language, In Proceedings of Aspect-Oriented Software
Development (AOSD 2004), pp.102-111, 2004.

[3] Concern Manipulation Environment (CME): A Flexible,
Extensible, Interoperable Environment for AOSD,
http://www.research.ibm.com/cme/.

[4] Gybels, K. and Brichau, J.: Arranging Language Features
for More Robust Pattern-based Crosscuts, In Proceedings of
Aspect-Oriented Software Development (AOSD 2003),
pp.60-69, 2003.

[5] Kiczales, G.: The Fun Has Just Begun , Keynote talk at
Aspect-Oriented Software Development (AOSD 2003),
2003.

[6] Maes, P.: Concepts and Experiments in Computational
Reflection, In Proceedings of Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA’87), pp.147-155, 1987.

[7] Masuhara, H. and Kiczales, G.: Modeling Crosscutting in
Aspect-Oriented Mechanisms, In Proceedings of European
Conference on Object-Oriented Programming (ECOOP
2003), pp.2-28, 2003.

[8] Shonle, M., Lieberherr, K., and Shah, A.: XAspects: An
Extensible System for Domain-specific Aspect Languages,
Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA 2003), Domain-Driven
Development papers, pp.28-37, 2003.


