Towards Right Abstraction
Mechanisms for
Crosscutting Concerns

Hidehiko Masuhara
University of Tokyo

N N

THE UNIVERSITY OF TOKYO

Traditional abstraction
mechanisms

* Procedural abstraction
» €.7g., procedures, functions, subroutines, ...

e Data abstraction
» €.9., abstract data types

e Hierarchical abstraction
» €.7., classes in OOP

What properties abstraction
mechanisms should have?

Three properties of
abstraction mechanigms

=

« candrawaboundary ®m g * =

e can name bounded - rectangle -
SNES O

e can hide detalls .

Abstraction mechanisms for
crosscutting concerns? B

Crosscutting concerns

Logging

Security
Adaptation
Distribution
Persistency
Optimization
Concurrency
Exception handling

How do you characterize
crosscutting concerns
(CCCs)?

Attempts to characterize CCCs
//’ i .\\

 Those that have - a5
crosscutting structure in '\ B m

—m WS

implementation [Kiczales9l] - > W _ -~ =~ "~ =~
» decomposition, then CCC @~ 'l W N\ .’l

e A concern relating to " B o
more than one concerns B o,m /)
» but what about library? :l O \:\,’ ,’ K
. ' ' N |
A relationship between | N

concerns INn a crossover N \

Attempts to characterize CCCs

[[]

 Those that have O - g -

crosscutting structure in m.” 0

implementation [Kiczaleso1] m -7

» decomposition, then CCC =~ o :’.,’ :'\\. B
» A concern relating to g <7 W

more than one concerns RN ,

» but what about library? B ‘m/ ..’

: ! A4

» A relationship between - =

concerns INn a crossover
[ECOOPO3]]

CCC, In this talk

n]
e is a concern primarily _ g
about “where to relate” m .- B
» i.e., the shape of the o =7
boundary R
» €.9., a logging concern = [.// .,/]
“what operations we should m/ .~ B
log” vy . [

» fits Parnas’ modularization -
> : e [] M/
principle to hide “difficult or N/ m
likely-to-change design
decisions” [CACM72]

Do CCC modularization
mechanisms have abstraction
properties?

Three properties of
crosscutting abstraction

e can draw a boundary
» but elaborated, and

» may not be textually
structured

e Ccah name Losrceteniiies:
the boundary
e can hide details

of outside of the
boundary

Mechanisms for
crosscutting abstraction

e Aspects, of course

» pointcut and advice <:I focus on this

» Intertype declarations
* |let classes to implement an interface, and
» define methods in the interface

e Layered abstractions

» €.9., mixin layers, family polymorphism,
FOP, etc.

12

Pointcut mechanism for drawing
an elaborated boundary
e By using signatures

e By composing sub-pointcuts
e By exploiting high-level program information

» call stack (cflow),

» execution history (tracecutlPouenceds] \Walker05],
tracematchlAllan0s])

» information flow (dflow!APLASO3]),

» Static analysis (LMPIGybelso2] - JoshlChiba04]
A|pha[Ostermann05], SCOPE[AOSDO7]), and so on

Pointcut mechanism
for naming a boundary

 Named pointcut in AspectJ

14

Pointcut mechanisms
for hiding detalls

e Some hiding principles and
mechanisms

» Named pointcuts

» Interface between target & aspect:
XPlI [Griswold06] Open Modules [Aldrich05]

e but elaboration can cause problems

15

Named pointcuts
hide some detalls

 Pointcut users don’'t need to know

parameter

» pointcut o
of:]

» pointcut o

nositions

0Ops(DB db):

(* DB.do*(..)) && target(db);
0Ops(DB db):

ca

(* Util.db*(DB,..)) && args(db,..);

16

Interface between target and
aspect hides detalls

provide separated interface between
aspects and target

aoeLI9)UI

17

Elaboration can cause a problem

* Elaboration of pointcuts tend to rely on
detalils of the target

» See the next example...

Drawing a boundary in
an FTP client

Concern: view updating
when the server state changes, i.e.:

 “after login, file uploading, file
deletion, directory creation,
directory deletion, or current
directory change”

e composition mechanism helps:
call(* *.doLogin(..)) || call(*
.doUpload(..)) || call(
*.doDelete(..)) ...

19

Drawing a boundary:

elaboration

can’'t do with
Concern: view updating p(()é?tcl:allgisnflli?]ne
when the §erv§r state ch.ange.s, .4 “Time JPM
 “after login, file uploading, file [APLAS06])

deletion, directory creation,

directory deletion, or curre
directory change”

* “but only when

succeeded’ .

because unsuccessful operations

doesn’t change t
 mechanism ca

ne view

oturing return values

20

Drawing a boundary:

more elaboration

« “after file uploaded, ... but only
when succeeded or failed due to
network disconnection”

» to make the view gray

 history-based mechanisms help

sym send(): ... sym networkError:
sym successUpload: ... sym failUpload: ...

(send* finishUpload)||(send* networkError
failUpload) { ... }

e more dependent on the details!!

LT

Are we doomed?

 We want an elaborated boundary
 We want to hide details

22

An idea to rescue:
Example-based pointcuts

* |Instead of specifying detailed events

» “after 1 or more sending, returned from
doUpload without handling

NetworkException” successful

» Specify by example executions, €.9.{ yploadin
“after the program behaved like P 2
new NormalNet(). doUpload("foo")

or new FaultyNet(). doUpload("foo")”

» only depends on external

interfaces failure due to
disconnection

23

Issues of providing examples

e Specifying executions
 Judging similarity of executions
e Maintaining examples

One approach:
Test-based Pointcuts

using unit test cases as examples

cf. Sakurali and Masuhara, Test-Based Pointcuts for Robust and
Fine-Grained Join Point Specification, in AOSD’08, 2008

Test-based pointcuts: overview

(. " \
pointcut specifies

TN o \test cases

= g - J
' Dy
| 1 9spects‘\

‘\ \ ‘ '\ pointcut

! I I% ‘ advice

]
-) I '

advice runs when program
target program behaves similarlry

J

Specifying executions

e Test-based pointcuts select unit test cases by
specifying fixture variables

» €.7g., “any unit test cases that access faultyServer”
» can be good approximations of concerns

e requiring unit test cases to
» define one execution per a test case
» explicitly use fixture variables for test parameters
» explicitly declare phases

26

Specifying test cases:. example

testUploadFailureByDisconnection() { F
Server s = F.faultyServer; . Server normsServer
testBody(); === phase separator Server faultyServer
r = s.doUpload(F.validPath); Str vaildPath
testCheck(); Str invalidPath
assertFalse(r); fixtures

after(): test(get{K.faultyServer))
&& test(get(F.validPath)) ||
test(get(F.normServer))
&& test(get(F.validPath))

27

Judging similarity of executions

Candidate methods
* by entry methods — too coarse

* by execution histories
— should distinguish # of iterations?

e by static execution histories
e by parameter values

28

Similarly wrt
static execution histories

e Def. set-equality over instructions
» iIncludes conditional branches

* Precise enough to distinguish
control-flows in a method

* Abstracting execution order /
number of iterations

 Efficient implementation

Maintaining examples

Even when the target software evolves,
pointcuts should be able to draw
“Intended” boundaries

e Test-based pointcuts can be better
» by not directly relying on the details

» as long as test cases are maintained
— no free lunch!

» Wrt separation of responsibility

30

Implementation

* Prototype compiler is implemented
» 2.5KL0oC extension to abc

o 2-Phase compilation
1. run all test cases with profiling aspects

2. run instrumented target program
 create a flag set at entry
o flag at each conditional branch
o test the falg set at exit

31

Challenges and other approaches to
example-based pointcuts

o Test execution with/without aspects
 Ignoring unimportant control flow
» €.7., branches to print debug messages

* Providing examples by values,
or by program code

 Forward prediction
» .., “when it will behave like this”

lgnoring unimportant control flow

by using abstract interpretation

(suggested by Klaus Ostermann)

Abstract interpretation executes a program on
an abstract domain

» e.g.,D={-,0, + } for integers

» Classify test parameters into “important” and
“unimportant”

e EXxecute test programs by Al

* Ignore branches depends on “unimportant”
values (and their derivations)

Examples by values

e Adaptive programming
(e.g., Demeter / DJ)
» focuses on the structure of values

» based on regular expression over types

e e.g., “from Company to Employee bypassing
Customer”

 Example values can be alternatives?

36

Summary

« How can a “pointcut programmer” draw
elaborated boundaries of join points
with hiding detalls of join points?

e EXisting mechanisms: the more
elaboration, the more detail-dependent

 One approach Is to use examples

» Test-based pointcut [AOSDO8]
» Challenges and other approaches

37

