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Traditional abstraction
mechanisms

* Procedural abstraction
» €.7g., procedures, functions, subroutines, ...

e Data abstraction
» €.9., abstract data types

e Hierarchical abstraction
» €.7., classes in OOP




What properties abstraction
mechanisms should have?




Three properties of
abstraction mechanigms
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Crosscutting concerns

Logging

Security
Adaptation
Distribution
Persistency
Optimization
Concurrency
Exception handling




How do you characterize
crosscutting concerns
(CCCs)?
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CCC, In this talk
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Do CCC modularization
mechanisms have abstraction
properties?




Three properties of
crosscutting abstraction

e can draw a boundary
» but elaborated, and

» may not be textually
structured

e Ccah name Losrceteniiies:
the boundary
e can hide details

of outside of the
boundary




Mechanisms for
crosscutting abstraction

e Aspects, of course

» pointcut and advice <:I focus on this

» Intertype declarations
* |let classes to implement an interface, and
» define methods in the interface

e Layered abstractions

» €.9., mixin layers, family polymorphism,
FOP, etc.
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Pointcut mechanism for drawing
an elaborated boundary
e By using signatures

e By composing sub-pointcuts
e By exploiting high-level program information

» call stack (cflow),

» execution history (tracecutlPouenceds] \Walker05],
tracematchlAllan0s])

» information flow (dflow!APLASO3]),

» Static analysis (LMPIGybelso2] - JoshlChiba04]
A|pha[Ostermann05], SCOPE[AOSDO7]), and so on




Pointcut mechanism
for naming a boundary

 Named pointcut in AspectJ
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Pointcut mechanisms
for hiding detalls

e Some hiding principles and
mechanisms

» Named pointcuts

» Interface between target & aspect:
XPlI [Griswold06] Open Modules [Aldrich05]

e but elaboration can cause problems
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Named pointcuts
hide some detalls

 Pointcut users don’'t need to know

parameter

» pointcut o
of:]

» pointcut o

nositions

0Ops(DB db):

(* DB.do*(..)) && target(db);
0Ops(DB db):

ca

(* Util.db*(DB,..)) && args(db,..);
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Interface between target and
aspect hides detalls

provide separated interface between
aspects and target

aoeLI9)UI
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Elaboration can cause a problem

* Elaboration of pointcuts tend to rely on
detalils of the target

» See the next example...




Drawing a boundary in
an FTP client

Concern: view updating
when the server state changes, i.e.:

 “after login, file uploading, file
deletion, directory creation,
directory deletion, or current
directory change”

e composition mechanism helps:
call(* *.doLogin(..)) || call(*
*.doUpload(..)) || call(*
*.doDelete(..)) ...
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Drawing a boundary:

elaboration

can’'t do with
Concern: view updating p(()é?tcl:allgisnflli?]ne
when the §erv§r state ch.ange.s, .4 “Time JPM
 “after login, file uploading, file [APLAS06])

deletion, directory creation,

directory deletion, or curre
directory change”

* “but only when

succeeded’ .

because unsuccessful operations

doesn’t change t
 mechanism ca

ne view

oturing return values
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Drawing a boundary:

more elaboration

« “after file uploaded, ... but only
when succeeded or failed due to
network disconnection”

» to make the view gray

 history-based mechanisms help

sym send(): ... sym networkError:
sym successUpload: ... sym failUpload: ...

(send* finishUpload)||(send* networkError
failUpload) { ... }

e more dependent on the details!!
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Are we doomed?

 We want an elaborated boundary
 We want to hide details
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An idea to rescue:
Example-based pointcuts

* |Instead of specifying detailed events

» “after 1 or more sending, returned from
doUpload without handling

NetworkException” successful

» Specify by example executions, €.9.{ yploadin
“after the program behaved like P 2
new NormalNet(). doUpload("foo")

or new FaultyNet(). doUpload("foo")”

» only depends on external

interfaces failure due to
disconnection
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Issues of providing examples

e Specifying executions
 Judging similarity of executions
e Maintaining examples

One approach:
Test-based Pointcuts

using unit test cases as examples

cf. Sakurali and Masuhara, Test-Based Pointcuts for Robust and
Fine-Grained Join Point Specification, in AOSD’08, 2008




Test-based pointcuts: overview
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Specifying executions

e Test-based pointcuts select unit test cases by
specifying fixture variables

» €.7g., “any unit test cases that access faultyServer”
» can be good approximations of concerns

e requiring unit test cases to
» define one execution per a test case
» explicitly use fixture variables for test parameters
» explicitly declare phases
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Specifying test cases:. example

testUploadFailureByDisconnection() { F
Server s = F.faultyServer; . Server normsServer
testBody(); === phase separator Server faultyServer
r = s.doUpload(F.validPath); Str vaildPath
testCheck(); Str invalidPath
assertFalse(r); fixtures

after(): test(get{K.faultyServer))
&& test(get(F.validPath)) ||
test(get(F.normServer))
&& test(get(F.validPath))
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Judging similarity of executions

Candidate methods
* by entry methods — too coarse

* by execution histories
— should distinguish # of iterations?

e by static execution histories
e by parameter values
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Similarly wrt
static execution histories

e Def. set-equality over instructions
» iIncludes conditional branches

* Precise enough to distinguish
control-flows in a method

* Abstracting execution order /
number of iterations

 Efficient implementation




Maintaining examples

Even when the target software evolves,
pointcuts should be able to draw
“Intended” boundaries

e Test-based pointcuts can be better
» by not directly relying on the details

» as long as test cases are maintained
— no free lunch!

» Wrt separation of responsibility
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Implementation

* Prototype compiler is implemented
» 2.5KL0oC extension to abc

o 2-Phase compilation
1. run all test cases with profiling aspects

2. run instrumented target program
 create a flag set at entry
o flag at each conditional branch
o test the falg set at exit
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Challenges and other approaches to
example-based pointcuts

o Test execution with/without aspects
 Ignoring unimportant control flow
» €.7., branches to print debug messages

* Providing examples by values,
or by program code

 Forward prediction
» .., “when it will behave like this”




lgnoring unimportant control flow

by using abstract interpretation

(suggested by Klaus Ostermann)

Abstract interpretation executes a program on
an abstract domain

» e.g.,D={-,0, + } for integers

» Classify test parameters into “important” and
“unimportant”

e EXxecute test programs by Al

* Ignore branches depends on “unimportant”
values (and their derivations)




Examples by values

e Adaptive programming
(e.g., Demeter / DJ)
» focuses on the structure of values

» based on regular expression over types

e e.g., “from Company to Employee bypassing
Customer”

 Example values can be alternatives?
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Summary

« How can a “pointcut programmer” draw
elaborated boundaries of join points
with hiding detalls of join points?

e EXisting mechanisms: the more
elaboration, the more detail-dependent

 One approach Is to use examples

» Test-based pointcut [AOSDO8]
» Challenges and other approaches
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