
1

Towards Right Abstraction
Mechanisms for

Crosscutting Concerns

Hidehiko Masuhara
University of Tokyo

2

Traditional abstraction
mechanisms

• Procedural abstraction
► e.g., procedures, functions, subroutines, …

• Data abstraction
► e.g., abstract data types

• Hierarchical abstraction
► e.g., classes in OOP

3

What properties abstraction
mechanisms should have?

4

Three properties of
abstraction mechanisms

• can draw a boundary
• can name bounded

entities
• can hide details

Abstraction mechanisms for
crosscutting concerns?

rectangle

5

Crosscutting concerns
• Logging
• Security
• Adaptation
• Distribution
• Persistency
• Optimization
• Concurrency
• Exception handling
• …

6

How do you characterize
crosscutting concerns

(CCCs)?

7

Attempts to characterize CCCs

• Those that have
crosscutting structure in
implementation [Kiczales91]

► decomposition, then CCC
• A concern relating to

more than one concerns
► but what about library?

• A relationship between
concerns in a crossover
[ECOOP03]

8

Attempts to characterize CCCs

• Those that have
crosscutting structure in
implementation [Kiczales91]

► decomposition, then CCC
• A concern relating to

more than one concerns
► but what about library?

• A relationship between
concerns in a crossover
[ECOOP03]

9

CCC, in this talk
• is a concern primarily

about “where to relate”
► i.e., the shape of the

boundary
► e.g., a logging concern =

“what operations we should
log”

• fits Parnas’ modularization
principle to hide “difficult or
likely-to-change design
decisions” [CACM72]

10

Do CCC modularization
mechanisms have abstraction

properties?

11

Three properties of
crosscutting abstraction

• can draw a boundary
► but elaborated, and
► may not be textually

structured
• can name bounded entities

the boundary
• can hide details

of outside of the
boundary

persis
tency

persis
tency

12

Mechanisms for
crosscutting abstraction

• Aspects, of course
► pointcut and advice
► intertype declarations

• let classes to implement an interface, and
• define methods in the interface

• Layered abstractions
► e.g., mixin layers, family polymorphism,

FOP, etc.

focus on this

13

Pointcut mechanism for drawing
an elaborated boundary

• By using signatures
• By composing sub-pointcuts
• By exploiting high-level program information

► call stack (cflow),
► execution history (tracecut[Douence05], [Walker05],

tracematch[Allan05]),
► information flow (dflow[APLAS03]),
► static analysis (LMP[Gybels02], Josh[Chiba04],

Alpha[Ostermann05], SCoPE[AOSD07]), and so on

14

Pointcut mechanism
for naming a boundary

• Named pointcut in AspectJ

15

Pointcut mechanisms
for hiding details

• Some hiding principles and
mechanisms
► Named pointcuts
► Interface between target & aspect:

XPI [Griswold06] Open Modules [Aldrich05]

• but elaboration can cause problems

16

Named pointcuts
hide some details

• Pointcut users don’t need to know
parameter positions
► pointcut dbOps(DB db):

call(* DB.do*(..)) && target(db);
► pointcut dbOps(DB db):

call(* Util.db*(DB,..)) && args(db,..);

17

Interface between target and
aspect hides details

• XPI [Griswold06] and Open Modules [Aldrich05]

provide separated interface between
aspects and target

target aspect
interface

18

Elaboration can cause a problem

• Elaboration of pointcuts tend to rely on
details of the target
► see the next example…

19

Drawing a boundary in
an FTP client

Concern: view updating
when the server state changes, i.e.:

• “after login, file uploading, file
deletion, directory creation,
directory deletion, or current
directory change”

• composition mechanism helps:
call(* *.doLogin(..)) || call(*
.doUpload(..)) || call(
*.doDelete(..)) …

JFtp

..
alpha.zip 08-7-5 100K
beta.zip 06-3-3 54M
gamma.txt 08-8-9 4K

Put

Get Info Del

20

Drawing a boundary:
elaboration

Concern: view updating
when the server state changes, i.e.:

• “after login, file uploading, file
deletion, directory creation,
directory deletion, or current
directory change”

• “but only when succeeded”,
because unsuccessful operations
doesn’t change the view

• mechanism capturing return values
helps

can’t do with
pointcuts alone

(cf. Point-in-
Time JPM

[APLAS06])

21

Drawing a boundary:
more elaboration

• “after file uploaded, … but only
when succeeded or failed due to
network disconnection”
► to make the view gray

• history-based mechanisms help
sym send(): … sym networkError:
sym successUpload: … sym failUpload: …
(send* finishUpload)||(send* networkError

failUpload) { … }

• more dependent on the details!!

JFtp

..
alpha.zip 08-7-5 100K
beta.zip 06-3-3 54M
gamma.txt 08-8-9 4K

Put

Get Info Del

22

Are we doomed?

• We want an elaborated boundary
• We want to hide details

23

successful
uploading

An idea to rescue:
Example-based pointcuts

failure due to
disconnection

• Instead of specifying detailed events
► “after 1 or more sending, returned from

doUpload without handling
NetworkException”

• Specify by example executions, e.g.,
“after the program behaved like
new NormalNet(). doUpload(“foo”)
or new FaultyNet(). doUpload(“foo”)”
► only depends on external

interfaces

24

Issues of providing examples

• Specifying executions
• Judging similarity of executions
• Maintaining examples

One approach:
Test-based Pointcuts

using unit test cases as examples
cf. Sakurai and Masuhara, Test-Based Pointcuts for Robust and

Fine-Grained Join Point Specification, in AOSD’08, 2008

25

pointcut specifies
test cases

Test-based pointcuts: overview

target program

aspects
pointcut

advice

test cases

advice runs when program
behaves similarlry

26

Specifying executions

• Test-based pointcuts select unit test cases by
specifying fixture variables
► e.g., “any unit test cases that access faultyServer”
► can be good approximations of concerns

• requiring unit test cases to
► define one execution per a test case
► explicitly use fixture variables for test parameters
► explicitly declare phases

27

after(): test(get(F.faultyServer))
&& test(get(F.validPath)) ||

test(get(F.normServer))
&& test(get(F.validPath))

testUploadFailureByDisconnection() {
Server s = F.faultyServer;
testBody();
r = s.doUpload(F.validPath);
testCheck();
assertFalse(r);

}

Specifying test cases: example
F

Server normServer
Server faultyServer
Str vaildPath
Str invalidPath

phase separator

fixtures

28

Judging similarity of executions

Candidate methods
• by entry methods — too coarse
• by execution histories

— should distinguish # of iterations?
• by static execution histories
• by parameter values

29

Similarly wrt
static execution histories

• Def. set-equality over instructions
► includes conditional branches

• Precise enough to distinguish
control-flows in a method

• Abstracting execution order /
number of iterations

• Efficient implementation

upload

send

ret

send

ret

ret

30

Maintaining examples

Even when the target software evolves,
pointcuts should be able to draw

“intended” boundaries
• Test-based pointcuts can be better

► by not directly relying on the details
► as long as test cases are maintained
— no free lunch!

► wrt separation of responsibility

31

Implementation

• Prototype compiler is implemented
► 2.5KLoC extension to abc

• 2-Phase compilation
1. run all test cases with profiling aspects
2. run instrumented target program

• create a flag set at entry
• flag at each conditional branch
• test the falg set at exit

34

Challenges and other approaches to
example-based pointcuts

• Test execution with/without aspects
• Ignoring unimportant control flow

► e.g., branches to print debug messages
• Providing examples by values,

or by program code
• Forward prediction

► e.g., “when it will behave like this”

35

Ignoring unimportant control flow
by using abstract interpretation

(suggested by Klaus Ostermann)
Abstract interpretation executes a program on

an abstract domain
► e.g., D = { −, 0 , + } for integers

• Classify test parameters into “important” and
“unimportant”

• Execute test programs by AI
• Ignore branches depends on “unimportant”

values (and their derivations)

36

Examples by values

• Adaptive programming
(e.g., Demeter / DJ)
► focuses on the structure of values
► based on regular expression over types

• e.g., “from Company to Employee bypassing
Customer”

• Example values can be alternatives?

37

Summary

• How can a “pointcut programmer” draw
elaborated boundaries of join points
with hiding details of join points?

• Existing mechanisms: the more
elaboration, the more detail-dependent

• One approach is to use examples
► Test-based pointcut [AOSD08]

► Challenges and other approaches

