
A Data-Parallel Extension to Ruby for GPGPU

Toward a Framework for Implementing Domain-Specific Optimizations

Hidehiko Masuhara
Graduate School of Arts and Sciences

University of Tokyo
JST/CREST

masuhara@acm.org

Yusuke Nishiguchi
Graduate School of Arts and Sciences

University of Tokyo
nishiguchi@graco.c.u-tokyo.ac.jp

ABSTRACT
We propose Ikra, a data-parallel extension to Ruby for
general-purpose computing on graphical processing unit
(GPGPU). Our approach is to provide a special array class
with higher-order methods for describing computation on
a GPU. With a static type inference system that identifies
code fragments that shall be executed on a GPU and with
a skeleton-based compiler that generates CUDA code, we
aim at separating application logic and parallelization and
optimizations. The paper presents the design of Ikra and
an overview of its implementation along with preliminary
performance evaluation.

Categories and Subject Descriptors
D.3 [Programming Languages]: Language Classifica-
tions—Concurrent, distributed, and parallel languages

General Terms
Languages

Keywords
Data-parallel programming, Ruby, general-purpose comput-
ing on graphical processing unit (GPGPU), type inference

1. INTRODUCTION
General-purpose computing on graphic processing unit

(GPGPU) is one of the promising and cost-effective ways to
achieve high-performance computing on various platforms,
from game consoles to supercomputers. However, the state-
of-the-art GPGPU programs have tightly-coupled descrip-
tions of application logic and parallelization concerns due to
low-level language abstractions provided by GPGPU lan-
guages/frameworks. In addition, fast paced evolution of
hardware architectures makes the tight-coupling problem
more serious as the programs need to employ different par-
allelization strategies and optimization techniques so as to
achieve reasonable performance on a new hardware.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
RAM-SE’12, June 13, 2012, Beijing, China
Copyright 2012 ACM 978-1-4503-1277-6/12/06 ...$10.00.

To this tight coupling problem, we advocate an approach
to providing a programming language with a high-level ab-
straction for GPGPU, where an application program is fo-
cused on its own logic. By applying different parallelization
and optimization strategies, the programmer can obtain rea-
sonable performance on different execution platforms.

Based on this idea, we are developing a data-parallel ex-
tension to Ruby, called Ikra1, which serves as a language for
describing application logic without much concerning about
parallelization and optimizations. With our planned open
framework for parallelization, the programmer would be able
to quickly prototype application logics and explore different
optimization strategies.

This paper focuses on the data-parallel abstraction in
Ikra, while leaving the open parallelization framework fu-
ture work. Even though we assume a GPU as an underlying
hardware architecture, the discussion in the paper is mostly
applicable to other massively parallel and heterogeneous ar-
chitectures. Section 2 introduces the main challenges in the
state-of-the-art of GPGPU programming. Section 3 briefly
sketches the language design of Ikra through an example
application program. Section 4 gives our current implemen-
tation strategy, followed by preliminary performance evalu-
ation in section 5. After discussed related work in section 6,
we conclude the paper in section 7.

2. CHALLENGES IN GPGPU PROGRAM-
MING

The state-of-the-art of GPGPU programming requires the
programmer to be aware of low-level parallelization and op-
timization concerns when writing application logic. This is
not only due to the mainstream programming languages for
GPGPU, such as CUDA and OpenCL, but also due to the
nature of heterogeneity in GPGPU2.

GPGPU programming requires the programmer to choose
right kernels—portions of an application program that will
be parallely executed on a GPU—as a GPU serves as
a single-instruction-multiple-data (SIMD) accelerator with
hundreds of simple cores.

It is however not easy to determine the kernels because
one GPU core is much lower than CPU’s. Sometimes has to
reform the control structure and data layout to extract such
a portion.

1Ikra is a Russian word that means roe of the salmon, which
is also known as “rubies of the sea” in Japan.
2Though we here assume the nVidia’s Fermi architecture,
most of the discussion here is valid with other GPU or het-
erogeneous hardware accelerators.

In addition, tightly limited resources on a GPU demands
the programmer to precisely control the number and size of
threads, the data allocations, and so forth.

Memory Management.
A GPU has a deep memory hierarchy separated from the

CPU’s main memory. For example, an nVidia’s Fermi-based
GPU has a large “global” memory accessible from all GPU
cores (yet separated from CPU’s address space), a small
“shared”memory shared by a group of threads, and a private
“local” memory per-thread.

A challenge with respect to the memory model is that the
programmer has to manually control memory usage at each
layer in the hierarchy. For example, instead of relying on
the cache memory, the programmer has to manually fetch
frequently accessed data into each core’s shared memory.
High latency and low-bandwidth between CPU and GPU
memories also requires to overlap computation and memory
transfer.

Choosing Kernels.
The programmer has to choose kernels, i.e., the portion

of code to be execution on a GPU. Though this is a com-
mon challenge in parallel computing, it is particularly im-
portant in GPGPU as its granularity sensitive performance
model. For example, when an application has doubly-nested
loops, parallelizing either loop would result in different per-
formance depending on the number of threads, and the size
of a working set in a kernel, which is constrained by the
amount of private memory. As it is difficult to predict the
effect of this mutual dependency, the programmer often had
to implement and compare different parallelization strate-
gies.

Domain-Specific Optimizations.
Many optimization techniques for GPGPU are domain

specific; i.e., specific to an application domain, or specific
to a particular hardware architecture. As mentioned above,
an ideal choice of a kernel is dependent on the size of a work-
ing set, which varies over different applications. In addition,
GPU architectures are still evolving at a remarkable pace,
which will change many architectural parameters such as
local memory size.

3. IKRA: RUBY IMPLEMENTATION
WITH DATA-PARALLEL ABSTRAC-
TION

3.1 Design Goals
To tackle the above challenges, we propose Ikra, a data-

parallel extension to Ruby for GPGPU. Its design goals can
be summarized as the following three points.

Integration with Ruby: Ikra is an extension to Ruby;
i.e., a sequential portion of a program runs as a stan-
dard Ruby program. This will help quick prototyping
of a GPGPU application by exploiting various class li-
braries in Ruby, such as string manipulation, network-
ing, and graphics.

Parallelization through a data-parallel array class:
Ikra’s primary abstraction for parallelization is a

1require ’ikra’ # provides PArray
2require ’RMagick ’ # external library
3

4LIMIT = 64; INF = 10
5

6# read parameters
7res = ARGV [0]. to_f; r_min = ARGV [1]. to_f
8r_max = ARGV [2]. to_f; i_min = ARGV [3]. to_f
9i_max = ARGV [4]. to_f
10r_size = ((r_max -r_min) / res).to_i
11i_size = ((i_max -i_min) / res).to_i
12

13def sq(x) # a function called from the kernel
14x*x
15end
16

17m = PArray.new(r_size , i_size){ |r_idx , c_idx|
18# the kernel code executed on a GPU
19cr = r_min + res*r_idx; ci = i_min + res*c_idx
20iter = 0; zr = 0.0; zi = 0.0
21while(iter < LIMIT && sqrt(sq(zr)+sq(zi)) < INF)
22zr1 = zr*zr-zi*zi+cr; zi1 = zr*zi+zi*zr+ci
23zr = zr1; zi = zi1
24iter += 1
25end
26iter
27}
28

29# visualization with an external library
30f = Image.new(r_size ,i_size)
31m.map_with_index{ |row , col , iter|
32f.store_pixels(row ,col ,1,1,
33[Pixel.from_HSL ([iter /64.0 ,1.0 ,0.5])])
34}
35f.display

Figure 1: A Ruby program that computes Mandel-
brot set with PArray.

data-parallel array class, called PArray, whose map

and inject3 methods are executed on a GPU in
parallel. Since those methods are mostly compatible4

with the same methods of the standard array class
in Ruby, the programmer can easily try different
parallelization strategies by simply replacing an array
class with PArray.

Separated optimization: Though it is beyond the scope
of the paper and much is left for future work, Ikra will
provide a framework for applying different optimiza-
tion strategies separately from application logic. The
Ikra’s parallel abstractions are designed at a high-level
so as to make it easy to apply optimization techniques.

3.2 Ikra by Example
Due to space limitations, we introduce key characteristics

of Ikra by using a simple application program that computes
a Mandelbrot set.

Integration with Ruby.
As shown in figure 1, the entire program can be seen as

a Ruby program using the PArray class, whose interface is
provided by requesting the ikra package (line 1). We also
offer a pure Ruby implementation of PArray so that the
programmer can test and debug behavior of a program in
an environment without a GPU.

3A Ruby equivalent of the fold function in MLs and Haskell
and the reduce function in Lisp.
4As long as there is no dependency among iterations.

The sequential part of the program can use any Ruby
features including external libraries. In figure 1, the program
except for the lines from 13 until 27 is sequential; hence it
uses string manipulations and an image processing library
for visualization.

The PArray class (appearing at line 17) serves as the data-
parallel abstraction in Ikra. A PArray object is allocated
on the GPU’s memory. Operations on a PArray object are
executed in parallel on a GPU when possible. However, its
API is mostly compatible with the standard array class in
Ruby.
PArray provides a few methods for parallel operations, in-

cluding namely initialization (new), map and inject, which
execute the body of their block argument in parallel. In
other words, the kernels are written as block arguments to
PArray methods in Ikra. The initialization of PArray at
line 17 executes the body of its block argument (until line 27)
in parallel, and initialize elements of PArray with the com-
puted values.

The kernel code is written in a subset of Ruby, which does
not require explicit type declarations. Supported data types
are integers and floating point numbers.5 Supported control
structures are if, for and while, and non-recursive global
functions. The block body can reference variables declared
in its lexical scope; it however does not support destructive
assignments to lexical variables.

When a program calls a parallel operation on a PArray

with a block body that performs unsupported operations
(e.g., using objects or calling native libraries), Ikra transfers
the contents of the array to CPU’s memory and sequen-
tially performs the operation on a CPU. For example, the
map operation6 at line 31 is executed on a CPU as its body
argument manipulates an Image object and the Pixel class.
Some other operations, such as length, are merely executed
on a CPU without data transfer.

4. IMPLEMENTATION
Our current implementation performs offline (i.e., ahead-

of-time) type-inference and compilation, and generates Ruby
and CUDA programs by using skeleton-based paralleliza-
tion.

4.1 Offline Processing
Our implementation is based on an offline processing; i.e.,

generates GPU-executable code before starting an Ikra pro-
gram. This is mainly for the sake of simplicity of imple-
mentation, where wecan rely the CUDA compiler as its
back-end. Runtime code generation, i.e., generates GPU-
executable code at the beginning of the kernel, would be
able to support wider range of Ruby programs as we can
access concrete runtime type information. We however left
this for future work.

4.2 Type Inference
5Currently, precision of those numbers is controlled by a pa-
rameter written in a separate configuration file of the com-
piler. A future version will allow to specify through direc-
tives embedded in a program.
6For an explanatory purpose, we used map operation, which
can be replaced with each operation. However, the each op-
eration is not a parallel operation in Ikra, because it is used
for side-effecting data other than the array itself through
destructive assignments.

Given an Ikra program, the implementation first infers
types of all expressions, variables and methods in the pro-
gram. The inferred types are used (1) for determining the
operations on PArray objects, (2) for judging if the body
of a block argument to a PArray operation (e.g., map and
inject) is executable on a GPU, and (3) for generating a
CUDA kernel function from the body of the block argument.

We currently use an inference system that only supports
a few built-in types (i.e., integer, float, Boolean, and ar-
ray) and control structure (i.e., if, while, and top-level meth-
ods). Variables, expressions, and elements of an array are
monomorphic, while top-level methods can be polymorphic
by duplicating code per call site. An object in a class ex-
cept for the built-in types is regarded as of “dynamic” type.
Exceptionally, there are typing rules for special operations
(e.g., to_i, which converts any object into an integer).

Such a simple inference system is sufficient for Ikra as we
need type information only around the kernel code, which is
eventually translated into functions in CUDA, which has no
support for objects. When our type inference system ana-
lyzes the program in figure 1, the variables created at lines 4–
11 have either integer or float types thanks to the special
rules. The following method and expression at lines 13–27
are fully typed, and determined as kernel code. Most of the
expressions in the bottom section (from line 29) are typed
as dynamic, as they use externally defined classes, namely
Image and Pixel.

4.3 Skeleton-Based Code Generation
After the type inference, our implementation generates (1)

a CUDA kernel function with a wrapper from each block ar-
gument to parallel operations, namely new, map and inject,
on a PArray, and (2) a Ruby program by replacing each of
such calls to with an execution of the wrapper function.

Figure 2 shows the kernel and wrapper functions gener-
ated from the Ikra program in figure 1. The function anno-
tated as “global” from line 3 is the kernel function that will
be executed by each thread on a GPU. It takes the parame-
ters to the method, a pointer to the result array, and values
of lexical variables.

The body of the function is generated by filling holes in
a skeleton function with the code fragments translated from
the block body. The skeleton part is responsible to par-
allelization; i.e., computing indices from thread numbers,
checking boundaries, iterating an inner loop (which does not
appear in this example), synchronizing with other threads
(which also does not appear), and storing results.

The wrapper function from line 17 receives arguments
from Ruby, and merely invokes the kernel function after con-
verting Ruby values into C’s.

5. PRELIMINARY PERFORMANCE
EVALUATION

We compared execution times of simple programs, namely
computation of a Mandelbrot set (the same program in fig-
ure 1 without the visualization part) and summation of ran-
dom numbers, written in CUDA, Ikra, C and Ruby. All exe-
cutions are taken place on a 2.5 GHz Intel Core 2 Quad pro-
cessor with an nVidia GeFore GTX 465 having 352 CUDA
processor cores at 1215 MHz, running Debian 4.1. The im-
plementations of CUDA, C and Ruby are nvcc 3.1v0.2.1221
with CUDA Driver 4.0; GCC 4.1.3 with -O3 switch; and

1__device__ float sq(float x){return x*x;}
2

3__global__ void __kernel_0(int _max0 , int _max1 ,
float* _result , float res , int i_size , int inf
, float r_min , int limit , float i_min , float
cr, int r_size , float ci){

4float zr,zi,zr1 ,zi1;
5int r_idx = threadIdx.x + blockDim.x*blockIdx.x;
6int c_idx = threadIdx.y + blockDim.y*blockIdx.y;
7if(r_idx <_max1 && c_idx <_max0){
8cr=r_min+(res*r_idx); ci=i_min+(res*c_idx);
9iter = 0; zr = 0.0; zi = 0.0;
10while (iter <limit && sqrt(sq(zr)+sq(zi))<inf){
11zr1 = (((zr * zr) - (zi * zi)) + cr);
12zi1 = (((zr * zi) + (zi * zr)) + ci);
13zr = zr1; zi = zi1;
14iter = (iter + 1); }
15_result[r_idx * _max1 + c_idx] = iter; } }
16

17VALUE _kernel_0_wrapper(VALUE self , VALUE gpu_ptrs
, VALUE block_size , VALUE size , VALUE args){

18/* check runtime types of arguments */
19float* d_ptr_0 = (float*) FIX2INT(rb_ary_entry(

gpu_ptrs , 0));
20int _max0 = FIX2INT(rb_ary_entry(size , 0));
21int _max1 = FIX2INT(rb_ary_entry(size , 1));
22float arg_0 = NUM2FLOAT(rb_ary_entry(args ,0));
23// ... extract and convert arguments ...
24dim3 db, dg; // set dimensions
25__kernel_0 <<<dg,db >>>(_max0 , _max1 , d_ptr_0 ,

arg_0 , arg_1 , arg_2 , arg_3 , arg_4 , arg_5 ,
arg_6 , arg_7 , arg_8);

26return Qnil; }

Figure 2: CUDA code generated by Ikra.

CRuby 1.8.7-p334, respectively.
Figure 3 shows the execution times of the benchmark pro-

grams. The top graph compares execution times of two pro-
grams in four language implementations executed with and
without a GPU. As can bee seen, the Ikra versions are as
fast as or slightly slower than the CUDA versions, and sig-
nificantly faster than the C and Ruby versions.

The bottom graph shows the times spent for memory
transfer and computation by the GPU cores. It also shows
that the Mandelbrot kernel in Ikra is slower than that in
CUDA. We suspect that it is due to the redundant CUDA
code generated by Ikra, though we are currently investigat-
ing detailed causes.

6. RELATED WORK
Accelerate[1] is a Haskell-like functional language for

GPGPU. Similar to Ikra, it offers a special array-type as
a data-parallel abstraction, relies on a type inference sys-
tem for identifying kernel code, and employs skeleton-based
code generation. Since Accelerate is based on a functional
language rigorously typed, the Accelerate program has to
explicitly convert between parallel and sequential arrays.
Besides differences in the type systems of underlying lan-
guages, we presume that the implementation techniques in
Accelerate and Ikra are mostly interchangeable.

Firepile[4] is a Scala framework for GPGPU. It takes a
higher-order function in Scala, and dynamically generates
an OpenCL kernel for parallel execution on a GPU. Unlike
Ikra, Firepile offers as low-level abstractions as those offered
by OpenCL or CUDA. Firepile generates GPU code at run-
time. This is mainly because the kernel code in Firepile is
supplied as a higher-order function, whose body cannot be
easily determined in Scala. In Ruby, it is common to pro-

 0.01

 0.1

 1

 10

 100

ex
ec

u
ti

o
n
 t

im
e

(s
ec

s)

Mandelbrot sum

CUDA
Ikra

C
Ruby

 0

 10

 20

 30

 40

 50

 60

e
x
e
c
u
ti

o
n
 t

im
e
 (

m
se

c
s)

CUDA Ikra CUDA Ikra

Mandelbrot sum

xfer to GPU
kernel

xfer from GPU

Figure 3: Preliminary benchmark results.

vide the block body in place of a method invocation, which
makes it easier to identify the kernel code.

Another approach to provide parallel abstractions is
to support GPGPU in a parallelizing compiler such as
OpenMP[3]. Based on loop parallelism, we believe that the
abstractions are at rather lower-level than data-parallel ab-
stractions. However, matured compilation techniques de-
veloped for those compilers, such as the loop dependency
analysis, would also be useful in our approach.

There are several systems for scripting languages, such
as PyCUDA/PyOpenCL[2], that support GPGPU by em-
bedding CUDA kernel code inside a program in a script
language. Differently from those systems, Ikra allows the
programmer to write kernel code in Ruby.

7. CONCLUSION
This paper presented the design of Ikra, a data-parallel ex-

tension to Ruby for supporting GPGPU and an overview of
its implementation. Our prototype implementation showed
that Ikra’s type inference and compilation system offers com-
parable performance on a GPU to the hand-written CUDA
code, though more work is needed to support applications
beyond simple ones.

8. REFERENCES
[1] Chakravarty, M. M., et al.Accelerating Haskell array

codes with multicore GPUs. In DAMP , pp. 3–14, 2011.

[2] Klöckner, et al.PyCUDA and PyOpenCL: A
scripting-based approach to GPU run-time code
generation. submitted for publication, Nov. 2009.

[3] Lee, S., Min, S.-J., and Eigenmann, R. OpenMP to
GPGPU: a compiler framework for automatic
translation and optimization. In PPoPP , pp. 101–110,
2009.

[4] Nystrom, N., White, D., and Das, K. Firepile:
run-time compilation for GPUs in Scala. In GPCE ,
pp. 107–116, 2011.

