
Managing Persistent Signals using Signal Classes
A Work-In-Progress Paper

Tetsuo Kamina
Oita University

Japan
kamina@acm.org

Tomoyuki Aotani
Mamezou Co.,Ltd.

Japan
tomoyuki-aotani@mamezou.com

Hidehiko Masuhara
Tokyo Institute of Technology

Japan
masuhara@acm.org

Abstract
Persistent signals provide a convenient abstraction for time-
varying values with their execution histories by implicitly
leaving the management of execution histories to the data-
base system. The current design of persistent signals is very
rudimental. For example, they do not provide abstractions for
representing complex data structures, and they can only be
connected using API methods prepared in advance. To make
matters worse, dynamic creation of persistent signals is not
allowed. In this paper, we show that these problems can be
addressed by introducing a new language mechanism called
signal classes. A signal class packages a network of related
persistent signals that comprises a complex data structure.
A signal class can be instantiated dynamically, and this in-
stance is considered a “small world,” where all signals within
it are synchronous. We further show that this synchronous
world makes it easy to realize persistent signal networks
connected by expressions that are not limited to the API
methods. This dynamic creation of signal class instances is
managed by a simple lifecycle model where both dynamic
lifecycle events and persistency are defined.

1 Introduction
Signals offer a convenient abstraction for time-varying val-
ues. Each signal can represent a data stream with a peri-
odically updated value, and by connecting them, we can
declaratively specify a dataflow from inputs to outputs. This
mechanism became a representative construct in functional-
reactive programming (FRP) [Elliott and Hudak 1997], and
now it is common in imperative languages [Kamina and
Aotani 2018; Salvaneschi et al. 2014; Zhuang 2019]. Signals
constitute the basics of reactive computations in modern sys-
tems, such as the Internet of Things (IoT). Such systems also
diligently use past values. Even though signals may utilize
past values, doing so is likely discouraged because, e.g., using
arbitrary far past value leads to “time leak”, a problem where
accumulated past values waste resources such as the main
memory. Thus, most programming languages supporting
signals practically limit the usage of past values.
Persistent signals [Kamina and Aotani 2019] are abstrac-

tions for time-varying values with their execution histories.

REBLS’20, Nov 16, 2020, Virtual
2020. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

They provide the generalized and standardized way of time
leak management by leaving this management to the time-
series database system. Furthermore, the execution histories
do not disappear even after the application stops. The details
of the underlying database system are completely hidden
from the program.
Even though this idea was presented with their imple-

mentation and microbenchmarks, the existing persistent
signals suffer from the following problems. First, persistent
signals do not provide abstractions for representing complex
data structures. For example, the paper on persistent signals
describes a vehicle tracking system as an example, where
persistent signals are used to record x- and y-coordinates of
the running vehicle. Because persistent signals only support
primitive types, it is necessary to represent each coordinate
using an individual persistent signal, and the correspondence
between those coordinates (e.g., their simultaneous updates)
must be explicitly maintained by the programmer. Second,
persistent signals can be connected only using a set of API
methods, where the mapping from queries on persistent sig-
nals to the corresponding database queries are prepared in
advance. This limits the use cases where persistent signals
can be applied. Finally, persistent signals cannot be created
dynamically, as the database schema that implements the
persistent signals is implicitly derived from the source code.
This means that we cannot add any new vehicles during the
execution of the vehicle tracking system. We consider this
limitation to be critical. Additionally, we cannot change the
structures of persistent signal networks dynamically.

Why is the design of persistent signals so disorderly? We
identified the following reasons. First, mapping from per-
sistent signal networks to the underlying database system
is a non-trivial issue. For example, at first we may consider
that the existing object-relation mapping can be applied to
implement persistent signals with complex data structures.
However, this approach is not consistent with the existing
object-based signals, where internal state changes within an
object are not observed as an update of the signal value. Next,
we must avoid glitches (temporal inconsistencies within the
signal networks) in not only the current values but also all
past values. For this purpose, persistent signals record the
logical time for all past updates, which are shared with all the
synchronized persistent signals. Thus, we must keep track
of which persistent signals are synchronized, which makes

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

REBLS’20, Nov 16, 2020, Virtual Tetsuo Kamina, Tomoyuki Aotani, and Hidehiko Masuhara

the program clumsy. One compromise is to abandon this
keeping track by limiting this synchronization only for the
“views” defined by the prepared API methods. Finally, this
abandonment of keeping track of related persistent signals
also makes it difficult to keep the data consistency between
persistent signals that are dynamically created.

In this paper, we propose signal classes to address all these
problems. First, a signal class provides a packaging mecha-
nism for persistent signals. This means that we can construct
a complex data structure in the form of a persistent signal net-
work, while restricting every persistent signal to have only
a type that is supported by the underlying database system
(and thus we need not worry about the mapping between
complex data structures). One exception is that a signal class
can be nested, i.e., within a signal class, we can declare a
persistent signal whose type is also a signal class. This is a
simple extension of object-type signals in SignalJ [Kamina
and Aotani 2018] that allows dynamic switching of signal
networks. Secondly, a signal class can be instantiated dy-
namically. This dynamically instantiated instance is consid-
ered a small world, where all persistent signals enclosed in
that instance are synchronized. Thus, this abstraction sim-
ply provides a means of synchronization management for
related persistent signals without introducing clumsy code,
and now we can connect persistent signals using expressions
not limited by the prepared API methods. This instance also
provides a unit of lifecycle management, which makes it
easy to provide consistent management regarding lifecycle
events, such as dynamic creation and destruction, as well as
keeping persistency.

2 Technical Premises
Signals. Signals are abstractions for time-varying values
that can be declaratively connected to form dataflows. Sig-
nals directly represent dataflows from inputs given by the
environment to outputs that respond to the changes in the
environment. This feature is useful in inplementing mod-
ern reactive systems, such as IoT applications. For example,
assuming that the power difference of an actuator is cal-
culated by the function f that takes a sensor value as an
input, both the power difference and the sensor value can be
represented as signals: powerDifference and sensorValue,
respectively.We describe these signals using SignalJ [Kamina
and Aotani 2018], an extension of Java that supports signals.

signal int sensorValue = 2000; \\initial value

signal int powerDifference = f(sensorValue);

These declarations specify that the value of powerDifference
is recalculated every time the value of sensorValue is up-
dated.

Although signals were first proposed in several functional
languages [Cooper 2008; Elliott and Hudak 1997; Meyerovich
et al. 2009], in SignalJ, we can imperatively change the value
of signals. For example, we can imperatively update the

value of sensorValue, which is automatically propagated
to powerDifference.

\\the value of powerDifference is also updated.

sensorValue = readFromSensors();

We note that the dependency between powerDifference
and sensorValue is fixed during the execution, i.e., reas-
signment of a value to powerDifference is not allowed. In
SignalJ, imperative update is allowed only for signals that
do not depend on other signals, such as sensorValue.
Besides this mechanism to specify the dependency be-

tween time-varying values, SignalJ provides specific features
that are intensively used throughout this paper. First, in Sig-
nalJ, a signal is used anywhere a non-signal value is expected,
by implicitly unlifting the signal to a normal Java-value (i.e.,
the latest value of the signal). Thus, in the above example,
the function f can be a method that does not accept a signal
but just an integer value. Thus, we can connect signals using
legacy library methods that do not support signals, and the
dependency between sensorValue and powerDifference
is determined statically. Secondly, in SignalJ, a signal implic-
itly implements some API methods. One example of such an
API method is subscribe, which registers an event handler
that is called when the receiver of subscribe is updated. In
the following section, we will see that query API methods
for persistent signals are also provided in this way.

Persistent signals. One important building block for mod-
ern reactive systems is to store time-series data, which are
the histories of time-varying values comprising the reac-
tive system. We explain this using the example of a vehicle
tracking system [Kamina and Aotani 2019]. This system
records the position of each vehicle, which is obtained from
automotive devices. The position changes while the vehicle
is moving. In other words, the position of the vehicle is a
time-varying value. There are also some other time-varying
values that depend on the position, such as the estimated
velocity and the total traveled distance of that vehicle. These
dependencies on time-varying values motivate us to develop
the system using signals. This vehicle tracking system also
allows for post analysis (e.g., inspecting the cause of a car
accident) and simulation. This means that the change history
of each time-varying value stored in the time-series database
is necessary.
Persistent signals [Kamina and Aotani 2019] are abstrac-

tions for time-varying values with their execution histories.
A persistent signal is declared as a variant of signals that
encapsulates details of its execution history, which is stored
in the underlying database. Queries on this execution his-
tory are supported by API methods equipped with persistent
signals in advance. Each call of the API method is internally
translated to the corresponding database query. Because the
management of the history is left to the database system,
we can apply a generalized way to manage the “time leak”,

2

Managing Persistent Signals using Signal Classes REBLS’20, Nov 16, 2020, Virtual

where accumulated histories waste resources such as the
main memory, using larger storage. Furthermore, persistent
signals make their histories available even after the applica-
tion stops.

In SignalJ, a signal is declared as a persistent signal using
the modifier persistent. In the following example, the vari-
ables car1234_x and car1234_y are declared as persistent
signals whose time-varying values are of type int.

persistent signal int car1234_x, car1234_y;

signal int c12x =

car1234_x.within(Timeseries.now, "12␣hours");

signal int c12y =

car1234_y.within(Timeseries.now, "12␣hours");

In this example, these persistent signals represent the posi-
tion of a specific vehicle; car1234_x represents the x-coordinate
and car1234_y represents the y-coordinate.
Persistent signals are equipped with several query API

methods. For example, the within method shown above re-
turns another persistent signal that contains all the receiver’s
values that have been recorded within the specified period
(the past 12 hours in the above example). In other words, the
return value of within (c12x or c12y in the above example)
is a view of the receiver of within. We call such a persistent
signal a view signal.
View signals are also used to avoid glitches among sig-

nals related with the transitive dependency (this means that
consistency between signals like car1234_x and car1234_y
must explicitly be handled by the programmer). SignalJ sup-
ports pull-based signals, which means that a signal is re-
evaluated whenever it is accessed (and it is guaranteed to be
glitch-free). This strategy is also applied to the construction
of view signals; e.g., if a view signal depends on multiple
persistent signals, a join is performed among them to keep
the signal network consistent.
One particular feature of the current implementation of

persistent signals is its timing of table and view generation;
they are generated at compile time. This is because it is
considered that the database schema should be available
before the application is running.

Persistent signals are implemented using TimescaleDB1, a
time-series database that is an extension of PostgreSQL. Per-
sistent signals have several specific properties: each record
has a timestamp; once inserted, entries are not normally up-
dated; and recent entries are more likely to be queried. To
effectively interact with such time-series data, TimescaleDB
provides an abstraction of a single continuous table across
all space and time intervals; this is called a hypertable. All
interactions with TimescaleDB (such as SQL queries) are
implicitly with hypertables. The preliminary experiments on
persistent signals indicate that the existing implementation
is sufficiently responsive in most cases where time-oriented

1https://www.timescale.com

queries (e.g., aggregation based on time intervals) are per-
formed.

3 Challenges
Persistent signals were presented as a preliminary research
proposal with their proof-of-concept implementation. Al-
though there are microbenchmark results indicating that
this research direction is promising, the current design of
persistent signals suffers from several problems.

First, persistent signals do not provide abstractions for rep-
resenting complex data structures. This problem is indeed
illustrated by the aforementioned vehicle tracking example,
where the position of the vehicle is represented by two dis-
tinct persistent signals, namely, car1234_x and car1234_y.
This is because the persistent signals are only supported
with primitive types. Thus, we cannot represent “a position
of a vehicle” as one single persistent signal, and the cor-
respondence between x- and y-coordinates and even their
synchronization must be maintained by the programmers.
This imposes programming with row-level abstractions on
the programmers, which is error prone.
Secondly, a view signal must be defined using an API

method prepared in advance, where its SQL correspondence
is defined. This is because it is difficult to derive a SQL query
that creates a view from an arbitrary Java expression. How-
ever, this restriction limits the use cases where the persistent
signals can be applied. For example, in the vehicle tracking
system, we may want to calculate the distance to the desti-
nation as follows (assuming that Position is a legacy class
that is not a part of the persistent signal library):

Position target = new Position(..);

signal double dist =

target.getDistance(car1234_x,car1234_y);

The variable dist represents a time-varying value, as its de-
pends on signals car1234_x and car1234_y (as mentioned
above, even though getDistance does not expect signals as
its arguments, SignalJ can construct a signal network that
connects dist with car1234_x and car1234_y). It is also
useful if we can use the update history of dist derived from
database tables for car1234_x and car1234_y. This is un-
fortunately difficult because deriving the view is not defined
in getDistance.
A more serious problem is that persistent signals cannot

be created dynamically. This is because the database schema
corresponding to persistent signals is determined by the com-
piler. This approach makes it easy to implement the bindings
between persistent signals and database constructs because
database constructs already exist before the application is
running, and their identities do not change during the exe-
cution. However, this is a relatively strict limitation. In the
vehicle tracking example, this means that every vehicle to
be tracked must be statically identified, and we cannot add

3

https://www.timescale.com

REBLS’20, Nov 16, 2020, Virtual Tetsuo Kamina, Tomoyuki Aotani, and Hidehiko Masuhara

signal class Vehicle {

String onwer, company, name;

Position target;

persistent signal double x, y;

signal double x12h =

x.within(Timeseries.now, "12␣hours");

signal double y12h =

y.within(Timeseries.now, "12␣hours");

signal double dx = x12h.lastDiff(1);

signal double dy = y12h.lastDiff(1);

signal double v = dx.distance(dy);

signal double dist = target.getDistance(x,y);

public Vehicle(String id, String owner, String company,

String name, Position target) {

this.owner = owner; this.company = company;

this.name = name; this.target = target;

}

...

}

Figure 1. Declaration of vehicle using a signal class

any vehicles after the application is running. We consider
this limitation unacceptable for real applications.

4 Signal Classes
We consider that the origin of the aforementioned problems
is a lack of abstraction to identify the related persistent sig-
nals that follow the same lifecycle. To address those problems,
we propose a new language construct, which we call “signal
classes”, that packages a network of persistent signals into
one single class. We consider the source of the problems
being that each persistent signal is independently declared.
For example, if we can package related persistent signals
into one class, the update history of a complex data structure
can be represented using a set of those persistent signals
while keeping the types of them limited to primitive types
supported by the underlying database system. An instance
of signal class and its enclosing persistent signals follow the
lifecycle model explained later.
An example of a signal class is shown in Figure 1, which

declares the Vehicle class in the vehicle tracking system.
A signal class is declared using the modifier signal in the
class declaration, and it must declare persistent signals as
its members. In Figure 1, two persistent signals, x and y, are
declared to record the position of the vehicle. There are also
six signals that depend on x and y, namely, x12h, y12h, dx,
dy, v, and dist. These signals are categorized as view signals
and persistent signals.
A view signal is a signal whose definition (i.e., the right-

hand side of its declaration) is of the form p.m(e), where
p is a persistent or view signal, m is the name of an API

method defined in advance, and each e𝑖 is an argument for m.
In Figure 1, x12h, y12h, dx, dy, and v are view signals. The
value of view signal is calculated on demand using the source
persistent signals.

On the other hand, the signal dist is not a view signal, as
the receiver target of the method getDistance is neither a
persistent nor a view signal. In this case, we cannot calculate
a view for dist, and the update history of dist is directly
stored on the disk. The update of dist is synchronized with
the updates of x and y. Thus, the value of dist always re-
flects the current values of x and y. The boundary of this
synchronization is determined by the scope of the signal
class instance, i.e., all persistent signals in the same signal
class instance are synchronized.
This synchronized update makes it possible to connect

persistent signals using not only API methods prepared in
advance but also other expressions that connect persistent
and view signals. However, view signals are still useful in our
system. One advantage of using view signals is it reduces the
update overhead of persistent signals. Another advantage is
that they lead to better database design, as views are usually
derived from the table and having values like dist in the
table does not meet the “third normal form” property of
relational databases.
In summary, the behavior of the Vehicle instance is in-

terpreted as follows. Once the instance, namely, aCar, of
Vehicle is created, we can call the set method, which is an
interface method that all signal classes implicitly implement,
to update persistent signals x and y:

// setting an initial position.

aCar.set(33.239148, 131.611722);

This set method first sets the value of x and y with the
provided arguments and then implicitly calculates the value
of dest using the current values of x and y. The value of
each view signal is automatically determined by the database
query statement that creates the corresponding view. For
example, dx and dy calculate the delta between the current
value and the last value for each x- and y-coordinate, respec-
tively. The view signal v calculates the estimated velocity of
the moving vehicle.
We note that in this example, we assume that the posi-

tion of a vehicle, which is monitored by automotive sensors,
is periodically sent to a data center that records the vehi-
cle’s movement history. Each Vehicle instance is an agent
reflecting the status of the “real” vehicle identified by the
id parameter of the constructor. This instance is created at
the data center when a new vehicle is registered to the sys-
tem. This means that each signal class instance encapsulates
the network of persistent and view signals that comprises
a vehicle and is considered a unit of lifecycle, synchroniza-
tion, and database management. As explained below, this
idea addresses all the problems mentioned in the previous
section.

4

Managing Persistent Signals using Signal Classes REBLS’20, Nov 16, 2020, Virtual

Figure 2. State machine diagram of signal class instance

public interface SignalClassInstance {

public void set(Object ... newValues);

public void reset();

public void destroy();

}

Figure 3. Interface for representing signal class lifecycle
events

Lifecycle of a signal class instance. We first explain the
lifecycle model of signal class instances. In the original work,
the underlying database tables for persistent signals are gen-
erated by the compiler [Kamina and Aotani 2019]; this forces
persistent signals to be defined statically and makes it very
difficult to add new persistent signals at runtime. In the
proposed lifecycle model, a signal class instance can be in-
stantiated dynamically, and thus the underlying database
tables are generated at runtime. A signal class encapsulates
related persistent signals into one module, and this module
provides a unit of lifecycle management.

Once created, a signal class instance can exist on the disk
even after the application stops. Its identity is preserved on
the disk, and when the application restarts, this instance
becomes available again from the program. For example,
consider the following declaration of a Vehicle instance:

Vehicle aCar = new Vehicle("501a1234",

"Haskell", "Toyota", "Sienta");

If there are no database constructs on the disk that corre-
spond to aCar, the Vehicle instance is created with fresh
database constructs. If there already exist such constructs,
aCar is simply bound to them. In this mechanism, we must
keep track of this binding on the disk, and this is done using
the id parameter, which is mandatory for every constructor
in a signal class. This is used as a key to identify the signal
class instance, i.e., the programmer should choose the key
when instantiating a Vehicle.

Figure 2 formalizes this lifecycle model using a state ma-
chine diagram. Each event that changes its state is triggered
by environmental changes or internal program operations.

Some of them can be explicitly triggered by calling the inter-
face methods that every signal class implicitly implements.
This interface is shown in Figure 3. We note that this in-
terface is defined for the SignalJ runtime library, which is
written in Java. In the source code, the interface of set is
implicitly derived from the persistent signals declared in
that signal class. For example, set for Vehicle is declared
as follows by listing the formal parameters that correspond
to the persistent signals x and y:

public void set(double x, double y);

This interface changes by the definition of the signal class.
The compiler translates the invocation of set to make it
compatible with the runtime library, which provides the
generalized interface. These interface methods throw an
exception when their calls break the lifecycle contract shown
in Figure 2.

Other events are not triggered by these interface methods.
The new event is triggered by the new expression, which
creates a signal class instance. The down event is triggered
by external or internal environmental changes; it is triggered
if the signal class instance can no longer be accessed or
the application stops for some reason. After this event, the
signal class instance disappears. This instance can however
be reactivated, like the “ship of Theseus,” using the blueprint
of it stored in the database, i.e., when the application restarts,
the new event can be triggered to restore this instance.

Importantly, every lifecycle management is performed on
the basis of this model. We cannot solely generate, update, or
drop the content of each persistent signal. Instead, all related
signals are simultaneously generated, updated, and dropped.
This makes it easy to ensure data consistency between them.

One important property of the signal class instance is that
there should not be multiple signal class instances with the
same id. This property is necessary because the signal class
instance and its persistent signals encapsulate the underlying
database. The access to the database is transparent. Thus, we
must prohibit the side-effect where one update from one of
the signal class instances affects the results from the other
side2.

This property is ensured according to the lifecycle model.
This is because this model does not accept any event se-
quences where multiple new events are triggered until the
next down or destroy events are issued. The new event
must be the first event of the sequence, and it can follow
only the down event. Thus, the signal class instance can be
activated only when there are no other signal class instances
with the same id.

There can be situations where the accessed persistent and
view signals are empty. For example, if the view accesses the
old data that is missing, this view simply becomes empty,
and we might access the signal with the empty view. In such
2One exception is that wemay still manage the histories of persistent signals
using the console of the database system.

5

REBLS’20, Nov 16, 2020, Virtual Tetsuo Kamina, Tomoyuki Aotani, and Hidehiko Masuhara

a case, a runtime exception is thrown to notify that this
signal is not ready. This situation can definitely occur as the
lifecycle starts with the empty signals.

Synchronized update. Each signal class instance forms a
unit of synchronization. Each signal class provides the set
method for synchronized update of persistent signals. This
improves the synchronized update in the original work [Kam-
ina and Aotani 2019], where the programmers must ensure
that persistent signals that are defined independently are
updated at the same time. For example, we can define the
following run method in the Vehicle class that periodically
updates the position of the vehicle:

public void run() {

double[] current = new double[2];
while (true) {

current = getGeoCoordinatesFromSensors();

set(current[0], current[1]); } }

This set method first computes the value of dist using
current[0] and current[1], and then inserts the triple of
current[0], current[1], and dist with the current times-
tamp. Thus, all persistent and view signals are updated at
once, and the programmers do not have to worry about any
glitches inside the instance.

Switching network of persistent signals. In SignalJ, we
can construct a signal of an object that encapsulates other
signals [Kamina and Aotani 2018]. This feature can be ex-
tended to the persistent signals: we can construct a persis-
tent signal of a signal class instance that encapsulates other
persistent signals. This allows us to construct a network of
persistent signals that changes dynamically, like the “switch”
in the FRP languages [Nilsson et al. 2002]3.

For example, we can construct a signal class that monitors
a particular instance of Vehicle.

signal class Monitor {

persistent signal Vehicle v;

public Monitor(String id) { .. } }

According to the lifecycle model, we can initialize the per-
sistent signal v by issuing the set event on the instance m of
Monitor.

Monitor m = new Monitor("aMonitor");

m.set(aCar);

The subsequent set events on m change the instance of Vehicle
that m monitors, and this change is recorded in the history
that is bound with m. For example, we may want to monitor
some suspicious vehicles more intensively, and the history of
m is available for inspecting which vehicles were considered
suspicious in the past.

3Precisely, our switching differs from the Yampa’s switch in significant
ways. This difference is discussed in Section 5.

We note that SignalJ’s object-type signals are considered
updated only when the identity of the object changes, and
this property is also available in the persistent signals. This
means that the persistent signal v in Monitor does not have
to record the instance of Vehicle but only its identifier,
which is provided by the programmer using the id parameter
of the signal class constructor.

Implementation. Signal classes are implemented as an ex-
tension of SignalJ. Currently this is a prototype that is a
subject to change, but will be publicly available by merging
it with the original SignalJ in the future. The implementation
details are left out due to the page limit.

5 Related Work
Signals are a well-known abstraction in reactive program-
ming (RP), which have been inspired by synchronous lan-
guages [Berry and Gonthier 1992; Halbwachs et al. 1991;
Pouzet 2006] and functional-reactive programming (FRP) lan-
guages [Elliott and Hudak 1997]. FRP features are now avail-
able in general-purpose functional languages (e.g., the Yampa
library [Nilsson et al. 2002] is available for Haskell), and
recently they have made their way into imperative object-
oriented settings [Kamina and Aotani 2018; Meyerovich et al.
2009; Salvaneschi et al. 2014] by integrating signals with
event-based programming features, such as the event mech-
anism proposed for EScala [Gasiunas et al. 2011].
Even though Yampa’s switch and our switching mecha-

nism look somewhat alike, there are fundamental differences
between them. First, in our switching, the old sub-network
(e.g., the monitored vehicle) is not lost after switching and
can be accessed if its id is restored. In Yampa, on the other
hand, the old signal is lost and we need to preserve every
measure manually if we want to access that again. Second,
in our switching, there is no guarantee that the switching
is performed at the same time when the vehicle is updated,
while in Yampa, switches always occur at a global time step.
In short, signal classes provide a more general switching
with less guarantees.

Although signals in RP languages are not persistent, some
research efforts have been made to record the update his-
tories of signals to make them available for debugging. For
example, time-traveling [Pandy 2013] makes it possible to
pause the execution and rewind to any earlier execution
point. This technique is now common in RP debuggers. Re-
active Inspector [Salvaneschi and Mezini 2016], a debugger
for REScala [Salvaneschi et al. 2014], visualizes how signal
networks are constructed and evolved and how propagations
take place over those networks during execution. Using this
debugger, a programmer can see the status of the networks at
any execution point. In other words, these tools stores time-
series values for each signal to make time-traveling possible.
Another way of debugging FRP programs is to use tempo-
ral propositions, an FRP construct based on linear temporal

6

Managing Persistent Signals using Signal Classes REBLS’20, Nov 16, 2020, Virtual

logic [Perez 2017]. Time-traveling in FRP can also been seen
in the literature [Perez and Nilsson 2017] that presents a uni-
form way to control how time flows, such as the direction of
time flow and sampling rate, by giving time transformations
over time domains. Time-traveling debuggers record the his-
tory of one execution. Persistence across multiple executions,
such as that discussed in the proposed lifecycle model, is not
considered. Furthermore, time-series data handled in such
tools are not provided for use by applications. For example,
no convenient APIs to query over such time-series data are
provided.

6 Concluding Remarks
We have described that not only do signal classes allow us
to represent time-varying values with complex data types,
but they also provide a unit of lifecycle management and
synchronization. All these features overcome the drawbacks
of existing persistent signals. We clarified how each signal
class instance behaves by defining its lifecycle model. We
consider that our approach is promising to implement reac-
tive systems using convenient abstractions of time-varying
values with their execution histories, i.e., “time leak” is not
a problem but a convenient building block to implement
modern reactive systems.
Signal classes are still work-in-progress and we are plan-

ning to proceed to obtain more rigorous research results.
First, as our mechanism involves synchronous objects that
are however connected with each other and thus there may
be dataflows between them. Thus, an assurance of glitch-
freedom is an issue. For this purpose, we are designing a for-
mal calculus of signal classes to prove glitch-freedom.We are
also implementing signal classes over the cloud-based time-
series database (by setting up TimescaleDB on the cloud) to
develop more realistic applications based on signal classes.

References
Gérard Berry and Georges Gonthier. 1992. The Esterel Synchronous Pro-

gramming Language: Design, Semantics, Implementation. Science of
Computer Programming 19, 2 (1992), 87–152. https://doi.org/10.1016/
0167-6423(92)90005-V

Gregory H. Cooper. 2008. Integrating Dataflow Evaluation into a Practical
Higher-Order Call-by-Value Language. Ph.D. Dissertation. Department
of Computer Science, Brown University.

Conal Elliott and Paul Hudak. 1997. Functional Reactive Animation. In Pro-
ceedings of the 2nd ACM SIGPLAN International Conference on Functional
Programming (ICFP’97). 263–273. https://doi.org/10.1145/258949.258973

Vaidas Gasiunas, Lucas Satabin, Mira Mezini, Angel Núñez, and Jacques
Noyé. 2011. EScala: modular event-driven object interactions in Scala. In
Proceedings of the 10th International Conference on Aspect-Oriented Soft-
ware Development (AOSD’11). 227–240. https://doi.org/10.1145/1960275.
1960303

Nicholas Halbwachs, Paul Caspi, Pascal Paymond, and Daniel Pilaud. 1991.
The Synchronous Data Flow Programming Language Lustre. Proc. IEEE
79, 9 (1991), 1305–1320. https://doi.org/10.1109/5.97300

Tetsuo Kamina and Tomoyuki Aotani. 2018. Harmonizing Signals and Events
with a Lightweight Extension to Java. The Art, Science, and Engineering of

Programming 2, 3 (2018). https://doi.org/10.22152/programming-journal.
org/2018/2/5

Tetsuo Kamina and Tomoyuki Aotani. 2019. An Approach for Persistent
Time-Varying Values. In Onward!’19. 17–31.

Leo A. Meyerovich, Arjun Guha, Jacob Baskin, Gregory H. Cooper, Michael
Greenberg, Aleks Bromfield, and Shriram Krishnamurthi. 2009. Flapjax:
A programming language for Ajax applications. In Proceedings of the
24th ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Application (OOPSLA’09). 1–20. https://doi.org/10.1145/
1640089.1640091

Henrik Nilsson, Antony Courtney, and John Peterson. 2002. Functional
Reactive Programming, Continued. In Proceedings of the 2002 ACM SIG-
PLAN Workshop on Haskell (Haskell’02). 51–64. https://doi.org/10.1145/
581690.581695

Laszlo Pandy. 2013. Bret Victor style reactive debugging. Elm Workshop.
Ivan Perez. 2017. Back to the future: time travel in FRP. In Haskell’17.

105–116.
Ivan Perez and Henrik Nilsson. 2017. Testing and Debugging Functional Re-

active Programming. Proceedings of the ACM on Programming Languages
1 (2017).

Marc Pouzet. 2006. Lucid Synchrone version 3.0: Tutorial and Reference
Manual. Université Paris-Sud, LRI. https://www.di.ens.fr/~pouzet/
lucid-synchrone/lucid-synchrone-3.0-manual.pdf Online manual.

Guido Salvaneschi, Gerold Hintz, and Mira Mezini. 2014. REScala: Bridging
between object-oriented and functional style in reactive applications. In
Proceedings of the 13th International Conference on Modularity (MODU-
LARITY’14). 25–36. https://doi.org/10.1145/2577080.2577083

Guido Salvaneschi and Mira Mezini. 2016. Debugging for Reactive Program-
ming. In ICSE’16. 796–807.

YungYu Zhuang. 2019. A lightweight push-pull mechanism for implicitly
using signals in imperative programming. Journal of Computer Languages
54 (2019).

7

https://doi.org/10.1016/0167-6423(92)90005-V
https://doi.org/10.1016/0167-6423(92)90005-V
https://doi.org/10.1145/258949.258973
https://doi.org/10.1145/1960275.1960303
https://doi.org/10.1145/1960275.1960303
https://doi.org/10.1109/5.97300
https://doi.org/10.22152/programming-journal.org/2018/2/5
https://doi.org/10.22152/programming-journal.org/2018/2/5
https://doi.org/10.1145/1640089.1640091
https://doi.org/10.1145/1640089.1640091
https://doi.org/10.1145/581690.581695
https://doi.org/10.1145/581690.581695
https://www.di.ens.fr/~pouzet/lucid-synchrone/lucid-synchrone-3.0-manual.pdf
https://www.di.ens.fr/~pouzet/lucid-synchrone/lucid-synchrone-3.0-manual.pdf
https://doi.org/10.1145/2577080.2577083

	Abstract
	1 Introduction
	2 Technical Premises
	3 Challenges
	4 Signal Classes
	5 Related Work
	6 Concluding Remarks
	References

