
|in Proceedings of Re
ection'96, pp.79{91|

Implementing Parallel Language Constructs Using

a Re
ective Object-Oriented Language

Hidehiko Masuhara

�

Satoshi Matsuoka

y

Akinori Yonezawa

z

�

Department of Graphics and Computer Science, College of Arts and Sciences

y

Department of Information Engineering

z

Department of Information Science

University of Tokyo

Abstract

To provide various parallel language constructs, ex-

tensible languages based on re
ection are attrac-

tive for both implementors and users. This paper

describes our proposed meta-level architecture of

a concurrent object-oriented language ABCL/R3,

which has the following characteristics: (1) lan-

guage customization through meta-interpreters and

meta-objects, (2) delegation and inheritance mech-

anisms facilitating modular and re-usable meta-

level programming, and (3) the re
ective annota-

tions and meta-level arguments realizing separation

of base- and meta-level programs. We also show

that several meta-level programs that provide com-

mon parallel programming strategies, such as ob-

ject replication and latency hiding, are easily im-

plemented.

1 Parallel Languages and Re
ec-

tion

Practical parallel and distributed programs often

have complicated computation and communication

structures for achieving e�ciency. For example, la-

tency hiding|which is an optimization technique

for remote messages|makes programs complicated

because a thread of control must be deliberately

`broken up' into multiple process. To alleviate this

�

Contact: 3{8{1 Komaba, Meguro-ku, Tokyo 153, Japan.

E-mail: masuhara@graco.c.u-tokyo.ac.jp

Phone: +81{3{5454{6679, Fax: +81{3{3465{2896.

complexity, language systems often provide high-

level parallel constructs that support such speci�c

optimization techniques. However, it is di�cult

to provide `generic' constructs to cover all circum-

stances, since optimizations tend to be speci�c to

applications or their executing platforms. In ad-

dition, implementation of new constructs in the

language requires tremendous e�ort for compiler-

writers.

A di�erent (and possibly better) approach is to

create a simple, yet extensible language, and pro-

vide user-de�ned constructs as if built-in. This ap-

proach is bene�cial not only to language implemen-

tors, but also to users as they can design and build

their own parallel constructs afterwards. Based

on this observation, we are developing a re
ective

object-oriented concurrent language ABCL/R3[6],

based on ABCL/f [16], that we provide such exten-

sibility via re
ection. The major features of our

meta-level architecture are as follows: (1) Meta-

interpreters provide programming abstractions with

which the user can customize language's syntax and

semantics. (2) Meta-objects serve as the meta-level

representations of objects that can be used for de�n-

ing customized object behavior. (3) Re
ective an-

notations can be de�ned as programming directives

to the meta-level, and their interpretations can be

modi�ed by customizing the meta-interpreters.

The technical details of the ABCL/R3 compiler

that uses partial evaluation for compile-time opti-

mization have been presented elsewhere[6]. In this

paper, we describe how parallel language constructs

1

can be constructed using the meta-level architecture

of ABCL/R3; they include object replication, la-

tency hiding, termination detection, and user-level

scheduling.

The rest of the paper is organized as follows: The

basic (non-re
ective) features of ABCL/f are de-

scribed in Section 2. Then example parallel pro-

grams are examined and discussed in Section 3. Sec-

tion 4 presents the meta-level architecture, and the

use of the architecture for parallel programs is de-

scribed in Section 5. Section 6 discusses e�cient

implementation and related language systems. Fi-

nally, Section 7 concludes the paper.

2 Base Language ABCL/f

We �rst introduce the basic (i.e., non-re
ective)

language ABCL/f, a concurrent object-oriented

language[16]. In ABCL/f, multiple-threading and

synchronization are controlled via future and touch

mechanisms

1

. An object is an instance of a class,

embodying shared mutable data. Messages (or

methods) sent to an object are asynchronous, and

dispatched according to its class, and mutually ex-

cluded in order to preserve consistency.

;;; class de�nition

(defclass account ()

((balance :initform 0)))

;;; method de�nition

(defmethod account deposit (amount)

(setf balance (+ balance amount))

balance)

;;; object creation and method invocation

(let ((acc (make-account :balance 100)))

(print "Current balance: " (deposit acc 50)))

;;; use of the future and touch

(let ((acc (make-account :balance 100)))

(let ((rbox (future (deposit acc 30))))

hsome computationi

(print "Current balance: " (touch rbox))))

Figure 1: Sample code fragment of ABCL/f

1

The future mechanism in ABCL/f is similar to the one

in Multilisp[2]. The di�erence is that the former allows the

programmers to describe more explicit controls[16]. For ex-

ample, it can be described when a function should wait for

the return value of a future call in ABCL/f.

Figure 1 shows an example program in ABCL/f.

The �rst expression de�nes a class account with an

instance variable balance. The second expression

de�nes a method deposit for the class account.

This method adds the given amount to the instance

variable balance, and returns the updated value.

The third expression shows how an object is created

and manipulated; (make-account ...) creates an

object of the class account; �nally, (deposit acc

50) invokes the method deposit of object acc with

argument 50.

The fourth expression illustrates typical use of

future. The future form invokes a method of ob-

ject acc, but the caller does not block and wait

for the end of the method execution. Instead, it

receives a \reply box," in which the result of the

method will be stored. After the end of hsome com-

putationi, the caller extracts the result from the

reply box using the touch form. If the result is not

ready (i.e., the method deposit has not �nished

yet), the caller is blocked until it becomes available.

The future form can also be used for function

invocations. In this case, the function invocation is

concurrently executed by a newly created thread.

In addition, the future form can take an optional

argument \:on p", which speci�es the processor ID

where the function will be executed.

3 Examples of Parallel Language

Constructs

This section examines several parallel language con-

structs which are typically used for optimization,

etc. in parallel applications.

3.1 Object Replication

Object replication greatly improves performance of

programs in a distributed memory environment.

When a program frequently accesses a remote ob-

ject, creating a replica of the object within the local

processor will substantially reduces the number of

remote messages.

For concreteness, assume there are two vector ob-

jects v1 and v2 on di�erent processors, and a func-

tion product (Figure 2) is called on the processor on

which v1 is placed. Since v2 is a remote object, each

2

invocation of nth-element on v2 sends and waits

on a remote message; this results in (2� jv2j) �ne-

grained remote messages, where jv2j is the length

of vector v2.

(defun product (v1 v2)

(let ((sum 0.0) (size (size-of v1))

(dotimes (i size)

(setf sum

(+ sum (* (nth-element v1 i)

(nth-element v2 i)))))

sum)))

Figure 2: A naively written dot-product function

If replication mechanism were available as a lan-

guage feature, this program could be optimized by

creating a replica of v2 at the local processor dur-

ing the computation of product

2

. However, this is

not a simple task: for e�ective execution, we must

consider the following aspects: (1) how replicas are

created and managed (mechanism), (2) how pro-

grammers specify creation of replicas (syntax), and

(3) how to decide whether an object should be repli-

cated (policy).

Mechanism: There could be a variety of repli-

cation algorithms one could provide as a built-in

feature of a language. This is not simple as it may

seem, because of interaction with other parts of the

language. For example, an original object should

be locked if instance variables of its replica could

be updated and written back afterwards.

Instead, meta-objects in re
ective languages

could be used to implement di�erent replication al-

gorithms transparent to the user program depend-

ing on his base-level algorithmic requirements.

Syntax: Since replicas may be used to optimize

existing programs, syntactic support to create repli-

cas without modifying the structure of the original

programs is bene�cial. In other words, if the repli-

cation mechanism is provided as library functions,

we may have to modify the structure of the original

programs, causing loss of clarity and portability.

2

This optimization not only reduces the number of mes-

sages transferred, but also the time for waiting for answers

to each request|so called latency.

High Performance Fortran (HPF)'s distribution

directives are declarative annotations (comments)

which allow the programmers to control the distri-

bution and replications in a non-intrusive manner

to base-level programs[3]. The key idea is to pro-

vide directives as comments, so that they are non-

intrusive. However, the syntax and semantics of

HPF directives are �xed and not extensible. In-

stead, we propose the annotations as non-intrusive

syntactic extensions at the base-level, and ways of

meta-programming to de�ne the associated inter-

pretation of annotations at the meta-level.

Policy: Since creation of a replica has larger over-

head than normal method invocation, it does not

always improve performance. Unfortunately, there

are no general rules to tell when replication is ben-

e�cial, but rather, rules are heuristic and situation-

dependent. For example, in product, v2 should be

replicated only when it is larger than a certain size.

To incorporate such rules, replication mechanism

should be
exible so that users can specify their own

heuristics. For example, we could have an extended

annotation syntax, which accepts an optional ex-

pression to decide whether speci�ed objects are to

be replicated using run-time values. Our ABCL/R3

allows meta-programming of interpretation of the

annotations to cope with such cases.

3.2 Latency Hiding

Latency hiding is an optimization technique to elim-

inate time to wait for remote messages, where the

basic idea is to overlap local computation and re-

mote communication. This is usually realized by

modifying programs manually, i.e., by breaking up

a single thread of control into multiple threads. The

problem is that the modi�cation is not small.

Figure 3 shows two versions of the function

product, which are manually modi�ed for latency

hiding from Figure 2. These two versions are dif-

ferent in the number of method invocation requests

that are sent in advance to the actual use of the data

(e�ectively, prefetching). In (a), only a request for

the element that is used in the next iteration is sent

in advance to its use, while requests for all the ele-

ments are sent before the computation in (b).

3

(a) (defun product (v1 v2)

(let ((sum 0.0)

(size (size-of v1))

(elm-a (future (nth-element v2 0))) ; request for the �rst

(elm-b nil)

(dotimes (i size)

(setf elm-b

(future (nth-element v2 (+ i 1)))) ; request for the next

(setf sum (+ sum (* (nth-element v1 i)

(touch elm-a)))) ; use of the value

(setf elm-a elm-b))

sum))

(b) (defun product (v1 v2)

(let* ((sum 0.0)

(size (size-of v1))

(elms (make-array size)))

(dotimes (i size) ; request for all

(setf (aref elms i) ; the elements

(future (nth-element v2 i))))

(dotimes (i size)

(setf sum (+ sum (* (nth-element v1 i)

(touch (aref elms i)))))) ; use of the values

sum))

Figure 3: \Manual" latency hiding versions of dot-product

We provide a mechanism for latency hiding, in

which the programmer speci�es when and what

method invocation should be requested for prefetch-

ing in advance to the actual use of the result of the

prefetch in the expressions by means of annotations

embedded in the original programs.

The annotation for latency hiding has the follow-

ing form.

e{prefetch e

a

}

This annotated expression is interpreted as follows.

Before evaluating the expression e, the expression e

a

is evaluated. The expression e

a

is expected to result

in a sequence of synchronous method invocations

(i.e., present type messages in ABCL[19]), which

are executed as asynchronous (i.e., future type) in-

vocations. The return values of these invocations

are not used in e

a

itself; and resulting reply boxes

are stored for later use. Then, the expression e and

subsequent expressions are executed. In those ex-

pressions, a method invocation form is executed as

touch operation to the stored reply box, if the form

results in the same invocation to one of the invoca-

tions performed during the execution of e

a

.

Using this mechanism, the annotated latency hid-

ing versions of product become as shown is Figure

4. Note that without annotations, these two pro-

grams are identical to the original one in Figure 2.

3.3 Termination Detection

Some parallel applications, such as search problems,

invokes a large number of threads, where termina-

tion detection of all the threads is a di�cult prob-

lem because there is no global control. Several al-

gorithms (cf. [9, 14]) have been proposed to solve

this problem.

However, when we incorporate a termination de-

tection algorithm into a naively written parallel pro-

gram, we often have to modify the structure of the

original program, such as adding parameters to each

function de�nition and invocation, sending control

messages to the other objects, etc. In addition, us-

ing a di�erent termination detection algorithm re-

quires di�erent modi�cation, which results in loss

of portability.

To cope with this problem, we provide new lan-

guage constructs fork and fork/wait for termi-

nation detection, and termination detection algo-

rithms that are implemented at the meta-level.

4

(a) (defun product (v1 v2)

(let ((sum 0.0) (size (size-of v1))

(dotimes (i size)

(setf sum

(+ sum (* (nth-element v1 i)

(nth-element v2 i)))) ; performs touch here

{prefetch (nth-element v2 (+ i 1))}) ; sends a request

{prefetch (nth-element v2 0)}

sum)))

(b) (defun product (v1 v2)

(let ((sum 0.0) (size (size-of v1))

(dotimes (i size)

(setf sum

(+ sum (* (nth-element v1 i)

(nth-element v2 i))))) ; performs touch here

{prefetch (dotimes (i size) ; even iterations can be

(nth-element v2 i))} ; written in annotations

sum)))

Figure 4: Latency hiding versions of the dot-product function using annotations

Special forms fork and fork/wait are similar

to the asynchronous invocation form future, ex-

cept that they detect global termination. The form

fork/wait invokes a speci�ed method or function,

and waits for the termination of all subsequent sib-

ling computations invoked with fork (Figure 5).

fork/wait
 waits for termination of all

computations in the circle
fork

does not wait

search
computations

Figure 5: fork/wait and fork for termination de-

tection

For example, Figure 6 is a n-queens problem us-

ing this termination detection support. The anno-

tation at the �rst line declares that a termination

detection algorithm called weight will be used. The

top-level caller invokes function n-queens using the

fork/wait form. Subsequent recursive n-queens

invocations are achieved with the fork form. The

top-level caller waits for the termination of all sib-

ling n-queens computations. Note that the de�ni-

tion of n-queens is independent of the underlying

termination detection algorithms.

;;; specify the termination detection algorithm

{termination-detection weight}

;;; the top-level caller

(let ((counter (make-counter)))

;; invokes and waits

(fork/wait (n-queens size 0 '() counter))

(print "number of answers: " (get counter)))

;;; search function

(defun n-queens (size col rows counter)

(if (= size col)

(count-up counter)

(dotimes (row size)

(if (not-attacked? size col rows row)

;; invokes and does not wait

(fork (n-queens size (1+ col)

(cons row rows) counter))))))

Figure 6: Description of n-queens problem using

fork and fork/wait

3.4 User-Level Scheduling

Application level information is often useful for con-

trolling scheduling to improve performance. For ex-

ample, the A*-search is an algorithm to �nd the

5

best answer in terms of some evaluation function.

It uses the estimated value of the answer, which

is computed from the intermediate status, as a

scheduling priority of a thread. As the branch-

and-bound algorithms do, it prunes|terminating

subcomputations that have no possibility to reach

the best answer|is e�ective for reducing the search

space.

Since such scheduling facilities are not provided

in most language systems, programmers are forced

to write a program that explicitly controls the order

of execution. Usually, this is realized with an user-

level scheduler object as a server embedded in the

base-level application code, and searcher objects as

clients, as is shown in Figure 7. (1) The scheduler

activates a searcher object. (2) The object sends

requests for object creation and activation, instead

of creating its sub-objects, for the next search step.

These requests are stored in the queue belonging

to the scheduler object. (3) When the activated

object �nishes its execution, it yields its execution

by sending a message to the scheduler. (4) The

scheduler then selects a request having the highest

priority from the queue, and creates and activates

a search object that corresponds to the selected re-

quest. The queue of the scheduler is sorted by the

priority value of each request, and the scheduler can

prune requests from the queue.

(1) activate

(2) subobject
creation

(2) request

(3) yield

scheduler

(4) create
& activate

actual communication
search path

Figure 7: Explicit user-level scheduling system

One of the problem of this programming style

is that the control
ow in the original algorithm,

which is represented as dashed arrows in the �gure,

is replaced with more complicated communications,

which is represented as solid arrows. As a result,

the program becomes unclear and di�cult to main-

tain. Our goal is to provide syntactic support which

hides such explicit communications with the sched-

uler, allowing a programmer to write their search

algorithms in a `natural' style in Figure 6.

4 The Meta-Level Architecture

We designed the meta-level architecture

of ABCL/R3 so that various language constructs

such as the ones shown in Section 3, are straightfor-

wardly implemented at the meta-level as language

extensions. Its major features are as follows:

� Meta-interpreters of base-level methods and

functions are represented as objects, providing

an object-oriented programming model of base-

level execution. They can be customized to in-

troduce syntax and semantics extensions into the

language.

� A meta-object gives the meta-level representa-

tion of an object, including its class name, in-

stance variables, method de�nitions, and mes-

sage queue, all of which can be manipulated as

�rst class data.

In addition to above two major features, there are

mechanisms to facilitate simple and modular meta-

level programming:

� Meta-level arguments can be passed between

meta-level programs, which avoids modifying the

structure of base-level programs.

� A re
ective annotation serves as a programmable

directive to the meta-level from the base-level

programs. In addition, the interpretation of an-

notations is also de�ned in the meta-level inter-

preters.

4.1 Extensions via Meta-Interpreters

Meta-interpreters of ABCL/R3 are meta-level ob-

jects that executes body part of base-level meth-

ods and functions. Although these are de�ned

as objects, the de�nition looks like the traditional

meta-circular interpreters of Lisp, and those of se-

quential re
ective languages (e.g., 3-Lisp[15] and

Brown[17]). The de�nition is divided into smaller

methods, each of which corresponds to a speci�c

type of an expression.

6

Followings are part of the method de�nitions in

the meta-interpreter:

(eval-entry exp env)

3

: This method is called at

the beginning of each base-level method/function

invocation. The argument exp is an unevalu-

ated expression of the method/function, and the

argument env is an environment, which binds

instance variables of an object , and formal pa-

rameters of a method/function. It simply calls

the method eval by default.

(eval exp env): This method serves as a

dispatcher|it calls an appropriate sub-method

(e.g., eval-var and eval-method-call) accord-

ing to the expression type.

(eval-var var env): This method handles vari-

able references|it returns value of the variable

in the environment.

(eval-method-call exp env): This method han-

dles method-invocation forms in base-level pro-

grams. By default, (1) it �rst determines the in-

vocation type (e.g., future type or present type);

and (2) it also determines the target object

(i.e., the receiver of the message), and the ar-

guments by using the method eval. (3) The

\meta-arguments" of the invocation, which is

explained later, are determined by calling the

method meta-args. (4) Finally, it sends a in-

vocation request to the target object using the

method do-method-call.

(do-method-call type target selector args

meta-args env):

This method actually sends a message to the

target object. Firstly, a data structure which

has all the information for the invocation (e.g.,

method name and arguments) is composed by

the method make-message; and then the cre-

ated data is passed by calling the method mes-

sage of the meta-object of the target.

The extensions are written using delegation, so

that meta-level description are re-usable.

4

3

This denotes that a method called eval-entry takes two

arguments exp and env.

4

This is similar to that CLOS metaobject protocol[5] al-

lows users to write their extensions using inheritance.

Meta-level Arguments On a method/function

invocation, parameters can be transparently passed

from the caller to the callee at the meta-level using

the meta-level argument interface. When a method

or function is invoked, a method meta-args of the

evaluator is called. The return value of this method,

which is a list of keywords and values, is passed

onto the target's meta-object along with ordinary

parameters of the base-level method or function.

Eventually, these values are stored in the evalua-

tion environment on the callee's side, and accessed

by the function lookup-meta.

An advantage of this mechanism is that the meta-

level arguments are invisible from the base-level

programs. As a result, we need not modify base-

level programs in order to pass parameters that are

used only at the meta-level. The use of meta-level

arguments is presented in Section 5.3.

Re
ective Annotation In ABCL/R3, annota-

tions can be used as directives to the meta-level

from base-level programs. An annotation to an ex-

pression consists of a keyword and argument expres-

sions; and it is written as follows:

body{keyword args: : :}

Our annotations, called re
ective annotations, can

be customized how they are interpreted. In fact, an

annotated expression is evaluated by the following

method at the meta-level:

(eval-annotation keyword args body env):

When an annotated expression is to be evalu-

ated, this method is called beforehand. By de-

fault, a new evaluator object whose class is spec-

i�ed by the keyword argument is created, and

then the body expression is evaluated by the

created evaluator.

Since the method de�nition can be overridden by

user-de�ned methods, the above interpretation

can be changed, as will be shown in Sections 5.1

and 5.2.

4.2 Extensions via Meta-Objects

A meta-object is a meta-level representation of a

base-level object. Its de�nition is similar to the

7

ones in ABCL/R[18] and ABCL/R2[7, 8]. Meta-

objects are instances of class metaobject. Cus-

tomized meta-objects can be de�ned by inheriting

this class. Followings are the instance variables in

the class metaobject, which have implementation-

level information of an object:

name meaning

class name of the class

state-vars names and values of in-

stance variables

message-queue list of messages waiting

for acceptance

evaluator reference to its evaluator

object

The methods of the class metaobject de�ne how

a method invocation on a base-level object is pro-

cessed. The method invocation mechanism includ-

ing mutual exclusion, method dispatches, etc., can

be modi�ed by de�ning customized methods. The

followings are their protocols:

(message m): When a method of an object is in-

voked, this method of the corresponding meta-

object is invoked. Since multiple method in-

vocations on an object are mutually excluded,

this method �rst checks whether the invocation

should be suspended. If so, it then puts the mes-

sage into the message-queue; otherwise, it calls

method accept.

(accept m): When a meta-object decides to pro-

cess a base-level method invocation, this method

is called. In the method, an appropriate method

de�nition to the messagem is selected, and eval-

uated by calling a method eval-entry of its eval-

uator object.

(become env): When the execution of a base-

level method �nishes, this method is called at

the meta-level. The parameter env has values

of base-level instance variables, which may have

been updated during the execution. The meta-

object copies these updated values from env in

its instance variable state-vars. Subsequently,

the method process-next will be called.

(process-next): This method checks the

message-queue. If there is any pending mes-

sage waiting for acceptance, it will be removed

from the queue, and subsequently processed by

the method accept.

5 Implementation of Cus-

tomized Language Constructs

We have seen several language constructs which can

be bene�cial for parallel programming. This section

shows how these constructs are implemented using

meta-level architecture of ABCL/R3.

5.1 Object Replication

Mechanism Since the meta-object of an object

contains enough information to create a replica, the

replication mechanism is implemented as a method

of the class metaobject.

First, we de�ne two subclasses of metaobject: a

class replicatable for objects that can create their

replicas, and a class replica-meta for replicated

objects. A method copy-object creates a replica

on a speci�ed processor (p), which is de�ned as fol-

lows:

;;; metaobjects of objects that can create replicas

(defclass replicatable (metaobject))

;;; metaobjects of replicated objects

(defclass replica-meta (metaobject)

(original)) ; additional instance variable

;;; creation of a replica of an object

(defmethod replicatable

copy-object (p &reply-to r)

(future

(make-replica-meta

:class class :state-vars state-vars

:evaluator evaluator :original self)

:on p :reply-to r))

In addition, policies for maintaining consistency

between an original object and replicas can be con-

trolled. For example, one might want to allow

method invocations to an original object while it

has replicas. Such a control can be programmed by

overriding the methods message and accept of the

class replicatable.

Syntax Here, we show an example syntax that

creates replicas. The syntax uses the re
ective an-

notation so that base-level programmers can exploit

8

the replication mechanism without modifying the

structure of the original programs. The annotation

to create replicas is written as follows:

exp{replicate (v

1

v

2

: : :) :when pred}

When this annotated expression is to be evaluated,

pred in the annotation is evaluated �rst. If the re-

sult is true, replicas of objects that are bound to

the variables v

1

v

2

: : : are created; and the exp is

evaluated in an environment such that the variables

v

1

v

2

: : : are bound to the replicas.

We can add annotations to the function product

shown in Figure 2, so as to employ replicas. The

program with annotations is shown in Figure 8.

Note that the only di�erence between this program

and the original one is the addition of the annota-

tion.

;;; specify the default evaluator

{default-eval replica-eval}

(defun product (v1 v2)

(let ((sum 0.0) (size (size-of v1))

(dotimes (i size)

(setf sum

(+ sum (* (nth-element v1 i)

(nth-element v2 i)))))

{replicate (v2) :when (< 20 size)}

sum)))

Figure 8: Dot-production function using a replica

As stated in the previous section, the interpreta-

tion of annotations can be modi�ed by overriding

method eval-annotation. Here, we de�ne a class

replica-eval and a method eval-annotation, as

is shown in Figure 9.

5.2 Latency Hiding

Here, we show how the latency hiding mechanism

described in Section 3.2 is implemented at the meta-

level. The implementation consists of two parts:

invoking methods to prefetch the arguments before

their usage in an expression, and substitution of

results of the prefetch where needed.

Let us review the annotation syntax that requests

prefetch method invocations, which is proposed in

Section 3.2:

e{prefetch e

a

}

To perform method invocations in e

a

, we de-

�ne two evaluator classes prefetch-eval and

prefetch-anno-eval, and a method for each|

de�nitions are shown in Figure 10.

;;; for expressions that may have prefetch annotations

(defclass prefetch-eval ())

;;; for expressions only in annotations

(defclass prefetch-anno-eval ())

;;; interpretation of the annotation

(defmethod prefetch-eval eval-annotation

(keyword args body env)

(if (eq keyword 'prefetch)

;; create an evaluator for the annotation

(let ((eval-a (make-prefetch-anno-eval

:delegate self)))

;; evaluate expressions in the annotation

;; under a special evaluator

(eval-progn eval-a args env)

;; evaluate the body expression

(eval self body env))

;; interpretation of other annotations are delegated

(eval-annotation

super keyword args body env)))

;;; method invocation in the annotation

(defmethod prefetch-anno-eval do-method-call

(type target method args meta-args env)

;; invoke the method in the future type

(let ((rbox

(do-method-call super 'future target

method args meta-args env)))

;; and remember the reply box in the environment

(remember-prefetched-method env

type target method args meta-args rbox)))

Figure 10: Meta-level program for latency hid-

ing (1)

Expressions except for the prefetch method in-

vocations in the annotation are evaluated as usual.

This is implicitly achieved by the delegation mech-

anism.

The latter part is for using prefetched values;

i.e., do touch operations instead of method in-

vocation. This is achieved by de�ning a method

do-method-call of the class prefetch-eval (Fig-

ure 11). For each base-level method invocation, this

user-de�ned do-method-call checks if the invoca-

tion is already performed in an annotation. If so, it

touches a corresponding reply box, instead of actual

9

1: (defmethod replica-eval eval-annotation (body args env)

2: (if (eval self (replica-predicate args) env)

3: (let* ((target (replica-target args))

4: (obj (lookup target env))

5: (rep (denotation (copy-object (meta obj) (this-pe))))

6: (ex-env (extend-env env (list target) (list rep))))

7: (let ((answer (eval self body ex-env)))

8: (copy-back (meta rep))

9: answer))

10: (eval self body env)))

(l.2) It evaluates pred in an annotation. If it is true, (l.5) a replica of a speci�ed object is created.

The functions denotation and meta return corresponding base-level object and meta-object, respec-

tively; and the function this-pe returns a current processor ID. (l.7) The body of the expression

is then evaluated in an extended environment. (l.8) Method copy-back is a user-de�ned method of

the replicated metaobject, which writes values of instance variables in the original metaobject's for

consistency management. (l.10) If the pred is false, it evaluates the body of the expression as usual.

Figure 9: Interpretation of replica-creating annotations

invocation.

(defmethod prefetch-eval do-method-call

(type target method args meta-args env)

;; check whether the method is already

;; invoked in an annotation

(let ((rbox (prefetched-method? env type

target method args meta-args)))

(if rbox

;; if it is invoked, do touch

(touch rbox)

;; otherwise, invoke as usual

(do-method-call super type target method

args meta-args env))))

Figure 11: Meta-level program for latency hid-

ing (2)

5.3 Termination Detection

Here, we show that an automatic termination detec-

tion mechanism is implemented at the meta-level of

ABCL/R3 using two layers of delegating evaluators.

The �rst one de�nes each speci�c termination de-

tection algorithm, and the second one de�nes the

syntax commonly used in all termination detection

algorithms. (Figure 12)

At the syntax layer, we de�ne an evaluator

class TD-eval, which simply dispatches forms

ack-TD-eval

weight-TD-eval

TD-eval primary-eval

termination
detection

algorithms
syntax definition interpretation of

normal expressions

Figure 12: Delegation paths of evaluators for ter-

mination detection

(fork/wait ...) and (fork ...) to the meth-

ods eval-fork/wait and eval-fork, respectively.

At the leftmost layer, an evaluator class is de�ned

for each termination detection algorithm. Here, we

only present the simplest one in which an acknowl-

edgment message is returned for each fork invoca-

tion. Other algorithms|e.g., the one using global

weight[9, 14]|can be implemented in similar ways.

The overview of the algorithm is as follows (oper-

ations written in the slanted font are performed at

the meta-level): (1) A method/function is invoked.

(2) A reply box is created for each child. (3) A

child (sub-computation) is forked. The reply box

is passed onto the child along with the invocation.

(4) It waits for acknowledgment messages from all

10

of its children. (5) Each child returns an acknowl-

edgment message when it �nishes. (6) When all

acknowledgment messages are collected, it returns

an acknowledgment message to its own parent.

The evaluator for this termination detection al-

gorithm can be de�ned as follows. The method

meta-args is customized to send a reply box

along with base-level arguments; and the method

eval-entry is customized to add special behav-

ior at the beginning and the end of a base-level

method/function execution.

(defmethod ack-TD-eval eval-entry (exp env)

;; create a location for created reply boxes

(let* ((new-env

(extend-env env :meta 'rboxes '()))

;; run the body of the method

(result

(eval-entry super exp new-env)))

;; wait for termination of children

(dolist (rbox (lookup-meta 'rboxes new-env))

(touch rbox)) ; (4)

;; notify its parent of the termination

(reply (lookup-meta env 'ack) t) ; (5,6)

result))

(defmethod ack-TD-eval meta-args

(type method target args options env)

(let ((margs (meta-args super type method

target args options env)))

(cond ((eq type 'fork)

;; create a reply box

(let ((rbox (make-reply-box))) ; (2)

;; and remember it in the environment

(push-meta-env env 'rboxes rbox)

(list* 'ack rbox margs))) ; (3)

(t margs)))) ; for the other forms

5.4 User-Level Scheduling

In Section 3.4, we have seen an example of user-level

scheduling that is achieved by explicitly sending

messages in application programs. Here, we show a

similar scheduling mechanism that is achieved by

implicitly communicating with the scheduler ob-

ject. An evaluator class sched-eval and two meth-

ods are de�ned: (do-method-call) Instead of in-

voking a method, a message data is sent to the

scheduler object. (eval-entry) At the end of each

method execution, it noti�es the scheduler to yield

its thread of control. We assume that the scheduler

object is bound to variable *scheduler* and has

methods request and run-next.

;;; an evaluator class for user-customized scheduling

(defclass sched-eval ())

;;; send a request to the scheduler for method invocation

(defmethod sched-eval do-method-call

(type target method args meta-args env)

(let ((m (make-message

target method args meta-args)))

(request *scheduler*

(cons m (get-priority env)))))

;;; yield the control to the scheduler

(defmethod sched-eval eval-entry (exp env)

(eval-entry super exp env)

(run-next *scheduler*)) ; notify end of execution

6 Discussions

Runtime Performance: Since re
ective lan-

guages use meta-circular interpreters as their execu-

tion model, naively implemented re
ective systems

su�er from the interpretation overhead. Reducing

this overhead is necessary to make re
ection feasible

for practical parallel programming.

To solve this problem, we have already proposed a

compilation framework using partial evaluation[6].

This framework essentially removes the interpreta-

tion of the meta-level interpreter, and generates a

program that includes the e�ect of user's modi�ca-

tion at the meta-level. For example, from the def-

inition of product with {replicate ...} annota-

tion in Figure 8 and the extended meta-interpreter

shown in Figure 9, our compiler can generate the

following code, which does not involve interpreta-

tion:

(defun product (v1 v2)

(let ((sum 0.0) (size (size-of v1)))

(if (< 20 size)

(let ((t001 (denotation

(copy-object (meta v2)))))

(dotimes (i size)

(setf sum

(+ sum (* (nth-element v1 i)

(nth-element t001 i)))))

(copy-back (meta t001))

sum)

(progn

(dotimes (i size)

(setf sum

(+ sum (* (nth-element v1 i)

(nth-element v2 i)))))

sum))))

11

This code is nearly as same as the optimal code

that the user would manually write in order to im-

plement replication requests.

The problem of this compilation technique is that

the partial evaluation is not ultimate; a partial eval-

uator might generate an ine�cient code for some

meta-programs. In addition, our current compi-

lation framework handles only evaluator objects.

Making customized meta-objects e�cient is a sub-

ject of future research.

Related Work There are several re
ective sys-

tems for distributed programming such as AL-1/D

and CodA, but few systems pay strong attention to

the overhead of re
ection.

AL-1/D[12] is a re
ective language based on

`multi-model re
ection framework' (MMRF). It is

reported that performance improvement is achieved

by using AL-1/D's meta-level architecture to imple-

ment and control object migration mechanisms[11].

However, this improvement seems to be worthwhile

over the overhead incurred by re
ection in envi-

ronments where overhead of remote communication

is substantially larger than the interpretation over-

head, such as heterogeneous distributed computing.

In the CodA meta-level architecture[10], a meta-

object is decomposed into several objects, so that

user's meta-level programs are easily re-used and

composed. However, e�cient implementation of

such an architecture is not obvious.

Recently, extensible compilers based on the meta-

level architecture|so called compile-time meta-

object protocol (MOP)|have been proposed, es-

pecially for parallel/distributed systems[1, 4, 13].

Most language constructs discussed in this paper

could also be implemented with these MOPs. How-

ever, they may force di�erent programming style

at the meta-level; since they are compilers, pro-

grammers have to write their extensions as program

transformation rules, in which programmers must

distinguish run-time values and compile-time val-

ues.

7 Conclusion

This paper has presented the design of the meta-

level architecture of ABCL/R3. Assuming the com-

pilation technique using partial evaluation, our ar-

chitecture allows
exible extensibility for the syn-

tax and semantics of the base-level languages in

an inexpensive manner. In addition, customiza-

tion of meta-interpreters can be easily re-used by

using standard object-oriented techniques such as

delegation in the same way to sequential re
ective

object-oriented languages (e.g., CLOS) allow. Re-

ective annotations allow programmers to write di-

rectives to the meta-level programs as comments

to a base-level program. The interpretation of an-

notations can also be customized by modifying the

meta-interpreters.

This paper also describes how several common

parallel programming strategies, including object

replication, latency hiding, termination detection,

and user-level scheduling, are straightforwardly re-

alized as language constructs by using our architec-

ture. These strategies can be incorporated into ex-

isting base-level programs without modifying their

structures.

Acknowledgements

We would like to thank Jean-Pierre Briot, Shigeru

Chiba, and Michiharu Takemoto for their helpful

comments on the early drafts of the paper. We

also thank the members of the Yonezawa's research

group for fruitful discussions on our work.

References

[1] Shigeru Chiba. A metaobject protocol for

C++. In Proceedings of OOPSLA'95 (SIG-

PLAN Notices Vol.30, No.10), pages 285{299,

1995.

[2] Robert H. Halstead, Jr. Multilisp: a language

for concurrent symbolic computation. Transac-

tions on Programming Languages and Systems,

7(4):501{538, 1985.

[3] High Performance Fortran Forum. High per-

formance Fortran language speci�cation. Sci-

enti�c Programming, 2(1), June 1993.

[4] Yutaka Ishikawa. Meta-level architecture for

extendable C++. Technical Report TR-94024,

Real World Computing Partnership, 1994.

12

[5] Gregor Kiczales, Jim des Rivi�eres, and

Daniel G. Bobrow. The Art of the Metaobject

Protocol. MIT Press, Cambridge, MA, 1991.

[6] Hidehiko Masuhara, Satoshi Matsuoka,

Kenichi Asai, and Akinori Yonezawa. Compil-

ing away the meta-level in object-oriented con-

current re
ective languages using partial eval-

uation. In Proceedings of OOPSLA'95 (SIG-

PLAN Notices Vol.30, No.10), pages 300{315,

1995.

[7] Hidehiko Masuhara, Satoshi Matsuoka, Takuo

Watanabe, and Akinori Yonezawa. Object-

oriented concurrent re
ective languages can

be implemented e�ciently. In Proceedings

of OOPSLA'92 (SIGPLAN Notices Vol.27,

No.10), pages 127{145, 1992.

[8] Satoshi Matsuoka, Takuo Watanabe, and Aki-

nori Yonezawa. Hybrid group re
ective ar-

chitecture for object-oriented concurrent re-

ective programming. In Proceedings of

ECOOP'91, 1991.

[9] F. Mattern. Global quiescence detection based

on credit distribution and recovery. Inf. Proc.

Lett., 30(4):195{200, 1989.

[10] Je� McA�er. Meta-level programming with

CodA. In Proceedings of ECOOP'95, 1995.

[11] Hideaki Okamura and Yutaka Ishikawa. Ob-

ject location control using meta-level program-

ming. In Mario Tokoro and Remo Pareschi, ed-

itors, Proceedings of ECOOP'94 (LNCS 821),

pages 299{319, 1994.

[12] Hideaki Okamura, Yutaka Ishikawa, and Mario

Tokoro. AL-1/D: Distributed programming

system with multi-model re
ection framework.

In Proceedings of IMSA'92 Workshop on Re-

ection and Meta-Level Architecture, pages 36{

47, 1992.

[13] Luis Rodoriguez Jr. A study on the viability

of a production-quality metaobject protocol-

based statically parallelizing compiler. In Pro-

ceedings of IMSA'92 Workshop on Re
ection

and Meta-Level Architecture, pages 107{112,

1992.

[14] K. Rokusawa, N. Ichiyoshi, T. Chikayama, and

H. Nakashima. An e�cient termination de-

tection and abortion algorithm for distributed

processing systems. In International Confer-

ence on Parallel Processing, volume I, pages

18{22, 1988. also published as ICOT-TR 341.

[15] Brian Cantwell Smith. Re
ection and seman-

tics in Lisp. In Proceedings of POPL'94, pages

23{35, 1984.

[16] Kenjiro Taura, Satoshi Matsuoka, and Akinori

Yonezawa. ABCL/f : A future-based poly-

morphic typed concurrent object-oriented lan-

guage { its design and implementation {. In

G. Blelloch, M. Chandy, and S. Jagannathan,

editors, Proceedings of DIMACS Workshop on

Speci�cation of Parallel Algorithms, pages 275{

292. 1994.

[17] Mitchell Wand and Daniel P. Friedman. The

mystery of the tower revealed: A non-re
ective

description of the re
ective tower. In P. Maes

and D. Nardi, editors, Meta-Level Architecture

and Re
ection, pages 111{134. Elsevier Sci-

ence, North-Holland, 1988.

[18] Takuo Watanabe and Akinori Yonezawa. Re-

ection in an object-oriented concurrent lan-

guage. In Proceedings of OOPSLA'88, pages

306{315, 1988. (revised version in [19]).

[19] Akinori Yonezawa, editor. ABCL: An Object-

Oriented Concurrent System. MIT Press,

Cambridge, MA, 1990.

13

