Mapping Context-Dependent
Requirements to Event-Based
Context-Oriented Programs for
Modularity

Tetsuo Kamina (UTokyo)
Tomoyuki Aotani (Tokyo Tech)
Hidehiko Masuhara (Tokyo Tech)

Purpose

* Methodology for context-aware systems
* from requirements to implementation

* Context-dependent behavior
* well-studied In Implementation
* |dentification of contexts and behavioral
variations 1s not trivial

Requirements model and systematic implementation
using event-based COP language EventCJ

Context-awareness

* Capabllity of a system to behave w.r.t.
surrounding contexts (outdoors, Indoors)

Map : City map, Floor plan
Positioning : GPS, RFID

* Multiple parts of behavior simultaneously
change at runtime

Context-awareness

* Capabllity of a system to behave w.r.t.
surrounding contexts (outdoors, indoors)

g~ 11 |; i) :
U | N\
N, .&A’is‘ %‘r" N
5 N n o : to| | L, \
<= [# \ P
A B e
Ht;'-~ & Dl \ |

B0 B ~ \‘__:\‘
+m K OMN

Outdoors reres, Qo7

ERR

Sy
o

15
=85

Map : City map, Floor plan
Positioning : GPS, RFID

* Multiple parts of behavior simultaneously
change at runtime

Context-awareness

* Capabllity of a system to behave w.r.t.
surrounding contexts (outdoors, Indoors)

Indoors

Map : City map, Floor plan
Positioning : GPS, RFID

* Multiple parts of behavior simultaneously
change at runtime

Context-Oriented Programming
(CO P) [HirschfeldO8]

* modularization of context dep. behavior: layer
* disciplined activation of layers

Display Positioning

display () getPos ()

(&)
Display Positioning
Outdoors call display()
display () getPos ()
\§ 4

Display Positioning call getPos()
display () getPos ()

Layer Indoors

Context-Oriented Programming
(CO P) [HirschfeldO8]

* modularization of context dep. behavior: layer

* disciplined activation of layers

Display Positioning| |with (Outdoors) ({

display () getPos ()

S £ » 4 }
override
Ll .
Display Positioning
Outdoors calyl display()
display ()« getPos ()
_ J

-

Display Positioning call getPos|()
display () getPosd) Ll -

Layer Indoors

Q F8
28—
FMTRS
=) ./‘\)

Ew
E=

SRy
ao -
=55

Context-Oriented Programming
(CO P) [HirschfeldO8]

* modularization of context dep. behavior: layer

* disciplined activation of layers

Display Positioning| |with (Indoors) ({

display () getPos ()
. . }

+ call display ()
display () : e

~)
Displa ositionin
Outdoors P'dy, P 9

‘getPos () X :
2 _J averride

|

Display Positioning call getPos()
display (getPos()

Layer Indoors

We need to identify:

* Variations of behavior that should be
Implemented using a layer

* Context that changes behavior

* A layer assumes a context

Outdoors is active when the situation is outdoors
Layer Context

* TIming when contexts/layers change

We need to identify:

* Variations of behavior that should be
Implemented using a layer

* Context that changes behavior

* A layer assumes a context

Outdoors is active when the situation is outdoors
Layer Context

* TiIming when contexts/layers change

Do we really know them?

Questions

* When to use layers?
* the ways (layers, design patterns, i£) affect

modularity

* What are contexts?
* Can a layer always assume only one single context?
* How relations b/w contexts and layers are defined?

* How can precisely specify when context changes?

Questions

* When to use layers?
* the ways (layers, design patterns, i£) affect

modularity

* What are contexts?
* Can a layer always assume only one single context?
* How relations b/w contexts and layers are defined?

* How can precisely specify when context changes?

Methodology is required

Overview of methodology

* |dentifying contexts and context-

dependent use cases s

(outdoors) (indoors)

description of

behavior
context-dependent
use cases
_’ COUtdOOrS)

* ldentify'ng layers by grouping use cases
(outdoors) (outdoors)

* Identify'ng events that trigger context
Changes (indoors) 7 >(outdoors)

when GPS value
becomes ...

Example use cases

Pedestrian Navigation System:

* |f the user is outdoors, it displays a city map using
GPS based positioning

* |f the user is indoors, it displays a floor plan using
Wi-Fi based positioning

* |f the floor plan is not available, it displays a city map

* |f no positioning is available, it displays a static map
and showing an alert message

ldentifying contexts

* We identity contexts from behavior
* Documents describing system-to-be (e.g.

u

Se cases)

* Prototypes

* Conditions are candidates for contexts

-If t
-If t
-If t

ne use is outdoors, the system displays a city map
ne use is indoors, the system displays a floor plan

ne floor plan is not available, the system displays a city map

- If no positioning is available, the system displays a static map

x.conditions affecting a number of parts
(e.g., external environmental conditions)

ldentifying contexts

* We Identity contexts from behavior
* Documents describing system-to-be (e.g.

u

Se cases)

* Prototypes

* Conditions are candidates for contexts

(If t

ne use is outdoors) the system displays a city map

{If t

ne use is indoors) the system displays a floor plan

B

ne floor plan is not available) the system displays a city map

(f no positioning is available, the system displays a static map

candidates

x.conditions affecting a number of parts
(e.g., external environmental conditions)

Defining contexts

* We define a context In terms of variables
* outdoors/indoors situations are merged

name value

situation outdoors, indoors

floorPlan available, unavailable

positioning available, unavailable

* A context Is a specific setting of value to a
variable (a Boolean term)

e.g. situation=outdoors

Context-dependent use cases

* Defining context-dependent use cases
* a specilalization of use case applicable In
specific contexts
* Annotated with proposition of contexts

using a map

using a city
map
/

using a
floor plan

situation=outdoors v
floorPlan=unavailabl

situation=indoors v
floorPlan=available

<<include>> showing
alert
\

positioning=unavailable

using a
static ma

positioning=unavailable

ldentifying layers

* Layer: a set of use cases with the same

proposition

using

using a city
map
/

<<include>> showing
a map alert>
\

using a
floor plan

situation=outdoors v
floorPlan=unavailabl

situation=indoors v
floorPlan=available

positioning=unavailable

using a
static ma

* a use case scattering over multiple
objects may also be identified as a layer

(cf. Jacobson, 20

05)

positioning=unavailable

ldentifying layers

* Layer: a set of use cases with the same

proposition

using

using a city
map
/

<<include>> showing
a map alert>
\

using a
floor plan

situation=outdoors v
floorPlan=unavailabl

situation=indoors v
floorPlan=available

positioning=unavailable

using a
static ma

* a use case scattering over multiple
objects may also be identified as a layer

(cf. Jacobson, 20

05)

positioning=unavailable

layer

To identify events...

Contexts are abstract in use cases

* We need to decompose context into more
specific states of the machine (sensors)
* State changes are identified as events

Decomposing contexts

* Detailed specification consists of sensors
(GPS, Wi-FI) and external entities (floor plan)
* Some contexts depend on multiple sensors

context

situation=outdoors
situation=indoors

detailed context specification

GPS=over the criterion value
GPS=under the criterion value

floorPlan=available
floorPlan=unavailable

The floor plan service exists
The floor plan service does not exist

positioning=available
positioning=unavailable

GPS=0on or Wi-Fi=connected
GPS=off and Wi-Fi=disconnected

ldentifying events

* Specifying how/when the status of detailed
context specification changes

event how when

StrongGPS [GPS=under the criterion [the GPS signal value
— GPS=over the criterion |becomes over XXX

GPSEvent |GPS=off —» GPS=0on the GPS device is
becoming on

WifiEvent |Wi-Fi=disconnected the Wi-Fi device is
— Wi-Fi=connected connected ...

We have obtained so far..

We have obtained so far..

layers/context-dep. use cases
@g a city™ representing context-dep. behavior

map

We have obtained so far..

layers/context-dep. use cases
using a city™ representing context-dep. behavior

map

/ \ context changing layer activation

(situation_outdoors) (floorPlan unavallable)

layers/context-dep. use cases
smg a city™, representing context-dep. behavior

map

/ \ context changing layer activation

(situatlon_outdoors) (floorPlan unavallable)

[GPS=under criteriorﬂ {GPS=over criterion j

event: StrongGPS | events changing contexts

Translating to implementation

Translating specifications to corresponding
constructs in EventCJkaminai1;

using a city
map

Lo

(situation_outdoors) (floorPlan unavailable)

[GPS=under criteriorﬂ {GPS=over criterion]

event: StrongGPS

Translating to implementation

Translating specifications to corresponding

constructs in EventCJikaminai1;
layers are directly mapped

USing d Clty ‘layer CityMap
map hen Outdoors || !'FPExists

ﬁ { ..}

contexts are encoded
In composite layers

situation:outdoors) (floorPlan:unavailable)

[GPS=under criteriorﬂ {GPS=over criterion]

event: StrongGPS

Translating to implementation

Translating specifications to corresponding

constructs in EventCJxaminai1j

layers are directly mapped

using a city
map

/OR™S

‘layer CityMap

hen Outdoors || 'FPExists
ST,

contexts are encoded
In composite layers

situation:outdoors) (floorPlan:unavailable)

P——

GPS=under criterion {GPS=over criterion events are encoded in

layer transition rules

event: StrongGPS

event GPSEvent ...
transition StrongGPS:
1Outdoors ? -> Outdoors;

EventCJ: event-based layer

transition
* [Layer switching Is triggered by events

event GPSEvent (Navigation n)
:after call (void *.onStatusChanged())
&& target(n) && if (GPS.isAvailable())
//:sendTo(n);

\4 Specifying when to generate events using
AspectJ-like pointcut language

* Layer switching Is specified by rules

transition GPSEvent: !'GPSon ? -> GPSon

GPSEvent »(

GPSon]

GPSDisabled-

EventCJ: composite layers

[Kaminal 3]

* Composite layers are implicitly activated
when the condition on other layers holds

layer StaticMap when !GPSon && !'WifiConnected ({
/* static map functions */

}

WifiEvent

GPSEvent)(

GPSon]

WiﬁConnected]

GPSDisabled- WifiDisabled

StaticMap IS Inactive

EventCJ: composite layers

[Kaminal 3]

* Composite layers are implicitly activated
when the condition on other layers holds

layer StaticMap when !GPSon && !'WifiConnected ({
/* static map functions */

}

WifiEvent

GPSEvent)(

GPSon]

WiﬁConnectedJ

GPSDisabled- WifiDisabled

StaticMap IS active

EventCJ: composite layers

[Kaminal 3]

* Composite layers are implicitly activated
when the condition on other layers holds

layer StaticMap when !GPSon && !'WifiConnected ({
/* static map functions */

}

WifiEvent

GPSEvent)(

GPSon]

WiﬂConnectedJ

GPSDisabled- WifiDisabled

StaticMap IS Inactive

Discussion

* Systematic identification of context-related

requirements
* Use cases: useful tool to find contexts

* |dentification of layers
* Stepwise elicitation of events

* [ranslation preserves separation of concerns

* More sophisticated case studies are Iin paper
* Conference guide system
* Program editor

Related work

* Jacobson's AOSD (2005)
* Use case driven methodology
* A use case scattering multiple classes Is
Implemented by an aspect
* Mapping "extension points” in use cases to
pointcuts in AspectJ
* Dynamic deployment of behavior is not discussed

Requirements engineeringisaifuo?, sutcliffe0s, Lapouchnian09]

L dC
_dC

~ocusing only on requirements variability

KS viewpoint of detailled context specification

KS viewpoint of modular implementation

Conclusions

* Use case driven methodology for developing
context-aware systems

* Organizing requirements specifications
* |dentifying contexts from behavior
* Classitying variations of behavior
* |dentification of layers in use cases
* Stepwise elicitation of detalls of contexts

* Systematic implementation preserving SoC

