
—In Proceedings of Workshop on Reflective Middleware (RM2000), pp.19–20, New York, April 2000—

Wrapping Class Libraries

for Migration-Transparent Resource Access

by Using Compile-Time Reflection

Hiroshi Yamauchi∗ Hidehiko Masuhara† Daisuke Hoshina∗

Tatsurou Sekiguchi∗ Akironi Yonezawa∗

1 Introduction

Programming systems with mobile objects (or
mobile agents) are becoming popular for con-
structing network applications. In those sys-
tems, a group of running objects can migrate
across the network, which reduces communica-
tion overheads and gives more flexibility in appli-
cation design. One of the problems is that most
resources in those systems are not migration-
transparent. When an application object mi-
grates to from a host to another, the object can
no longer access resources that are intrinsic to
the former host (i.e., what we call stationary
resources). On the other hand, some resources
such as a window on a screen (i.e., what we call
cloneable resources) can be copied to a remote
host. They still are not migration-transparent
because application programs have to clean up
and re-initialize them at migration.

Middleware technologies such as CORBA pro-
vide fundamental mechanisms to remotely access
stationary resources. In fact, several studies pro-
posed migration-transparent class libraries by
“wrapping” existing libraries[3]. It is neverthe-
less onerous to write such wrappers by hand.
Therefore, some mechanisms that generate ap-
propriate wrappers would be useful.

∗Department of Information Science, University of
Tokyo. http://web.yl.is.s.u-tokyo.ac.jp/amo/

†Department of Graphics and Computer Science,
Graduate School of Arts and Sciences, University of
Tokyo.

2 Our Approach

Overview

Our approach is to automatically generate wrap-
per classes for resource classes by using tech-
niques similar to compile-time reflection, and let
mobile objects use the wrapper objects instead.
The wrapper objects are mobile; they can move
across the network along with application ob-
jects. Depending on the types of the resources,
they (1) serve as proxies of stationary resource
objects or (2) copy cloneable resource objects
and perform clean-up and re-initialization pro-
cedures at migration. We designed the system
for our Java-based mobile object system[4].

Wrapper Classes for Resources

Figure 1 shows how a mobile object accesses sys-
tem resources via wrapper classes. The detailed
architecture of wrapper classes are described in
the other literature[3]. In the figure, a mobile
application object app on host A is using a win-
dow frame and a file. Instead of directly access-
ing objects of the original class library (shown as
ovals), it uses wrapper objects (shown as rectan-
gles). When app migrates to host B, the wrap-
per objects in the dashed line also move to B.
As for a cloneable resource like frame, the wrap-
per object creates a clone of the original one and
performs re-initialization. As for stationary re-
sources like file, the wrapper object serves as a
proxy for the object at A, by forwarding method
invocation requests.

A wrapper class has the identical signature to
the original resource class; its class name and
method names are the same to the ones of the

1



app

file
frame

fileStub
frame

file

host A

app

file
frame

frame

host B

re-initialize remote
access

application/
library object

wrapper
object

migration

Figure 1: Wrapper objects for migration-
transparent resource access.

original class, but it is defined in a different pack-
age. This helps application programmers to eas-
ily switch to wrapper classes by merely changing
names of importing packages in their program.
One of the main purposes of wrapper classes

is to convert parameter/return values at method
invocation. A method of the wrapper class
calls the method of original object after “un-
wrapping” objects in the parameter values, and
“wraps” objects in the returned value before re-
turning it to the caller.
For stationary resources, each method in a

wrapper class forwards method invocation re-
quests by using Java RMI mechanisms. Since
most resource classes do not accept RMI in Java,
our system also generates a stub class for receiv-
ing RMI requests. (The object fileStub in Fig-
ure 1.)
For cloneable resources, a wrapper class has

a method that creates a copy of the original ob-
ject at the migrated host and initializes the clone
object.
Our system also generates several auxiliary

classes for calling protected methods in original
library classes and for executing static methods
at an arbitrary host.

Metaclasses as Wrapper Generators

In order to generate wrappers, we use compile-
time reflection techniques that are similar to
OpenC++[1]. A metaclass in our system ex-
tracts type information of its base-class by us-
ing introspective reflection mechanisms[2], and
generates definitions of wrapper class and auxil-
iary classes. There are two standard metaclasses
for stationary and cloneable resources, respec-
tively. The user writes a description file that
associates an appropriate metaclass for each re-
source class in a library. The user can also ex-
tend metaclasses for cloneable resources in or-
der to insert clean-up and re-initialization pro-
cedures in wrapper classes, although this feature
has not been implemented yet.

3 Summary

In order to transparently access system resources
from mobile objects, we designed and imple-
mented wrapper generators by using compile-
time reflection techniques. A wrapper genera-
tor in our system can be considered as a meta-
class of resource classes, and generates wrapper
classes that can be used as replacements of those
resource classes.
Thus far, we have tested our system to file I/O,

network communication and GUI component li-
braries in Java java.io, net and awt packages,
respectively. The generated wrappers are used
by mobile objects written in our mobile program-
ming system JavaGO[4].

References

[1] S. Chiba. A metaobject protocol for C++. In OOP-
SLA’95, pp. 285–299, 1995.

[2] JavaSoft, Java Core Reflection: API and Specifica-
tion, 1997.

[3] D. Hoshina, T. Sekiguchi, and A. Yonezawa. Class Li-
brary Supporting Continuous Operation to Resources
across Migration. Submitted for publication. 2000.

[4] T. Sekiguchi, H. Masuhara, and A. Yonezawa. A sim-
ple extension of Java language for controllable trans-
parent migration and its portable implementation.
In COORDINATION’99, LNCS 1594, pp. 211–226,
1999.

2


