
Optimizing a Search-Based Code Recommendation System

Naoya Murakami
Graduate School of Arts and Sciences

University of Tokyo
Tokyo, Japan

murakami@graco.c.u-tokyo.ac.jp

Hidehiko Masuhara
Graduate School of Arts and Sciences

University of Tokyo
Tokyo, Japan

masuhara@acm.org

Abstract—Search-based code recommendation systems with
a large-scale code repository can provide the programmers
example code snippets that teach them not only names in ap-
plication programming interface of libraries and frameworks,
but also practical usages consisting of multiple steps. However,
it is not easy to optimize such systems because usefulness
of recommended code is indirect and hard to be measured.
We propose a method that mechanically evaluates usefulness
for our recommendation system called Selene. By using the
proposed method, we adjusted several search and user-interface
parameters in Selene for better recall factor, and also learned
characteristics of those parameters.

Keywords-example code recommendation; integrated devel-
opment environment; associative text search.

I. INTRODUCTION

Programming to build a software system often needs to
exploit libraries and frameworks with complicated applica-
tion programming interfaces (APIs). In order to efficiently
use those libraries and frameworks, the programmer should
have different levels of knowledge from a name of a class
that offers a specific functionality, to a series of method calls
on several objects that accomplish a certain task.

Recommendation systems help to discover and remember
knowledge about the libraries and frameworks. Many inte-
grated development environments (IDEs) offer a code com-
pletion feature that suggests possible method and variable
names or parameter types that can be filled at the cursor
position.

However, such a recommendation system does not teach
complicated usages consisting of multiple steps. (There are
studies to teach such information [5], [6], [7], [8], [9], [10],
which will be discussed in a later section.)

We believe that example programs are useful in teaching
multiple-step usages, and complement existing API rec-
ommendation features. Based on this observation, we are
developing Selene, a code recommendation system based on
a text-based search over a large repository of open source
programs [1]. Integrated with Eclipse IDE, it periodically
monitors a program text being edited, and searches similar
programs from a code repository. By looking relevant part
in those searched programs, the programmer can find what
he/she should do next.

It is however not easy to optimize Selene to recommend
useful examples. This is partly because, as opposed to API
recommendation, example programs give us rather indirect
knowledge, whose usefulness is hard to be measured. There
are also many parameters in Selene, such as the weights to
tokens and the number of lines to compare, that affect search
results and their visual presentation.

The paper proposes a mechanical evaluation method that
estimates usefulness of Selene’s recommendations by gen-
erating problems and answers from existing programs. With
this method, it also optimizes the parameter set of Selene
by hill-climbing.

In the rest of the paper, section II gives an overview of
Selene. Section III lists the research questions that we are
interested in. Section IV proposes the evaluation method that
calculates recall ratios by generating problems and answers
from existing programs. Section V reports the results of our
experiment and some of the interesting findings. Section VI
discusses related work. Finally, Section VII concludes the
paper.

II. OVERVIEW OF SELENE

Figure 1 shows a screenshot of Selene, which works as an
Eclipse IDE plug-in. The window on the left-hand side is a
standard programming editor where the programmer writes
a program. The three smaller windows vertically stacked on
the right-hand side are the code snippets recommended by
Selene.

A recommendation process in Selene basically consists of
associative search and calculation of local similarity scores.
It starts by sending the entire text in the editor window
to a search server. The server then performs associative
search over its code repository, and returns files that are most
similar to the given text. Selene then calculates, for each line
of each returned file, a local similarity score that denotes
similarity between the text around the cursor position in the
editor window and the text around the line in the returned
file. It finally shows texts around the lines that have highest
local similarity scores.

For the associative search, Selene uses GETA [3] with a
repository of 2 million open source programs. The search
algorithm is based on vector similarity of token frequencies

Figure 1. A Screenshot of Selene

weighted with distance from cursor position, term frequency
and inverse document frequency (TF-IDF). For computing
the local similarity scores, Selene implements two different
algorithms, namely the common token frequency, which
simply calculates the ratio of tokens that commonly appear
in two texts, and the pairwise sequence alignment, which is a
standard technique to compare similarity between sequences
of symbols like nucleotide bases.

There are other notable features in Selene that are relevant
to the paper.
• Spontaneous recommendation. Since Selene takes the

entire editor text as a search query, it can start rec-
ommendation without interrupting the programmer’s
activity. (It also offers a shortcut key to manually start
a recommendation process.)

• Efficient. Our experiment showed that a recommenda-
tion process takes 2.7 seconds on average [1].

• Text-based. Selene relies only on textual information
in programs, which was crucial to achieve efficient
recommendation from a large code repository. Without
relying on syntactic and semantic information, Selene
can support any language once we set up a code
repository.

III. RESEARCH QUESTIONS

Many parameters, like weights to tokens and window sizes
(number of lines to compare text fragments), in Selene were
adjusted based on the authors’ own experiences. However,
we have many questions in order to get those parameters
right.

Significance: Even if different parameters gave a differ-
ent result, it is not easy to conclude that the difference is not
arisen by chance, and which parameters actually contributed
to the difference. We therefore need to know statistical
significance of differences in results.

Locality in associative search: Selene’s associative
search can put more weights on the tokens close to the
cursor position, or put an equal weight on all the tokens.
The former configuration will retrieve files more relevant to
the currently editing lines, while the latter will retrieve files
that have as similar context as the one of the editing file.

Order sensitivity in contexts: Two algorithms used
for scoring local similarity can be distinguished by their
sensitivity of token orders. While the association search finds
contexts that contain similar set of tokens disregarding the
order of their occurrence, the pairwise sequence alignment
can find contexts that have similar sequence of tokens.
Though the latter algorithm sounds more precise, it is not
clear such an algorithm can yield better results. For example,
a sequence of field initialization statements for an object has
no strict ordering.

Effects of comments on search: Current local similarity
scoring algorithms do not distinguish comments from code.
If we removed comment texts before calculating local simi-
larity scores, does it improve search results? Since comments
should also have meaningful information to the programmer,
two code fragments that have more similar comments might
be more useful.

Effects of comments on displaying: Current version of
Selene displays code snippets as they are, including com-
ments in the recommended code. If we removed comment
texts before displaying snippets, does it improve usefulness?
By removing comments, we can display more lines of code
in the same area.

Balance between snippet numbers and size: How many
snippets should we display on a screen? Our preliminary
experiences suggest that we tend to find useful examples
after browsing several recommended snippets, more snip-
pets would improve the results. However, assuming a fixed
displaying area for the entire set of snippets, more snippets
shown, each snippet can show fewer lines.

IV. MECHANICAL EVALUATION METHOD

In order to answer the above questions and in order to
optimize Selene’s parameters, we developed a method that
mechanically evaluates a recall ratio as a usefulness score1.
It first generates pairs of a query text and answer tokens
from existing programs. It then lets Selene recommend code
snippets with respect to a query text. It finally evaluates a
recall ratio of answer tokens in the recommended snippets.
Below, we explain the method on a step-by-step basis.

It first generates a problem set from a collection of
existing program. A problem consists of a query text and

1We also measured a precision ratio, which turned out to be insignificant.

54emailField.addKeyListener(new KeyAdapter() {
55public void keyPressed(KeyEvent arg0) {
56if(arg0.getKeyCode() == KeyEvent.VK_ENTER) {
57ActionEvent e = new ActionEvent(arg0, OK, . . .
58informListeners(e);}}});
59Dimension buttonDimension = new Dimension(73, 26);
60JButton okButton = new JButton("OK");
61okButton. setPreferredSize (buttonDimension);
62okButton. setMnemonic (’o’);
63okButton.addActionListener(new ActionListener() {
64public void actionPerformed(ActionEvent arg0) {
65ActionEvent e = new ActionEvent(arg0, OK, ema. . .

Listing 1. Example code fragment used as a query (above the horizontal
bar) and an answer set (below)3. The boxed and underlined tokens below
the horizontal bar are the answer set. The boxed ones are successfully
recommended in listing 2, while the underlined ones are not.

202if (jButtonExport == null) {
203jButtonExport = new JButton();
204jButtonExport.setText("Export");
205jButtonExport.setToolTipText("Exporteren");
206jButtonExport. setMnemonic (KeyEvent.VK_E);
207jButtonExport.setIcon(new ImageIcon(java.awt.To. . .
208jButtonExport. setPreferredSize (new java.awt.Di. . .

Listing 2. Example recommended snippet5. The tokens in boxes corre-
spond to the boxed tokens in the answer set.

answer tokens, which are created by splitting a program text
into two parts at a randomly chosen line. The upper half is
a query text, which denotes a partly written program. The
answer tokens are non-trivial tokens that appear in the first
several lines (what we call an answer window) of the lower
half, yet do not appear in the upper half. The answer set
denotes the names that the programmer might not know, or
cannot easily remember.

Listing 1 shows generation of a problem. A program
text in the listing is split between lines 60 and 61. The
upper half of the text (i.e., from line 1 until 60) is the
query text. We could say that it represents a situation
when programmer have created a button object, and were
considering operations that shall be applied to the button.
Assuming 5 lines for an answer window, the answer set is
the tokens in boxes and with underlines. Note that other
tokens such as buttonDimension are not in the answer
set because they also appear in the upper half.

It then starts the recommendation feature in Selene with
the query text, and obtains a set of recommended snippets
(listing 2 is an example of such snippets for the query text
in listing 1).

It calculates a recall ratio of each snippet s with respect
to an answer set a by the following formula.

recall(s, a) =
|s ∩ a|
|a|

3File LostPassFrame.java in the TijdR project (http://sourceforge.net/
projects/tijdr/). The long lines are trimmed so as to fit in the paper size.

5File ExportPopup.java, in the OS Optiek project (http://sourceforge.net/
projects/osoptiek/)

It is the ratio of answer tokens that appeared in the recom-
mended snippet (e.g., the boxed tokens in listing 2) over
the all answer tokens (e.g., the boxed or underlined tokens
in listing 1). Similarly it calculates a precision ratio by
|s ∩ a|/|s|.

It calculates a recall ratio with respect to one problem by
using the following formula:

recall(S, a) =
|(
⋃

s∈S s) ∩ a|
|a|

where a is the answer set of the problem, and S is the set
of recommended snippets to the query text of the problem.
Here, we assume that a token in the answer set is answered
if it appears in any of the snippets.

Finally, the recall ratio with respect to a problem set is
an average of a recall ratio of each problem.

V. EXPERIMENTS AND FINDINGS

A. Experimental Settings

We generated 1164 problems from 60 files6. Each file is
randomly chosen from one of 60 open source projects used
in the identifier tokenization project by Butler et al. [4]. The
projects cover variety of applications, including ArgoUML,
Cobertura, Eclipse, FindBugs, the standard libraries in Java,
JDK, Kawa and Xerces. The number of problems generated
from one file is proportional to the number of lines in the file;
i.e., on average, every 10 lines in a file generate one problem.
When we generate a problem from a file, we randomly chose
a line between 5 lines below the first class declaration and
the bottom line of the file. Since lines above the first class
declaration usually contain import declarations (in Java) and
copyright notices, we believe that the programmer does not
rely on recommendations for writing them.

When it evaluates a problem generated from a project
that also included in the Selene’s repository, we excluded
the files in the same project from a result of the associative
search. Otherwise, Selene would recommend exactly same
file in the repository, which gives recall ratio close to 1.

We evaluated recall ratios by sweeping the following
parameters: the algorithm for local similarity scores (either
the vector similarity or the pairwise sequence alignment),
whether local similarity scores are sensitive to comments,
the number of recommended snippets (s), the number of
lines of each snippet (`) where we assumed that snippets
can use 120 lines7 on a display; i.e., s` + 2(s − 1) = 120,
the distance between the first line of the snippet and the most
similar line, and whether comments are shown in snippets.

6It might give an impression that we used too small number of files, we
obtained statistically meaningful results according to the t-tests.

7Though 120 lines of code may not easily fit in consumer-class monitors
of today, we believe that many programmers will have larger, higher-
resolution and multiple monitors that can accommodate those lines in near
future.

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10

re
ca

ll
 r

at
io

 (
%

)

number of displayed snippets

Figure 2. Recall ratios for different number of snippets. Line numbers of
each snippet is adjusted so that they occupy 120 lines in total.

B. Findings

1) Statistical Significance: By evaluating recall and pre-
cision ratios for different parameters, we found that precision
ratios are almost stable. This is probably because programs
have to have rather obvious tokens, including control state-
ments and primitive type names and common type names
like String, which makes the ratio of useful tokens relatively
insignificant. While it would need deeper analysis, we only
discuss recall ratios hereafter.

For recall ratios, we carried out t-tests whenever we
compared values under two parameter sets. Unless explicitly
stated, we found that the differences are statistically signifi-
cant with alpha level at 0.05. This suggests that the proposed
evaluation method can be used for optimizing parameters in
Selene.

2) Optimal Parameters: From the initial parameter set,
we sought a parameter set that gives an optimal recall ratio
by hill-climbing. Given a parameter set, for each parameter,
we find the next value of the parameter that gives an optimal
recall ratio by providing different values to the selected
parameter. For example, figure 2 shows the recall ratios
for different number of snippets (and different number of
lines in each snippet accordingly) with a certain set of
parameters. We repeated this process for three times until
all the parameter values became optimal.

3) Discussion: Our experiment gave us not only an
optimal set of parameters, but also several interesting ob-
servations. Due to space limitations, we here discuss a few
of them.

The optimal value for the cursor distance weight suggest
that the associative search should use more global informa-
tion. (With larger value, it gives more weight to the tokens
near the cursor position.) In other words, a program fragment

Table I
INITIAL AND OPTIMAL PARAMETERS.

parameter initial optimal
cursor distance weight (assoc.) 0.5 0.11
algorithm (local) vector alignment
window size (local) 10 9
weight on common tokens (local) 0.2 0.2
removal of comments (local) no no
snippets × lines shown 3× 38 6× 18
prior lines shown 1 1
removal of comments (display) no (yes)
recall ratio 17.6% 25.3%

written in a more similar context is more useful than a
fragment that is locally similar yet written in a context less
similar to the one of the currently editing file.

The optimal number of snippets was 6, which is more than
we expected from our past experiences. When we programed
with Selene, we tended to find useful information after
scrolling up/down the first few shown snippets. We therefore
assumed that each snippet should be given more lines so that
we can find such information without scrolling. (Note that
our evaluation method only considers tokens displayed in
snippets without scrolling.)

The row “# prior lines shown” suggests that we should
show only after the lines similar to the currently editing text.
However, when we gave more lines to each snippet, more
lines with this parameter gave better results. Therefore, we
presume that the most important fragments in the recom-
mended code are the 18 lines below the most similar part.
The similar part would be more useful than the lines beyond
18 lines.

When we evaluated the effect of comments in displayed
snippets out of the hill-climbing process, we found that re-
moval improves the recall ratio as the “removal of comments
(display)” row indicates. However, we did not removed
comments in the hill-climbing process as we need to use
a different formula for recall calculation (namely, tokens in
comments should also be removed from the answer sets).

C. Limitations

As it is mechanical evaluation, there are several limitations
that we should be careful with.
• We have not verified whether recall ratios correlate with

actual development times. While it would be nice to
verify by carrying out a human experiment in future,
we would need very careful experiment design in order
to show the correlation.

• We assumed that programs were written from top to
bottom, which is unlikely in many cases.

• We assumed that all tokens in the answer set are equally
useful.

• We assumed that the programmer can find useful in-
formation whenever it is displayed. By considering ac-
tual programming behavior, looking into code snippets

would take a certain amount of time. We do not take
such a cost into account.

VI. RELATED WORK

There are several recommendation systems that suggest
example code to the programmer, each aims at different
goals and is evaluated differently. CodeBroker [5] recom-
mends example method definitions that suites to the cur-
rently written comment text and method signature. Precision
and recall evaluation is done by manually judging the rec-
ommendation results. Strathcona [6] recommends examples
that has a similar structural context (like class hierarchy) to
the currently editing one. It was evaluated through a human
experiment, where subjects are requested to use Strathcona
when performing designated tasks. Code Conjurer suggest
examples that have a given structure and specification [7].
Since it requires the programmer to manually construct a
query, it is not obvious to mechanically evaluate such a
system. Since we aim at optimize parameters in a recommen-
dation system, we rather developed a mechanical evaluation
system. We believe that our approach would be useful to
optimize similar systems.

Prospector [8], XSnippet [9] and RECOS [10] recom-
mends a chain of operations to accomplish a certain task,
such as creating an object of a specific class. Even though the
style of recommendation is different, Selene can also suggest
examples that demonstrate such a chain of operations. In
fact, the set of answer tokens can be considered as an
approximation of a chain of operations.

Heinemann and Hummel proposed a recommendation
system that uses tokens appearing before the cursor position
as contextual information of API method recommenda-
tion [11]. Though applied to recommending API methods
rather than examples, their association mining algorithm has
large commonality with our association search algorithm.
Interestingly, they found that 2 or 3 lines around the cursor
position give the best result, ours work best with 9 lines.
This might be because of the sizes of the repository (i.e., 3
million lines of code in Heinemann and Hummel whereas 2
million files in ours.)

VII. CONCLUSION

In this paper, we proposed a method that mechanically
evaluate parameters in Selene, a search-based code recom-
mendation system. The method uses existing programs as
a problem set, and calculates recall ratios in the actual
recommendations. Though our work is based on Selene,
we believe that the proposed method is applicable to other
recommendation systems that display code fragments, such
as CodeBroker and Strathcona.

Our experiments showed that the method can observe
statistically significant difference in results. A hill-climbing
optimization with the proposed method improved the recall
ratio of Selene from 17.6% to 25.3%. We also observed

several interesting characteristics of parameters, such as the
optimal lines for displaying snippets.

Improving Selene’s features, and making the evaluation
method more reliable are two major branches of our future
work. Use of syntactic and semantic information at recom-
mendation would be one of challenges. Since we now have
an evaluation method, developing such a new feature would
be much easier than before. Evaluation of usefulness through
human experiments is another challenge. As we presume that
effects of code recommendation is usually too indirect to be
observed by human experiments, we are instead planning to
improve our current method by incorporating development-
time information, such as the order of writing each lines in
a program text.

ACKNOWLEDGEMENT

We would like to thank Sushil Bajracharya and Cristina
Lopes for their help to access the UCI Source Code Data
Sets [2]. This work was partly supported as a Microsoft
Research CORE Project.

REFERENCES

[1] T. Watanabe and H. Masuhara, “A spontaneous code recom-
mendation tool based on associative search,” in SUITE’11,
2011, pp. 17–20.

[2] C. Lopes, S. Bajracharya, J. Ossher, and P. Baldi,
“UCI source code data sets (SDS source-repo-18k),” 2010,
http://www.ics.uci.edu/∼lopes/datasets/.

[3] A. Takano, “Association computation for information access,”
in Proceedings of The 6th International Conference on Dis-
covery Science, ser. LNCS, vol. 2843, 2003, pp. 33–44.

[4] S. Butler, M. Wermelinger, Y. Yu, and H. Sharp, “Improving
the tokenisation of identifier names,” in ECOOP 2011, ser.
LNCS, vol. 6813, 2011, pp. 25–29.

[5] Y. Ye and G. Fischer, “Supporting reuse by delivering task-
relevant and personalized information,” in ICSE 2002, 2002,
pp. 513–523.

[6] R. Holmes and G. C. Murphy, “Using structural context to
recommend source code examples,” in ICSE 2005, 2005, pp.
117–125.

[7] O. Hummel, W. Janjic, and C. Atkinson, “Code conjurer:
Pulling reusable software out of thin air,” IEEE Software,
vol. 25, pp. 45–52, 2008.

[8] D. Mandelin, L. Xu, R. Bodı́k, and D. Kimelman, “Jungloid
mining: helping to navigate the API jungle,” in PLDI 2005,
2005, pp. 48–61.

[9] N. Sahavechaphan and K. Claypool, “XSnippet: mining for
sample code,” in OOPSLA 2006, 2006, pp. 413–430.

[10] A. Alnusair, T. Zhao, and E. Bodden, “Effective API
navigation and reuse,” in IEEE IRI. 2010, pp. 7–12.

[11] L. Heinemann and B. Hummel, “Recommending api methods
based on identifier contexts,” in SUITE 2011, 2011, pp. 1–4.

