Code Recommendation Based on
a Degree-of-Interest Model

Naoya Murakami
The University of Tokyo, Japan
murakami@
graco.c.u-tokyo.ac.jp

ABSTRACT

Code recommendation systems predict and present what the
user is likely to write next by using the user’s editing con-
text, namely textual and semantic information about the
programs being edited in a programming editor. Most exist-
ing systems however use information merely around the cur-
sor position—i.e., the class/method definition at the cursor
position—as the editing context. By including the code re-
lated to the current method/class, like the callers and callees
of the method, recommendation could become more appro-
priate. We propose to use the user’s editing activity for iden-
tifying code relevant to the current method/class. Specifi-
cally, we use a modified degree-of-interest model in the My-
lyn task management tool, and incorporated the model in
our repository-based code recommendation system, Selene.
This paper reports the design of the system and the results
of our initial experiments.

Categories and Subject Descriptors

D.2.6 [Programming Environments]: Integrated envi-
ronments, Interactive environments

General Terms

Design, Human Factors, Measurement

Keywords

Keyword search, similarity

1. INTRODUCTION

Source code recommendation systems recommend frag-
ments of sample code that are relevant to the program being
edited. It is useful when a developer wants to know names
and usages of unfamiliar API, for example.

Assume a developer is writing programs under the fol-
lowing situation as shown in Listing 1. The developer is
creating a visual text editor in Java. After created several

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions @acm.org.

RSSE’14, June 3, 2014, Hyderabad, India

Copyright 2014 ACM 978-1-4503-2845-6/14/06...$15.00
http://dx.doi.org/10.1145/2593822.2593828

Hidehiko Masuhara
Tokyo Institute of Technology,
Japan
masuhara@acm.org

28

Tomoyuki Aotani
Tokyo Institute of Technology,
Japan
aotani@is.titech.ac.jp

Listing 1: Caller and Callee Classes

/) m e e OpenFileMB. java
class OpenFileMB extends JMenuBar {

void actionPerformed (ActionEvent event) {
anEditorPane.setContentType ("text/html");

File file = chooser.getSelectedFile();
String t = FileUtils.readFile(file);
anEditorPane.setText (t.trim());

}}

VA FileUtils. java

class FileUtils {
//to read internal data
static Object readObject(File file){
FileInputStream inFile =
new FileInputStream(file);
ObjectInputStream in=new ObjectInputStream(
new BufferedInputStream(inFile));
Object obj=in.readObject ();
}

//to read text file

static String readFile(File file){
InputStream is = new FileInputStream(file);
B (cursor position)

classes, he/she is defining an actionPerformed method in
the OpenFileMB class (Listing 1, top). The method corre-
sponds to the “open file” command in the editor’s menu bar.
Since it needs to read texts from a file, he/she has decided
to implement it in a separate method, namely the readFile
method in the FileUtils class (Listing 1, bottom). After
writing the first line that opens a specified file, he/she tries
to remember how to read text lines from the file.

If the developer sees the following code fragment, he or she
quickly remembers the class (BufferedReader), the method
(readLine) for reading lines from a text file, and the return
value at the end of the file.

BufferedReader br = new BufferedReader (
new InputStreamReader (is));
while ((tmp=br.readLine()) != null){

A code recommendation system extracts the developer’s
intent from the program text being edited, looks for similar
program fragments in a code repository, and then displays
those fragments. By using a large-scale code repository (for
example 2 million files in Selene [4]), it becomes possible
to recommend appropriate code fragments matching various
situations that the developers are facing.

However, existing systems cannot always correctly extract
an intention of the developers. Since most systems simply
use the information in the file being edited, it might extract
information not directly related to the current context, but

the one that happens to be in the same file.

For example, if Selene used the terms in FileUtils. java
(Listing 1, top), it would recommend a code fragment that
deserializes objects from a file, which does not match the
developer’s intention. This is due to the terms in the neigh-
boring method, namely readObject.

If we knew the context of the current method being edited,
we could improve recommendation. The context here means
the code fragments related to the module being edited. In
the above case, actionPerformed in OpenFileMB is a context
of readFile. If Selene used the terms in actionPerformed
as well, it could recommend a code fragment that reads text
lines from a file by reflecting the related terms such as set-
ContentType and trim.

2. RECOMMENDATION BASED ON A
DEGREE-OF-INTEREST MODEL

We propose to use a degree-of-interest (DOI) model origi-
nally proposed by Kersten and Murphy [1] as the context in-
formation for recommendation. A DOI model keeps track of
the developer’s activities in the editor, and assigns each pro-
gram element (e.g., method, field, function, and class) the
relevance to the task that the developer is currently working
on. Under the situation in the previous section, the model
observes the developer’s activities of selecting the action-
Performed method and of editing the readFile method, and
increases relevance scores of those two methods.

We believe that the DOI model can be a better approxima-
tion of the developer’s intent than the information obtained
by a program analysis. This is supported by the following
reasons. (1)Even when a program is not completed, the DOI
model works well. On the other hand, analyzing such a pro-
gram is not easy, and gives less imprecise information. (2) A
program analysis would give less focused information than
the DOI model as it equally treats relationships between pro-
gram elements. For example, if a method being edited has
many callers, it is difficult for a program analysis to discrim-
inate the callers. By using the DOI model, the developer
should have browsed only the callers that are relevant to
his/her current interest. (3)Relationships between program
elements that can be found by a program analysis tend to
be more indirect than the ones in the developer’s mind. For
example, when the developer is editing a method of a GUI
component, he/she often wants to know the available fields
and methods in the respective model object. However, the
classes of those objects are usually connected indirectly on
most GUI frameworks. By using the DOI model, since the
developer knows the actual class of the model object and is
likely to browse it, we could get information more relevant
to the developer’s intention.

Based on above observations, we extended our source code
recommendation system, Selene [4], to include more context
information by using the DOI model. The extension consists
of the following components, namely the one for monitor-
ing editor activities, the one for keeping track of DOI, and
the one for repository search using DOI. We implemented
a DOI-based recommendation system by extending Selene,
which uses Eclipse as an underlying development environ-
ment, GETA [3] as a search engine for relevant files, and
UCI Source Code Data Sets 18k as a code repository. The
monitoring and DOI calculation parts are extended from the
Mylyn’s implementation.

29

Since performance of recommendation depends on vari-
ous parameters in the system, we adjusted them by using a
machine learning technique. For adjusting parameters, we
employed a machine learning approach used in our previous
study [2], but extended to deal with the DOI model. Since
our recommendation needs a history of editing activities to
calculate the DOI values, we developed an Eclipse plug-in
that records developers editing activities. From the collected
histories, we generated a set of problems (a snapshot of pro-
gram texts with DOI values) and answers (a fragment of
program text inserted just after the problem point), and
optimized the parameters to maximize recall rates.

3. PRELIMINARY EVALUATION

We carried out 10-fold cross-validation for evaluating our
proposal. We collected development histories of 8 programs
written by 3 subjects totaling to 2430 increased lines of code.
We then generated ten sets of problems and answers from the
collected histories. For each set, we optimize the parameters
by using the rest of nine sets, applied the original Selene and
the extended one with the DOI model to the selected set,
and compared the recall rates of recommendations.

Our proposed approach outperformed the original one for
4 out of 10 cases. From this result, we cannot conclude
advantages of the proposed approach. We however found
the following interesting observations.

When the cursor jumps from one file to another, the two
systems tend to give different recommendations. In par-
ticular, when the developer’s context changed (i.e., he/she
started writing code on a different concern), the original Se-
lene gives better recommendations. Ours gives better ones
when the concern is not changed.

When we evaluated the systems after they are configured
to recommend one code fragment, our proposed approach
outperforms 6 out of 10 sets with a higher average recall rate.
This suggests that if we used the DOI values for the later
stage of recommendation, our approach could give better
recommendations.

4. CONCLUSION

We proposed an approach for a code recommendation
system to better estimate the developer’s intent by using
a history of editing activities. The key idea is to use a
modified degree-of-interest model as the context of the code
being edited. We implemented our approach by extending
our code repository based recommendation system, Selene.
From our preliminary evaluation, we found several interest-
ing observations where our approach can work better.

S. REFERENCES

[1] M. Kersten and G. C. Murphy. Mylar: a degree-of-
interest model for IDEs. AOSD ’05, pp.159-168, 2005.
N. Murakami and H. Masuhara. Optimizing a
search-based code recommendation system. RSSE’12,
pp.68-72, 2012.

A. Takano, et al. Information access based on
associative calculation. SOFSEM’00, pp.15-35, 2000.
T. Watanabe and H. Masuhara. A spontaneous code

recommendation tool based on associative search.
(SUITE’11), pp.17-20, 2011.

2]

