The Omission Finder for Debugging
What-Should-Have-Happened Bugs
in Object-Oriented Programs

Kouhei Sakurai
Kanazawa University
Ishikawa, Japan
k_sakurai@acm.org

ABSTRACT

Trace-based debuggers help a debugging process by display-
ing a history of executed operations with their parameters
in a run of a program. However, those debuggers are unable
to provide any clues when a program does not perform op-
erations that ought to occur. This paper proposes a novel
feature called the omission finder for trace-based debuggers.
This feature correlates points-to analysis results with an ex-
ecution history to show operations that could have been but
actually were not performed on a specified instance if the
program behaved differently. We implemented the omission
finder on top of an existing trace-based debugger, and con-
firmed reduction of the number of debugging steps with an
omission bug in a real-world program. Our user-study also
showed reduction of debugging times with programs con-
taining omission bugs.

Categories and Subject Descriptors
D2.5 [Software Engineering]: Testing and Debugging—

Debugging aids, Tracing; D3.4 [Programming Languages|:

Processors—Debuggers

General Terms

Algorithms, Languages, Design, Performance

Keywords

Omission errors, Trace-based debugger, Points-to analysis

1. INTRODUCTION

Among the techniques for building software systems—
including code reviewing, verification, software testing, and
debugging—debugging is an inevitable process of finding a
code fragment in a program that needs to be fixed.

Before explaining the background of the paper, we define
a few terms relevant to debugging. As shown in Figure 1(a),

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC’15 April 13-17, 2015, Salamanca, Spain.

Copyright 2015 ACM 978-1-4503-3196-8/15/04...$15.00.
http://dx.doi.org/10.1145/2695664.2695735

Hidehiko Masuhara
Tokyo Institute of Technology
Tokyo, Japan
masuhara@acm.org

(@) (b)

y=new Vector(); y=new Vector();

x= (false); defect x=false; //defect

\\\\\\ if (%)
y.add(x); ' |y.add (1) ; //omitted
else
observation :

output(y)

output(y)

Figure 1: (a) A defect in a program (top) yields an error
(in x), that propagates to another error (in y) eventually
observed (bottom). (b) An error (in x) caused by a defect
(top) lets a conditional jump incorrectly omit a branch, which
causes another error—an execution omission error—(in y) by

not executing a statement that ought to be performed.

a defect is an incorrect code fragment in a program. When
running a program, the execution of a defect produces an
incorrect program state, or an error. Errors can be propa-
gated; i.e., execution with an error often results in another
error. Finally, errors are observed in outputs from a pro-
gram. We informally refer to a defect as a bug, especially in
a situation before identifying its location in a program.

A debugging process usually starts from a code fragment
that produced an observed error, and chases after causes of
errors until we encounter a defect. When an error is observed
after many propagation steps, we need to traverse a lengthy
path in a program.

In this paper, we present an extension of the trace-based
debugger by adding a novel feature called the omission finder
to handle execution omission errors. A trace-based debug-
ger, also known as a back-in-time or omniscient debugger,
first runs a program to collect information on executed op-
erations (what we call an ezecution history) and then allows
the developer (i.e., the user of the debugger) to inspect the
states of a program, such as values in variables and instance
fields, at any point of execution [3, 4, 5, 10, 12, 11]. One
of the advantages of these debuggers is the direct support
of backward navigation: starting from a certain point in
an execution, it can go back to an earlier point and show
that state. This is in contrast to break-point debuggers,
which can only move forward and require the developer to
re-execute a program from the beginning in order to inspect
states at an earlier execution point.

In this paper, we deal with an ezrecution omission error,
which is an error caused by the omission of execution of
a branch' that ought to be executed. For example, the
program in Figure 1(b) incorrectly sets the value of x to

Tn the paper, we call an execution path taken by either a
conditional jump or dynamic method dispatching ‘a branch’.

1 | class FileLister {

2 File dir;

3 List<String> list;

4 List<String> args;

5 boolean active;

6 public static void main(String[] args) {
7 new FileLister().run(args);

8

9 void run(String[] args) {

10 init();

11 setArgs(args);

12 if (active) addItems();

13 printItems();

14 }

15 void init() {

16 dir = new File(".");

17 list = new ArrayList<>();

18 args = new ArrayList<>();

19 active = false; //defect

20 }

21 void setArgs(String[] as) {

22 N for (String a:as) args.add(a);
23

24 void addItems() { // add file names
25 List<String> d = this.list;

26 for (String n:dir.list())

27 d.add(n); // omitted operation
28 }

29 void printItems() {

30 List<String> s = this.list;

31 System.out.println(s.toString());
32

33 }void addNewItem(String n) { list.add(n); }
34

Figure 2: File lister with an execution omission er-
ror.

false. This causes an execution omission of the add oper-
ation, which is expected to be performed. As a result, we
observe an execution omission error as an empty value of y
at the bottom. Such errors are recognized as particularly
difficult issues in debugging [20] because the links between
an observed error and its defect are missing. Directly chas-
ing back the sources of errors does not lead us to the defect
because the error is caused as an indirect effect of a condi-
tional jump.

The proposed omission finder shows the operations that
could have been executed if conditional jumps took different
branches. However, if we showed all unexecuted code, it
would be too large to be useful. A breakthrough is the use
of a points-to analysis to filter the operations related to the
value under inspection and the use of control-flow analysis
to relate the filtered operations to actual execution.

We implemented the omission finder on top of Trace-
glasses, a fine-grained trace-based debugger for Java [13].
The implementation, which is publicly available,? is demon-
strated to be useful for debugging execution omission errors
in practical open-source programs.

The rest of this paper is organized as follows. Section 2
presents the basic concepts of the trace-based debuggers [13],
which serves as a back-end of the omission finder. The sec-
tion then explains the difficulties in execution omission er-
rors. Section 3 presents the design and implementation of
the omission finder. Section 4 evaluates the omission finder
with three respects, namely number of inspecting opera-
tions, actual debugging times, and execution performances.
In Section 5 we discuss related work, and Section 6 dis-
cusses several issues facing the omission finder in practice.
Section 7 concludes the paper.

2. TRACE-BASED DEBUGGER

2.1 Example Target Program: A File Lister

2http://csl.ec.t.kanazawa-u.ac.jp/ sakurai/
project/tgls

800 Viewer : Vol Is-pap filelister /exec-2014-04-10-1
File Window
v FileLister.main({args:< 1=)
» new FileLister() = < 1>
v <l 1>.run(args:< 1>)
» this:< 1>.1nit()
1>.setArgs(args:< 1)
1>.active = false
= 0)

<ArrayList:1> : Search Backward
new Arraylist() => < 1>
this:< 1>, list = < 1>

printItems()
er:1>.list => <ArraylList:1>
1

< >
1> toString() = "[]"
<l 1>.println("[]")
return
return
ratirn

[Search | Inspector | Scriptlog | Script | L Progress |

J/Volumes /tgls-paper-ex/filelister/src/ ex/FileLister java
void printItens() {

Listestring> s = this.list; il
Systen.out.println(s. toString());
b3

Figure 3: A screenshot of Traceglasses consisting of
a tree view (top left), a filtered view (top right), and
a source view (bottom).

val := [vname:] (<type:id> | "str" | primitive value | type)
event := exec | wal.fld =>wval | wal.fld = val

| arith =>wval | if (arith) | return [val]
exec ::= wal.meth({val,}) [=>wval] | new type({wal,}) =>wal
arith ::= wop (val) | val bop wval

Figure 4: Syntax of events (abridged). [z] denotes
an optional element and {z} denotes zero or more
repetitions.

Figure 2 shows FileLister, an example program that is
supposed to list the file names in a current working directory.
It actually contains an execution omission error, which we
will explain in the next section.

The main method of the program creates a FileLister
instance, and calls the run method. The method run first
sets up instance fields (init) and then saves the given ar-
guments (setArgs) that are not directly used by the class
but rather by a subclass in future. It subsequently gathers
file names into the list field (addItems) and prints them
(printItems). The active field controls whether it invokes
addItems, which is useful when FileLister traverses many
directories and gathers file names only from specific direc-
tories (not shown in the figure). The class also has an un-
used method for adding a new item to the list (addNewItem),
which is used from outside of the class.

2.2 Trace-Based Debugging with Traceglasses

A trace-based debugger records an execution history of a
program run and then lets the developer inspect the history
afterwards. An execution history is a sequence of events
(i.e., low-level operations with their parameters) that are
performed by the program.

Below, we explain the fundamental concepts of the trace-
based debugger by using our Traceglasses debugger [13].
Though it has its own advantages and limitations, the pro-
posed feature can be basically implemented on other trace-
based debuggers. The Traceglasses debugger is designed and
implemented for Java. It records events at the Java byte-
code instruction level and offers three views for inspection,
as shown in Figure 3.

2.2.1 Events

An event is a unit of recorded execution and roughly cor-
responds to the execution of a Java bytecode instruction.
Traceglasses display an event in a syntax that resembles the
Java source language, as summarized in Figure 4.

1 [root
2 |vthread-0
3| YFileLister.main(<String[]:1>)
4| »new FileLister() => <FileLister:1>
5| v<FileLister:1>.run(args:<String[]:1>)
6| | vfthis:<FileLister:1>.init() ________________
7 ‘new File(".") => <File:1>
8 ‘this:<FileLister:1>.dir = <File:1> __ | :
9 ew ArrayList() => <ArrayList:1>
10
11
12 1>.args =
13 this:<FileLister:1>.active = 0___[19]
14 return
15 »(this:<FileLister:1>.setArgs(as:<String[]:1>) [11]
16 this:<FileLister:1>.active => false (]2
17 [if (false == 0)
18 vEhis:<FileLister:I>.printItems()
19 €his:<FileLister:1>.1ist => s:<ArrayList:1>
20 gystém.out => Printdtreéam:I> T [3[| T
21 :s:<ArrayList: 1>.toString() => "[]1" |
22 kPrintStream:1>.println("[]") ;
23 return T
24 return
25 return

Figure 5: Events generated from an execution of
FileLister.

A value (val) is a parameter of or a result from an event.
It is either an instance (Java object), a primitive value (e.g.,
numbers and booleans), or a type. An instance is denoted
as a pair of its type name and an integer ID unique to
each type. Exceptionally, strings are denoted in a literal
form surrounded by double quotation marks. When a value
is obtained from or assigned to a local variable, the value
is denoted with the name of the variable. For example,
v:<FileLister:1> denotes an instance of FileLister ac-
cessed through the variable v.

There are several kinds of events, ranged over a
metavariable event, including method or constructor ex-
ecution (ezec), field read/write, arithmetic computation
(arith => wal), a conditional jump, and return from a
method or a constructor. The paper omits other kinds of
events, such as array operations and thread synchroniza-
tions, for simplicity.

The metavariable exec ranges over the events that rep-
resent the beginning of a method/constructor execution.
Note that an exec event denotes the indistinguishable ac-
tion of calling a method on the caller side and start-
ing the method execution on the callee side. = When
a method/constructor returns a value, we write the re-
turned value on the right-hand side of =>. For example,

new FileLister() => v:<FileLister:1>
denotes the execution of the constructor of FileLister,
whose result, <FileLister:1>, is assigned to a local vari-
able v.

A conditional jump, written as if (false == 0), denotes
the values in the conditional expression used for the jump.
Since the event is recorded at the bytecode level, evalua-
tion of complex Boolean expression and iteration/exit of a
loop are also represented by conditional jumps. Note that a
conditional jump event does not contain the branch target
because the following events obviously indicate which branch
was taken. For the same reason, the execution history does
not contain unconditional jumps.

2.2.2 Tree View

The tree view (top left in Figure 3) shows all the events in
the execution history organized into a tree structure based

on the caller-callee relation. Branches of the tree are col-
lapsed by default so as to give an overview of the execution,
and can be expanded by clicking.

Figure 5 shows a tree view generated from an execution
of FileLister. Each rounded box with a number n at its
top-right corner corresponds to a statement at line n in Fig-
ure 2. The boxes and numbers are added for the explanatory
purpose in the paper and are not shown in the actual debug-
ger. Due to space limitation, the bodies of the FileLister
constructor and the setArgs are not shown (denoted as »).

As similar to other trace-based debuggers, Traceglasses
can list events that are related to a runtime value as in the
filtered view (top right in Figure 3). This feature enables de-
veloper to trace dataflow easily. Additionally, it can inspect
source code (the bottom view in Figure 3) which generated
the event selected in the tree view.

2.3 Execution Omission Errors

An execution omission error is an error caused by not eze-
cuting fragments of code that ought to have been executed.
This is typically caused by an erroneous value in a condi-
tional jump or a loop condition that surrounds the code
fragment, or by an erroneous type in a method invocation.

For example, FileLister in Figure 2 causes an execution
omission error, which is observed as an empty output. The
defect of the error is at line 19, which initializes the active
field to false, instead of true. This lets the conditional
jump at line 12 skip the branch that adds file names (lines
25-27).

2.4 Difficulties in Debugging Execution Omis-
sion Errors

Execution omission errors are difficult to debug even with
a trace-based debugger. While trace-based debuggers pro-
vide convenient accesses to executed operations in the run
of a program, they offer no information on operations that
are not executed. When we find the field of an instance has
an unexpected value, which is the result of an incorrect as-
signment, a trace-based debugger is useful. However, when
the program has missed executing an operation that assigns
an expected value to the field, it gives no clue.

For example, the execution history in Figure 5 indicates
that <ArrayList:1> is empty® at line 21, while it is expected
to be a non-empty list of file names as the value of the 1list
field obtained at line 19. However, the events that are re-
lated to the ArrayList before of the line 19 in the execution
history are merely the construction events at lines 9-10.

If we knew (1) that the statement d.add(n) was not ex-
ecuted due to (2) the conditional branch in run, we could
have identified the incorrect initialization of the active field.
However, the fact (1) does not appear in the execution
history, and the fact (2) does not directly related to <Ar-
rayList:1> in the event history (i.e., the conditional jump
at lines 16 and 17).

In practical programs, execution omission errors can have
more complicated dependencies hidden in hundreds of thou-
sands of events. These are much harder to reason about.

3. THE OMISSION FINDER

3This is because the printed string "[I1" returned by
toString(), which describes the contents of the list, is
empty.

v < 1>.run(args:< 1=)

» this:< 1>.init()
» this:< 1>.setArgs(args:< 1=)

this: < 1>.active => fal

if (false == @) ﬁr o FileListerradditems(< 1> .add(vl) J
v this:<| 1=.printItems() \

this:< 1=.list => < 1>
System.out => < 1=
s:<ArraylList:1>.toString{) = "

<l 1>.println("[]")
return

Figure 6: A balloon showing an omitted operation.

We propose the omission finder as an additional feature
for our trace-based debugger. When the developer has spec-
ified an instance in an execution history, it displays oper-
ations that could have been performed on the instance if
one of the conditional jumps in the history took different
branches. When there is any omitted operation that could
make the value of the interested instance correct, the devel-
oper can move on to reason about the conditional jump that
caused the omission.

Next, we show how the omission finder works in Sec-
tions 3.1, followed by an overview and detailed description
of the algorithm description in Section 3.2 and 3.3. We then
discuss the user interface in Section 3.4 and implementation
issues in Section 3.5.

3.1 Debugging with the Omission Finder

The following steps illustrate how the omission finder
works.

(1) The developer uses a trace-based debugger to find the
defect of an observed error. He or she finds that (the field
of) an instance has an unexpected value. In Figure 5 an
observed error is empty <ArrayList:1> at line 22.

(2) The developer isolates the events to the ones related
to the instance, expecting to find events that created the
unexpected value. When the value of the instance was orig-
inally correct, yet eventually incorrect, we doubt an exe-
cution omission error. In Figure 5, filtering the events with
respect <ArrayList:1> merely yields the construction of the
array. Though it was correct at the time of construction, it
was not correct at the time of printing. Hence, we suspect
an execution omission error with respect to that array.

(3) The developer runs the omission finder on the instance
in question. The finder then displays balloons on several
events in the history as shown in Figure 6. Each balloon
shows a list of operations that were not executed, but that
could have operated on the specified instance if executed. A
balloon is attached to the conditional jump that prevented
the execution of the shown operations. We call such jump
a dominant conditional jump. The balloon in Figure 6 tells
us that the add method could have been invoked on <Ar-
rayList:1> in the addItems method if the conditional jump
took the other branch. In the source program (Figure 2), we
can find such a method call at line 27.

(4) Among the operations shown in the balloons, the de-
veloper identifies an operation that could have made the
instance have a correct value.

(5) The developer then investigates why the identified op-
eration was not executed by looking into the conditional
jump at which the balloon is attached. In Figure 6, the bal-
loon is attached to a conditional jump in addItems. The
previous event shows the condition was obtained from the
active field. From these, we can conclude that the field had
been incorrectly initialized.

may-referencing variables executed methods
7 llst add
list=new Arra Llst() / - — ==
y
llst Nd y / setArgs() “
4 7
args=new ArrayL:Lst() / printItems() args.add() »\
I :
———\
‘{A tostrlngg) \
R |/ addItems()| !
args - J - |
- __ : |
S~o S~ use sites fd.add() 1
S~a il SR S H /
_______],

Figure 7: Identifying use sites by using a pointer
assignment graph (PAG, left) and a call graph (CG,
right).

[] instruction
(a)] dominant conditional jump

FileLister#run() 171 executed instructions |
\

T
I
|

I,
if (activate)

|
/E\
]
L 4] g
‘/.addltems() usz().\ usl()

intIt |
printItems() g . @

|
|
|
|
|

Y
|
|
|
|
|
|
|
|

Figure 8: Dominant conditional jumps in control-
flow graphs (CFGs) constructed from (a) run() in
FileLister and (b) a more complicated method with
conditionals and a loop.

3.2 Overview of the Omission Finder Algo-
rithm

The omission finder’s algorithm is to find an accurate set
of omitted operations, and to display those operations at
the appropriate positions. To do this, we use a pointer as-
signment graph (PAG), a call graph (CG), and control flow
graphs (CFGs). Below, we explain the difficulty of finding
an accurate set of omitted operations, and then present an
overview of the algorithm by using Figures 7 and 8.

Even though we can easily think of several naive ap-
proaches to filter out omitted operations, those approaches
would list too many operations to be used for debugging.
For example, if it just showed all unexecuted operations,
they would be undoubtedly too many. Even if it shows only
unexecuted operations related to the type of the interested
value (i.e. if we are interested in an Vector instance, list all
the operations that takes an array as a target of a parame-
ter), there would be many unrelated operations for generic
types like Vector.

To cope with the difficulty, we combine static dataflow
information with a dynamic execution history. A points-
to analysis can statically tell us where an instance will flow
to (i.e., the dataflow). By using the results of points-to
analysis, we can dramatically reduce the number of candi-
date operations. In addition, by exploiting the static inter-
and intra-procedural control flow information, we can relate
those operations with events in a dynamic execution history.

Given an instance in an execution history, the algorithm
first finds use sites, which are the instructions in the pro-
gram that could have used the instance, by performing the
following three operations. (1) In the execution history, it
looks for the new instruction that constructed the instance.
(2) By using a PAG (e.g., left-hand side of Figure 7, it finds
local variables that may reference instances constructed by
the new instruction (the nodes in the shaded area). (3) By

using a CG (e.g., the right-hand side of Figure 7), it finds
instructions that use one of those local variables; i.e., the
instructions that could have operated on the given instance
(s.toString() in printItems() and d.add() in addItems()
in the figure).

The algorithm then constructs call chains, each of which
is a sequence of method calls from an executed method
to a method that contains one of the use sites. A sim-
ple graph search can construct the call chains. From the
executed methods (those in the shaded area) on the right-
hand side of Figure 7, we obtain five call chains, namely,
(main, run, printItems), (run,printItems), (printItems),
(main, run,addItems) and (run,addItems).

The algorithm finally identifies, for each executed method,
dominant conditional jumps, which are the executed condi-
tional jumps that prevented the execution of a use site. Such
jumps can be characterized by using a CFG of the method,
as illustrated in Figure 8.

In the CFG, a dominant conditional jump is an executed
branching node that has an unexecuted successor path to a
use site, or to an invocation of the next method in a call
chain that starts from the current method. In the CFG
of the run() method (Figure 8 (a)), the conditional jump
node [3] is the dominant conditional jump. In Figure 8 (b),
the nodes and are the dominant conditional jumps
among four conditional jumps, given us1() and us2() are
the methods containing the use sites.

Having computed the dominant conditional jumps, the
omission finder displays “d.add(n) in addItems” next to the
dominant conditional jump.

3.3 The Omission Finder Algorithm

We present the omission finder algorithm, which consists
of the functions of computing use sites, call chains, and dom-
inant conditional jumps, as well as the main algorithm.

3.3.1 Definition

Before presenting the main algorithm, we first define the
properties of the source program and the execution history,
and the auxiliary functions.

The algorithm assumes a program is a set of methods (m)
given in a bytecode format. The metavariable ¢ ranges over
instructions, each of which is distinguished by an enclosing
method, denoted as Encl(i), and an address in the method.
Instructions(m) is a set of all instructions in the method m.

A pointer assignment graph (PAG) represents interproce-
dural dataflow information in a program. A node in PAG is
either a variable (v), an instance (new type®), or an instance
field (v.fld). Instance nodes are distinguished by allocation
sites (a) in the source code. In other words, two instances
constructed by the same new expression in the source code
are considered as the same instance node in PAG.

A PAG edge represents a relation such that the destination
is assigned to the origin. Therefore, when there is a path
from a variable to an instance in the PAG, the variable can
have a reference to the instance.

A call graph (CG) is a directed graph among method defi-
nitions in the program. An edge in CG denotes the existence
of a method call in the originating method definition to the
destination method.

A control-flow graph of method m, denoted as CFG(m),
is a directed graph among machine instructions in m. An
edge denotes that the destination instruction can be exe-

cuted after the originating instruction. We denote a set of
all acyclic paths in graph G as Paths(G).

Events are the set of events recorded during an execu-
tion of the program. The metavariable event ranges over
Events. InstructionsUsing(v) is a set of instructions in
the entire program that use a local variable v as a pa-
rameter. Source(event) gives the instruction that generated
event. Ezecs is a subset of Fvents that contains all events
that execute either methods or constructors (as denoted by
ezec in Figure 4) and no other kinds of events. Method(exec)
gives the name of the method executed by exec. Body(ezxec)
is a set of events that are directly executed in the body of
exec.

3.3.2 The Algorithm

We first define several auxiliary functions. First, given an
instance ID oid, we obtain a set of a pair of instruction ¢
and local variable v such that ¢ may operate on the instance
through v. On the PAG, the instance is represented by an
allocation site. We therefore obtain the following function:

UseSites(oid) =
{@@,v) | Y(v,...,l) € Paths(PAG). | = new type®,
Vi € InstructionsUsing(v)}
where new type®(...) => oid € Fuvents.

For example, when oid is <ArrayList:1> in Fig-
ure 7, we obtain (s.toString(),s), (d.add(),d) and
(l1ist.add(),1list) as the use sites.

Given a method mg and use sites us, we find call chains
(i.e., a sequence of methods) from mo to a method that con-
tains an instruction in us. When mg contains an instruction
in us, a chain containing merely myo is also included in the
result. We limit the result to call chains shorter than a
threshold, as our previous experience suggests that relevant
operations often exist at a few method-call distance. The
threshold is also useful to control the trade-off between pre-
cision and time overhead (The current value is 5).

CallChain(mo, us) =
{{{mo,...,mn),3,v) | Y(mo,...,mn) € Paths(CG).
n < THRESHOLD,
V(i,v) € us. mp = Encl(i)}
U {((mo),%,v) | Y(i,v) € us. mog = Encl(i)}

For example, the call chains from run() to the use sites
(the underlined instructions) in Figure 7 are
((run, printItems),s.toString(),s) and
((run, addItems),d.add(),d).

Given an execution event exec, the next function deter-
mines a set of instructions that are not executed in ezec’s
body.

Unezecuted(exec) = Instructions(Method(ezec))
\ UVeuentG Body(ezec) Source (event)

A dominant conditional jump in a method execution event
(exec) with respect to an omitted instruction (i,) in the
method is a conditional jump event in the history whose
untaken branch can lead to i, only by following unexecuted
instructions.

DominantJumps(ezec,io) =
{es | Ves € Body(ezec).
V{(i1,...,1k) € Paths(CFG(Method(exec))).
Source(es) = i1, ik = to,
Vi €{2,...,k}. i; € Unexecuted(exec)}

input oid: an instance ID
1 for Vezec € Ezecs do

2 for Y({mo,...,mn),i,v)

3 € CallChain(Method(exec), UseSites(oid)) do
4 ifn>1 then

5 I, = {it | Vit € Instructions(mog). i = invoke m1}
6 else

7 I, = {i}

8 for Vi, € I, do

9 for Ves € DominantJumps(ezec,io) do

10 display “i[oid/v] is in my, after n calls”
Figure 9: Main algorithm of the omission finder.

In other words, if the condition was reversed, execution of
such a jump could have resulted in the execution of 7,. Such
an event can be found in the body events of ezxec that have a
control flow to 7, whose instructions in the flow were not exe-
cuted during the method execution. For example in Figure 8
(b), the dominant conditional jumps with respect to the ex-
ecution of invoke usl ([12]) and invoke us2 ([10]) are the
events that executed instructions [7] and [8], respectively.

The main algorithm, which is shown in Figure 9, takes an
instance ID (0id) in the event history as an input.

The algorithm first iterates over all method executions
(line 1) and constructs call chains from each executed
method to the use sites of oid (lines 2 and 3).

Next, for each call chain, it selects omitted instructions I,
in the current method m. If the call chain has more than one
method, I, are method invocations of the next method in the
chain (lines 4 and 5). Otherwise, I, is the use site itself (line
7). For example, a call chain ((run,addItems),d.add(),d)
selects invoke addItems in run() as an omitted instruction
(40), which leads the execution to the use site d.add().

The rest of the algorithm identifies the dominant condi-
tional jumps (line 10) for each omitted instruction and dis-
plays a balloon along with the jump (line 11). When dis-
playing an omitted instruction (e.g., d.add()), it replaces
the variable with the instance so that the developer can see
how the instance is used as which parameter in the instruc-
tion (e.g., <ArrayList:1>.add()).

3.4 User Interface

The user interface component, which displays the balloons
computed by the above algorithm, reduces the number of
balloons by (1) filtering obvious operations out and (2) sum-
marizing duplicated operations.

The filtering feature hides balloons that contain method
call operations to specific methods. When a program ma-
nipulates an instance, there are usually both read and write
operations. As only write operations can only be mean-
ingful as omitted operations, filtering read operations will
effectively reduce the amount of information. Our current
implementation merely lets the developer select uninterest-
ing operations (such as ArrayList.size()) and then all bal-
loons that contain the same method calls will be hidden.

The summarizing feature bundles redundant balloons into
one. When an omitted operation is reachable from different
dominant conditional jumps, a balloon is attached to each
jump. When those conditional jumps are folded in a tree
view, those balloons will be bundled into one and attached
to a method call event.

3.5 Implementation

We realized the omission finder by extending Traceglasses,
which we implemented in our previous work [13]. The entire
system consists of approximately 60,000 lines of Java code
and is publicly available*. The extension for the omission
finder amounts to approximately 11,600 lines.

The Traceglasses debugger collects an execution history
by instrumenting a Java bytecode program. The instru-
mented program dumps, when it runs, information of exe-
cuted instructions, or events, into several files, namely (1) an
event database consisting of a sequence of executed bytecode
instructions with parameters, (2) an index file containing
caller and callee relations, and (3) an index file that maps
an instance ID to a set of events.

Our current implementation uses the Soot framework [16]
for obtaining static program analysis information. As for
constructing a pointer assignment graph (PAG), we used
the default algorithm in the Soot Pointer Analysis Research
Kit (Spark) [7]. However, our algorithm does not depend
on a specific implementation of points-to analysis—we can
easily switch the analysis to other advanced ones, such as
Paddle [8], DOOP [2], and others [6, 14, 19], when we need
more efficiency, more precision, or an incremental nature.

4. EVALUATION

We evaluated the omission finder with respect to (1) the
feasibility when it is applied to a real-world program with
an execution omission error, (2) the actual times of debug-
ging processes through a user study, and the performance
of the instrumented programs as well as the omission finder
algorithm.

4.1 Debugging Apache Ant with the Omission
Finder

In order to evaluate the effectiveness of the omission
finder, we analyzed a debugging process of a real-word pro-
gram, Apache Ant®, with a known execution omission error
(bug #40722). The operations suggested by the omission
finder were positive, i.e., including the actual defect, and
much fewer (13) than the number of operations that would
need to be inspected without the omission finder (134 condi-
tionals in 655 events). The authors conclude that the omis-
sion finder can be useful to reduce the number of debugging
steps when there is an execution omission error.

4.2 Comparison of Actual Debugging Times

We carried out a controlled experiment to compare debug-
ging times by users with and without the omission finder.
We have the following three research questions.

RQ1: When there is an execution omission error, does the
omission finder shorten the debugging time?

RQ2: When there is no execution omission error, does the
omission finder have a negative impact on a debugging time?
RQ3: Are debugging times with trace-based debuggers and
those with break-point debuggers comparable? (This ques-
tion is about validity of trace-based debuggers, rather than
the omission finder.)

We prepared four debugging tasks, and measured partici-
pants’ task completion times by using the following three de-

‘http://csl.ec.t.kanazawa-u.ac.jp/ sakurai/
project/tgls
Shttp://ant.apache.org.

buggers: (OF) Traceglasses with the omission finder, (TG)
Traceglasses without the omission finder, and (BD) a break-
point debugger provided in Eclipse 4.2.

4.2.1 Debugging Tasks

Each of the debugging tasks is to, given a program that
produces an erroneous output, find out a source code loca-
tion of the defect. We constructed the defective programs
by manually modifying open source programs in order to
control the size of the programs suitable to the user study.

We prepared 4 defective programs from three open source
programs namely SCXML ¢, NekoHTML?, and Apache Ant.
We refer those programs as TC1, 2, 3 and 4. The lengths
of execution traces from TC1-4 are 217, 9422, 155535, and
5596, respectively. TC4 contains an error that is not caused
by execution omission, which is prepared for answering RQ2.

The debugging times in the following experiments do not
include the times for collecting events and the times for con-
structing PAGs. We prepared those data before conducting
experiments.

4.2.2 Method

24 computer science major students at two universities
(10 undergraduates and 14 graduates) participated in the
experiment. They have from 2 to 8, 3.3 on average, years
experience of Java programming. None of them have ever
seen the programs to be debugged. 20 of them have an
experience of using a break-point debugger.

We made three groups of participants. For each group, we
assigned a different debugger to each task so that each task-
debugger pair has a roughly equal number of participants.

Before working on the tasks, the participants are re-
quested to follow a tutorial session with the tree debuggers.
We used a simple program with an execution omission error
similar to FileLister in the paper.

Each participant then worked on each of the tasks one by
one with the assigned debugger. When a participant could
not find the defect in a task within one hour, he or she was
requested to proceed to the next task.

4.2.3 Results

For each pair of a TC and a debugger, we counted the
number of successful/failed participants as well as average
debugging times. Then, for each TC, we tested whether de-
bugging times with two debuggers are statistically different
based on the Mann-Whitney U-test.

OF vs. TG: When execution traces are long (TC2 and
3), OF gives higher success ratios than TG (7/7 and 8/8
with OF vs. 5/7 and 3/6 with TG), and shorter debugging
times (461 and 1139 secs. with OF vs. 1418 and 3513 secs.
with TG). The differences are statistically significant with
97% confidence. When the execution trace is short (TC1),
success ratios and debugging times with OF and TG are
not significantly different. Without an execution omission
error (T'C4), the debugging with OF (1974 sec.) was longer
than that with TG (1067 sec.), but the difference is not
statistically significant even with 95% confidence.

TG vs. BD: For all the tasks, TG gives the same or slightly
higher success ratios (8/8, 5/7, 3/6 and 5/5) than BD does
(5/5, 3/5, 3/7 and 5/5), and shorter or slightly longer de-
bugging times (888, 1418, 3513 and 1067 secs. vs. 1420, 2408,

Shttp://commons . apache.org/scxml/
"http://nekohtml.sourceforge.net

3600 and 924 secs.), though the differences are not statisti-
cally significant except for TC1.

With those results, we answer our research questions:
RQ1: When there is an execution omission error, the omis-
sion finder can shorten the debugging time when the length
of an execution history is not short.

RQ2: When there is no execution omission error, the omis-
sion finder could give a negative impact on debugging time,
but not validated by our experiments.

RQ3: Debugging times with the trace-based debuggers and
with the break-point debugger are comparable.

4.3 Performance Measurement

Though the performance is not the paper’s primary con-
cern, we measured (1) overheads of instrumented programs,
and (2) execution times of the omission finder algorithm.
As for (1), execution times of 5 real-world Java programs
instrumented by Traceglasses were slower than the original
programs by the factors of 19 to 62.5, whereas those with
Whyline [4] were from 5 to 25 but one failed due to out of
memory. As for (2), execution of the omission finder for
SCXML (Section 4.2.1) took 139.4 seconds and 1531 MB
heap memory. We conclude that the overheads of Trace-
glasses and the omission finder are acceptable to be applied
to real-world programs.

S. RELATED WORK

Zhang [20] et al. proposes a mutation-based technique to
debug an execution omission error. It repeatedly generates
a mutant of the program by inverting one of the conditional
jumps until it finds a mutant that passes a test case. While
it is an automated approach, it will only succeed when a cor-
rect result can be obtained by merely inverting conditional
jumps. It also requires an enormous number of executions.

As far as the authors know, existing trace-based (om-
niscient or back-in-time) debuggers, including ODB [5],
TOD [11], STIQ [12], Unstack [3], Traceglasses [13] and
Compass [10, 9], do not support execution omission errors.

Whyline [4] is a trace-based debugger that can answer
questions why a variable did not have an expected value.
However, as far as the authors tested, Whyline works only
when an expected value is overwritten by another value.
In other words, when a variable has an unexpected value
due to an execution omission error, Whyline cannot provide
appropriate answers.

Several dynamic program slicing techniques [18] take
omitted execution into account, though they have been de-
veloped for different purposes than debugging.

Agrawal et al. proposed the relevant slicing technique for
narrowing regression test cases [1]. When a program is
changed, it checks if the change affects each test case by
checking overlap between a dynamic program slice of the
previous program and the changed code fragments. Gy-
iméthy et al. improved the accuracy by including unexe-
cuted branches of change-affected conditional jumps in the
slice [15]. In other words, they incorporated omitted execu-
tions into the control dependency in order to improve the
accuracy. Wang and Roychoudhury proposed an efficient
dynamic slicing method based on an execution trace at the
Java bytecode level [17]. Their method extends the relevant
slicing algorithm with a points-to analysis.

6. DISCUSSION

Severity of Execution Omission Errors.

One might argue that execution omission errors are in-
frequent. Indeed, our investigation into several open source
programs identified relatively few execution omission errors.

However, we believe it is important to deal with bugs that
could take a long time to debug, even if they are infrequent.
As we showed in Section 4.2, debugging programs with exe-
cution omission errors take much longer times with existing
debuggers in practice.

Moreover, we should be careful with the types of bugs that
we can find in repositories of open source programs. Since
the developer usually commits a program to a repository
after running test cases, committed programs rarely have
errors that are detectable by test cases. We suspect that
execution omission errors are found more frequently during
development of a program.

When to Use the Omission Finder.

Since the omission finder has some overhead, it should be
used only when the error is caused by execution omission.
As we explained in Section 3.1, a developer should use the
omission finder only when (1) an instance has an unexpected
value, and (2) the value was initially correct; i.e., we expect
that the instance should have been modified to have a correct
value. Since there is no approach to such a case other than
examining every event, the overhead of the omission finder
would be acceptable.

Limitation.

Our algorithm does not detect omitted operations if a loop
lacking with an iteration caused an error. This is because
the algorithm searches omitted operations in unexecuted in-
structions. We however believe that this limitation is not
a serious problem in most cases because the developer can
find the operations executed during the last iteration.

The omission finder suggests only code fragments that
are totally omitted, which have never been executed in a
run. Therefore, partially omitted code fragments, which are
executed for less number of times than expected, are not
suggested. This kind of partial omission could happen, for
example, when a boundary condition of a loop is not cor-
rect. However, partial omission is less serious than total
omission. When we found a collection that should have ten
but nine elements, we can easily find the code that added
the nine elements and then we would be able to reach the
loop condition around the code.

7. CONCLUSION

We proposed the omission finder that suggests operations
that could have been performed on an instance if a pro-
gram had behaved differently. The key idea is to correlate
an execution history with static analysis—namely, a pointer
assignment graph, a call graph, and control-flow graphs—to
identify such operations and relevant conditional jumps.

We implemented the omission finder on top of Trace-
glasses, a trace-based debugger for Java. An application
of the omission finder to a real-world program with an exe-
cution omission bug demonstrated that it correctly suggests
omitted operations over a relevant condition branch, hence
it can reduce the number of debugging steps in practice.

Our case study with 24 participants with three different de-
buggers also showed that the omission finder significantly
reduces the times of debugging when there are execution
omission errors in long execution histories.

8. ACKNOWLEDGMENTS

This work was supported by JSPS KAKENHI Grant
Numbers 23700041, 26330078 and 26730034.

9. REFERENCES

[1] H. Agrawal et al. Incremental regression testing.
ICSM 93, pp. 348-357, 1993.

[2] M. Bravenboer and Y. Smaragdakis. Strictly
declarative specification of sophisticated points-to
analyses. OOPSLA 09, pp. 243262, 2009.

[3] C. Hofer et al. Design and implementation of a
backward-in-time debugger. NODe/GSEM 06, pp.
17-32, 2006.

[4] A. Ko and B. Myers. Debugging reinvented: Asking
and answering why and why not questions about
program behavior. ICSE 08, pp. 301-310, 2008.

[5] B. Lewis. Debugging backwards in time.

AADEBUG 03, 2003.

[6] O. Lhoték and K.-C. A. Chung. Points-to analysis
with efficient strong updates. POPL ’11, pp. 3-16,
2011.

[7] O. Lhoték and L. Hendren. Scaling Java points-to
analysis using SPARK. CC ’03, pp. 153-169, 2003.

[8] O. Lhoték and L. Hendren. Evaluating the benefits of
context-sensitive points-to analysis using a BDD-based
implementation. TOSEM, 18:3:1-3:53, 2008.

[9] A. Lienhard et al. Practical object-oriented
back-in-time debugging. EFCOOP 08, pp. 592-615,
2008.

[10] A. Lienhard et al. Flow-centric, back-in-time
debugging. TOOLS 09, pp. 272-288, 2009.

[11] G. Pothier et al. Scalable omniscient debugging.
OOSPLA 07, pp. 535-552, 2007.

[12] G. Pothier and E. Tanter. Summarized trace indexing
and querying for scalable back-in-time debugging.
ECOOP ’11, pp. 558 582. 2011.

[13] K. Sakurai et al. Traceglasses: A trace-based debugger
for realizing efficient navigation. IPSJ Transaction on
Programming, 3(3):1-17, 2010.

[14] M. Sridharan et al. Demand-driven points-to analysis
for Java. OOPSLA 05, pp. 59-76, 2005.

[15] G. Tibor et al. An efficient relevant slicing method for
debugging. ESEC/FSE-7, pp. 303-321, 1999.

[16] R. Vallée-Rai et al. Soot - a Java optimization
framework. CASCON ’99, pp. 125-135, 1999.

[17] T. Wang and A. Roychoudhury. Dynamic slicing on
Java bytecode traces. TOPLAS, 30:10:1-10:49, 2008.

[18] M. D. Weiser. Program slicing. IEEE Transactions on
Software Engineering, SE-10(4):352-357, 1984.

[19] G. Xu et al. Scaling CFL-reachability-based points-to
analysis using context-sensitive must-not-alias
analysis. FCOOP 09, pp. 98-122, 2009.

[20] X. Zhang et al. Towards locating execution omission
errors. PLDI 07, pp. 415-424, 2007.

