
Event-specific Software Composition in
Context-oriented Programming

Malte Appeltauer1, Robert Hirschfeld1, Hidehiko Masuhara2,
Michael Haupt1, and Kazunori Kawauchi2

1Hasso-Plattner-Institute 2Graduate School of Arts and Science
University of Potsdam, Germany University of Tokyo, Japan
{first.last}@hpi.uni-potsdam.de {masuhara, kazu}@graco.c.u-tokyo.ac.jp

Abstract. Context-oriented programming (COP) introduces dedicated
abstractions for the modularization and dynamic composition of cross-
cutting context-specific functionality. While existing COP languages offer
constructs for control-flow specific composition, they do not yet consider
the explicit representation of event-specific context-dependent behavior,
for which we observe two distinguishing properties: First, context can
affect several control flows. Second, events can establish new contexts
asynchronously. In this paper, we propose new language constructs for
event-specific composition and explicit context representation and intro-
duce their implementation in JCop, our COP extension to Java.

1 Introduction

With the increasing demand for personalization and mobility of applications,
context awareness gains growing relevance as a distinguishing feature of software
systems. To meet the challenges of developing and managing context-specific
behavior, several approaches have emerged, each providing its own definition
of context. We adopt a notion where context is constituted by a set of predi-
cates and a set of variation modules. The former are evaluated to determine the
context’s presence, and the latter are composed based on the result of predi-
cate evaluation. Variation implementations are often scattered over application
source code and can so be characterized as crosscutting concerns. With that, a
major task of context representation is the modularization of such crosscutting
concerns. In addition to modularization, context-specific crosscutting concerns
require means for dynamic composition.

Context-oriented programming [22] (COP) is an approach to representing
context-specific concerns, focusing on dynamic composition of control flows.
COP allows for the definition of layers, modules that crosscut object-oriented
decomposition and encapsulate the implementation of behavioral variations. For
instance, a security layer can extend various methods with access control features
without affecting the original method declarations. Depending on the execution
context, layers are composed into a system at run-time. A layer composition de-
fines the order in which layers adapt the base system. This way, COP separates

1

masuhara
タイプライターテキスト
in Proceedings of International Conference on Software Composition (SC'10) July 1-2, 2010, Malaga, Spain

2 M. Appeltauer, R. Hirschfeld, H. Masuhara, M. Haupt, and K. Kawauchi

the definition of adaptations from their composition, distinguishing it from al-
ternative multi-dimensional modularization techniques such as aspect-oriented
programming [26] (AOP), Mixins [12], or Classboxes [11]. The aforementioned
security layer could be applied for specific control flows, while at the same time
other computations can be executed with the basic functionality.

In the following, we distinguish between the separation of adaptation code
and composition code from the base code. While the former is adequately han-
dled by layers, the latter deserves better language support. The COP languages
implemented so far [2] support selective activation and deactivation of layer com-
positions, expressing programmatically when the application enters and leaves
certain contexts. It is, however, not enough to regard context as being entirely
under programmer control; instead, context can impose itself on the running ap-
plication “from the outside”. Based on this observation, we distinguish control-
flow specific from event-specific contexts. Two key properties characterize them:

1. Event-based context can overlap several control flows, unlike control-flow
specific context, which is confined to a single control flow. For instance,
context change in graphical user interface (GUI) applications can affect the
behavior of several event handler methods at once.

2. Event-based context entry and exit often cannot be localized at fixed points
in the control flow. Instead, context entry depends on asynchronous events
independent from main control flow. Moreover, a certain context is often
active until another event changes the composition. Any kind of sensor data,
such as localization or temperature, are examples of independent context
information that may asynchronously trigger system recomposition.

The former property implies that event-based context (de)activation leads to
layer composition statements’ being scattered over several locations, each of
which corresponds to one of the affected control flows. The latter property im-
plies that it is impossible to determine the locations where to place layer com-
position (de)activation. Also, asynchronous composition can lead to inconsistent
system state within a control flow. With the abstractions of state-of-the-art
COP languages, event-based context (de)activation cannot be represented with-
out scattering layer composition statements over the program. Instead, first-class
support for contexts is required, enabling declarative description of events that
constitute context entry and exit. In addition, a possible solution must take
composition consistency of asynchronous context change into account.

Contribution In this paper, we motivate the need for explicit representation of
event-specific context-dependent composition along a case study that we con-
ducted using ContextJ [5, 3], our earlier COP extension to the Java program-
ming language. We present appropriate abstractions adopted from AOP to cope
with event-based behavioral variations. We introduce the JCop programming
language extension that supports these constructs while preserving composition
consistency as defined by COP. As a proof of concept, we apply JCop to our
case study and discuss its expressiveness.

2

Event-specific Software Composition in Context-oriented Programming 3

Outline The rest of the paper is structured as follows. Section 2 introduces COP
and describes our case study in which we developed a context-aware event-based
GUI application using ContextJ. We discuss our experience concerning the case
study in Section 3. Section 4 introduces JCop, Section 5 discusses the expres-
siveness of JCop with respect to the GUI implementation. Section 6 presents
related work, while Section 7 summarizes the paper.

2 Event-specific Behavioral Variations

Any computation in a program flow is executed within a specific context, such as
system state or user-specific configuration, that can influence system behavior.
The COP approach provides a first-class representation of context-specific be-
havioral variations that can be dynamically composed for a specific control flow.
COP focuses on control-flow specific composition of behavioral variations and
omits providing dedicated abstractions for event-specific composition, which we
will address in the next sections.

2.1 Context-oriented Programming

COP extends object-oriented programming with first-class abstractions for be-
havioral variations that can be composed into a system depending on execution
context. COP assumes context to be everything that is computationally accessi-
ble, such as object state, network bandwidth, or user interaction.

COP provides layers [9] as a modularization concept that can crosscut an
object-oriented decomposition and encapsulate context-specific behavioral vari-
ations, represented as partial method definitions. COP extends object-oriented
method dispatch with dynamic composition of crosscutting concerns. To dis-
tinguish between the different kinds of method definitions, we introduce the
terms plain method definition and layered method definition. A plain method is
one whose execution is not affected by layers. Layered methods consist of a base
method definition, which is executed when no active layer provides a correspond-
ing partial method, and at least one partial method definition.

Layers can be activated and composed with others at run-time. When acti-
vated, layered method calls are dispatched to the partial method provided by the
layer. Partial methods can be executed before, after, or around the base method
definition. In a composition, multiple layers may provide partial definitions of
the same method. In that case, a partial method can proceed to the next partial
definition in the composition or, if none exists, to the base method definition.
This feature has been previously introduced by other languages such as Common
Lisp [24] and AspectJ [25]. Layer composition is controlled per thread and is by
default scoped to the dynamic extent of a block of statements.

ContextJ1 [2, 3] is a COP implementation for Java. It supports layer dec-
laration within classes and explicit layer composition. In the following, we will
explain ContextJ’s main features along an example.

1 ContextJ is available for download at http://www.hpi.uni-potsdam.de/swa/cop

3

4 M. Appeltauer, R. Hirschfeld, H. Masuhara, M. Haupt, and K. Kawauchi

Fig. 1. Screenshots of CJEdit. Left : rich-text editing with format toolbars and menus.
Right : program development is supported by an outline and focus on source code blocks.

2.2 Case Study: CJEdit

As a case study [4], we have developed a little IDE using ContextJ, whose GUI
provides context-specific behavior.

Figure 1 shows two screenshots of our CJEdit application, a simple pro-
gramming environment that provides different UI elements and behavior for the
user-driven activities programming and commenting. The left-hand screenshot
presents the application’s commenting mode in which the toolbar offers various
text formatting actions. The right-hand image shows the programming mode,
where the editor comes with an outline and a different toolbar. To support focus-
ing on source code, any rich text within the document is displayed in gray. The
editor supports syntax highlighting, an outline view, a compilation/execution
toolbar, and rich text commenting features, such as font and color modifications.
Based on the user’s actual task (i. e., context), the UI only offers relevant tools,
menus, and widgets. The UI is recomposed upon context switches, which are ei-
ther directly triggered by the user, or by text cursor changes. To enter program-
ming context, the user can push a toolbar button. Moreover, context is changed
whenever the text cursor moves from text to code and vice versa. CJEdit’s core
is implemented using ContextJ and the Qt Jambi GUI Framework2. The editor
consists of approximately 3,000 lines of code in 38 classes.

Figure 2 shows the implementation of the programming activity-specific wid-
gets using layers. In ContextJ, layers, denoted by the keyword layer, can be

2 Nokia Corporation, Whitepaper: A Technical Introduction to Qt, 2008
www.qtsoftware.com

4

Event-specific Software Composition in Context-oriented Programming 5

1 import layer CodeWidgets;
2 import layer Outline;
3 import layer RTFWidgets;
4

5 public class CJEditWindow extends QMainWindow {
6 ...
7 private void drawToolBars () {...}
8 private void drawMenus () {...}
9 private void drawWidgets () {... drawMenus (); drawToolbars (); }

10

11 layer CodeWidgets {
12 // partial methods
13 after private void drawToolBars () {...}
14 after private void drawMenus () {...}
15 // auxiliary members
16 private CodeToolBar codeToolBar;
17 private Menu codeMenu;
18 private CodeToolBar createToolBar () {...}
19 private Menu createMenu () {...}
20 }
21 layer Outline {
22 ...
23 }
24 layer RTFWidgets {
25 ...
26 }
27 }

Fig. 2. Layered specification of task-dependent GUI Widgets.

defined in classes3 and contain partial method definitions that are executed—
depending on their modifiers—before, after, or around their base method.

The same layer can be partially defined in multiple classes; for instance,
CodeWidgets can also provide partial methods for CJEditTextEdit, which im-
plements the text editor widget. The layers shown in Figure 2 provide partial
methods responsible for drawing UI elements, and auxiliary methods accessible
from within the layer only to create these objects.

Each text block object of the underlying document tree holds a list of layers
that should be activated when its text is focused by the user. A focus is set by
text cursor selection. By default, text blocks refer to the layers responsible for
rich text commenting behavior. If the user switches to the programming activity
(by pressing the code button in the toolbar), subsequently created text blocks
are linked with programming environment-specific layers.

The application is recomposed and its GUI redrawn whenever the current
block type switches. The dynamic composition of our previously specified lay-
ers is depicted in Figure 3. For layer composition, ContextJ provides a with

statement that specifies the layers to be activated, and the dynamic extent for
which the composition is valid. To explicitly disable a layer for a control flow,
the without statement can be used. Recomposition can be triggered by the

3 Note that this is a design decision in ContextJ and not a general restriction of COP.
The JCop language introduced in Section 4 allows for the specification of layers as
top-level elements.

5

6 M. Appeltauer, R. Hirschfeld, H. Masuhara, M. Haupt, and K. Kawauchi

1 public class CJEditWindow extends QMainWindow {
2 private List <Layer > getLayersOfCurrentBlock () {
3 if (currentBlock.getType () == BlockType.TEXT)
4 // returns RTFWidget
5 if (currentBlock.getType () == BlockType.CODE)
6 // returns CodeWidget and Outline
7 }
8 private boolean blockTypeChanged () {
9 // true if the focused block has a different type than its predecessor

10 ...
11 }
12 void onCursorPositionChanged () {
13 if (blockTypeChanged ()) {
14 with (getLayersOfCurrentBlock ()) { drawWidgets (); }
15 }
16 }
17 void onPrint () {
18 with (getLayersOfCurrentBlock ()) { ... }
19 }
20 void onSave () {
21 with (getLayersOfCurrentBlock ()) { ... }
22 }
23 void onFileNew () {
24 with (getLayersOfCurrentBlock ()) { ... }
25 }
26 }

Fig. 3. Dynamic composition in CJEdit.

onCursorPositionChanged event handler that checks if the block type of the
previously focused block is different to that of the current block. If so, the method
calls drawWidgets to update the UI using the current block’s layer composition.

3 Lessons Learned

Although CJEdit is a relatively small application with only a few context-
dependent concerns, its ContextJ-based implementation eases the development
process compared to a plain Java solution. From a structural point of view, lay-
ers allow for a better separation of concerns. Base methods only have to care for
the editor’s default behavior, while layers completely encapsulate their context-
specific variations. In our scenario, context-specific behavior is strongly coupled
with private state of extended classes, thus layer declaration within classes is
the appropriate strategy for layer implementation. Dynamic GUI adaption is
also expressed naturally by layer compositions.

These benefits aside, some characteristics of GUI-based programming had to
be considered that led to additional challenges for the ContextJ-based imple-
mentation. In the following, we discuss the two most important findings.

3.1 Problems

Scattered Composition Statements User interaction with a GUI is event-
driven rather than control flow-centric. This complicates dynamic extent-based

6

Event-specific Software Composition in Context-oriented Programming 7

Fig. 4. Scattered layer compositions for event handlers in CJEdit.

layer composition as originally proposed by COP. Figure 4 depicts an execution
sequence in CJEdit, where user interaction triggers several event handlers, such
as printing the document, writing new text, or moving the text cursor through
the document. Each event handler activates the layers of the currently focused
text block for their respective control flows. In the source code, this issue is mani-
fested in the form of identical with statements occurring in several event callback
methods, as shown in Figure 3. More formally, we identify two different kinds of
cross-cutting concerns, according to [1]: The actual behavioral variations imple-
mented using layers are heterogeneous concerns, therefore they should be defined
close to their respective objects. ContextJ serves this purpose well. Conversely,
layer composition statements in CJEdit constitute a homogeneous cross-cutting
concern that is not modularized by COP abstractions.

Event-specific Context Representation COP generally defines context as
everything that is computationally accessible, meaning that any event a system
can recognize can influence the current layer composition. With the intention to
avoid further restrictions, COP does not provide means for explicitly describing
when context influences an execution. In general, it is impossible to globally
describe the circumstances under which a composition should be used, since,
for different executions, these properties can entirely change. The explicit with

statement in COP exists due to this fact. However, the nature of what we denote
as event-specific context is more predictable. In CJEdit, the programming context
is constituted by the fact that the focused text contains source code; for the
commenting context, the text must contain rich text elements. However, it is
impossible to simply express these properties using the original COP abstractions
provided by ContextJ. Instead, the application must provide information about
the composition to be activated and must check for the context change itself.

7

8 M. Appeltauer, R. Hirschfeld, H. Masuhara, M. Haupt, and K. Kawauchi

3.2 Our Solution

To address the aforementioned problems, we propose an alternative to explicit
composition statements. A declarative specification supporting the description
of control flow entry points helps avoid scattered composition statements. For
event-based composition, we suggest a declarative definition of the event condi-
tion and its respective layer composition.

4 Event-specific COP with JCop

From our CJEdit experiments, we conclude that scattered with statements and
event-based layer composition deserve appropriate lingual abstractions. In this
section, we present the JCop language that provides new constructs for declara-
tive and event-based layer composition and a first-class event-based context rep-
resentation. We discuss issues regarding module consistency within a dynamic
extent and explain how JCop ensures consistent event-specific adaptations.

4.1 JCop Overview

The JCop language combines COP features provided by its predecessor ContextJ
with alternative layer declaration and composition features.

Layers can either be defined within the classes for which they provide be-
havioral variations (layer-in-class), or in a dedicated top-level layer similar to
an aspect (class-in-layer)4 [22, 2]. Besides the structural differences of the two
declaration styles, layer-in-class can access and extend the host object’s internal
state and methods, we restrict class-in-layer to public interfaces in order to sus-
tain encapsulation. Developers can decide per situation if they prefer to define
a layer within its enclosing class, allowing private member access, or to declare
all partial definitions of a layer as one layer module to reduce scattering. For
layer composition, JCop provides the control-flow specific with and without

statements known from ContextJ.
The JCop compiler is implemented based on the JastAdd [20] meta-compiler

framework and extends the Java 1.5 specification JastAddJ [16]. In addition, we
adopted the AspectJ method pattern grammar used by the abc compiler [7]. It
compiles JCop source code to Java 1.5 byte code.

4.2 Declarative Layer Composition

As stated above, event-based systems can handle multiple events whose behavior
depends on identical layer composition. A layer composition spanning several
control flows requires an explicit composition statement at the beginning of each

4 If both styles are used to define the same layer, the compiler avoids ambiguities by
asserting that a partial method must not be defined in both a class-in-layer and a
layer-in-class declaration simultaneously.

8

Event-specific Software Composition in Context-oriented Programming 9

1 in(CJEditWindow win) &&
2 (
3 on(* CJEditWindow.onPrint (..)) ||
4 on(* CJEditWindow.onSave (..)) ||
5 on(* CJEditWindow.onFileNew (..)) ||
6 on(* CJEditWindow.drawWidgets (..))
7)
8 {
9 with(win.getLayersOfCurrentBlock ());

10 }

Fig. 5. Using the on predicate in CJEdit.

of them. Thus, layer composition can be a homogeneous crosscutting concern
applying the same functionality at several points in the system.

JCop introduces a declarative layer composition statement. It consists of
a logic concatenation of predicates and a composition block. A composition
block contains a with and/or without statement specifying the layers to be
(de)activated5. Like for the general with statement, any expression returning a
layer or a list of layers is a valid parameter, so layer compositions can also be
computed. Declarative with statements are re-evaluated for every execution of
the methods they are bound to.

Quantify Over Control Flows To address the issue of scattered with state-
ments, we adopted features of AOP [26, 18], where scattered functionality is
expressed by advice blocks bound to pointcuts quantifying over a set of join
points, well-defined events in the execution graph. JCop introduces a pointcut
designator denoted on. It contains an AspectJ-like method pattern [25] specify-
ing those methods to whose dynamic extent a layer composition is to be applied.
We restrict the pattern to describe only those methods visible to the declara-
tion without breaking encapsulation rules. The optional in predicate allows for
binding the object on which the composition declaration should be evaluated.

Figure 5 presents a declarative layer composition that specifies the scope of
layer activation for CJEdit. For all event handler callbacks and createWidgets,
the composition of the currently focused block is used.

Conditional Composition For a clearly specifiable set of method executions
participating in a layer composition, the on predicate is our preferred means.
For more complex structures, however, the explicit specification of control-flows
becomes increasingly verbose.

In addition to on, JCop allows for a more implicit description of composition
time independent of the actual execution in the main control flow. We support

5 If a layer is referred by both lists, it is activated and deactivated at the same time
and thus will be ignored for composition.

9

10 M. Appeltauer, R. Hirschfeld, H. Masuhara, M. Haupt, and K. Kawauchi

1 import layer RTFWidgets;
2 import layer CodeWidgets;
3 import layer Outline;
4

5 context Commenting {
6 in(CJEditWindow win) &&
7 when(win.getCurrentBlockType () ==
8 BlockType.Commenting)
9 {

10 with(RTFWidgets);
11 without(CodeWidgets , Outline);
12 }
13 }
14 context Programming {
15 in(CJEditWindow win) &&
16 when(win.getCurrentBlockType () ==
17 BlockType.Programming)
18 {
19 with(CodeWidgets , Outline);
20 without(RTFWidgets);
21 }
22 }

Fig. 6. Using the when predicate in CJEdit.

the fact that a context activation event is reflected in the change of some prop-
erty that is computationally accessible and provide a when predicate that allows
for the specification of a Boolean expression evaluating this property. The pred-
icate is evaluated before the execution of any layered method that is potentially
affected by the respective layer composition. If the when predicate is evaluated
to true, these layered methods are executed using the composition.

Figure 6 shows two declarations of event-based composition for CJEdit
(Lines 6–12, 15–21). In both statements, the when predicates specify the cur-
rent block type required to activate the composition. The predicate expressions
are evaluated on a CJEditWindow instance that is bound by an in designator.

The when predicate completely relieves the developer from having to specify
where a layer composition should begin and only requires the declaration of when
composition takes place. Nevertheless, the combination of on and when is useful
to restrict the scope in which when should be evaluated.

4.3 First-class Context Representation

Since declarative and event-based composition statements are independent of
specific objects, they should be defined in a dedicated location. For this reason,
JCop provides a first-class context construct. Like layers, contexts are special
singleton types that cannot be instantiated. The construct can host both declar-
ative and event-based composition statements and auxiliary methods and fields.

Figure 6 presents context declarations for our programming and comment-
ing contexts. The contexts contain an event-based composition statement that
declares when the context changes and which layers are composed.

10

Event-specific Software Composition in Context-oriented Programming 11

Fig. 7. Layer composition scopes and activation.

4.4 Composition Consistency in a Dynamic Extent

Programming languages and frameworks that support dynamic recompositions
offer extended expressiveness. This, in turn, can lead to inconsistent and unin-
tuitive control flows. A typical example is the recomposition of a method while
it is being executed. To aid the developer in avoiding such undesired behavior,
the original COP approach restricts layer composition to a dynamic extent. Our
event-based composition evaluates the when predicate every time a method invo-
cation is potentially dispatched to a layer involved in the composition. Without
additional restrictions, this approach cannot guarantee that a dynamic extent is
executed with a consistent layer composition.

Figure 7(a) exemplifies this issue for CJEdit. Assume that text focus can be
changed asynchronously to the UI drawWidgets operation, which, among others,
calls drawMenus. Both methods are layered and draw the UI according to the
current context. If we apply the contexts declared in Figure 6 using the strategy
described above, and block focus changes during drawWidgets, the redrawn GUI
would partially consist of both programming and commenting context parts.

Besides the fact that such behavior is obviously undesired, the implicit and
asynchronous composition activation is hard to debug. Tracing this kind of fail-
ures is tedious. JCop prevents such inconsistencies by ensuring that, once when

is evaluated, the predicate will not be re-evaluated within the dynamic extent
originating from this evaluation, as depicted in Figure 7(b). This strategy con-
forms to the original context-oriented programming model: once a composition
has been activated, it is consistent and valid until its with block terminates.
In our extension, this assumption holds: a composition is valid until the control
flow returns to the point at which the composition has been created.

5 Discussion

In Section 3, we identified some issues concerning the representation of event-
based behavioral variations using programming language abstractions provided
by the original COP approach. First, if layer compositions range over several
control-flows, their respective composition statements must be repeated at any
of their potential entry points. Second, event-specific composition cannot be

11

12 M. Appeltauer, R. Hirschfeld, H. Masuhara, M. Haupt, and K. Kawauchi

explicitly declared but must be handled by application logic. In the following,
we discuss how our new JCop language constructs solve these issues.

Composition Declarations to Solve Scattering The phenomenon of scat-
tered functionality that requires code repetition is well known as crosscutting
concern for which AOP provides encapsulation mechanisms. In JCop, we fuse
COP with some concepts of AOP to address this problem.

JCop introduces context types that contain a declarative composition state-
ment similar to a pointcut-advice construct. Declarative compositions allow for
the layer composition of several control flows. Scattered composition statements
can be avoided using the declarative composition in combination with the on

predicate, which allows for the specification of all method executions to be in-
cluded in the scope of a layer composition.

When-Declarations for Event-based Composition In addition to on, JCop
provides a when predicate for composition declarations. It describes the property
that must be fulfilled for the activation of a composition and thus reliefs the
application logic from managing compositions and their respective events. One
of the key properties of COP is the consistency of a layer composition within a
dynamic extent. JCop ensures that this property is not violated by event-based
composition, as described in Section 4.4.

Context Types Encapsulate Context Specification JCop’s context types release
the application logic from handling layer compositions and event-specific context
changes. Besides composition declarations, context types can contain auxiliary
members to compute layer compositions or store relevant context information.

6 Related Work

Other COP Languages Most COP extensions have been developed for dynamic
languages, such as Lisp [13, 14] Smalltalk [21], Python [31, 23], and the delMD-
SOC kernel [29]. They all implement the original semantics of COP, based on
meta-programming facilities of their respective host language. A detailed com-
parison of COP language features is provided in [2]. JCop is the first language
that fuses COP with AOP for a more declarative composition scope specification.
Except for the Python extension PyContext [31] that provides implicit layer ac-
tivation, none of the mentioned languages support event-based layer activation.
The Ambience language is another approach to context-orientation. Based on
the Ambient Object System [19], it supports behavior adaptations with partial
method definitions and context objects, which correspond to COP layers. Am-
bience does not support implicit context activation based on the evaluation of
an expression as supported by JCop’s when predicate.

Aspect-oriented Programming The main distinction between AOP and COP (in-
cluding JCop) is that the former allows for a joint specification of when in the

12

Event-specific Software Composition in Context-oriented Programming 13

execution flow what kind of functionality should be used, while COP separates
when (using explicit with statements) from what (using layers and partial meth-
ods). JCop exceeds COP by introducing declarative composition statements.

AspectJ [25] is a popular Java language extension that established the notion
of join points, well-defined events in the execution of a program that can be
described by pointcut predicates and can be adapted by advice blocks. JCop’s on
predicate is equivalent to AspectJ’s execution pointcut, except that the former’s
method patterns are restricted to public methods to preserve encapsulation.
AspectJ’s if pointcut contains an expression that is evaluated at a join point.
It is of use only when concatenated with other pointcuts that provide the set of
join points on which if is evaluated. JCop’s when predicate is similar to if as
it dynamically evaluates a condition. However, when uses an implicit set of join
points, namely all executions of layered methods.

Most AspectJ-like languages do not support dynamic aspect weaving that
could simulate COP layer activation. However, they can mimic COP behavior
using pointcuts and advice, though in an unwieldy manner since the pointcut
specifications get complex. In some languages, such as CaesarJ [6], aspects can
be deployed for a dynamic extent at run-time, much like explicit with statements.
However, CaesarJ does not provide first-class context and behavioral variations
but rather supports variability at a different level of abstraction.

Alternative Adaptation Techniques Modularization approaches such as traits [30,
15] and mixins [12] allow for an additional inheritance relationship next to the
class hierarchy, but do not offer dynamic adaptation like layers. Feature-oriented
programming (FOP) [10] and its Java-based implementation AHEAD [8] provide
layer-like modules to specify adaptations of methods and classes (and other
software artifacts). However, FOP and AHEAD apply compile-time composition
of feature variations in contrast to run-time composition as provided by COP and
JCop. The Classbox/J [11] module system extends Java’s packaging and scoping
mechanism. A classbox is an explicitly named scope in which classes and their
members can be defined. Besides common subclassing, Classbox/J supports local
refinement of imported classes by adding or modifying their features without
affecting the originating classbox, much like layers and partial methods. However,
it does not provide means for dynamic composition.

Event-based Programming An important difference between event-based pro-
gramming and event-based context (de)activation deserves to be highlighted.
Event-based programming supports the synchronous or asynchronous trigger
of action as events are signaled. Conversely, event-based context (de)activation
triggers recomposition, which influences the binding of actions at interfaces. Ob-
viously, context (de)activation events have a certain influence on action charac-
teristics, but this is expressed only in terms of bindings of actions to interfaces;
actions are not immediate (synchronous or asynchronous) results of events.

The CaesarJ extension ECaesarJ [27] supports the definition of context as
a class implementing two events representing context entry and exit. Unlike
JCop, ECaesarJ does not provide a layer-like representation and composition

13

14 M. Appeltauer, R. Hirschfeld, H. Masuhara, M. Haupt, and K. Kawauchi

mechanism of behavioral variations. Moreover, objects must explicitly handle
context change, whereas event-based context implicitly changes the composition.

EventJava [17] models events as asynchronous methods and compound events
by correlation patterns. Event-specific behavior is encapsulated in method bodies
of correlation patterns that allow access to application-specific data and to im-
plicit context information of the event, which can be customized for application-
specific purposes. The execution of event methods can be restricted through
predicates specified in a when clause. Contrary, JCop’s when construct specifies
the constraints under which an event is triggered.

In Ptolemy [28], code blocks are bound to events, similar to pointcut-advice
binding in AOP. Classes can contain binding definitions to such events or to
compositions of multiple events. Events are explicitly announced, contrary to
JCop’s implicitly evaluated when. Ptolemy’s event handling mechanism allows
for the immediate execution of functionality on event announcement, while JCop
ensures that event-based layer compositions wait until the execution stack has
reached a safe point for recomposition.

7 Summary and Conclusion

We discussed the requirements for context-oriented programming languages
to support event-specific context-dependent behavioral variations along a case
study implemented using a conventional COP language. For a better separation
of layer composition from application logic, we adopted pointcuts from AOP and
developed declarative composition statements. As an implementation of these
concepts, we presented JCop, our new language extension to Java. We applied
JCop to our case study to show that our new language abstractions allow for a
more declarative and intuitive specification of event-based behavioral variations.

As we have shown in this paper, different types of context require different
programming language representations in its support. In future work, we will
conduct a thorough analysis of variations of possible layer composition scopes
beyond control-flow and event-based scope.

References

1. Sven Apel, Thomas Leich, and Gunter Saake. Aspectual feature modules. IEEE
Transactions on Software Engineering, 34(2):162–180, 2008.

2. Malte Appeltauer, Robert Hirschfeld, Michael Haupt, Jens Lincke, and Michael
Perscheid. A Comparison of Context-oriented Programming Languages. In COP
’09: International Workshop on Context-Oriented Programming, pages 1–6, New
York, NY, USA, 2009. ACM Press.

3. Malte Appeltauer, Robert Hirschfeld, Michael Haupt, and Hidehiko Masuhara.
ContextJ - Context-oriented Programming for Java. 2009. submitted.

4. Malte Appeltauer, Robert Hirschfeld, and Hidehiko Masuhara. Improving the
Development of Context-dependent Java Applications with ContextJ. In COP
’09: International Workshop on Context-Oriented Programming, pages 1–5, New
York, NY, USA, 2009. ACM Press.

14

Event-specific Software Composition in Context-oriented Programming 15

5. Malte Appeltauer, Robert Hirschfeld, and Tobias Rho. Dedicated Programming
Support for Context-aware Ubiquitous Applications. In UBICOMM 2008: Pro-
ceedings of the 2nd International Conference on Mobile Ubiquitous Computing,
Systems, Services and Technologies, pages 38–43, Washington, DC, USA, 2008.
IEEE Computer Society Press.

6. Ivica Aracic, Vaidas Gasiunas, Mira Mezini, and Klaus Ostermann. Overview of
CaesarJ. Lecture Notes in Computer Science : Transactions on Aspect-Oriented
Software Development I, 3880:135–173, 2006.

7. Pavel Avgustinov, Aske Simon Christensen, Laurie J. Hendren, Sascha Kuzins,
Jennifer Lhoták, Ondrej Lhoták, Oege de Moor, Damien Sereni, Ganesh Sittam-
palam, and Julian Tibble. abc: An Extensible AspectJ Compiler. In AOSD ’05:
Proceedings of the 4th international conference on Aspect-oriented software devel-
opment, pages 87–98, New York, NY, USA, 2005. ACM Press.

8. Don Batory. Feature-Oriented Programming and the AHEAD Tool Suite. In ICSE
’04: Proceedings of the 26th International Conference on Software Engineering,
pages 702–703, Washington, DC, USA, 2004. IEEE Computer Society.

9. Don Batory and Sean O’Malley. The design and implementation of hierarchical
software systems with reusable components. ACM Transactions on Software En-
geneering Methodologies, 1(4):355–398, 1992.

10. Don Batory, Jacob Neal Sarvela, and Axel Rauschmayer. Scaling Step-Wise Re-
finement. IEEE Transactions on Software Engineering, 30(6):355–371, 2003.

11. Alexandre Bergel, Stéphane Ducasse, and Oscar Nierstrasz. Classbox/J: controlling
the scope of change in Java. In OOPSLA ’05: Proceedings of the 20th annual ACM
SIGPLAN conference on Object oriented programming, systems, languages, and
applications, pages 177–189, New York, NY, USA, 2005. ACM Press.

12. Gilad Bracha and William Cook. Mixin-based inheritance. In OOPSLA’90: Pro-
ceedings of the European Conference on Object Oriented Programming Systems
Languages and Applications, pages 303–311, New York, NY, USA, 1990. ACM.

13. Pascal Costanza and Robert Hirschfeld. Language Constructs for Context-oriented
Programming: An Overview of ContextL. In Proceedings of the 2005 Symposium
on Dynamic languages, pages 1–10, New York, NY, USA, 2005. ACM Press.

14. Pascal Costanza, Robert Hirschfeld, and Wolfgang De Meuter. Efficient Layer
Activation for Switching Context-dependent Behavior. In Modular Programming
Languages, 7th Joint Modular Languages Conference, JMLC 2006, volume 4228 of
Lecture Notes in Computer Science, pages 84–103, Berlin, Heidelberg, Germany,
September 19 2006. Springer-Verlag.

15. Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schärli, Roel Wuyts, and An-
drew P. Black. Traits: A Mechanism for Fine-Grained Reuse. ACM Trans. Pro-
gram. Lang. Syst., 28(2):331–388, March 2006.

16. Torbjörn Ekman and Görel Hedin. The JastAdd Extensible Java Compiler. In
OOPSLA ’07: Proceedings of the 22nd Annual ACM SIGPLAN Conference on
Object-oriented Programming Systems and Applications, pages 1–18, New York,
NY, USA, 2007. ACM Press.

17. Patrick Eugster and K. R. Jayaram. EventJava: An Extension of Java for Event
Correlation. In ECOOP 2009, Proceedings of the 23rd European Conference on
Object-Oriented Programming, pages 570–594, Berlin, 2009. Springer-Verlag.

18. Robert E. Filman, Tzilla Elrad, Siobhan Clarke, and Mehmet Aksit, editors.
Aspect-Oriented Software Development. Addison-Wesley, Boston, MA, USA, 2005.

19. Sebastin Gonzlez, Kim Mens, and Alfredo Cdiz. Context-Oriented Program-
ming with the Ambient Object System. Journal of Universal Computer Science,
14(20):3307–3332, 2008.

15

16 M. Appeltauer, R. Hirschfeld, H. Masuhara, M. Haupt, and K. Kawauchi

20. Görel Hedin and Eva Magnusson. JastAdd: An Aspect-oriented Compiler Con-
struction System. Science of Computer Programming, 47(1):37–58, 2003.

21. Robert Hirschfeld, Pascal Costanza, and Michael Haupt. An Introduction to
Context-Oriented Programming with ContextS. In Generative and Transfor-
mational Techniques in Software Engineering II, International Summer School,
GTTSE 2007, Braga, Portugal, July 2-7. 2007, Revised Papers, volume 5235 of
Lecture Notes in Computer Science, pages 396–407, Berlin, Heidelberg, Germany,
2008. Springer-Verlag.

22. Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz. Context-oriented Pro-
gramming. Journal of Object Technology, 7(3):125–151, March-April 2008.

23. Robert Hirschfeld, Michael Perscheid, Christian Schubert, and Malte Appeltauer.
Dynamic contract layers. In 25th Symposium on Applied Computing, Lausanne,
Switzerland, New York, NY, USA, 2010. ACM DL.

24. Guy L. Steele Jr. Common LISP: The Language (2nd ed.). Digital Press, Newton,
MA, USA, 1990.

25. Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William G. Griswold. An Overview of AspectJ. In ECOOP 2001, 15th Euro-
pean Conference on Object-Oriented Programming, volume 2072 of Lecture Notes
in Computer Science, pages 327–354, Berlin, Heidelberg, Germany, January 2001.
Spinger-Verlag.

26. Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes,
Jean-Marc Loingtier, and John Irwin. Aspect-oriented Programming. In Ecoop
1997, Proceedings 11th European Conference on Object-Oriented Programming, vol-
ume 1241, pages 220–242. Springer-Verlag, 1997.

27. Angel Núñez, Jacques Noyé, and Vaidas Gasiũnas. Declarative Definition of Con-
texts with Polymorphic Events. In COP ’09: International Workshop on Context-
Oriented Programming, pages 1–6, New York, NY, USA, 2009. ACM Press.

28. Hridesh Rajan and Gary T. Leavens. Ptolemy: A language with quantified, typed
events. In ECOOP ’08: Proceedings of the 22nd European conference on Object-
Oriented Programming, pages 155–179, Berlin, Heidelberg, 2008. Springer-Verlag.

29. Hans Schippers, Michael Haupt, Robert Hirschfeld, and Dirk Janssens. An Im-
plementation Substrate for Languages Composing Modularized Crosscutting Con-
cerns. In Proc. SAC PSC. ACM Press, 2009.

30. Randall B. Smith and David Ungar. Programming as an experience: The inspi-
ration for self. In COOP’95 - Object-Oriented Programming, 9th European Con-
ference, Åarhus, Denmark, August 7-11, 1995, Proceedings, volume 952 of Lecture
Notes in Computer Science, pages 303–330. Springer, 1995.

31. Martin von Löwis, Marcus Denker, and Oscar Nierstrasz. Context-oriented Pro-
gramming: Beyond Layers. In Serge Demeyer and Jean-François Perrot, editors,
ICDL ’07: Proceedings of the 2007 International Conference on Dynamic Lan-
guages, volume 286 of ACM International Conference Proceeding Series, pages
143–156, New York, NY, USA, 2007. ACM Press.

16

