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Context-oriented programming (COP) enhances the modularity of context-dependent 
behavior in context-aware systems, as it provides modules to implement context-
dependent behavior (layers) and composes them dynamically in a disciplined manner 
(layer activation). We propose a COP language that enables layers to define base methods, 
while the layers can be asynchronously activated and deactivated. Base methods in layers 
enhance modularity because they extend the interface of classes without modifying 
original class definitions. However, calling such a method defined in a layer is problematic 
as the layer may be inactive when the method is called. We address this problem by 
introducing a method lookup mechanism that uses the static scope of method invocation 
for COP; i.e., in addition to currently activated layers, the layer where the method 
invocation is written, as well as the layers on which that layer depends, are searched 
during method lookup. We formalize this mechanism as a small calculus referred to as 
ContextFJa and prove its type soundness. We implement this mechanism in ServalCJ, a COP 
language that supports asynchronous, as well as synchronous, layer activation.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

For several years, context awareness has been a major concern in multiple application areas, and its importance is in-
creasing. For example, with progress in sensor technologies, computing platforms have become more aware of physical 
environment, and user interfaces have become more adaptable to users’ current operations. These interactions with the en-
vironment require the ability to change behavior with respect to context, such as a specific state of the physical environment 
or a user’s current task. Such dynamic changes in behavior result in complicated system structures and behaviors that are 
difficult to predict using traditional programming abstractions. To address this difficulty, several context-oriented program-
ming (COP) languages, which have successfully modularized such context-dependent behavior, have been developed [1–9].

COP languages provide language constructs that modularize the variations in behavior that depend on context using 
layers1 and dynamically activate/deactivate them according to the executing contexts [2,1]. A layer defines partial methods, 
which run before, after, or around a call of a method with the same signature defined in a class, only when the layer is 
active. These constructs make COP advantageous in terms of modularity, because partial methods can change the original be-
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havior by activating layers without changing the base classes, and ensure consistency in dynamic changes using scoping [2]
or model checking [5].

Even though several COP languages support only partial methods, layer-introduced base methods, i.e., methods in a layer 
that introduce a new signature and do not override other methods, are also known to be useful in COP [10]. Layer-introduced 
base methods considerably enhance modularity because they extend the interface of classes dynamically, which makes en-
suring type-soundness in COP languages more challenging. Formal calculi have been proposed to support such an extension, 
e.g., (1) requiring a subordinate layer (a layer that provides base methods) to be activated while the dominant layer (a layer 
that uses these methods) is executing [10,11], and (2) activating the subordinate layer on-demand when the dominant layer 
is executing [12].2

However, there is an issue in combining these approaches with asynchronous layer activation [13,6,14,5,8] in a type-
safe manner. Asynchronicity is crucial to application domains where contexts change outside of a program, for example, 
ubiquitous computing applications and adaptive user interface. The method lookup in existing COP semantics searches all 
activated layers and the class of a method receiver to dispatch a called method. This semantics does not lead to a problem 
when layers are activated using with-blocks, where the corresponding layer activation is synchronous with the currently 
executing block. However, it leads to a problem in asynchronous layer activation, where layers are activated and deactivated 
by external events such as changes in external environment and user operations. These events may occur at any program 
execution point. Thus, it is possible that the layer that provides a base method to a currently executing method is eventually 
deactivated, resulting in a method-not-understood error.

In this paper, we propose another method lookup mechanism for type-safe layer deactivation.3 In this mechanism, meth-
ods are searched in the layer where method invocation is placed and in the layers on which this layer depends, as well as in 
currently activated layers. This inclusion of the “static scope” for method lookup addresses the abovementioned problem 
of method safety. In other words, the proposed approach supports layer deactivation in the “best effort” manner; that is, 
the deactivation of layers is ensured to the maximum extent, while the deactivation can be canceled when the layers that 
require these layers are activated. This approach is a natural extension of loyal strategy [16], which most COP languages 
adopt, in that the execution of the required behavior is ensured during the execution of the partial method in the requiring 
layer.

This approach is applicable when layer deactivation is not a hard requirement. However, it leads to a problem in other 
cases. For example, we may consider a layer that performs a computation with highly precise results, thereby consuming 
considerable CPU power. Deactivation of this layer is a hard requirement when a battery is approaching exhaustion because 
a computation that consumes considerable CPU power should not be performed in this case. However, a layer that is not 
deactivated may require this high precision layer; thus, it cancels the deactivation.

To resolve this problem, we also introduce an additional mechanism that ensures deactivation of specified layers, i.e., 
a modifier, ensureDeactivate, for layer declarations, which indicates that the deactivation of the declared layer cannot 
be canceled. To ensure that the methods in layers, which are declared with ensureDeactivate, are not called acciden-
tally by other layers that require those layers, layers cannot require the layers declared with ensureDeactivate.

We formalize this idea as a small COP calculus referred to as ContextFJa , and show that this calculus ensures deactivation 
of layers with ensureDeactivate and is type sound. This calculus is an extension of ContextFJ [10] and notably simple, 
even though it is sufficiently expressive to represent asynchronous layer activation and layer-introduced base methods.

The proposed mechanism is implemented in ServalCJ, a COP language with a generalized layer activation mechanism [17]. 
ServalCJ supports asynchronous as well as synchronous layer activation, and per-instance as well as global layer activa-
tion. Originally, ServalCJ did not support layer-introduced base methods. As the proposed mechanism ensures the safety of 
method with asynchronous layer activation, we safely realize layer-introduced base methods in a generalized layer activation 
mechanism.

The rest of this paper is structured as follows. In Section 2, an overview of COP mechanisms, such as layers, layer 
activation, and layer-introduced base methods, is provided. In this section, the problem that is addressed in this paper is 
also identified. In Section 3, we illustrate the proposed method lookup and formalize it as a small calculus, ContextFJa . In 
Section 4, we discuss the problem of layer deactivation cancellation and the proposed solution. In Section 5, we describe 
the type system of ContextFJa and prove its type soundness. In Section 6, the implementation of the proposed mechanism 
is described. In Section 7, related work is discussed. Lastly, conclusions are stated in Section 8.

2. Layers, layer-introduced base methods, and their problem

We demonstrate a motivating example of an adaptive user interface, which comprises a text editor program that was 
inspired by the program editor example proposed by Appeltauer et al. [18]. Our example includes class Editor (and other 
classes) to represent an editor view for the user. This user interface provides a menubar (and other widgets), which is 
displayed by calling showMenuBar when the display is refreshed, as shown below.

2 To be precise, there is a flaw in the proof of type soundness for on-demand activation [12]. To ensure type soundness, we need to modify the reduction 
of method invocation to enclose the entire method execution within the activation of all required layers.

3 This paper is an extended version of our previous work [15]. The main differences from the previous work are the ensureDeactivate mechanism, 
a complete set of computation rules and a type system, and the proof of type soundness.
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class Editor {
JMenu menu;
...
void showMenuBar() { menu.revalidate(); }

}

2.1. Layers and partial methods

We consider an additional feature to support programming using the above editor. This feature adaptively becomes 
available in response to the type of file opened by this editor and is dynamically composed with the system by layers in 
COP. The following Programming layer implements this feature:

layer Programming {
class Editor {
JMenuItem start = ..., stop = ..., resume = ...;
void showMenuBar() {
menu.add(start);
menu.add(stop);
menu.add(resume);
proceed();

}
}
/* other (partial) class declarations */

}

A partial method, showMenuBar, overrides the base method declared in Editor when Programming is activated, i.e., 
when it is dynamically composed with the application. The proceed call invokes the overridden behavior. We refer to the 
set of classes that provides their behavior when no layers are activated as the base layer.

In ContextJ [3], the following with-block is used to activate a specified layer:

Editor editor = new Editor();
with Programming { editor.showMenuBar(); }

Layer activation is effective in the dynamic extent of the with-block. Thus, the Programming layer is active when show-
MenuBar is called. Thus, the partial method defined in Programming (that adds several menu items to control program 
execution) is called.

However, in this example, it is difficult to enclose layer activation within a with-block, because events that activate 
layers are generated by the user’s operations, e.g., opening a file that contains the source code, or clicking a button that 
switches the program editor to programming mode. Such operations are inherently asynchronous with the main thread 
of program execution. We cannot encode such an event-driven layer activation using with-blocks without boilerplate 
code [18].

Thus, several COP languages that provide asynchronous layer activation have been proposed [13,6,14,5,17,8]. Fig. 1 shows 
asynchronous layer activation in ServalCJ [17]. It declares that when the layer Programming is activated using the acti-
vate declarations, which specify events that activate the layer in the from clause and those that deactivate the layer in 
the to clause. Thus, Programming is activated when the startProgramming event is generated and deactivated when 
the endProgramming event is generated. These events can be declaratively specified using AspectJ pointcuts [19] (not 
shown in this paper) that specify, e.g., a join point when an event handler for the user’s operation, such as “pressing the 
start programming button”, starts.

We note that multiple layers can be activated, and in most COP languages, the most recently activated layer supersedes 
other layers. Furthermore, in COP languages based on class-based object-oriented languages, inheritance relations exist 
between classes, where the most specific subclass supersedes other superclasses. Thus, there are multiple directions for 
method lookup from the most recently activated layer that provides partial methods for the most specific subclass to the 
base class. ContextFJ (and similar COP languages) linearizes this method lookup, as shown in Fig. 2, where method lookup 
starts from the most recently activated layers to the base layer on the most specific subclass, and then, these layers are 
searched again when the method lookup proceeds to the next subclass. We also note that the proceed calls follow only 
the horizontal direction (the sequence of the activated layers), while the super calls follow the vertical direction (the class 
inheritance relations).

global contextgroup ProgrammingCtl {
activate Programming from startProgramming to endProgramming;

}

Fig. 1. Layer activation in ServalCJ.
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Fig. 2. Method lookup order in ContextFJ. Suppose that Debugging is activated after Programming, and D is a subclass of C. Method lookup proceeds 
from D in Debugging to C in the base layer, as shown by the dashed arrow.

layer Debugging requires Programming {
class Editor {
JMenuItem stopDebugging = ...;
void showMenuBar() {

// a menu item for stopping debugging
menu.add(stopDebugging);
proceed();

}
void execute() {
... /* enabling the step-by-step execution */
... getConsole() ...
/* accessing console to display debug info */
}

}
}

Fig. 3. Layer dependency.

2.2. Layer-introduced base methods

In a few COP languages such as JCop [4], a layer may also declare a base method, as shown in the following example:

layer Programming {
class Editor {
void execute() { ... }
JTextArea getConsole() { ... }
... /* same as above */

}
}

In this example, two base methods, execute and getConsole, are declared in layer Programming. These methods are 
not visible from the base program. Thus, the primary purpose of a layer-introduced base method is that it is called from 
the same layer or other layers depending on this layer. For example, the execute method defines behavior to start the 
execution of the program. This behavior is registered as an action associated with the menu item added by Programming
and is not visible from the base program.

We note that a layer-introduced base method is not a private method visible only within the layer; in some cases, it 
should be visible from other layers. For example, in the adaptive user interface example, we may also consider an addi-
tional feature for debugging the currently developed program. This feature is implemented by layer Debugging, as shown 
in Fig. 3. This layer declares two partial methods, showMenuBar and execute, and the second method calls getCon-
sole. The getConsole method is added by Programming, which implies that Debugging assumes the existence of
Programming. In Fig. 3, this dependency is represented by the requires clause in the first line of the layer declaration.

This requires clause was first introduced by ContextFJ [10], which supports with-blocks, and it implies that when
Debugging is activated, Programming must also be activated. To activate Debugging, we need to activate Program-
ming beforehand, which implies that Debugging can be activated only within the with-block that activates Program-
ming.

Editor editor = new Editor();
with Programming {
with Debugging { editor.execute(); }

}

Within with Debugging, both Programming and Debugging are active, and the partial methods in Debugging
override those in Programming because Debugging is the most recently activated layer. Thus, the above execute
call safely calls the getConsole provided by Programming. The type system can detect the erroneous activation of
Debugging that is not enclosed within activation of Programming.
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2.3. Problem

The existing method lookup semantics in COP, in which only the activated layers and the base layer of the method re-
ceiver are searched, cannot operate with asynchronous layer (de)activation, where layer activation is not enclosed within the 
statically known with-blocks, in a type-safe manner.4 Unlike with-blocks, where layer activation is synchronous with the 
currently executing block, in asynchronous layer activation, layer (de)activation may occur at any program execution point. 
This makes ensuring method safety difficult. For example, in Fig. 3, deactivation of Programming may occur immediately 
before the call of proceed in execute, resulting in a method-not-understood error because this method is introduced by
Programming.

3. Safe method lookup for COP

3.1. Overview of our approach

There are two approaches to addressing the problem of dynamic layer deactivation. The one is to prohibit layer de-
activation when it is not safe and postpone it until it becomes safe. If we adopt this approach, we need to significantly 
change the underlying dynamic or static semantics provided by ContextFJ. The other approach is to change the manner of 
method lookup to prevent the method-not-understood error, where changes are required only in the method lookup, and 
the dynamic semantics and proof of type soundness can be defined and proven by simply following the manner applied in 
ContextFJ.

We decided to adopt the second approach because it keeps the underlying semantics simple. We use the enclosing layer 
for method lookup; i.e., during method lookup, the layer where the method invocation is written and the layers on which 
this layer depends are searched in addition to currently activated layers and the base layer. For example, in the following 
layer L1, assume that layer L3 is activated before the method invocation n() is evaluated.

layer L1 requires L2 {
... m() { ... n() ... } ...

}

The proposed method lookup mechanism remembers the layer where the method invocation is written, and this layer and 
the layer required by it are used for the method lookup. In this case, the method lookup is performed in the order of L1,
L2, L3, and the base layer.

3.2. Technical challenges

Even though it may appear that this approach can be applied easily, it leads to non-trivial problems. In the following 
paragraphs we introduce the problem about duplication of partial method execution.

Since this method lookup mechanism searches in the static scope, where the method invocation is written, and in the 
currently activated layers, a situation may occur where the same layer is searched twice if it exists in the static scope 
and currently activated layers. For example, suppose Debugging and Programming, described in Section 2, are activated 
simultaneously in the order of Programming; Debugging (Debugging is most recently activated). If the method lookup 
mechanism is naively realized, assuming that showMenuBar is called in the body of a method in Debugging, partial 
method showMenuBar in Programming is called twice, because showMenuBar in Debugging calls proceed, which 
results in the execution of showMenuBar in Programming, which is required by Debugging, and this partial method also 
calls proceed. Thus, showMenuBar in Programming (in the currently activated layers) is dispatched again, resulting in 
multiple appearances of the same menu items.

The proposed method lookup mechanism addresses this problem by constructing the sequence of layers and removing 
such a duplication from that sequence at the time the method lookup is started. We note that, to ensure type soundness, 
the requires relation should not be broken when removing the duplication. For example, even when the abovementioned 
layers are activated in the order of Debugging;Programming, where Programming is the most recently activated layer, 
the method body is searched in the order of Programming;Debugging (the rightmost layer is searched first), because 
the partial method showMenuBar is called from a method in Debugging. This implies that the proposed mechanism 
does not follow the COP convention in which the most recently activated layer always dominates over others.

3.3. ContextFJa

We formalize the proposed method lookup as a simple calculus, ContextFJa , which is based on ContextFJ [10]. The 
abstract syntax for ContextFJa is shown in Fig. 4. Let metavariables C, D, E, and F range over class names; L ranges over 
layer names; f and g range over field names; m ranges over method names; e ranges over expressions; v and w range 

4 Moreover, as discussed in Section 7.1.1, ContextFJ does not support layer deactivation.



T. Kamina et al. / Science of Computer Programming 156 (2018) 104–120 109
CL ::= class C � C { C f; K M }
K ::= C(C f){ super(f); this.f = f; }
M ::= C m(C x){ return e; }
e,d ::= x | e.f | e.m(e)@X | new C(e) | proceed(e) | v<C,L,L>.m(v)
v,w ::= new C(v)
X ::= L | ·

Fig. 4. ContextFJa: Abstract syntax.

over values; and x ranges over variables, which include a special variable, this (unlike ContextFJ, super is not formalized 
in this calculus). X ranges over static context. This can be a layer name or a base layer (denoted by ·), indicating that the 
method invocation is written in the base class. Syntactically, a difference from ContextFJ is the annotation, @X, on method 
invocation, which indicates the static context where the method invocation is evaluated.

Overlines denote sequences, e.g., f stands for a possibly empty sequence f1, · · · , fn . An empty sequence is written 
by •. We also abbreviate a sequence of pairs by writing “C f” for “C1 f1, · · · , Cn fn ,” where n denotes the length of C
and f. Similarly, we write “C f;” as shorthand for the sequence of declarations “C1 f1; · · ·;Cn fn;” and “this.f=f;” as 
shorthand for “this.f1=f1;· · ·;this.fn=fn;”. We use commas and semicolons for concatenations.

Unlike existing COP languages, the calculus does not provide syntax for layers. Partial methods are registered in a partial 
method table, PT , which maps a triple, C, L, and m, of class, layer, and method names to a method definition. The runtime 
expression, new C(v)<C,L′,L>.m(e), where L′ is assumed to be a prefix of L, means that m is going to be invoked 
on new C(v). Annotation <C,L′,L> indicates the cursor where method lookup should start. The manner in which this 
cursor is used in the method lookup will be explained in Section 3.5.

A method invocation is annotated with a static context X. It is assumed that if C m(C x) { return e; } ∈
PT(D, L, m) and e0.m1(e)@X is a subexpression of e, then X = L. Similarly, if C m(C x) { return e; } is defined 
in some class D and not in PT , and e0.m1(e)@X is a subexpression of e, then X= ·.

The dependency between layers indicated by requires is modeled by a binary relation, R, on layer names; (L1, L2) ∈
R intuitively means that L1 requires L2. We assume a fixed dependency relation and write L req �, read as “layer
L requires layers �,” when � = {L′|(L, L′) ∈ R}. We write L req � if Li req �i for all Li ∈ L and � = �1 ∪ · · · ∪ �n

where n is the length of L. We assume that the relation induced by req is acyclic. We write {L} to denote a set whose 
members are equivalent to those of L but the ordering is not important. We define two auxiliary functions, requires and 
filter, that calculate the reflexive and transitive closure of req and remove the duplication of layer names, respectively, as 
follows5:

L req � � = {L′′} requires(L′′
) = L′

requires(L) = L′;L
L req ∅

requires(L) = L

filter(L;L;L′;L;L′′
) = filter(L;L′;L;L′′

)

filter(L) = L if ∀L1,L2 ∈ L. L1 	= L2

A program (CT, PT, R, e) consists of a class table CT that maps a class name C to a class definition CL, a par-
tial method table PT , the binary relation R, and an expression e that corresponds to the body of the main method. 
In other words, the class table and the partial method table define functions CT and PT , respectively. We assume that 
CT(C) = class C ... for any C ∈ dom(CT), PT(m, C, L) = ... m(...){...} for any (m, C, L) ∈ dom(PT), C, C0 = D, D0
if PT(m, C, L1) = C0 m(C x){· · · } and PT(m, C, L2) = D0 m(D x){· · · } for all m and C (i.e., there is no conflict between 
partial methods), and no cycles exist in the transitive closure of � (extends).

3.4. Auxiliary definitions

We first define a few auxiliary functions for the lookup of fields and method definitions, which are defined in Figs. 5
and 6. The field lookup function, fields(C), returns a sequence C f of the pairs of a field name and its type by placing all 
field declarations from C at the tail of those from its superclasses. The method lookup function, mbody(m, C, L1, L2), returns 
a pair x.e of parameters and an expression of method m in class C when the search starts from the sequence of layers 
L1. L2 keeps track of the layers that are active when the search starts; i.e., the method lookup follows the order described 
in Fig. 2. L2 is used to reset the cursor when the lookup proceeds to the superclass. In addition, it returns the name of 
the class and the sequence of layers where the method has been found, which will be used in reduction rules to deal with
proceed. We note that the proposed method lookup traverses the sequence of layers from last to first.

5 We note that we use set � instead of a sequence. The order in the set is not important in this case, because in the core language, there is no syntax 
for layers; thus, we cannot specify the precedence in � as in Section 3, e.g., L requires L1,L2 {...}. In other words, we model a more general 
language in this case compared to that presented in Section 3.
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fields(C) = C f

fields(Object) = • (F-Object)

CT(C) = class C � D { C f; · · · } fields(D) = D g

fields(C) = D g,C f
(F-Class)

Fig. 5. ContextFJa: Field access.

mbody(m,C,L′
,L) = x.e in D,L′′

CT(C) = class C � D { · · · C0 m(C x){ return e; } · · · }

mbody(m,C,•,L) = x.e in C,• (MB-Class)

CT(C) = class C � D { · · · M } m /∈ M
mbody(m,D,L,L) = x.e in E,L′

mbody(m,C,•,L) = x.e in E,L′ (MB-Super)

PT(m,C,L0) = C0 m(C x){ return e; }

mbody(m,C, (L′;L0),L) = x.e in C, (L′;L0)
(MB-Layer)

PT(m,C,L0) undefined mbody(m,C,L′
,L) = x.e in D,L′′

mbody(m,C, (L′;L0),L) = x.e in D,L′′ (MB-NextLayer)

Fig. 6. ContextFJa: Method body lookup.

fields(C) = C f

new C(v).fi | L−→ vi | L (R-Field)

L′ = filter(L; requires(X))

new C(w).m(v)@X | L−→ new C(w)<C,L′,L′>.m(v) | L (R-Invk)

mbody(m,C,L′′
,L′

) = x.e in C′,•
new C0(v)<C,L

′′,L′>.m(w) | L−→
[
new C0(v)/this,

w /x

]
e | L

(R-InvkB)

mbody(m,C,L′′
,L′

) = x.e in C′, (L′′′;L0)

new C0(v)<C,L
′′,L′>.m(w) | L−→⎡

⎣ new C0(v) /this,

w /x,

new C0(v)<C′,L′′′,L′>.m/proceed

⎤
⎦e | L

(R-InvkP)

f (L,L) = L′ f = activate or deactivate

e | L−→ e | L′ (R-Activate)

Fig. 7. ContextFJa: Operational semantics (1).

3.5. Operational semantics

The operational semantics of ContextFJa , which is shown in Fig. 7, is given by a reduction relation of the form e | L−→
e′ | L′ , which is read as “expression e under activated layers L reduces to e′ under L′ .”

Rule R-Field is defined for field access and it is straightforward: fields specifies the argument to new C(· · ·) that 
corresponds to fi .

Rule R-Invk represents the method invocation. This rule is for the method invocation where the cursor of the method 
lookup has not been “initialized”; the cursor is set as the receiver’s class and the sequence of layers computed by filter and 
requires using currently activated layers L and layer L attached to the method invocation. This ensures that in addition to 
currently activated layers L, static context L and all layers required by L are always searched when the method is called.

Two rules, R-InvkB and R-InvkP, represent invocations of a base method and a partial method, respectively. Both rules are 
straightforward adaptations of the method invocation on the runtime expression of the form new C(v)<C,L,L>.m(v)
from ContextFJ. In R-InvkB, the receiver is new C(v) and the location of the cursor is <C′,L′′,L′>. When the method body 
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e0 | L−→ e′
0 | L

e0.f | L−→ e′
0.f | L (RC-Field)

e0 | L−→ e′
0 | L

e0.m(e)@X | L−→ e′
0.m(e)@X | L (RC-InvkRecv)

ei | L−→ e′
i | L

e0.m(· · ·,ei,· · ·)@X | L−→ e0.m(· · ·,e′
i,· · ·)@X | L (RC-InvkArg)

ei | L−→ e′
i | L

new C(· · ·,ei,· · ·) | L−→ new C(· · ·,e′
i,· · ·) | L (RC-InvkNew)

Fig. 8. ContextFJa: Operational semantics (2).

is found in the base-layer class C′ (denoted by “in C′, •”), the expression reduces to the method body, where the formal 
parameters, x and this, are replaced with the actual arguments w and the receiver, respectively. Rule R-InvkP addresses 
the case where the method body is found in layer L0 in class C′ . In this case, proceed in the method body is replaced 
with the invocation of the same method, where the receiver’s cursor points to the next layers L′′′ .

We also introduce a reduction rule, R-Activate, to model asynchronous layer activation and deactivation. This rule rep-
resents layer activation and deactivation that occur non-deterministically (L in the rule is arbitrarily chosen). Auxiliary 
functions activate and deactivate are defined as

activate(L,L) = L;L if L /∈ L
activate(L, (L′;L;L′′

)) = L′;L′′;L otherwise

deactivate(L,L) = L if L /∈ L
deactivate(L, (L′;L;L′′

)) = L′;L′′ otherwise

Function activate places the specified layer L at the right most position of the activated layer L; if L is already in L, this 
function changes the order of the activated layers such that the most recently activated layer has the highest priority. Thus, 
it keeps the invariant that the activated layers do not contain duplications. Function deactivate removes only the specified 
layer L (if it exists) from the currently activated layers L.

Fig. 8 shows other trivial congruence rules that enable subexpressions to reduce. We note that ContextFJa reduction is 
call by value; similar to ContextFJ, the order of reduction of subexpressions is unspecified.

Example 1. Suppose the situation where execute is called on an instance of Editor with activated layer Debugging, 
and Debugging is asynchronously deactivated during the execution:

new Editor().execute()|Debugging
(method body in Debugging is dispatched)
−→∗ new Editor().getConsole()@Debugging|Debugging
(Debugging is deactivated)
−→ new Editor().getConsole()@Debugging
(method body is found in filter(requires(Debugging)))
−→∗ {the body of getConsole in Editor in Programming}
−→ · · ·

These reductions demonstrate that the call of getConsole, which is written in layer Debugging, succeeds, even 
though Debugging is not active when this method is called, illustrating the type safety of the proposed calculus.

Example 2. Suppose the situation where showMenuBar is called on an instance of Editor from the static context of
Debugging with activated layers Programming and Debugging, and Debugging is most recently activated (we ab-
breviate Programming; Debugging as L):

new Editor().showMenuBar()@Debugging|L
(method body in Debugging is dispatched)
−→ new Editor<Editor,L,L>.showMenuBar()|L
(by applying filter, the cursor is set to L)
−→∗ · · ·

This example shows the situation explained in Section 3.2. The duplication of showMenuBar in Debugging will not 
occur, as the cursor is set to Programming; Debugging.
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4. Guaranteed layer deactivation

In the calculus defined above, an issue arises regarding handling layer deactivation. The proposed method lookup can 
cancel layer deactivation, even when it is mandatory.

At first, the proposed method lookup looks natural as compared to existing COP strategies for layer deactivation. Desmet 
et al. questioned the layered design approach for context-aware systems regarding handling layer switching when the layer 
is currently executing, and proposed two strategies, loyal and prompt [16]. Most COP languages adopt the loyal strategy, 
which ensures completion of partial method execution; thus, the deactivation is put into effect later. The proposed approach 
is a natural extension of this strategy; while executing the partial method in the requiring layer, the execution of the 
required behavior is ensured. This is thanks to the fact that the layer sequences in a cursor are not affected by layer 
deactivation. Furthermore, this approach ensures the execution of the required layer even when it is not activated.

However, this approach leads to a problem when layer deactivation is a hard requirement. For example, we may consider 
a layer, namely, HighPrecision, that performs a computation with highly precise results, thereby consuming consid-
erable CPU power. Thus, it should be deactivated when a battery is approaching exhaustion. If other layers that require
HighPrecision are still activated, then the deactivation is canceled in the proposed mechanism.

To address this problem, we introduce an additional mechanism that ensures deactivation of specified layers. A layer 
declared with the ensureDeactivate modifier is not included in the layers searched during the method lookup after it 
is deactivated.

ensureDeactivate layer HighPrecision { ... }

Deactivation is ensured by prohibiting the layer with ensureDeactivate from appearing on the right hand side of 
the requires clause. This restriction prevents the situation where the behavior in the layer with ensureDeactivate
is eventually called by another layer that requires this layer.

To formalize this mechanism, we introduce a fixed set of layers, D, which corresponds to a set of layers declared with
ensureDeactivate. As D is a part of the program, the definition of a program is also extended to (CT, PT, R, D, e).

We note that it is not necessary to extend the operational semantics of ContextFJa using D. This is because, for 
L ∈ D and L1 	= L, the type system may ensure that L /∈ requires(L1), which means that, in the hypothesis of R-Invk, 
L /∈ filter(L; requires(L1)) if L /∈ L.

5. Type system

The type system for ContextFJa is a straightforward adaptation of the type system of FJ [20] and a simplification of 
ContextFJ, except that we must handle the layers with ensureDeactivate. The details are described below.

5.1. Subtyping

The subtyping relation, C <: D, which is the same as that in FJ, is defined as the reflexive and transitive closure of the
extends (�) clauses.

C <: C
(S-Refl)

C <: D D <: E

C <: E
(S-Trans)

class C � D {· · ·}
C <: D

(S-Extends)

5.2. Method type lookup

The method type lookup is defined in Fig. 9. The function mtype(m, C, �1, �2) takes a method name m, a class name C, 
and two sets �1 and �2 of layer names and returns a pair C→ C0 of argument types C and a return type C0. Its definition 
is identical to that of mtype in ContextFJ. Sets �1 and �2 represent statically known active layers, in which m is searched. 
The first is used to lookup m in C, whereas the second is used when m is not found in C and the search continues to
C’s superclass. This distinction is necessary for the typing of proceed because it cannot proceed to where it is executed; 
however, it may proceed to a method of the same name in a superclass in the same layer. In other uses, these two sets are 
the same and we write mtype(m, C, �) for mtype(m, C, �, �). Rule MT-Class is used when m is defined in the base layer, rule
MT-PMethod is used when m is defined in one of the activated layers, and rule MT-Super is used when m is not defined in 
class C. We note that mtype is a (partial) function under the assumption that there is no conflict between partial methods, 
as explained at the end of Section 3.3.
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CT(C) = class C � D { · · · C0 m(C x){ return e; } · · · }

mtype(m,C,�1,�2) = C→ C0
(MT-Class)

L ∈ �1 PT(m,C,L) = C0 m(C x){ return e; }

mtype(m,C,�1,�2) = C→ C0
(MT-PMethod)

class C � D { · · · M } m /∈ M
∀L ∈ �1.PT(m,C,L) undefined mtype(m,D,�2,�2) = C→ C0

mtype(m,C,�1,�2) = C→ C0
(MT-Super)

Fig. 9. ContextFJa: Method type lookup.

� = x : C
L;�;� � xi : Ci

(T-Var)

L;�;� � e0 : C0 fields(C0) = C f

L;�;� � e0.fi : Ci
(T-Field)

� = requires(X) L;�;� � e0 : C0 L;�;� � e : E
E <: D mtype(m,C0,�) = D→ D0

L;�;� � e0.m(e)@X : D0
(T-Invk)

fields(C0) = D f L;�;� � e : C C <: D

L;�;� � new C0(e) : C0
(T-New)

requires(L) = � mtype(m,C,� \ {L},�) = D→ D0

L.C.m;�;� � e : E E <: D

L.C.m;�;� � proceed(e) : D0
(T-Proceed)

L′ is a prefix of L′′ C0 <: D mtype(m,D, {L′}, {L′′}) = F→ F0

L;�;� � e : E E <: F L;�;� � v0 : C0

L;�;� � v0<D,L′
,L′′>.m(e) : F0

(T-InvkA)

Fig. 10. ContextFJa: Expression typing.

5.3. Typing

The typing rules for expressions are shown in Fig. 10. A type environment � is a finite mapping from variables to class 
names. We use L to represent a context, which is either • (the main expression), C.m (the body of method m in class
C in the base layer), or L.C.m (the body of method m in class C in layer L). A type judgment for expressions is of the 
form L; �; � � e : C, read as “expression e has type C under type environment �, context L, and layers �.” Layers � are 
supposed to be a subset of layers that are set as a cursor when the method lookup starts at runtime. We note that � is not 
a sequence, it is a set; i.e., the type system does not know the order in which the layers are linearized.

The rules, T-Var for variables, T-Field for field access, and T-New for object instantiation, are straightforward adaptations 
of those of FJ. The rule T-Invk for method invocation applies mtype to �, which includes all and only the layers required 
by the static context X, denoting the layers that may change the interface of C0; i.e., � is used to confirm that an use of 
a layer-introduced base method is checked. The condition � = requires(X) always holds, as X is the name of the enclosing 
layer (see T-PMethod in Fig. 11). The next rule is regarding proceed calls (T-Proceed), and it constitutes straightforward 
adaptations of the corresponding typing rule of ContextFJ. In this rule, the third argument to mtype is � \ {L}, which means 
that a proceed call cannot proceed to the same method recursively.

To prove type soundness, we also need to provide a typing rule for expressions that appear only at runtime, i.e., method 
invocation on an object with a cursor. This rule is provided by T-InvkA, which is basically a combination of T-Invk and
T-New. In this rule, the cursor information, D, L′ , and L′′ , is used to lookup the type of m, instead of the receiver’s runtime 
class C0.

The typing rules for methods and classes are shown in Fig. 11. These rules are almost identical to those in ContextFJ. 
A type judgment for methods in a base class is of the form M ok in C, read as “method M is well-formed in C.” A type 
judgment for partial methods is of the form M ok in L.C, read as “method M is well-formed in L in C.” These judgments 
are represented by typing rules T-Method and T-PMethod, respectively, which are straightforward. Both rules check that 
the method body is well-typed under the given type environment, and the type of the method body is a subtype of the 
declared return type. For partial methods, the layers � that the current layer L requires can be assumed, as well as the 
current layer itself. Similar to ContextFJ, valid method overriding is not checked in this case because it requires that the 



114 T. Kamina et al. / Science of Computer Programming 156 (2018) 104–120
C.m; ∅;x : C,this : C � e0 : D0 D0 <: C0

C0 m(C x) { return e0; } ok in C
(T-Method)

� = requires(L) L.C.m;�;x : C,this : C � e0 : D0 D0 <: C0

C0 m(C x) { return e0; } ok in L.C
(T-PMethod)

K= C(D g, C f){ super(g); this.f=f; } fields(D) = D g M ok in C

class C � D { C f; K M } ok
(T-Class)

Fig. 11. Method and class typing.

∀m. if CT(C) = class C � D {· · · C0 m(C x){· · ·} · · ·} and PT(m,C,L) = D0 m(D y){· · ·},

then C,C0 = D,D0

overrideh(L,C)

∀m. if mtype(m,C,dom(PT)) = C→ C0 and mtype(m,D,dom(PT)) = D→ D0 and C <: D,

then C= D and C0 <: D0

overridev(C,D)

Fig. 12. Valid overriding.

entire program be checked. A class is well-formed (written CL ok) when the constructor matches the field declarations and 
all methods are well-formed.

A program is well-formed when all classes are well-formed, all partial methods are well-formed, no layers in D are 
required by other layers, and the main expression is well-typed under the empty assumption, as expressed in the following 
rule (T-Prog):

∀C ∈ dom(CT).CT(C) ok ∀(m,C,L) ∈ dom(PT).PT(m,C,L) ok in L.C
•;∅ � e : C ∀(L1,L2) ∈R.L2 /∈D

∀C ∈ dom(CT),L ∈ dom(PT).overrideh(L,C) ∀C,D ∈ dom(CT).overridev(C,D)

� (CT,PT,R,D,e) : C (T-Prog)

The other conditions used in T-Prog are shown in Fig. 12. The predicate overrideh(L, C) (h represents “horizontally”) 
means that all overriding partial methods in L have the same signatures as the corresponding methods in C. The predicate 
overridev(C, D) (v represents “vertically”) means that a method overridden by a subclass C of D is valid in a sense that it 
checks the covariant method overriding.

5.4. Properties

It is easy to prove that the deactivation of layer L annotated with ensureDeactivate is ensured, which means that if
L is not in the sequence of currently activated layers L, it is not searched during the method lookup, i.e., L is not included 
in the cursor for the method lookup. This property is formalized as the following theorem (we say that R is well-formed 
with respect to D if ∀(L1, L2) ∈R.L2 /∈D):

Theorem 1 (Guarantee of deactivation). Suppose given class and partial method tables are well-formed, and R is well-formed 
with respect to D. If L; �; � � v.m(v)@L0 : C and v.m(v)@L0 | L −→ e | L′′ , then e = v.m(v)@L0 , or L′′ = L and e =
v<C,L′,L′>.m(v) for some L′ and L /∈ L′ for all L ∈D \ (L; L0).

We sketch the proof of this theorem, which is given by case analysis on the last used reduction rule. There are two cases, 
namely, R-Invk and R-Activate, and the latter case is trivial. In case R-Invk, since ∀(L1, L2) ∈ R.L2 /∈ D, it is easy to show 
that ∀L ∈D.L /∈ requires(L0). Then, by the definition of filter, it is obvious that L /∈ L′ , finishing the case.

We note that the proposed calculus does not ensure deactivation after setting the cursor. For example, it is possible that a 
layer with ensureDeactivate, namely L′ , is removed from the currently activated layers L by R-Activate, immediately 
after R-Invk is applied. Then, L′ is still included in the cursor and searched during the method lookup. This ensures com-
patibility with the original ContextFJ. The ensureDeactivate mechanism prevents the layer that is not activated when 
the method lookup starts from being searched during the method lookup.

We show the type soundness for ContextFJa . The primary difference from ContextFJ is that while ContextFJ requires that 
the sequence of activated layers L is well-formed (i.e., for all layers Li in L, all layers required by Li exist on the left hand 
side of Li in L [10]), ContextFJa does not impose such a restriction. Instead, ContextFJa requires that the sequence of layers 
constructed by the R-Invk rule is well-formed. Proofs are given in Appendix A.
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Fig. 13. Example of the chain of partial method lookups. Rectangles denote classes, and rounded rectangles denote activated layers.

Theorem 2 (Subject reduction). Suppose given class and partial method tables are well-formed. If L; �; � � e : C and e | L−→ e′ | L′
for some L, L′ , and �, then L; �; � � e′ : D for some D such that D <: C.

Theorem 3 (Progress). Suppose given class and partial method tables are well-formed. If •; �; • � e : C for some �, then either e is a 
value or e | L−→ e′ | L for some e′ and L.

Theorem 4 (Type soundness). If � (CT, PT, R, D, e) : C and e reduces to a normal form, then e is new C(v) for some v and D such 
that D <: C.

6. Implementation

We implemented the proposed mechanism in ServalCJ, a COP language with a generalized layer activation mecha-
nism [17]. The ServalCJ compiler is built on top of the AspectBench Compiler [21] by extending the front-end. This compiler 
translates a ServalCJ program into an AspectJ program, and the proposed mechanism is straightforwardly built on top of 
this translation mechanism. Thus, we first overview this translation briefly; then, we explain the implementation of the 
proposed mechanism.

The ServalCJ compiler comprises the following two parts: translation of layers and translation of layer activation. As the 
proposed mechanism addresses only method dispatch, which is relevant to the implementation of layers, we explain only 
the first part. A layer in ServalCJ comprises a partial definition of classes, and each partial definition is translated into an 
inner class of the class enclosed by this layer. Each partial method in this layer is translated into a method in the inner 
class. The base class is also translated to realize layer-based method dispatch. First, each base class is equipped with a new 
field to store the list of currently activated layers (a list of instances of the inner classes translated from the layers). Second, 
for each partial method, the body of the method in the base class is translated to the code that first obtains the list of 
currently activated layers, and then calls the instance method at the tail position of the list. In addition, the proceed call 
is translated to the code that calls the method on the instance at the preceding position of the list of currently activated 
layers.

Based on this translation, the implementation of the proposed mechanism consists of two parts, i.e., embedding the static 
scope used in the method lookup in Java and removing duplicated partial method calls. Instead of collecting all required 
methods and removing the duplicated partial method calls prior to the method dispatch, which may result in significant 
runtime overhead, embedding the static scope is realized by translating the requires relation to the extends relation 
in Java. For example, layers Debugging and Programming are translated to the classes that implement these layers, 
by the original ServalCJ translation mechanism. However, if Debugging requires Programming, the class translated from
Debugging (_Layer$Debugging) extends the class translated from Programming. When Debugging is activated, the 
method lookup is performed on an instance of _Layer$Debugging. This embedding preserves the semantics, because the 
scope of method lookup is represented as the runtime type of the method receiver.

Note that this translation ensures that there are no conflicts between an inheritance relation written in the source code 
and that introduced by the translation. First, each layer cannot introduce new “extends” declarations for the existing classes. 
Second, in ServalCJ, no inheritance relations exist between layers.

We describe the manner in which the proposed implementation prevents duplication of partial method calls using an 
example scenario where a method is called when Programming and Debugging are activated, and Debugging requires
Programming (Fig. 13). First, the proposed implementation calls the method on the tail of the sequence of activated 
layers (1). This method call invokes the method on class _Layer$Debugging that is translated from layer Debugging. 
Then, it executes the code that is copied from the partial method, and calls the method on the superclass (2). This superclass,
_Layer$Programming, encodes layer Programming that is required by Debugging. In the superclass method, it first 
records that this superclass method has been called. Then, it executes the code translated from the partial method in
Programming (3). Then, it calls the method on the next instance of the sequence of activated layers, which results in the 
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invocation of the method in _Layer$Programming (4). Because the invocation of this method call had been recorded, 
it skips the main code to prevent duplication, and calls the method of the base class because there are no layers after
Programming (5).

We note a case where a layer requires multiple layers. Even though the current implementation does not enable a 
layer to require multiple layers, this feature can be implemented by applying the translation mechanism from mixin-based 
inheritance into the Java class hierarchy. For example, McJava [22] addresses this issue by linearizing the mixin-based 
inheritance to form a single inheritance chain, and duplicating the definitions of mixins into several class hierarchies induced 
by a mixin composition.

7. Related work

7.1. Layer-introduced base method

We first compare the proposed approach with other existing approaches that provide layer-introduced base methods.

7.1.1. ContextFJ
We reviewed the ContextFJ approach in Section 2.2. A problem in this approach is that it does not interact suitably 

with dynamic layer deactivation. ContextFJ does not support without, a language construct for dynamic layer deactivation 
in ContextJ. If layers can be deactivated dynamically, the invocation of a method introduced by the deactivated layer fails 
when the layer that depends on the deactivated layer calls this method. To statically check such an error, we need to gather 
information about “which layer is absent” at each deactivation point, which is difficult, particularly in an open-world setting. 
The proposed mechanism is a simple means to support layer-introduced base methods in COP languages with dynamic and 
asynchronous layer deactivation in a type-safe manner.

Nevertheless, we do not argue that requires in ContextFJ should be replaced with the mechanism. In particular,
requires in ContextFJ is useful if we would like to require the interface of layers; i.e., we may extend ContextFJ so as to 
assume that at least one of the layers providing this interface is activated without considering the concrete implementation. 
With this extension, we may also write the requires clause like “requires LayerA or LayerB.” This requiring of layer 
interfaces is hard to achieve in our setting, because the required layers are used for the lookup of the method body.

7.1.2. On-demand activation
On-demand activation [12] has been proposed to prevent checking an absent layer when requires is used with with-

out. Instead of requiring that the subordinate layers are activated, it implicitly activates the layers on which the currently 
activated layer depends when these layers are required, as specified by the following activates clause:

layer Debugging activates Programming {
/* The body is the same as above */ }

We can activate Debugging anywhere, regardless of the condition that this activation is enclosed with the activation of
Programming; if Programming is not active, it is implicitly activated when the currently executing behavior requires it.

This mechanism implicitly activates the layer specified by requires when this layer is asynchronously deactivated. 
However, this mechanism fails if the currently executing layer is deactivated, which is explained in the following code:

layer L {
class C {
Object m() { // deactivating L
return this.n(); }

Object n() { // introduced by L
return new Object(); }

}
}

Class C in layer L defines partial methods m and n, and m calls n, which is introduced by L. As asynchronous layer de-
activation may occur at any execution point in the on-demand activation mechanism, it is possible that L is deactivated 
immediately before n is called. Then, the method lookup for n is performed without the existence of L, leading to a 
method-not-understood error.

7.1.3. Layer inheritance
The proposed approach is very similar to the layer inheritance approach; i.e., the requires relations resemble the

extends relations between layers, where requires is implemented using extends as described previously. JCop [4]
supports such a layer inheritance mechanism. The proposed mechanism is a simplified unification of requires in ContextFJ 
and extends in JCop, both of which call layer-introduced base methods.

There is a fundamental difference between the proposed approach and JCop. In JCop, layers are instantiated, and not 
directly activated; however, instances of layers are. If instance p1 of Programming and instance d1 of Debugging are 
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activated, the partial method defined in Programming is executed individually for p1 and d1, which results in the same 
menu items being displayed multiple times for the programming feature. On the other hand, the proposed approach is 
based on the COP model, where a layer is not a first-class citizen and prohibits such a duplication.

7.2. Other related work

Inoue et al. discussed a safe type system for JCop [23,11]. It constitutes an application of the type system developed in 
ContextFJ; however, it supports layer inheritance and first-class layers. It does not handle layer deactivation directly; instead, 
it supports an idiom, which is referred to as layer swapping, for layer deactivation. It is prohibited to deactivate layers using
without; however, we may “swap” a layer with one that is compatible with the swapped layer.

The dependency between layers may also be represented in the form of composite layers [24,25]. In [24], an extension 
of ContextL [2] with layer composition operators, such as and-composition and or-composition, was proposed. At each 
layer activation point, ContextL calculates the set of subordinate layers and activates them. If this set is ambiguous, it 
suspends the execution until the user resolves this ambiguity. In [25], a similar mechanism is discussed under event-based 
layer transition [5]. FECJ◦ [26] formalizes the operational semantics of composite layers implemented in EventCJ [5]. The 
dependency between layers can also be specified in some COP languages such as Subjective-C [6] and Ambience [14]. In 
these languages, this dependency is checked at runtime.

The proposed mechanism is similar to Newspeak’s method lookup [27] in that the static scope is used for method lookup. 
While Newspeak uses the static scope to resolve method collisions between the outer class and super classes, the proposed 
mechanism uses the static scope (and the definitions on which this scope depends) as a safety net, ensuring that there is 
a behavior while executing the current method, even when the enclosing layer is immediately deactivated. Furthermore, 
the proposed method lookup includes dynamically activated layers, and we need to define appropriate ordering of these 
activated layers, the layer comprising the static scope, the layers on which this scope depends, and the base class.

8. Concluding remarks

This paper addressed the problems that occur when layers declare base methods that are used with asynchronous layer 
deactivation. This paper provides a formal definition of method lookup, which uses the static scope of a method invocation, 
proves its type soundness, and ensures deactivation of layers with ensureDeactivate. This mechanism is a type-safe 
application of an on-demand activation mechanism to asynchronous layer deactivation, which addresses the problem of 
ContextFJ regarding support of dynamic layer deactivation. This mechanism is also considered as an alternative to the layer 
inheritance mechanism, where duplicated calls of partial methods do not occur. This mechanism is implemented in our COP 
language, ServalCJ.
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Appendix A. Proofs

We first show the lemmas required in the proof of Theorem 2.

Lemma 1 (Weakening). If L; �; � � e : C and x /∈ �, then L; �; �, x : D � e : C.

Proof. By straightforward induction on L; �; � � e : C. �
Lemma 2. If fields(C) = C f and D <: C, then fields(D) = C f, D g for some D and g.

Proof. By straightforward induction on D <: C. �
Lemma 3. If mtype(m, C, �) = D→ D0 and D <: C, then mtype(m, D, �) = D→ E0 and E0 <: D0 for some E0 .

Proof. By induction on D <: C. �
Lemma 4 (Substitution). If L; �; �, x : C � e0 : C0 and L; �; � � v : D and D <: C, then L; �; � � [v/x]e0 : D0 and D0 <: C0 for 
some D0 .

Proof. By induction on L; �; �, x : C � e0 : C0.
Case T-Var: Immediate by Lemma 1.
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Case T-Field:
e0 = e.fi L; �; �, e : C � e : C fields(C) = E f C0 = Ei

By the induction hypothesis, L; �; � � [v/x]e : C′ and C′ <: C. By Lemma 2, fields(C′) = E f, F g for some F and g. 
Then, by T-Field, L; �; � � [v/x]e0 : Ei , finishing the case.
Case T-Invk:

e0 = e.m(e)@X L; �; �, x : C � e : C � = requires(X)

mtype(m, C, �) = E→ C0 L; �; �, x : C � e : F F <: E
By the induction hypothesis, L; �; � � [v/x]e : C′ , C′ <: C and L; �; � � [v/x]e : F′ , F′ <: F. By Lemma 3, 

mtype(m, C′, �) = E→ E0 and E0 <: C0. By T-Invk, L; �; � � e0 : E0, finishing the case.
Cases T-New, T-Proceed, and T-InvkA: Immediate by the induction hypothesis. �
Lemma 5. If �1 ⊂ �2 and mtype(m, C0, �1) = D→ D0 , then mtype(m, C0, �2) = D→ D0 .

Proof. By induction on {L}. The base case, which is �1 = �2, is trivial. If �2 = {L′} ∪ {L′} and {L′} ⊃ �1, by the induction 
hypothesis, mtype(m, C0, {L′}) = D→ D0. Then, by the rules in Fig. 12, we have mtype(m, C0, {L′} ∪ {L′}) = D→ D0. �
Lemma 6. Suppose L′ is a prefix of L′′ and mbody(m, C, L′

, L′′
) = x.e0 in C′, L and mtype(m, C, {L′}, {L′′}) = D→ D0 .

1. If L= L′′′; L0 , then L0.C′.m; {L′′}; x : D, this : C′ � e0 : E0 and C <: C′ and E0 <: D0 for some E0 .
2. If L= •, then C′.m; ∅; x : D, this : C′ � e0 : E0 and C <: C′ and E0 <: D0 for some E0 .

Proof. By induction on mbody(m, C, L′
, L′′

) = x.e0 in C′, L.
Case MB-Class:

L′ = • L= • C′ = C
class C � D { · · · C0 m(C x) { return e0; } · · · }

By T-Class, T-Method, and MT-Class, it must be the case that C.m; ∅; x : C, this : C � e0 : E0, C = D, E0 <: C0, and 
C0 = D0 for some E0, finishing the case.
Case MB-Layer:

L′ = L′′′; L0 C= C′ L= L′
PT(m, C, L0) = C0 m(C x){ return e0; }

By T-PMethod and MT-PMethod, it must be the case that L0.C.m; �; x : C, this : C � e0 : E0 where � = requires(L0), 
C = D, E0 <: D0, and C0 = D0 for some E0. It is easy to show that mtype(m, C, {L′}, {L′′}) = mtype(m, C, {L′}, �) because 
� ⊂ {L′′}, finishing the case.
Cases MB-Super and MB-NextLayer: The induction hypothesis finishes the cases. �
Lemma 7 (Substitution for proceed). If L′; L is a prefix of L and � = {L} and L.C.m; �; � � e0 : C0 and D0 <: C and fields(D0) =
D f and •; �; � � v : E and E <: D, then •; �; � � [new D0(v)<C,L

′,L>.m/proceed]e0 : C0 .

Proof. By induction on L.C.m; �; � � e0 : C0 with case analysis on the last typing rule used. We show only the main case 
below.
Case T-Proceed:

e0 = proceed(e) mtype(m, C, � \ {L}, �) = F→ C0
L.C.m; �; � � e : G G<:F requires(L) = �

Let S = [new D0(v)<C,L
′,L>.m/proceed]. In this case,

Se0 : C0 = new D0(v)<C,L
′,L>.m(Se).

As � = requires(L) = {L} and L′; L is a prefix of L, it is easy to show that

mtype(m,C,� \ {L},�) = mtype(m,C, {L′}, {L}) = F→ C0.

By T-InvkA, T-New, and the induction hypothesis, we obtain

•;�;� � new D0(v)<C,L
′,L>.m(Se) : C0. �

Proof of Theorem 2. By induction on e | L−→ e′ | L′ with case analysis on the last reduction rule used.
Case R-Field:

e= new C0(v).fi e′ = vi fields(C0) = C f
By T-Field and T-New, L; �; � � new C0(v) : C0, C= Ci , L; �; � � v : D, and D <: C, finishing the case.

Case R-Invk:
e= new C0(w).m(v)@X e′ = new C0<C0,L

′′,L′′>.m(v)
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L′′ = filter(L; requires(X))

Without loss of generality, we can let � = requires(X). By T-Invk and T-New, L; �; � � new C0(w) : C0, mtype(m, C0, �)

= D→ C, L; �; � � v : E, and E <: D. By the definition of filter, {L′′} ⊃ �. By Lemmas 3 and 5, mtype(m, C0, {L′′}) = D→ C. 
By T-InvkA, L; �; � � e′ : C, finishing the case.
Case R-InvkP:

e= new C0(v)<D,L
′′,L>.m(w)

e′ =
⎡
⎣ new C0(v) /this
w /x
new C0(v)<C′,L′′′,L′>.m/proceed

⎤
⎦e0

mbody(m, D, L′′
, L′

) = x.e0 in C′, (L′′′; L0)

By T-InvkA and T-New, L′′ is a prefix of L′ , L; �; � � new C0(v) : C0, C0 <: D, mtype(m, D, {L′′}, {L′}) = F → C, 
L; �; � � w : E, and E <: F for some �. Without loss of generality, we can let � = {L′}. By Lemma 6, L0.C′.m; �; �, x :
F, this : D′ � e0 : E and E <:C and D <: D′ for some E and D′ . By Lemmas 4 and 7, L; �; � � e0 : F and F <: E for some
F, finishing the case.
Case R-InvkB: Similar to the case R-InvkP.
Case R-Activate: Trivial.
Cases RC-Field, RC-InvkRecv, RC-InvkArg, and RC-InvkNew: Immediate from the induction hypothesis. �

The following lemma is required for the proof of Theorem 3.

Lemma 8. If L; {L}; � � e.m(e)@L : C and L; {L}; � � e : C0 and mtype(m, C0, {L}) = D→ D0 where L= requires(L), then there 
exist x and e0 and L′′ and C′ ( 	= Object) such that mbody(m, C0, L, L′

) = x.e0 in C′, L′′ where filter(L′′′; L) = L′ for some L′′′
and the lengths of x and D are equal.

Proof. By lexicographic induction on mtype(m, C0, �1, �2) = D→ D0 and the length of L.
Case: L= •

class C0 � D {· · · C′
0 m(C x){ return e0; } · · ·}

By MT-Class, it must be the case that D, D0 = C, C′
0 and the lengths of C and x are equal. Then, by MB-Class, 

mbody(m, C0, •, L′
) = x.e0 in C0, •.

Case: L= L′′′′;L0
PT(m,C0,L0) = E0 m(E x){ return e0; }

By MT-PMethod, it must be the case that E, E0 = D, D0 and the lengths of E and x are equal. By MB-Layer, 
mbody(m, C0, L, L′

) = x.e0 in C0, L where L′ = filter(L′′′; L).
Case: L= • class C0 � D {· · · M }

m /∈ M �1 = ∅
By MT-Super, we have mtype(m, D, ∅, �2) = D → D0. By the induction hypothesis, there exists x and e0 and L′′ and 
C′ ( 	=Object) such that mbody(m, D, L, L′

) = x.e0 in C′, L′′ and the lengths of x and D are equal. By MB-Super, 
mbody(m, C0, •, L′

) = x.e0 in C′, L′′ , finishing the case.
Case: L= L′′′′;L0

PT(m,C0,L0) undefined
By the induction hypothesis, there exist x and e0 and L′′ and C′ ( 	=Object) such that mbody(m, C0, L′′′′

, L′
) =

x.e0 in C′, L′′ and the lengths of x and D are equal. By MB-NextLayer, mbody(m, C0, L, L′
) = x.e0 in C′, L′′ , finishing 

the case. �
Proof of Theorem 3. By induction on •; �; • � e : C with case analysis on the last typing rule used.
Cases T-Var and T-Proceed: Cannot occur.
Case T-Field:

e= e0.fi C= Ci •; �; • � e0 : C0 fields(C0) = C f
By the induction hypothesis, either e0 is a value or there exists e′

0 such that e0 | L −→ e′
0 | L. In the second case,

RC-Field finishes the case. In the first case, by T-New, we have e0 = new C0(v), L; • � v : D, and D <: C. Thus, we have 
e | L−→ vi | L, finishing the case.
Case T-Invk:

e= e0.m(e)@X : C •; �; • � e0 : C0 � = requires(X)

•; �; • � e : E E ⊂ D L � E mtype(m, C0, �) = D→ C
By the induction hypothesis, there exist i ≥ 0 and e′

i such that ei | L −→ e′
i | L or all e′

i s are values v0, v. In the 
second case, RC-InvkRecv or RC-InvkArg finish the case. In the first case, by T-New, e0 = new C0(w). By Lemma 8, there 
exist x, e0, L′′

, L′′′ , and C′(	= Object) such that mbody(m, C0, L′
, filter(L′′′; L′

)) = x.e0 in C′, L′′ where {L′} = � and the 
lengths of x and D are equal. As C′ 	= Object, there exists D′ such that class C′ � D′ {· · ·}. We have two subcases here 
depending on whether L′′ is empty or not. If L′′ is not empty, let L′′ = L′′′′; L0 for some L′′′′ and L0. Then, the expression
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e′ =
⎡
⎣ new C0(w) /this
v /x
new C0(w)<C′,L′′′′,filter(L′′′;L′

)>.m/proceed

⎤
⎦e′

0

is well defined (note that the lengths of x and v are equal). Then, by R-InvkP and R-Invk, e | L−→ e′ | L. The case where 
L′′ is empty is similar.
Case T-New:

e= new C(e) fields(C) = C f •; �; • � e : D D <: C
By the induction hypothesis, either e are all values, in which case e is also a value, or there exist i and e′

i such that 
ei | L−→ e′

i | L, in which case RC-New finishes the case.
Case T-InvkA: Similar to the case for T-Invk. �

The proof of Theorem 4 easily follows from the proofs above.
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