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ABSTRACT 
Computational reflection is the comput ational activity of a system whose targets of com
putation are its own structure and its own computation. Programming languages which 
support reflective capabilities facilitate a modular way of describing the meta-level fea
tures such as debugging and resource management - in conventional languages, these 
features were only available in an ad-hoc fashion. Operational semantics of a reflective 
language is usually given in terms of an infinite tower of interpreters (the so-called 're
flective tower.') For actual implementation of such languages, however, the tower itself 

must have some finite implementation. Optimization is also necessary to reduce the 
overhead of the interpretation. There have been several researches on such issues with 

sequential reflective languages , but none on concurrent reflective languages. The study 
of effective implementation of concurrent reflective languages is essential. Since resource 
management in concurrent computing systems is more dynamic and complex compared 
to that in sequential systems, the use of reflective facilities for the control of such man
agement from within the language is even more beneficial. In this research , we study the 
implementation of ABCL/R2, an object-oriented concurrent reflective language. The 
operational semantics of ABCL/R2 is given in terms of two reflective towers; in order to 
have finite representations of these towers , we employ 'lazy creation' technique, which 
postpones the creation of the upper-levels until they are actually needed. We also explore 
optimizations, such as method compilation, for efficient execution. 
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Chapter 1 

Introduction 

Reflection is the process of reasoning about and acting upon the system itself[l0, 9). 

In conventional languages, the system computes upon the data which is external 

to the system. In reflective languages, the system computes upon not only the 

external data, but also the data which is internal to the system itself. In other 

words , reflective systems provide the ways of inspecting upon/modifying the data 

that implement the systems. Many types of languages that supports reflective 

computation have been proposed[5). Those languages (so called reflective lan

guages) are beneficial because they are able to add various programming language 

facilities from within the language itself. Reflection is a useful notion not only to 

languages. There are several studies that apply the notion of reflection to construct 

the flexible systems such as operating systems[14], and window systems[8). 

In concurrent languages, the reflective computation is even more beneficial 

because[12, 16]: A concurrent system has many aspects that should be customized 

according to the system organization or the nature of the application programs, and 

those aspects are controlled only by exceptional and ad-hoc fashions in ordinary 

languages. On the other hand, a concurrent language, which supports reflective 

computations, is able to control such aspects dynamically. Thus, the reflection in 
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concurrent languages is more powerful and useful. 

However, it is difficult to have an efficient implementation of reflective lan

guages. Since reflective languages should have abstracted data that is mutually 

connected with the language's implementation: so called Causally-Connected Self

Representation(s) (CCSR) . A semantic model of a reflective language is usually 

given by the infinite tower of meta-interpreters. For this reason, two problems 

should be solved to implement a reflective language: 1) How to break safely the 

meta-circularity in the semantic model. 2) How to decrease the overhead of inter

pretative execution, which results from the language's semantic model. 

As far as we know, there have been no study on efficient implementation of 

concurrent languages with reflective computation. Therefore, this study aims at 

solving these problems on the concurrent languages supporting reflective compu

tation. Particularly, we study the implementation of ABCL/R2[7] with parallel 

version Common Lisp on OMRON LUNA- 88K, which has the shared-memory ar

chitecture. The language ABCL/ R2 is an Object-Oriented Concurrent Reflective 

(OOCR) language, and is based on hybrid group architecture that consists of two 

kinds of reflective towers : individual tower and group tower. 

For efficient execution, a script is compiled, where operations expected to be 

reflective are translated into explicit message passing for the interpretation, and 

the other operations are directly translated into Lisp expressions. The light-weight 

object, which has a lambda-closure instead of a message queue, provides efficient 

creation and execution for temporary objects. To break the meta-circularity, we 

construct the meta-level of a group lazily - the meta-group of a group is not 

created until the some object is created at the meta-level to that group. The 

metaobject for an object is also created lazily. Furthermore, a metaobject is im

plemented by a light-weight object until reflective operations are requested . Such 
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the object prevents unnecessary reification; the light-weight metaobject allows 

that a message sent to a base-level object from another metaobject is forwarded 

directly without causing reification. In the ABCL/R implementation, such the 

message causes reification. 

In this study, we limit the scope of "efficient implementation" around reflection, 

and traditional optimizing techniques may not be considered. 

The rest of this paper is organized as follows: Chapter 2 describes previous 

studies that implement sequential/ concurrent reflective languages . In chapter 3 the 

object-oriented concurrent reflective architecture is briefly introduced, and imple

mentation problems with semantic model of ABCL/R2 are pointed out. Chapter 

4 discusses our approach to the efficient implementation, and chapter 5 gives the 

results of our performance measurement and chapter 6 gives an example of reflec

tive programming that shows favorable result. Chapter 7 concludes this thesis and 

mentions the future work. 
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Chapter 2 

Related Work 

In this chapter, prev10us studies, that are related with the implementation for 

reflective languages, are reviewed. There have been several studies of the imple

mentation of the sequential reflective languages. However, unfortunately, there 

have been few studies of the efficient implementation of concurrent reflective lan

guages, as far as we know. 

2.1 3-Lisp 

A schema of the efficient implementation for sequential reflective languages is de

scribed by des Rivieres and Smith[3]. This schema is based on level-shifting proces

sor, and showed an implementation of a particular dialect of Lisp called 3-Lisp[l0]. 

In his schema, ordinary (non-reflective) expressions are executed by the implemen

tation processor (IP) that is a real, active processor, not a program for a processor. 

When IP encounters a reflective expression, implicit state of IP is collected, then 

the expression is executed as if a program for a processor has been running with 

the state that is equal to the one collected from IP. (In other words, IP reifies 

itself into the state for a program.) Once the execution of the expression is ter-
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minated, IP reflects the explicit state on its internal state, and executes rest of 

the expressions directly. This method is optimal because the number of reification 

is minimized and the IP never executes the program that generates a behavior 

equivalent to IP. 

Since one or more activities are running simultaneously in a concurrent lan

guage, it is difficult to obtain a state of the system at one instant. Consequently, 

Smith's schema cannot be directly applied for the concurrent reflective languages. 

2.2 Brown and Blond 

Wand and Friedman described a semantic model of Brown, that is a sequential 

reflective language like 3-Lisp[ll] . Since the description is based on the denota

tional semantics, this model is also an implementation in Scheme. The model 

gives the semantic account of reflective towers without the use of towers, using 

metacontinuations. 

A metacontinuation is a data structure that represents the state of the upper 

interpreter, and that of the tower above it. The reification process is that of 

packing the state of the interpreter into the metacontinuation, and the reflection 

process is that of re-installing the state of the interpreter. Though this is infinite 

structure, it can be constructed in finite steps (by fixpoint operator). 

Blond[2], like Brown, is a sequential reflective language, whose model is written 

in denotational semantics. Contrary to Brown, Blond first assumes the tower of 

interpreters, then makes it reflective. 
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2.3 CLOS Metaobject Protocol 

PCL (Portable Common Loops)[4] is one of a prototype CLOS (Common Lisp 

Object System) implementation . 

In the semantic model of PCL, the class system is implemented by the PCL's 

class object , and method invocation steps are described by the PCL's methods. For 

example, a class named standard-class defines the data structure for the classes , 

and a method named compute-class-precedence-list computes a class prece

dence list to determine what method should be applied for the an object. Thus the 

reflection in PCL is operated as follows: (1) create a subclass of standard-class 

and (2) re-define some methods (such as compute-class-precedence-list) for 

the new class. Then, the method invocation steps to an instance of the new class 

are held by the user-defined methods. 

PCL has practical efficiency because: (1) Since its reflective capabilities are lim

ited to the operations related with object-oriented facilities, the other operations 

are executed with enough efficiency. (2) Changes to the meta-level procedures are 

- as the method invocation steps are divided into many methods in meta-level, 

the amount of methods , that should be modified for some reflective operation, can 

be small, and the other steps are executed by the default and highly optimized 

methods. 

2.4 ABCL/R 

ABCL/R is an object-oriented concurrent reflective language[12]. Its semantic 

model is described by the tower of metaobjects in which each metaobject interprets 

an object in lower level, and this model has good similarity to that of ABCL/R2. 

There is a prototype implementation of ABCL/R in ABCL/1[15). A key to the 
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ABCL/R implementation is the "lazy creation" technique - the metaobject is 

created when the metaobject is accessed. 

Our implementation uses a technique like this to build the reflective towers of 

ABCL/R2. Chapter 4 discusses this subject. 

2.5 Other Reflective Systems 

Besides programming languages , several reflective systems have been proposed. 

Silica[8] is a window system based on reflection . In Silica, the data structure 

that implements a window can be changed at meta-level. For example, a new 

window structure that contains sub-windows can be defined from user programs. 

The reflective architecture of this system has only two levels; the base-level (the 

window object) and the meta-level (the implementation of the window object). In 

other words, this system is not meta-circular . 

Muse[14] is an operating system, which is based on reflection. Execution of 

an object in Muse is supported by the objects, such as memory managers and 

device drivers, in the meta-level. Though the reflective architecture of Muse is the 

meta-circular one, the prototype system is implemented by limiting the number 

of meta-levels; objects at meta-meta level are representing the machine-dependent 

functions . 
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Chapter 3 

Object-Oriented Concurrent Reflective 

Languages 

This chapter describes the background of our study. First, an introduction to the 

reflection and a rough description of the OOCR architectures is shown. Then the 

semantic model of ABCL/R2 - our implementation target - is discussed in more 

detail. Finally, problems for implementing such language are explained. 

3.1 Introduction to the Reflection 

Reflective languages can access the abstracted data that represents the implemen

tation of the system itself. For example, in traditional languages, a user program 

has no way to access its executing environment ( data storing the binding infor

mation) except for the pre-defined methods. This is because the environment is 

implementation-dependent for the traditional languages. On the other hand, se

quential reflective languages (such as 3-Lisp and Brown) can define reflective pro

cedures to access such data. A reflective procedure is invoked with the three argu

ments; a processing expression, an environment and a continuation for the expres

s10n. The programmer can describe explicit access (introspection/modification) 
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to the environment through these arguments. In other words, reflective languages 

provide a modular way to introspect/modify its internal state, or modify its course 

of processing, and these subjects are considered to be implementation-dependent 

in traditional languages. 

Such abilities of reflective systems are useful to construct implementation in

dependent debuggers, to describe communication between outside world, and to 

providing opportunity for dynamic optimization. Recently, several practical ap

plications are developed such as PCL ( a CLOS implementation that has reflective 

abilities) [4]. Not only the programming languages, there are also attempt to use 

the notion of the reflection for constructing the flexible system. 

To provide the access to its internals, a reflective language has data that repre

sents meta-level structural and computational aspects of itself. Such data is called 

the Causally-Connected Self-Representation(s) (CCSR). The CCSR must have fol

, lowing features: When the internal state of the language system is changed, the 

change affects CCSR, and when the modification on the CCSR (from user pro

gram) is reflected to the actual computational state of the user program. 

To contain the CCSR, semantic model of reflective languages is often given by 

the infinite tower of meta-interpreters (so called reflective tower). In such model, 

a CCSR of some level is the explicit implementation data at the meta-level of that 

level. Therefore, the access to the CCSR of a level is taken place in the meta-level. 

3.2 Object-'Oriented Concurrent Reflective Architectures 

Recently, the benefits of computational reflection in concurrent languages have 

been claimed[6]. This is because a concurrent system embodies multitudes of 

aspects that do not arise in sequential computing: scheduling, communication, 
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load-balancing, and so on. Since concurrent systems are much more complex and 

more immature as compared to sequential ones, it is favorable for constructing 

modular system and experimenting algorithms to control those aspects from within 

the languages. Reflection in concurrent languages is beneficial to encompass such 

aspects within the programming language framework. 

Several languages that have the Object-Oriented Concurrent Reflective 

(OOCR) architecture are proposed: ABCL/R[12] is based on the individual-based 

architecture, ACT /R[13] is based on the group-wide architecture, and the evolution 

of ABCL/R, the language ABCL/R2[7] is based on the hybrid group architecture. 

Below, characteristics of each architectures are discussed by examples. 

3.2.1 Individual-Based Architecture 

An example of this architecture is ABCL/R[12]. Each object in the system has 

its own metaobject jx that governs its computation and can be accessed with a 

special form [meta x ]. The structural aspects of x - a set of state variables, a 

set of scripts, a local evaluator, and a message queue - are part of state variables 

of þÿ!‘�x�.� The metaobject þÿ!‘�x� also has its own metaobject þÿ!‘!‘�x� and so on (Figure 3.1). 

The arrival of a message M at object xis represented as an acceptance of the 

message [ :message M R S] at þÿ!‘�x�,� where Rand Sare the reply destination and 

the sender, respectively. Reflective computation in ABCL/R is through message 

transmissions to its metaobject and other objects in the tower. 

3.2.2 Group-Based Architecture 

An example of this architecture is ACT /R[13]. In this architecture, the behavior of 

an object is not governed by a single particular metaobject; rather, the collective 

behavior of a group of objects is represented as the coordinated actions of a group 
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Reflective methods 

w 
state memory 

message 
queue 

Figure 3.1: Individual-Based Architecture in ABCL/R 

of meta-level objects , that constitute the meta-group (Figure 3.2). 

Meta-Systems 

. 
Inter-Level 

····· Comm. 

Object~Groups 
An Object 

Figure 3.2: Meta-Architecture of ACT /R 

The essence of this architecture is the lack of metaobjects, because the behavior 

of a single object is realized at the meta-level by coordinated action of multiple 

meta-level objects. Notice that a change to the meta-level object affects to all 

base-level objects in the group. 
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3.2.3 Hybrid Group Architecture 

In real-life, concurrent systems have various resources such as computational 

power, communication, storage, I/O, etc., and the availabilities of these resources 

are limited; for example computational resource is limited by the number of the 

CPUs in the system. To formulate the management of such limited resources 

at the programming language level, Hybrid Group Architecture(HGA) has been 

proposed[7]. In languages based on HGA, such "limited resources" are shared at 

the meta-level as the objects, while each object has its own reflective tower. 

The language ABCL/R2 - the target language of our implementation - is 

based on the HGA. The semantic model of ABCL/R2 is discussed in the next 

section. 

3.3 Semantic Model of ABCL/R2 

This section describes the features and semantic model of ABCL/R2. 

The key features are follows: 

• Heterogeneous Object Group and Group Shared Resources 

• Meta-groups and Individual/Group Reflective Towers 

• Non-reifying Objects (objects that do not have metaobjects) 

An object in ABCL/R2 is always belongs to some group. Objects in some 

group share computational resources as group kernel objects at meta-level. Groups 

can be created dynamically, and the group creation process is given by a concrete 

metacircular definition with ABCL/R2. As a result, not only that we have the 

tower of metaobjects, but we also have the tower of meta-groups. There are some 

distinctions between these two kinds of towers: 
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• The individual tower of metaobjects mainly determines the structure of the 

object, including its script . Thus, reflective operations to alter the script is 

in the domain of the individual tower . 

The group tower of meta-groups mainly determines the group behavior, in

cluding the computation (evaluation) of the script of the group members. 

Thus, the changes to have different behaviors of the same script are in the 

domain of the group tower . 

Figure 3.3 illustrates the reflective architecture of ABCL/R2. 

The structure and the computation of a group are defined at the meta- and 

higher levels of the group, by the group kernel objects . In figure 3.3, objects 

labelled "Eval ," "Metaobject Generator," and "Group Manager" are the standard 

group kernel objects. The characteristics of these objects are follows 1 : 

Group Manager: The group manager represents and 'manages' the group. Also, 

the identity of a group is that of the group manager object. Following form 

is an example of the group creation: 

[group concurrency-controlled-group 
(meta-gen priori ty-meta-gen) 
(evaluator priority-queue-eval)] 

When this form evaluated, a new group named 

concurrency-controlled-group is created. At the meta-level, a group 

manager with two group kernel objects is created: priority-meta-gen as a 

met aobject generator and priority-queue-eval as an evaluator . 

A new object can be created at a particular group by explicit designation of 

the group in the object creation form: 

1 Complete definition is appeared in appendix A as the meta-circular definitions. 
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[object x 
(group concurrency-controlled-group) 

The evaluation of this form creates an object named x at the group 

concurrency-controlled-group. 

Metaobject generator: An object creation process is realized at meta-level as 

the creation of a metaobject. A metaobject generator is the object who 

creates the metaobject at the meta-level. When a form [object ... ] is 

evaluated, a message [: new StateSpec LexEnv ScriptSet Evaluator CM gr] 

is sent to the metaobject generator2
• 

A metaobject created by a standard metaobject generator has four state 

variables: a message queue, a set of scripts, a set of state variables, and a 

pointer to the evaluator. When the metaobject receives a message [: message 

M R S], the metaobject put the message into the queue object in its state 

variable. Then, the metaobject searches a script matches to a message on 

top of the queue, and sends a message to the evaluator for executing the 

script. 

Evaluator: The computational resource, shared by the group members, is the 

evaluator. An evaluator governs the script execution for the members of 

the group. Its typical behavior is as follows: it receives a message [: do Exp 

Env Id Cid Eval] with reply destination C, then evaluates an expression Exp 

under the environment Env, then sends the result to C. The arguments Id and 

Cid is used for references of the pseudo variables Me and Group that denotes 

2 More precisely, the evaluator sends a m essage [: new St at eSpec LexEnv ScriptSet] to the 

group manager, and the group manager sends to the m etaobject generator adding Evaluator and 

GM gr to the message. 

14 



the object itself and the group of the obj ect , respectively. The argument 

Eval is for executing sub-expressions generated during the execution of some 

expression. That is, the evaluator can delegate the execution of the sub

expressions to an other evaluator. 

In ABCL/R2, the user can create an object that runs more efficiently at the 

sacrifice for the loss of reflective capabilities . Such object is defined by the following 

form: 

[object x 
(meta-gen non-reifying-meta) 

When this form is evaluated, a non-reifying object named x is created. The 

behavior of x is almost same as the one of a standard object created without the 

designation (meta-gen non-reifying-meta). The difference is that reflective 

operations are disallowed. 

A the non-reifying object does not have its m etaobject . Consequently, the 

extensibility is lost; however, non-reifying objects execute much more efficiently 

compared to the standard ones. 

3.4 Problems of Implementation and Efficiency 

3.4.1 Breaking the Meta-Circularity Efficiently 

The semantic model of ABCL/R2 is given by the hybrid group architecture. To 

realize the architecture, the implementation must obey following features: 

• Modifications through a metaobject - reflective operations on an individual 

tower of an object - should be reflected only to the object. 
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• Modifications through the group kernel objects - reflective operations on 

the group tower - should be reflected to all members at the base level of 

the group tower. 

Moreover, the actual system must be created by finite steps. Consequently, 

a problem is arisen: how to break the meta-circularity of the semantic model 

efficiently. 

3.4.2 Efficiency versus Reflective Capabilities 

Our interest is the implementation way that has practical efficiency. The semantic 

model considers the efficiency by introducing the non-reifying object, and the user 

categorizing objects into reflective or not-reflective. However, it is also important 

that the standard objects (not non-reifying objects) have enough efficiencies. 

There are opportunities for the efficiency of the standard objects to apply such 

categorization to the operations of standard objects' executions. The operations 

that appear in the execution of an object can be classified into two groups: the ones 

we have interest of reflection; for example, operations message transmission and 

object creation. The other ones we have no interest to be reflective; for example, 

parsing and arithmetic operations. It is efficient that the latter types of operations 

can be executed without interpretation like ones in a non-reifying object. 

The second problem is: how to translate an expressions into a code where the 

some operations are indirectly executed, and others are directly executed. 
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Figure 3.3: Reflective Architecture of ABCL/R2 
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Chapter 4 

Our Approach 

A parallel implementation of ABCL/R2 is build in the multi-thread version of 

Common Lisp, which is running on OMRON LUNA-88K, the shared-memory com

puter. 

In this chapter, the implementation design of our system is shown. 

4.1 Overview of the System 

Figure 4.1 is an overview of the system. Each box in the figure represents an 

object, which can be a target of message sending. A "conceptually existing object" 

do not exist initially, but the access to such the object causes a creation of an 

actual object (so called lazy creation). To maintain the causal-connection between 

object and metaobject, a individual tower has at most one executable object. An 

executable object is executed directly by Lisp functions , and scheduled when it 

has any message to process ( this state is called to be active). 

Rest of objects in the individual tower are not executable, but the messages 

to such the object are handled by the forwarding m echanism. The forwarding 

mechanisms are as follows: 
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conceptually existing object 

message 

Figure 4.1: Overview of the System 

• When a message is sent to an object O in lower than an executable ob

ject , 0 forwards the message by sending a "message arrival" message to its 

metaobject. (Figure 4.2-a) 

• When a "message arrival" message is arrived to an object O' in upper than 

an executable object, O' sends the message part of the arrival message to its 

denotation. (Figure 4.2-b) 

It might sound strange if a non-executable object executes the forwarding mech

anisms. Since the forwarding is held by the message sender, not by the message 

receiver, however, it is not necessary to schedule non-executable object. 
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• • • 

þÿ!‘�Ov [ :message MR S] 

• • • (a) 

• • 
[:message M' R' S'] 

M' @ R' 

• • • 
(b) 

Figure 4.2: Forwarding Mechanism 

4 .2 Low-Level Structure 

Before proceeding, let us describe the low-level structure of the system. Figure 

4 .3 illustrates the scheduling mechanisms for executable objects. An executable 

object is implemented by a Common Lisp's structured data. (Figure 4.4 .) The 

entry port is a message queue for the object. "Thread" is a control activity for 

Lisp programs, and our system assumes a fixed number of threads for executing the 

executable objects1 When a message is sent to an idle ob ject, the object is turned 

to be active, and it is put into the waiting queue. Then, a thread is assigned to the 

object, and the thread executes a Lisp function that corresponds to a script for 

the message. After termination of the function, the object returns to the waiting 

queue when it is still active (i .e., the port is not empty), or it becomes idle when 

it has no more message (i.e., the port is empty). 

1The system can work in a pseudo-parallel manner in conventional Common Lisp , which is 

regarded as a single-thread Lisp . However, some restrictions for non-reifying objects are placed. 
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scheduled, 
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Figure 4.3: Low-Level Scheduling Mechanisms 

Default group kernel objects (the group manager, the metaobject generator, 

and the evaluator) and metaobjects created by the default metaobject generator 

are also the executable objects. As if a non-reifying object, such an object has 

a Lisp function that gives equivalent behavior to the meta-circular definitions. 

(The meta-circular definitions for default group kernel objects appear in appendix 

A.) Such an object also has a set of compiled reflective script of meta-circular 

definitions for the self-reification: When a reflective operation is requested to the 

metaobject of such the object, the metaobject becomes a default metaobject with 

the compiled script as a state variable. 
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(defstruct 
port 
meta 
den 

object-data 

gid 
local 
type 
status) 

; message port 
; metaobject 
; denotation 
; (meta) group manager 
; object's local information 

Figure 4.4: Definition of the Structure of an Object 

4.3 Compilation 

As is mentioned in section 3.4, our interest in reflection of ABCL/ R2 is focused 

on the operations related to the object-oriented concurrent computations, such as 

scheduling and resource management . In other words, we have few interests in 

the reflection of the operations related only for sequential computations. Thus, we 

propose a schema for efficient execution: While operations that are not expected 

to be reflective are compiled, other operations are reflective. 

In this schema, operations are categorized into reflective operations and non

reflective operations1 then: 

• Consecutive expressions representing non-reflective operations are translated 

into a Lisp function . 

• The evaluator has a script for invoking the Lisp function for non-reflective 

operations . Thus, non-reflective operations are initiated by sending a mes

sage to evaluator. 

• The evaluator has scripts that execute reflective operations, and expressions 

representing a reflective operation is translated into a message for the eval

uator. 
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• When expressions representing a reflective operation are appeared in ones 

representing non-reflective operations, a code, that sends a message to eval

uator explicitly, is embedded into the lambda-closure for the non-reflective 

operations. 

Though what operations should be reflective and what should not be is arbi

trary choice, we choose following operations to be reflective: 

• Reference to the variables (including the references to lexical environments, 

and pseudo variables 'Me ' and 'Group') 

• Message sending (either now type or past type) 

• Object creation 

• Group creation 

• Sequential executions of list of expressions 

• Sequential evaluations for list of expressions 

The last two operations are 'sugar' for the meta-level programming. 

The following example shows how the expressions are compiled: 

The expression [x <= ( * y 2) @ z] means to send the value of ( * y 2) to 

the value of x with its reply destination to be the value of z. As the reflective oper

ations in this expression are message sending and variable references , the compiler 

generates a code like followings: 

#'(lambda (C Env Id Gid Eval) 
[Eval 
<= [:do-evlis 

[ [: variable 'x] [: variable 'y] [: variable 'z]] 
Env Id Gid Eval] 

@ [cont [x-value y-value z-value] 
[Eval 
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<= [:do [:send-past x-value (* y-value 2) z-value] 
Env Id Gid Eval] 

@ C]]]) 

Where the arguments C, Env, Id, Gid, and Eval mean the continuation, the en

vironment, the object ID, the group ID for the object, and the evaluator for the 

sub-expressions, respectively. The tag : do-evlis means the evaluation of list of 

expressions. 

Notice that the multiplication ( * y 2) , which is not reflective operation, is 

embedded into the compiled code, while the reference to the variable y is achieved 

by sending an expression [: variable 'y] to the evaluator. 

4.4 Light-Weight Object 

In ABCL/R2, many objects are created at meta-level during the execution of 

an express10n. However, most of those are temporary and have simple functions 

(hereafter, we call such objects simple objects) - for example, a continuation for 

an expression, or a reply destination for a now type message passing - and con

structing these objects as same as complex objects causes considerable overheads: 

(1) A message for an object is put into a message queue, but the simple objects are 

created for only processing single message. Therefore, creating a queue and the 

steps for queueing should be the overhead. (2) Compared with the complexity of 

the processes for standard objects, that of the processes for simple objects are fine

grained. Thus, the system mostly may devote its computation for the scheduler 

with ordinary scheduling methods. 

To decrease these overhead, we implement such a simple objects as a light

weight object. A light-weight object has same structure as an ordinary (heavy) 

object, except for the message queue and the state variables . The most distinct 
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feature is that instead of the message queue, light-weight object has a Lisp function, 

that is translated from the scripts of the object . When a message is sent to a light

weight object, the sender of the message executes the function with the message, 

instead of queueing the message. 

The activation and execution steps for light-weight objects are as follows : 

1. An object S starts sending a message M to a light-weight object L . 

2. S gets a function from the slot for L's message queue, and invokes function 

that is stored L's message queue slot. 

3. The activity for S executes the L's script with its argument M. 

4. When the function execution terminates, S resumes its own execution. 

Notice that the execution of the message sender is suspended until the termination 

of the execution of the light-weight objects. This means that the use of light-weight 

objects does not increase concurrency, while decreasing the overhead of scheduling. 

On the other hand , an ordinary object is activated by following steps : 

1. An object S starts sending a message M to an object 0 . 

2. S gets O's message queue, and puts M into it. 

3. 0 is put into the active object queue if O has been dormant. 

4. Then a thread picks O up from the queue, and starts execution for O. 

5. A message M from the O's message queue is processed. 

6. A script corresponding to Mis executed. 
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A light-weight object has no state variables, therefore, it is created more effi

ciently than an ordinary object. This is favorable property for the temporary, and 

dynamically created objects. 

However, light-weight objects have several restrictions: 

• No now type messages - consider the following situation: When a light

weight object Lhasa script that causes a now type message to an object 0, 

a past type massage form O to L causes a deadlock. This is because L waits 

the reply from 0, and O waits the termination of L's execution. (Notice that 

a now type message to another light-weight object does not cause deadlock.) 

• No state variables - light-weight object may be executed simultaneously by 

one or more objects because it has no message queue. Thus, the access to 

the state variables without mutual exclusion may lead unexpected behavior. 

Despite these restrictions, many types of objects can be constructed with the light

weight object; the light-weight metaobject that appears in section 4.5 is good 

example. 

Our implementation opens up this light-weight object for application program

mers. An expression 

[cont Pattern Expressions] 

creates a light-weight object whose behavior is same as the one of an object created 

by the expression: 

[object 
(script 

(=> Pattern 
Expressions))] 
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4.5 Group Tower Construction 

The lazy creation technique, that is used for construction of ABCL/R, can not 

be used for ABCL/R2 directly because ABCL/R2's architecture has two kinds of 

reflective towers. In our implementation, this technique is extended to these two 

kinds of towers. First, this section describes the method to build group tower. 

1. Any obj ect has its group manager of the group that the object belongs to 

except for the case 2. 

2. Initially, a default group manager does not have its group manager. When 

the empty group manager slot of a default group manager is accessed, a new 

default group manager is created and set to the slot. 

3. A default group manager does not have its evaluators and metaobject gen

erator initially, and these objects are not created until they are requested 

(Figure 4.5). Precisely, when the evaluator /group manager is requested (a), 

a group manager G creates its own group manager þÿ!Ñ�G� (b ), then G creates 

an evaluator/ group manager whose group manager is þÿ!Ñ�G� ( c) . 

Any resources for new object's creation (i.e., metaob'ject generator, and eval

uator) are acquired through group managers or given at the creation. Thus, any 

object created at any level satisfies the condition 1. 

4.6 Individual Tower Construction 

This section describes the method to build an individual tower. A prototype of 

ABCL /R is implemented with lazy creation technique, but the technique does not 

concern about efficiency, and creates too many metaobjects. In our implementa-
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tion, the technique is extended to suit the hybrid group tower architecture, and to 

be efficient. 

First, inefficiency in prototype implementation of ABCL/R is discussed. In 

this implementation, metaobjects are created in the lazy way. A metaobject þÿ!‘�x� 

is actually created when the access to þÿ!‘�x� takes place - when the evaluator first 

evaluates an expression [meta x] [12]. Consider that an object S is sending a 

message M to an object T, and S has its metaobject and T does not. (Figure 

4.6-a.) Since S is executed by its metaobject þÿ!‘S, þÿ!‘S try to send a message 

[ :message M R S] (R is a reply destination of the message) to a metaobject 

for T. The access to metaobject for T causes a creation of þÿ!‘�T�,then Tis reified 

into an object that is indirectly executed by þÿ!‘T. (b) After this, T is executed 

much slowly. However, the operation needed is to send M to T, and reifying Tis 

unnecessary if þÿ!‘�Scan send M directly to T. 

Our implementation uses more elaborate method that reduces unnecessary reifi

cation: 

• Initially, an object does not have its metaobject. (Its metaobjects are existing 

conceptually.) 

• When an expression [meta x ] is evaluated, where x does not have the 

metaobject, a light-weight metaobject þÿ!‘xL is created as x's metaobject. 

Since þÿ!‘xL is constructed with the light-weight object, x remains directly 

executable. ( c) 

• The þÿ!‘�x�L� have ability only to receive messages for x (messages matching with 

the pattern [ :message M R S] ), and forward it to x . 

When a message requesting some reflective operations ( a message not match

ing to the pattern [ :message M R SJ) arrived to þÿ!‘�x�L�,� x is reified (i.e., x 
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becomes indirectly executed object) and þÿ!‘�x�L� becomes a default metaobject 

þÿ!‘�x�,� which is directly executed. After this , the reflective operation is executed 

by jx. 

The access to the metaobject of þÿ!‘�x�L� creates a light-weight metaobject þÿ!‘!‘�x�L�,� 

and x still remains to be directly executed. 

4. 7 N on-Reifying Objects 

As is mentioned in section 3.3, non-reifying objects are not reflective. Thus, these 

objects can be compiled into Lisp code, as is done in ABCL/1[15] . In our im

plementation, scripts of non-reifying objects are translated into Lisp code - an 

expression that computes a sequential operation is directly converted to a Lisp 's 

expression, and an expression such as message sending or object creation is con

verted into a library function calling. Since our system assumes multi-thread 

environment, non-reifying objects do not switch their context for the reply to the 

now type message passing. 

Though a metaobject of a non-reifying object is conceptual existence, the mes

sage transmission to the non-reifying object through the meta-level should be 

allowed. For this reason, our implementation allow non-reifying objects to have 

light-weight metaobjects . 
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Figure 4.5: Creation of the Objects at Meta Group 
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Figure 4.6: Sending a Message to a Conceptual Metaobject 
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Chapter 5 

Performance Measurements 

In this chapter, the efficiency of our ABCL/R2 implementation is measured with 

respect to the following points: (1) the non-reflective features, (2) the light-weight 

objects, and (3) the cost of reflective computation. 

5.1 Non-Reifying Objects 

The performance of the non-reifying objects is measured. As a non-reifying object 

is executed without interpretation, it is thought to have a comparable efficiency to 

the one for an object in a non-reflective language. For this reason, the efficiency of 

the non-reifying objects in ABCL/R2 and that of the ordinary objects in ABCL/1, 

an implementation of the object-oriented concurrent language[15], are compared1 . 

The first test is a simple message transmission. Two objects, whose definition 

is given in figure 5.1, are created and exchange messages given n times between 

them. The table 5.1 shows the result. 

The second test is the parallel computation of Fibonacci numbers. For each 

computation of fib(n), two sub-objects that compute Jib(n - 1) and Jib(n - 2) 

1 In this chapter, both the ABCL/R2 system and the ABCL/1 system have been executed in 

KCl (Kyoto Common Lisp) on SparcStationl+ in pseudo parallel manner. 
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are created. Table 5.2 shows the t imes elapsed for t he computation . 

[object ping 
(meta-gen non-reifying-meta) ; ABCL/R2 only 
(state [pong := ni l]) 
(script 

(=> [ :set p] [pong := p]) 
(=> 0 ! :finished) 
(=> n @ R 

[pong<= (1- n) @ R]))J 

F igure 5.1: Object for Testing Message Transmission 

n 10,000 50,000 100,000 

ABCL/1 2.5 13 26 

ABCL/R2 4.5 24 49 

(unit : second) 

Table 5.1 : Execution Time for Message Transmissions 

n 18 19 20 21 22 

ABCL/ 1 36 78 198 500 1247 

ABCL/R2 73 118 196 319 519 

( unit: second) 

Table 5.2: Execut ion Time for the fib(n) 

From the results of these tests, we can see that non-reifying objects m 

ABCL/R2 have comparable efficiency to the ABCL/ 1 's. 
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[object fib-gen 
(script 

(=> :new 
! [object fib 

(meta-gen non-reifying-meta) ; ABCL/R2 only 
(state [reply := nil] [sub-value := nil]) 
(script 

(=> [ : ans x] 
(if sub-value 

[reply<= [:ans(+ sub-value x)]J 
[sub-val ue : = x])) 

(=> 0 ! [:ans OJ) 
(=> 1 ! [:ans 1]) 
(=> n @ R 

[reply : = R] 
[[fib-gen<== :new] <= (- n 1) @ Me] 
[[fib-gen<== :new] <= (- n 2) @ Me]))]))] 

F igure 5.2: Ob ject for Fibonacci Numbers (parallel version) 

5.2 Light-Weight Objects 

T he effectiveness of light-weight objects is measured. As is mentioned in section 

4.4, t he user p rogram can create a light -weight object by [cont ... ] form. We 

show t he com parison by t he sequential computation of F ibonacci num bers . 

[object fib 
(meta-gen 
(script 

(=> 0 ! 0) 
(=> 1 ! 1) 
(=> n @ R 

non-reifying-meta) ; ABCL/R2 only 

[fib <= (- n 1) 
@ [cont fib-n-1 

[fib <= (- n 2) 
@ [cont fib-n-2 

[R <= (+ fib-n-1 fib-n-2)]]]]]))] 

Figu re 5 .3: Ob ject for F ibonacci Numbers (sequentia.l version) 

F igure 5 .3 shows t he definit ion of the object fib , which is used for our mea-
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surement. For each computation of fib(n), the object fib creates two temporary 

objects to receive the values fib(n-1) and fib(n-2). These temporary objects are 

implemented by the light-weight objects in ABCL/R2, while they are implemented 

by ordinary objects in ABCL/1 2
• 

n 18 19 20 21 22 

ABCL/1 7.0 11 19 30 48 

ABCL/R2 4.6 7.4 12 20 32 

(unit: second) 

Table 5.3: Execution Time for Fibonacci Numbers 

Table 5.3 shows the result of the measurement. Although the slowness of the 

ordinary operations shown in the previous section, the execution in ABCL/R2 is 

approximately 30% faster. This is important because the light-weight objects are 

frequently created by the evaluator during the script execution. 

5.3 Costs for Reflective Computation 

Though a standard object (not non-reifying object) provides reflective capa

bilities at the cost of execution efficiency, it would be more favorable that the 

execution is more efficient. This section compares the efficiency of the standard 

objects with that of the non-reifying objects. Table 5.4 shows comparison by the 

results of the the tests appeared previous sections. From the results, the execution 

of a standard object is 5-20 times slower than that of non-reifying objects. 

21n ABCL/1, instead of the form [cont Pattern Body], the form [object (script (=> 

Pattern Body))] is used . 
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Parallel Fibonacci Message Transmission 

12 13 14 10 ,000 50,000 100,000 

Standard object 22 45 67 100 494 988 

Non-reifying object 4 6 10 4 24 49 

(unit: second) 

Table 5.4: Comparison of 'Standard' Objects with Non-Reifying Objects 
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Chapter 6 

Example of Reflective Programming 

This chapter shows a programming example suppressing the concurrency index. 

The concurrency index is the number of objects existing in the system at a given 

time during the execution of a program. In particular, the concurrency index is 

limited by the total number of resources in a system at given time[l] . Therefore, 

a scheduling method, that can control the concurrency index according to the 

number of resources available at the given system, is more favorable for a same 

computation. 

The system is organized as in figure 6.1. Each application object is created 

with a parameter showing "degree of progress" in its computation. A computa

tion of an application object at the base-level is invoked by a message from the 

metaobject to the evaluator at meta-level. In addition to the standard message, 

the metaobject sends the "degree of progress parameter" to the evaluator, and 

the metaobject of the evaluator schedules by the parameter. Giving a higher pri

ority to an object that is expected to terminate earlier, the concurrency index is 

suppressed. The definitions for these metaobjects and the application objects will 

appear in appendix B. 

For the application objects, the computation for the Fibonacci numbers and 
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Meta-Evaluator-M 

·priority queue ·priority table 
·state 
·script 

client evaluators 

[ :do Exp Env I d Gid Eva l ] 

Figure 6.1: System Suppressing Concurrency Index 

the quick sorting is used. Figures 6.2 and 6.3 shows the concurrency graphs for 

the computation of fib(lO) and sorting an array of 1,000 elements. Solid lines 

mean the concurrency indices with the priority-based scheduling, and dashed lines 

mean the ones scheduled without priorities (FIFO scheduling). The horizontal axis 

means the number of expressions processed by the evaluator. Both examples are 

executed with four client evaluators. 
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Chapter 7 

Conclusion and Future -Work 

The language ABCL/ R2 is implemented with the lazy creation scheme of meta

groups and metaobjects. The system reduces 'unnecessary reification' using the 

light-weight metaobjects . The light-weight object also provides good efficiency for 

the computation that frequently uses continuation objects. Efficient script execu

tion is achieved by the partial compilation mechanism: only selected operations 

are interpreted, and other ones are compiled. 

Many attractive examples, such as the dynamic optimization and debugging, 

have not been programmed. We would do these in future. In addition, more ex

amples should be programmed. This is because many programming experiences 

would give us the direction for more efficient implementation, and more sophis

ticated reflective architectures. One approach to more efficient implementation 

would be: reducing interpretations reflecting the changes at the meta-level on the 

compiled code at the base-level. 
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Appendix A 

Meta-Circular Definition of ABCL/R2 

Following codes are t he meta-circular definitions for the primary group kernel 

obj ects. 

;;; Group Manager 
[object Group 

(state [meta-gen:= meta-gen] 
[evaluator := eval]) 

(script 
(=> :meta-gen !meta-gen) 
(=> :evaluator !evaluator) 
(=> [:new StateSpec Env Script] @ C 

[meta-gen<= [:new StateSpec Env Script evaluator Me] @ CJ) 
(=> [:new-group StateSpec Env Script] @ C 

[Group ; ' Group ' is bound to the group manager of this object. 
<= [:new StateSpec Env Script] 
@ [cont meta-GMgr 

[[den meta-GMgr] <= :initialize] 
[C <= [den meta-GMgr]]J]) 

(=> :initialize 
;; do nothing 

) ) J 

;;; Metaobject Generator 
[object meta-gen 
(script 

(=> [:new StateSpec LexEnv Scripts Eval GMgr] 
[object Metaobject 
(state [queue : = [queue-gen<== :new]] 

[state : = nil] 
[scriptSet := scripts] 
[evaluator := Eval] 
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[Group-manager := GMgr] 
[mode := ':dormant]) 

(script 
(=> [:message Message Reply Sender] 

[queue<= [:enq [Message Reply Sender]]] 
(when (eq mode ':dormant) 

[mode : = ' : active] 
[Me <= : begin])) 

(=> :begin 
(match [queue<== :deq] 

(is [Message Reply Sender] 

(=> :end 

(match (find-script Message Reply scriptSet) 
(is [Bindings ScriptBody] 

[evaluator 
<= [: do-progn 

ScriptBody 
[env-gen <== [:new Bindings state]] 
Me Group-manager evaluator] 

©[cont_ 
[Me <= : end]]] ) 

(otherwise 
(warn "~S cannot handle the message ~S"

[den Me] Message)))))) 

(if (not [queue<== :empty?]) 
[Me <= : begin] 
[mode := ':dormant])) 

;; reflective operations 
(=> : state !state) 
(=> [:set-state newState] 

[state : = newState]) 
(=> :queue© R 

[queue<= :listify @ R]) 
(=> :dequeue© R 

[queue<= :deq @ R]) 
(=> [:find-script Message] 

!(search-script Message nil scriptSet)) 
(=> [:add-script new-script] 

[scriptSet := (cons new-script Scr i ptSet)]) 
(=> [:remove-script Message] 

[scriptSet := (remove-script Message nil ScriptSet)]) 
(=> [:enqueue item] 

[queue<= [:enq item]]))] 
;; initialization for the state variables 
[Eval <= [:do-evlis (stateSpec-initforms StateSpec) 

LexEnv Metaobject GMgr Eval] 
@ [cont initValues 

[Metaobj ect 
<= [: set-state 

[env-gen 
<== [:new (pairlis (stateSpec-varNames stateSpec) 
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;;; Evaluator 
[object eval 

(script 

!Metaobject]J))] 

initValues) 
LexEnv]J]J 

(=> [:do Exp Env Id Gid Eval] @ C 
(match Exp 

(is [:compiled scriptBody] 
(funcall scriptBody C Env Id Gid Eval)) 

(is [:variable Var] 
(match Var 

(is 'Me ! [den Id]) ; pseudo variable 
( is 'Group ! Gid) ; pseudo variable 
(otherwise [Env <= [:value-of Var] @C]))) 

(is [:self-evaluate form] 
[C <= (eval form)]) 

(is [:send-past Target Message Reply] 
[C <= nil] 
(if (not (null Target)) 

[[meta Target] <= [:message Message Reply [den Id]]])) 
(is [:send-now Target Message] 

(if (not (null Target)) 
[[meta Target] <= [:message Message C [den Id]]])) 

(is [:object-def Name Meta-gen GMgr State Script] 
(let ((Group-for-obj (or GMgr Gid)) 

(set-name 

[cont obj act 
(if Name 

[Env <= [:set-local Name [den object]] 
@ C] 

[C <= [den object]])])) 
(if Meta-gen 

[Group-for-obj 
<= :evaluator 
@ [cont evaluator-for-obj 

[Meta-gen<= [:new State Env Script 
evaluator-for-obj 
Group-for- obj] 

@ set-name]]] 
[Group-for-obj 
<= [:new State Env Script] @ set-name]))) 

(is [:group-def Name StateSpec Script] 
[Gid <= [:new-group StateSpec Env Script] 

@ (if Name 

(otherwise 

[cont GMgr 
[Env <= [:set-local Name GMgr] @ CJ] 

C)]) 
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(warn "Illegal expression ~S"Exp)))) 
;; sequential execution 

(=> [:do-progn [] Env Id Gid Eval] @C 
[C <= nil]) 

(=> [:do-progn [LastExp] Env Id Gid Eval] @C 
[Eval <= [ :do LastExp Env Id Gid Eval] @CJ) 

(=> [:do-progn [FirstExp . RestExp] Env Id Gid Eval] @C 
[Eval <= [:do FirstExp Env Id Gid Eval] 

©[cont_ 
[Eval <= [:do-progn RestExp Env Id Gid Eval] @CJ]]) 

;; list evaluation 
(=> [:do-evlis [] Env Id Gid Eval] @ C 

[C <= nil]) 
(=> [:do-evlis [FirstExp RestExp] Env Id Gid Eval] @C 

[Eval <= [ :do FirstExp Env Id Gid Eval] 
@ [cont FirstVal 

[Eval <= [:do-evlis RestExp Env Id Gid Eval] 
@ [cont RestVals 

[C <= [FirstVal . RestVals]]JJJ]))] 
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Appendix B 

Code for Suppressing Concurrency 

Index 

Codes for suppressing concurrency index are shown. Expressions surrounded by 

the boxes are inserted ones for this example. 

A metaobject for an application object is created with the priority parameter. 

When the application object starts the execution of its script, the metaobject sends 

compiled expressions with its priority to the evaluator. 

;;; Metaobject generator for application objects 
[object priori-meta-gen 

(script 
(=> [:new StateSpec LexEnv Scripts Eval GMgr I Priori ] @ R 

;; A metaobject fo r an application object 
[object Metaobject 

(meta-gen non-reifying-meta) 
(state [queue := [queue-gen<== :new]] 

[state : = nil] 

(script 

[scriptSet := scripts] 
[evaluator := Eval] 
[Group-manager := GMgr] 
mode := ':dormant 
[priority : = Priori] ) 

(=> :begin 
(match [queue<== :deq] 

(is [Message Reply Sender] 
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)] 

)] 

(match (find-script Message Reply scriptSet) 
(is [Bindings ScriptBody] 

[evaluator 
<= [:do-progn ScriptBody 

[env-gen <== [:new Bindings state]] 
Me Grou -manager evaluator 
priority ] ; with priority 

@ [cont -
[Me <= : end]]] ) 

(otherwise 
(warn "~S cannot handle the message ~S"

[den Me] Message)))))) 

Object Evaluator-M is an entry to multiple evaluators; its function is to dis

tribute given expressions to its client evaluators. Exceptionally, Evaluator-M han

dles the expressions for the object creation with priority parameter. This is because 

that each client evaluator is a primary evaluator, and does not know to handle such 

expressions . 

;;; An evaluator with multiple clients 
[object Evaluator-M 

(meta-gen Evaluator-M-meta-gen) 
(state [eval-list := el] ; el: list of client evaluators 

[current-eval : = el]) ; next client pointer 

(script 
;; object creation with priority 

(=> [:do [:object-def Name Meta-gen GMgr State Script : :priority priorityp 
Env Id Gid Eval] @ C 
[(or GMgr Gid) 

<= [:new State Env Script :priority priority] 
@ [cont object 

(if Name 
[Env <= [:set-local Name [den object]] @ C] 
[C <= [den object]])]]) 

;; normal expression 
(=> any @ C 

[(first current-eval) <=any© CJ 
[current-eval := (rest current-eval)] 
(if (null current-eval) 

[current-eval := eval-list])))] 
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The scheduling is held in the object Meta-Evaluator-M - the metaobject 

of the object Evaluator-M - whose definition .is the followings. The object 

Meta-Evaluator-M picks up the priority parameter from the message for its de

notation as the scheduling key. 

;;; A metaobject for the evaluator 
[object Meta-Evaluator-M 

(meta-gen non-reifying-meta) 
(state [pqueue : = ( create priority queue object)] 

[priority-alist := nil] 
[state : = ( initialize denotation's state variables) ] 
[scriptSet := scripts] 
[evaluator := Eval] 
[Group-manager := GMgr] 
[mode := ':dormant]) 

(script 
;; An expression with priority 

( => [: message [Tag Exp Env Id Gid Eval Priority ]
Reply Sender] 

[pqueue <= [: enq [PPriority 
[[Tag Exp Env Id Gid Eval] 
Reply Sender]]]] 

;; record sender's priority 
(pushnew (cons Id Priority) priority-alist :test #'equal) 

(when (eq mode ':dormant) 
[mode : = ' : active] 
[Me <= : begin])) 

;; expression without priority 
(=> [:message [Tag Exp Env Id Gid Eval] Reply Sender] 

(temporary 
;; search riorit value rom table 
[Priority := (cdr (assoc Id priority-alist))]) 

(if (null Priority) [Priority:= OJ) 

[pqueue <= [: enq [PPriority 
[[Tag Exp Env Id Gid Eval] 
Reply Sender]]]] 

(when (eq mode ':dormant) 
[mode : = ' : active] 
[Me<= :begin])) 

(=> :begin 
<almost same as primary metaobject) 
) 

(=> :end 
<same as primary metaobject) 
) ) ] 
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The group pcontrol is for the application objects; objects created in this 

group has a metaobject with priority value, and their scripts are executed by the 

Evaluator-Mat the meta-level. 

[group pcontrol 
(meta-gen priori-meta-gen) 
(evaluator <createEvaluator-M))J 

Following two forms are the definitions for application objects . The former one 

is for the Fibonacci numbers, and the latter one is for the quick sorting . Both 

codes are executed under the same meta-level objects shown previously. 

The object creation form with the designation (priority n ) means the cre

ation of an object with its priority value n . Actually, the evaluation of this form 

produces an expression [:object Name Meta-Gen GMgr State Script :priority 

n]. 

;;; Parallel computation for the Fibonacci numbers 
[object fib-gen 

( roup pcontrol) ; object creation in group pcontrol 
(priority 0) 

(script 
(=> [:new progress] 

![object fib 
;; declare the given number as a priority 
(priority progress)! 

(state [sub-node-value .- nil] 
[reply . - nil]) 

(script 
(=> [: ans n] 

(if sub-node-value 
[reply<= [:ans (+ sub-node-value n)]J 
[sub-node-value .- n])) 

( => 1 ! [: ans 1] ) 
(=> 2 ! [:ans 1]) 
(=> n @ R 

[reply := R] 
[[fib-gen<== [:new (- n 1)]] <= (- n 1) @ Me] 
[[fib- gen<== [:new (- n 2)]] <= (- n 2) @ Me]))]))]

;;; Parallel version of quick sorting 
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[object qsort-gen 
(group pcontrol) 
(priority 0)

(script 
(=> [:new array left right] 

;; the quick sort object 
! [object qsort 

;; declare the length of the sub-array as a priority 
((priority (- right left)) 
(state [pivot := nil] [i := nil] [j := nil] 

[reply := nil] [wait := t]) 
(script 

(=> :start @R 
(if(< left right) 

(progn 
;; parameters initialization 
[pivot := (aref array (floor(+ left right) 2))] 
[i : = left] [j : = right] [reply : = R] 
[Me<= :scan-left]) 

;; no need to divide, immediate termination 
(progn ! :fin 

[p-monitor <= :object-dead]))) 
;; scan left pointer to exchange 

(=> :scan-left 
(if (< (aref array i) pivot) 

(progn [i := (1+ i)] [Me<= :scan-left]) 
[Me<= :scan-right])) 

;; scan right pointer to exchange 
(=> :scan-right 

(if (> (aref array j) pivot) 
(progn [j := (1- j)J [Me<= :scan-right]) 
[Me<= :test-swap])) 

(=> :test-swap 
(when(<= i j) 

;; swap elements 
(let ((tmp (aref array i))) 

(setf (aref array i) (aref array j)) 
(setf (aref array j) tmp)) 

[i := (1+ i)] [j := (1- j)]) 
(if(<= i j) 

;; continue scanning 
[Me<= :scan-left] 
;; the division is finish ed 
(progn 

;; create two subobjects 
[[qsort-gen <== [:new array left j]] <= :start @Me] 
[[qsort-gen <== [:new array i right]] <= :start @Me]))) 

; ; wait for the termination of the subobjects 
(=> :fin 

(if wait 
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;; wait another subobject 
[wait := nil] 
;; notification of the termination 
[reply<= :fin])))]))] 
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