
Mio: A Block-Based Environment
for Program Design

Junya Nose
SoftBank

Tokyo, Japan
junya.nose@prg.is.titech.ac.jp

Youyou Cong
Tokyo Institute of Technology

Tokyo, Japan
cong@c.titech.ac.jp

Hidehiko Masuhara
Tokyo Institute of Technology

Tokyo, Japan
masuhara@acm.org

Abstract
Program design should be taught with a comprehensible
guideline and appropriate tool support. While Felleisen et
al.’s program design recipe serves as a good guideline for
novice learners, no existing tool provides sufficient support
for step-by-step design. We propose Mio, an environment
for designing programs based on the design recipe. In Mio,
the programmer uses blocks to express design artifacts, such
as examples of input and output data. The system checks the
consistency of the design, gives feedback to the programmer,
and produces a half-completed program for use in steps af-
ter designing. A preliminary experiment in the classroom
showed its ability to make program design easier for novices,
and to encourage programmers to follow the design recipe.
In this paper, we demonstrate the core features of Mio, re-
port the results of the experiment, and discuss our plans for
extensions.

CCS Concepts: •Applied computing→ Education; • So-
cial and professional topics → Computing education.

Keywords: program design recipe, block-based program-
ming, pedagogic programming environment

ACM Reference Format:
Junya Nose, Youyou Cong, and Hidehiko Masuhara. 2022. Mio: A
Block-Based Environment for Program Design. In Proceedings of the
2022 ACM SIGPLAN International SPLASH-E Symposium (SPLASH-E
’22), December 05, 2022, Auckland, New Zealand. ACM, New York,
NY, USA, 8 pages. https://doi.org/10.1145/3563767.3568127

1 Introduction
Problem solving through programming is a non-trivial pro-
cess consisting of multiple steps. These steps are divided into
design steps and coding steps. At design steps, one analyzes

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SPLASH-E ’22, December 05, 2022, Auckland, New Zealand
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9900-5/22/12. . . $15.00
https://doi.org/10.1145/3563767.3568127

the problem, decides the data representation of the informa-
tion involved in the problem, and sketches the structure of
the computation that manipulates the data. At coding steps,
one writes function definitions and confirms their correct-
ness. The two groups of steps are related to each other, and
often require reworking of earlier steps at a later stage of
development.
Felleisen et al. advocate that program design should be

taught along with a clear guidance, and introduced the pro-
gram design recipe in their textbook How to Design Pro-
grams [5]. The design recipe allows the programmer to sys-
tematically compose programs according to the structure
of input data. More concretely, the design recipe consists of
six steps, among which the first four are classified as design
steps:

1. Data definition and examples
2. Purpose, signature, header
3. Input-output examples
4. Template
5. Coding
6. Testing
In Figure 1, we show a Scala program that is developed

by following the six steps of the design recipe. The problem
here is to define a function area that computes the area of a
given shape, which is either a square or a triangle. Among
the outcomes of the intermediate steps, data examples do not
directly contribute to the function definition, but creating
them enhances the understanding of the problem. Similarly,
templates are not visible in the complete function definition
(indeed, they are not a valid expression in Scala), but building
them reduces the effort required in coding. The intermediate
outcomes are also useful for instructors, as they show at
which step the student gets stuck.

Unfortunately, when students are asked to develop pro-
grams based on the design recipe, they do not always follow
all the design steps. As an example, consider the template
step. Some students may think this step is redundant and go
straight to coding. Other students may try to develop a tem-
plate but give up eventually because they do not know how
to write it or how to check its correctness. Such skipping is
observed every year in the introductory programming course
taught in the authors’ institution. In our experience, students
who do not fully follow the design recipe can solve easier
problems, but they tend to get stuck on harder problems,

62

https://doi.org/10.1145/3563767.3568127
https://doi.org/10.1145/3563767.3568127

SPLASH-E ’22, December 05, 2022, Auckland, New Zealand Junya Nose, Youyou Cong, and Hidehiko Masuhara

// Data definition
sealed abstract class Shape
case class Square(length: Double) extends Shape
case class Triangle(base: Double, height: Double)
extends Shape

// Data examples
val square = Square(3)
val triangle = Triangle(4, 5)

// Purpose, signature, header
// Compute the area of a given shape
/*
def area(shape: Shape): Double = {

0
}
*/

// Input-output examples
// Given square, return 9
// Given triangle, return 10

// Function template
/*
def area(shape: Shape): Double = {

shape match {
case Square(length) => ... length ...
case Triangle(base, height) => ... base ... height ...

}
}
*/

// Function definition
def area(shape: Shape): Double = {

shape match {
case Square(length) => length * length
case Triangle(base, height) => base * height / 2

}
}

// Tests
area(square) == 9
area(triangle) == 10

Figure 1. A Function Developed Based on Design Recipe

where the design recipe can actually be useful. A similar
observation was also made by Castro [2] in their CS1 course.

Compared to requesting students to voluntarily follow the
design recipe, providing a tool for describing the outcomes
of the design steps would be a more promising approach
to teaching program design. From such a tool, students can
learn what they are expected to compose, and can receive
feedback on their mistakes and potential problems. There
exist several tools for assisting program design [7, 11, 12, 14,
15], but they are either insufficient for programming with
complex data types, or they are focused on a particular step
of the design recipe.
In this paper, we present Mio, an environment for de-

signing programs based on the design recipe. Mio has the
following features.

• It provides a block-based syntax for design steps. This
reduces the cost of learning “languages for design”,
which may be complex (as in the case of data defini-
tions) or not be part of the programming language for
coding (as in the case of templates).

• It displays the code representation of blocks on the
fly. This allows the programmer to see how each step
contributes to the eventual program.

• It generates feedback on the outcomes of design steps.
This reduces commonmistakes such as non-exhaustive
examples and pattern matching.

Note that Mio is in an early stage of development. Its
support is currently limited to non-recursive data types (al-
though the idea scales to recursive ones) and its effectiveness
has not yet been assessed. However, an experimental use

of Mio in the classroom shows its potential effectiveness,
giving us confidence that the overall design is on the right
track.

In the rest of this paper, we demonstrate the functionalities
of Mio (Section 2) and report the results of our preliminary
experiment (Section 3). We then discuss the design of Mio
from two points of view (Section 4) and describe three exten-
sions we plan to implement (Section 5). Lastly, we compare
our work with related studies (Section 6) and conclude the
paper with future perspectives (Section 7).

2 A Walk Through of Mio
2.1 Overview
Mio is a browser-based environment built on top of Google
Blockly1. It consists of a block palette, a workspace, and an
editor. The programmer goes through the four design steps
one by one, and at each step, they use blocks to compose the
required elements while seeing their code representation.

Below, we walk the reader through the four design steps,
and describe the consistency checking feature. Throughout
the section, we use the area function to illustrate the tasks
of each step.

2.2 The Design Steps
Step 1a: Data Definition. In the first half2 of Step 1, we
define shapes as an algebraic data type (Figure 2). We drag
the C-shaped data definition block into the workspace, and
write the name of the data type and the number of cases. We

1https://developers.google.com/blockly
2The idea of splitting Step 1 into two is borrowed from Ramsey [10].

63

https://developers.google.com/blockly

Mio: A Block-Based Environment for Program Design SPLASH-E ’22, December 05, 2022, Auckland, New Zealand

Figure 2. Step 1a

Figure 3. Step 1b

then plug two case blocks into the hole of the data definition
block, and specify the names of constructors as well as their
arguments. Note that there are two kinds of case blocks: one
with arguments and the other without. The distinction is
used to guide the conversion into code (case class vs. case
object in the case of Scala) and the creation of data examples
(see next step). In the editor on the right, we see the Scala
data definition converted from the block data definition.

Whenwe complete data definition, we click the “Next step”
button to ask Mio for the permission to proceed to the next
design step. If approved, we see a new item “Step 1b” in the
block menu bar.

Step 1b: Data Examples. In the second half of Step 1, we
create examples of shapes (Figure 3). When we proceed to
this step, Mio automatically generates two kinds of blocks:
one for creating squares and the other for creating triangles.
Using these blocks, we create at least one example for each
case. Observe that the blocks allow us to assign each data
example a name, which is to be used in input-output exam-
ples. For constructors with no arguments, Mio generates a
simpler block that does not have the name field (as it is not
necessary). And again, we can immediately see the Scala
version of the data examples.

Step 2: Purpose, Signature, Header. As the second step,
we compose a purpose statement, write a signature, and
create a function header (Figure 4). We do this by filling in

the holes of the function header block. In the editor, we see a
stub (called “header” in How to Design Programs) of the area
function in the Scala syntax.

Step 3: Input-output Examples. Having obtained a header,
we create input-output examples of the area function (Fig-
ure 5). Here we use the two-hole block as well as the data
examples from Step 1b, which automatically show up in the
block palette. On the right, we see two equations converted
from the example blocks, serving as the tests for the function.

Step 4: Template. As the last step of program design, we
develop a function template (Figure 6). A template is the
outline of the function, and can be systematically derived
from the definition of the input data. In our case, we are
dealing with a data type that has two cases, hence we build a
pattern matching that has two clauses. Furthermore, we are
likely to use the constructor arguments in the two clauses,
therefore we use the hint blocks to remember this. Similar
to previous steps, we obtain a Scala pattern matching with
hints on the right-hand side of case clauses.

Step 5 & 6: Coding and Testing. After Step 4, we switch to
text-based programming and work on the remaining tasks.
More specifically, we complete the function definition by
filling in the “...” in the template, and check the behavior
of the function by running the tests converted from input-
output examples. In the current implementation of Mio, we
cannot run programswithin the environment, hence we need

64

SPLASH-E ’22, December 05, 2022, Auckland, New Zealand Junya Nose, Youyou Cong, and Hidehiko Masuhara

Figure 4. Step 2

Figure 5. Step 3

Figure 6. Step 4

to download the code and run it using an installed Scala
interpreter or some external browser-based environment
(e.g., Scastie3).
3https://scastie.scala-lang.org/

2.3 Consistency Checking
When designing a program in Mio, the programmer can
receive feedback on the intermediate outcomes by pressing
the “Check” button or the “Next step” button. To see what

65

https://scastie.scala-lang.org/

Mio: A Block-Based Environment for Program Design SPLASH-E ’22, December 05, 2022, Auckland, New Zealand

Figure 7. Warning on Inssuficient Data Example

kind of feedback Mio generates, suppose the programmer
created an example of squares but did not create an example
of triangles. In this case, Mio warns the programmer that
the data example is insufficient (Figure 7). Suppose next
the programmer developed a template with a case clause
for Square but without one for Triangle. In this case, Mio
complains that the number of clauses is wrong. Thus, Mio
guarantees the consistency of data definitions, data examples,
and function templates.
When the programmer goes back to an earlier step and

makes changes, they can easily see necessary changes for
subsequent steps. Consider the case where the programmer
added a case Circle(radius: Double) to the Shape data
type after creating data examples. In such a case, Mio gener-
ates a block for creating Circle and displays it in the block
palette when the programmer revisits Step 1b. Consider next
the case where the programmer added an argument flag to
the area function after creating input-output examples. In
such a case, Mio inserts an additional hole into the existing
input-output example blocks when the programmer revis-
its Step 3. Thus, Mio maintains consistency of intermediate
outcomes in back-and-forth development.

After fixing such mistakes, the programmer sees a pop-up
message of the form “Step N OK”. Then, they can proceed to
the next step with confidence.

3 Preliminary Experiment
Although Mio is still under development, we have conducted
a small experiment to solicit feedback from students. The
participants of the experiment are 19 undergraduate students
enrolled in “Introduction to Computer Science”, a functional
programming course taught by the second author using the
Scala language. The course introduces the design recipe on
day 1, and each lesson starts with step-by-step design of a
sample program involving a new data type. The experiment
was done during the last lesson of the course; at this point,
the students had 6-week experience in programming with
non-recursive and recursive data types.
In the experiment, we gave a brief introduction to Mio

through a video demonstration created by the first author,
and asked the students to develop a template of the area
function in (a Japanese version of) Mio. We instructed the

Figure 8. Responses to Q1 (N = 19)

students to submit a screenshot of the final outcome, together
with the answers to the following questions.
Q1. Do you think programming in Mio is easier than pro-

gramming in a standard editor?
Q2. What did you like about Mio, and what did you think

could be improved?
In Figure 8, we present the responses to the first question.

The responses are mostly positive, meaning that the students
generally appreciate the support provided by Mio. As the
responses to the second question, we received the following
comments.

• I found Mio useful because I don’t need to worry about
the syntax and grammatical errors.

• I liked the colored blocks. It was also fun to see how
the code grows.

• I found it convenient to be able to reuse data examples
in input-output examples.

• I felt encouraged when Mio gave me positive feedback.
• I think coding in text is easier when you have some
experience.

From these comments, we conclude that the use of blocks
in program design could be beneficial to novice program-
mers, and showing their code representation and providing
feedback would be effective in motivating programmers to
follow design steps. We also learned that allowing text-based
editing is important for making Mio usable to a wider range
of programmers.

4 Discussion
4.1 Learning Costs
As we saw in Section 2, Mio uses blocks and text for different
phases of programming. The reader may wonder whether
this would incur additional learning cost, or, put differently,
whether it would be more natural to use a uniform interface
for the entire process. We think that the use of two interfaces
is reasonable. In the design phase, it is easier to work with
blocks as the outcomes in this phase involve non-trivial
syntax and language-specific keywords. In the coding phase,
it is more convenient to work with text because the code to
be written in this phase is often simple (consisting mainly of

66

SPLASH-E ’22, December 05, 2022, Auckland, New Zealand Junya Nose, Youyou Cong, and Hidehiko Masuhara

function calls, primitive operations, and constructors). We
hope to justify these points in our future experiments.

4.2 Scalability
In Section 2, we showed how Mio helps the programmer de-
sign a simple program written in a functional language. This
does not mean that Mio is only useful for teaching introduc-
tory functional programming. The underlying design recipe
is a guidance for problem solving in general, and hence, the
environment can be adjusted to more complex problems and
other programming paradigms. In particular, it should be
straightforward to create a variation of Mio for teaching
object-oriented programming. The idea is to follow the de-
sign recipe for classes and objects [6], which has similar
steps to the design recipe we have been using so far. It would
be interesting to build this variation of Mio and investigate
its effectiveness in an object-oriented programming course.

5 Extensions
In the current version of Mio, we support non-recursive data
types and generation of Scala code, and we require all the
tasks to be done using blocks. As future work, we intend
to extend Mio with various forms of recursion and code
generation in other languages, as well as a mechanism for
allowing text-based editing. Below, we briefly describe our
plans for these extensions.

5.1 Variations of Recursion
Recursion is known as one of the most challenging concepts
taught in an introductory programming course. The design
recipe simplifies designing of recursive functions by drawing
the programmer’s attention to the structure of input data. For
instance, in the case of structural recursion, the design recipe
asks the programmer to identify the recursive arguments
of constructors when defining data, and to insert recursive
calls on those arguments when building a template. With
these recursive calls at hand, it is often trivial to complete the
function definition. Moreover, the function is guaranteed to
terminate, as every recursive call is made with a structurally
smaller argument. We plan to support structural recursion by
providing special blocks for recursive constructor arguments
and hints representing recursive calls.
In How to Design Programs, there are also design recipes

for more advanced forms of recursion, including mutual re-
cursion, accumulative recursion, and generative recursion
(as found in divide-and-conquer algorithms). Among these,
mutual recursion requires simultaneous definition of multi-
ple data types. Accumulative recursion gives rise to a helper
function, which takes in an accumulator argument, and a
call to the helper function, which sets the accumulator to
its initial value. Generative recursion is slightly trickier. The
function definition is no longer driven by the structure of
input data; instead, it deals with the trivial and non-trivial

cases of input data, which are classified according to the
given problem. To support these variations, we plan to pro-
vide different modes of recursive program design and ask the
programmer to pick one before starting the design process.
We would also like to support switching from one mode to
another mode by performing a consistency checking similar
to what we do in back-and-forth development.

5.2 Code Generation in Other Languages
As can be seen from the screenshots in Section 2, blocks in
Mio are designed in a language-neutral way. In other words,
they do not have any elements that are specific to the Scala
language. For this reason, it is easy to convert blocks into
code in other functional languages, such as Haskell, OCaml,
and Racket. Note that, although Racket is equipped with
structures instead of algebraic data types, there is a rigorous
correspondence between the two. For instance, extracting
a constructor argument is equivalent to applying a selector
function, and pattern matching is the same as conditionals
with tests of the form (datatype-name? x).

5.3 Mixed Use of Blocks and Text
Programming with blocks is attractive to beginners, but as
the participants of our experiment pointed out, it would be
verbose for experienced programmers. To reduce the burden
caused by blocks, we are planning on allowing text-based
editing by implementing a translation from code to blocks.
It is however not obvious how we could implement such a
translation: code is much less structured than blocks, and
the programmer may write any expression in any place.
This suggests that we would need to restrict code editing in
some way, and we are currently trying to find appropriate
restrictions.

6 Related Work
Hybrid Programming Environments. In response to

the increasing diversity of the computing population, re-
searchers have developed a variety of block-based program-
ming environments over the past decades. Among these
environments, those called “hybrid” offer a text interface in
addition to a block interface. A notable example of hybrid en-
vironments is BlockPy [1], which allows the programmer to
switch between blocks and text at any time. Another example
is Pencil.cc [13], whose hybrid mode allows the programmer
to drag blocks into the text editor.

Program Design Using Blocks. While blocks are widely
used to assist coding, they are rarely used to assist designing.
The only exception we are aware of is the work by Rivera et
al. [11], who create a variation of the Snap! [8] programming
environment that helps plan composition with higher-order
function blocks, such as map and filter. Like us, they use
blocks solely for designing, but unlike us, they do not guide
step-by-step development of programs.

67

Mio: A Block-Based Environment for Program Design SPLASH-E ’22, December 05, 2022, Auckland, New Zealand

Environments Based on Design Recipe. There are sev-
eral programming environments that encourage the pro-
grammer to follow a subset of the steps of the design recipe.
WeScheme [15] is a browser-based environment for the
Racket language. It asks the programmer to provide the sig-
nature and input-output examples before defining functions.
DRaCO [12] is a similar environment, and it additionally
asks for a purpose statement and the function’s effects. Mio
extends these environments with the principle of data-driven
development, which allows systematic design of programs
involving complex data types.

Support for Specific Design Steps. There also exist tools
dedicated to a particular step of the design recipe. D4 [7] is
a system for teaching how to organize data. Using D4, the
programmer can see the consequences of data organization
through a series of exercises, such as creating a data example
and extracting a value from data. Examplar [14] is an IDE for
teaching how to write tests. In Examplar, the programmer
can assess the quality of their tests by running them against
correct and wrong implementations provided by the instruc-
tor. We are interested in enriching Mio’s functionalities by
borrowing ideas from these studies.

DesignRecipe for ProgramSynthesis. The design recipe
not only helps human write programs, but also helps com-
puters synthesize programs. Levine and Tobin-Hochstadt [9]
generate function bodies using signatures and input-output
examples. Feldman et al. [3] find complete function defini-
tions using the programmer’s incomplete definitions (which
can be viewed as a generalization of templates). These tools
are both developed for educational purposes, such as provid-
ing feedback and suggesting test cases. We conjecture that
having the outcomes of all design steps would be effective
in improving the performance of synthesis.

7 Conclusion
Teaching program design is not just about giving a set of
steps to follow; it is also about motivating students to follow
the steps. We address the latter challenge by building an envi-
ronment that integrates Felleisen et al.’s guidance.We believe
that the main features of our environment—namely the block
interface, code rendering, and feedback generation—would
contribute to better learning experience and outcomes.

After implementing the extensions discussed in Section 5,
we intend to conduct a long-term study on the effective-
ness of our environment. We are particularly interested in
the impact on the rate of correct solutions to the course
assignments and the students’ programming habits in the
subsequent programming courses. In fact, Felleisen et al. [4]
showed that the design recipe has positive effects on both
aspects. They derived this conclusion by comparing students
who learned and did not learn the design recipe. We hope to

obtain similar results when comparing students who learned
the design recipe with and without our environment.

Acknowledgments
We are grateful to the anonymous reviewers for their thor-
ough reading and insightful comments. We would also like
to thank the members of the Programming Research Group
at Tokyo Tech and the participants of Dagstuhl Seminar
No. 22302 for their encouragement and suggestions. This
research was partly supported by JSPS KAKENHI Grant
Number JP20K21790.

References
[1] Austin Cory Bart, Javier Tibau, Eli Tilevich, Clifford A Shaffer, and Den-

nis Kafura. 2017. BlockPy: An open access data-science environment
for introductory programmers. Computer 50, 5 (2017), 18–26.

[2] Francisco Enrique Vicente G Castro. 2020. Development of a Data-
Grounded Theory of Program Design in HTDP. Ph. D. Disserta-
tion. Ph.D. Dissertation. Worcester Polytechnic Institute. https:
//digitalcommons.wpi.edu/etd-dissertations/595

[3] Molly Q Feldman, Yiting Wang, William E. Byrd, François Guim-
bretière, and Erik Andersen. 2019. Towards Answering “Am I on
the Right Track?” Automatically Using Program Synthesis. In Pro-
ceedings of the 2019 ACM SIGPLAN Symposium on SPLASH-E (Athens,
Greece) (SPLASH-E 2019). Association for Computing Machinery, New
York, NY, USA, 13–24. https://doi.org/10.1145/3358711.3361626

[4] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram
Krishnamurthi. 2004. The structure and interpretation of the computer
science curriculums. Journal of Functional Programming 14, 4 (2004),
365–378. https://doi.org/10.1017/S0956796804005076

[5] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram
Krishnamurthi. 2018. How to Design Programs: An Introduction to
Programming and Computing. MIT Press.

[6] Matthias Felleisen, Matthew Flatt, Robert Bruce Findler, Kathryn E.
Gray, Shriram Krishnamurthi, and Viera K. Proulx. 2012. How to
Design Classes - Data: Structure and Organization. https://felleisen.
org/matthias/HtDC/htdc.pdf

[7] Xingjian Gu, Max A. Heller, Stella Li, Yanyan Ren, Kathi Fisler, and
Shriram Krishnamurthi. 2020. Using Design Alternatives to Learn
About Data Organizations. In Proceedings of the 2020 ACM Conference
on International Computing Education Research (Virtual Event, New
Zealand) (ICER ’20). Association for Computing Machinery, New York,
NY, USA, 248–258. https://doi.org/10.1145/3372782.3406267

[8] Brian Harvey, Daniel Garcia, Josh Paley, and Luke Segars. 2012. Snap!
(Build Your Own Blocks) (Abstract Only). In Proceedings of the 43rd
ACM Technical Symposium on Computer Science Education (Raleigh,
North Carolina, USA) (SIGCSE ’12). Association for ComputingMachin-
ery, New York, NY, USA, 662. https://doi.org/10.1145/2157136.2157351

[9] Hazel Levine and Sam Tobin-Hochstadt. 2022. Automating the De-
sign Recipe. Presented at the Scheme and Functional Programming
Workshop (Scheme ’22).

[10] Norman Ramsey. 2014. On Teaching How to Design Programs: Obser-
vations from a Newcomer. In Proceedings of the 19th ACM SIGPLAN
International Conference on Functional Programming (Gothenburg, Swe-
den) (ICFP ’14). Association for Computing Machinery, New York, NY,
USA, 153–166. https://doi.org/10.1145/2628136.2628137

[11] Elijah Rivera, Shriram Krishnamurthi, and Robert Goldstone. 2022.
Plan Composition Using Higher-Order Functions. In Proceedings of the
2022 ACM Conference on International Computing Education Research
V. 1. Association for Computing Machinery, 84–104.

68

https://digitalcommons.wpi.edu/etd-dissertations/595
https://digitalcommons.wpi.edu/etd-dissertations/595
https://doi.org/10.1145/3358711.3361626
https://doi.org/10.1017/S0956796804005076
https://felleisen.org/matthias/HtDC/htdc.pdf
https://felleisen.org/matthias/HtDC/htdc.pdf
https://doi.org/10.1145/3372782.3406267
https://doi.org/10.1145/2157136.2157351
https://doi.org/10.1145/2628136.2628137

SPLASH-E ’22, December 05, 2022, Auckland, New Zealand Junya Nose, Youyou Cong, and Hidehiko Masuhara

[12] Mike Dongyub Ryu. 2018. Improving Introductory Computer Science
Education with DRaCO. Master’s thesis. California Polytechnic State
University.

[13] David Weintrop and Uri Wilensky. 2018. How block-based, text-based,
and hybrid block/text modalities shape novice programming practices.
International Journal of Child-Computer Interaction 17 (2018), 83–92.

[14] John Wrenn and Shriram Krishnamurthi. 2019. Executable examples
for programming problem comprehension. In Proceedings of the 2019

ACM Conference on International Computing Education Research (ICER
’19). Association for Computing Machinery, 131–139.

[15] Danny Yoo, Emmanuel Schanzer, Shriram Krishnamurthi, and Kathi
Fisler. 2011. WeScheme: the browser is your programming environ-
ment. In Proceedings of the 16th Annual Joint Conference on Innovation
and Technology in Computer Science Education (ITiCSE ’11). Association
for Computing Machinery, 163–167.

69

	Abstract
	1 Introduction
	2 A Walk Through of Mio
	2.1 Overview
	2.2 The Design Steps
	2.3 Consistency Checking

	3 Preliminary Experiment
	4 Discussion
	4.1 Learning Costs
	4.2 Scalability

	5 Extensions
	5.1 Variations of Recursion
	5.2 Code Generation in Other Languages
	5.3 Mixed Use of Blocks and Text

	6 Related Work
	7 Conclusion
	References

