
Compiling Conditional Pointcuts
for User-Level Semantic Pointcuts

Tomoyuki Aotani
Graduate School of Arts and Sciences,

University of Tokyo

aotani@graco.c.u-tokyo.ac.jp

Hidehiko Masuhara
Graduate School of Arts and Sciences,

University of Tokyo

masuhara@acm.org

ABSTRACT
We propose a compilation framework that compiles condi-
tional pointcuts (i.e., if pointcuts) in AspectJ for allow-
ing the programmer to define expressive pointcuts with-
out runtime overheads. The framework automatically finds
conditional pointcuts that are static with respect to join
point shadows, evaluates them at compile-time, and gen-
erates compiled code that performs no runtime tests for
those pointcuts. By writing conditions that examine static
properties of a program, the programmer can simulate
many semantic pointcuts within current AspectJ’s seman-
tics yet without runtime overheads. Our compiler imple-
mentation identifies static conditional pointcuts by using
a technique similar to the binding-time analysis in par-
tial evaluation, and employs double-compilation scheme to
guarantee the same behavior to the code generated by the
existing AspectJ compilers. Our experiments confirmed
that the compiler is capable of compiling several seman-
tic pointcuts, such as the ones testing class membership
(e.g., has and hasfield), testing join point location (e.g.,
withinstaticinitialization), matching by using regular
expressions, and checking high-level coding rules (e.g., the
Law of Demeter).

1. INTRODUCTION
Aspect-oriented programming (AOP) helps modularization
of crosscutting concerns [17], which can not be well modu-
larized by using existing modularization mechanisms such as
procedures and classes. Typical crosscutting concerns that
can be modularized with AOP include logging, synchroniza-
tion, persistence and profiling.

One of the important mechanisms in AOP languages is the
pointcut and advice mechanism. In fact, many AOP lan-
guages including AspectJ [16], AspectWerkz, JBoss AOP,
AspectS and AspectC++ support the mechanism. It can
be explained in terms of the three elements: join points,
pointcuts and advice. A join point is a point in execution

whose behavior can be affected by advice. A pointcut is an
expression that selects join points. An advice declaration,
which has a pointcut and body statements, is to run the
body statements in addition to or in place of the join points
matching the pointcut.

Pointcuts are the key element in the pointcut and advice
mechanism for making aspects more declarative—robust
against program changes, reusable and easy to understand
[15]—as they actually specify how the effects of advice
should crosscut the base program. With pointcuts that spec-
ifies join points by using fundamental properties (e.g., the
method signatures or the declaring types), an advice decla-
ration for a complicated crosscutting behavior would have
to enumerate each individual join point to be advised.

Expressive pointcut primitives, which identify join points
based on higher-level information, offer solutions to the
declarativeness of aspects by allowing programmers to write
pointcuts that reflect their intention more straightforwardly.
Such pointcut descriptions are called semantic pointcuts.
There are a number of proposals to provide expressive point-
cut primitives including the ones to reason about calling con-
text (cflow), execution history [27], method/field member-
ship (has and hasfield) [4], information flow (dflow) [20],
and relationship among objects (associated) [24].

Languages that allow user-defined pointcut primitives could
advance the declarativeness of aspects beyond the limita-
tions of the fixed set of expressive pointcut primitives. Since
semantic pointcuts tend to be application-specific or to re-
quire heavy program analysis, they might not be expressed
by merely combining existing pointcut primitives. There
have been proposed several extensible AOP languages in
which the programmer can define new pointcut primitives [6,
9, 26].

Instead of developing extensible languages, we propose an
alternative approach to simulate expressive pointcut primi-
tives by using the conditional pointcut primitive in AspectJ.
The key idea is to let the programmer write a conditional
pointcut with an expression that examines the static proper-
ties of join points with the help of reflection APIs in Java and
AspectJ. Our proposed compilation framework evaluates the
expression at compile-time and generates code without run-
time overheads.

The rest of the paper is organized as follows. Section 2 de-

scribes usefulness of the expressive pointcuts, and how they
can be provided. Section 3 shows an overview of our pro-
posed approach. Section 4 presents our compilation frame-
work. Section 5 evaluates the expressiveness and perfor-
mance of our approach with example pointcuts and bench-
mark tests over numeric applications. Section 6 discusses
the related work. Section 7 concludes the paper.

2. POINTCUT AND ADVICE AND EXPRES-
SIVE POINTCUTS

Expressive pointcut primitives are the key to provide reusable
and comprehensible aspects by allowing the programmer to
describe pointcuts that reflect their intention more directly.
This section briefly presents how the pointcut and advice
mechanism works, and how expressive pointcut primitives
can improve the reusability and comprehensibility of as-
pects. We finally review the existing techniques to provide
new pointcut primitives with their problems.

2.1 Pointcut and Advice
As an example of the pointcut and advice mechanism in
AspectJ, we first show an aspect that profiles number of
method invocations in program execution. Among many
existing profiling techniques, AOP based techniques run on
standard execution platforms with flexibility of selecting
profiling targets [7, 14,16].

Consider simple profiling tasks that count the total number
of specific method invocations in a program execution. The
set of methods whose invocations are counted can vary. The
next definition is an aspect that counts the invocations of
the methods that are defined in EventListener interface:

1 aspect ProfilingEventListenerInvocations {
2 int counter =0;
3 pointcut profiliedCall () :
4 call (* EventListener .*(..));
5 after (): profiliedCall (){ ++ counter ; }
6 }

The second line declares an instance variable counter, which
acts as similar as instance variables in classes. The third and
fourth lines declare a pointcut named profiledCall, that
identifies any method call whose method signature belongs
to EventListener interface. The fifth line is an advice dec-
laration that increments counter after profiledCall hap-
pens.

When an application program runs with the aspect, the pro-
gram runs the body of the advice after invoking any method
in EventListener interface.

Compared with an approach that specifies each method call
expression to profile, the above approach specifies all method
call expressions to profile in a concise manner.

2.2 Expressive Pointcut Primitives
Pointcuts largely affect the maintainability, reusability and
comprehensiveness of aspects. Expressive pointcut primi-
tives are the key to improve pointcuts.

In the above example, profiledCall pointcut abstracts the
policy that specifies the set of methods to profile. For ex-

ample, in order to profile the number of interface calls to
either EventListener or Runnable, we merely need to re-
place profiledCall pointcut with the following one, which
combines two pointcut expressions by || operator:

1 pointcut profiledCall ():
2 call (* EventListener .*(..)) ||
3 call (* Runnable .*(..));

AspectJ offers many pointcut primitives to specify compli-
cated conditions. For example, we can profile method in-
vocations that are performed in specific packages by using
within pointcut.

More expressive pointcut primitives contribute to define more
robust, easier to understand, and more concise pointcuts,
which often scalled semantic pointcuts as they reflect pro-
grammer’s intention at higher-levels. Assume one wants to
profile the number of calls to all interface methods1. One ap-
proach is to declare profiledCall pointcut by enumerating
all interface names:

1 pointcut profiledCall ():
2 call (* EventListener .*(..)) ||
3 call (* Runnable .*(..)) ||
4 call (* Clonable .*(..)) ||
5 call (* Comparable .*(..)) ||
6 ...;

If there is a hypothetical pointcut primitive isInterface()

that identifies whether the method to be called is an inter-
face method, the pointcut becomes as follows:

1 pointcut profiledCall ():
2 call (* *.*(..)) || isInterface ();

We can observe a number of advantages in the latter point-
cut declaration. It is more robust against changes in the
base program; the pointcut declaration need not be changed
even when interfaces are added to the base program. It is
also more easy to understand the intension of the pointcut,
which is to profile all interface calls. (In the enumeration
based approach, the intention should be guessed by the fact
that all the interested types are interface.) It is clearly more
concise.

A number of recent AOP language studies propose various
expressive pointcut primitives. They include the ones to
express properties in the calling context [3, 16], execution
history [8,27], speculative execution [15], data flow [20], and
relation between objects [24]. There are also requirements of
new pointcut primitives to express conditions that can not
be described by merely combining existing pointcut primi-
tives [12].

2.3 User-defined Pointcut Primitives
Although many studies attempt to provide new expressive
pointcut primitives built into AOP languages, some AOP
languages offer ability mechanisms to define new pointcut

1This would be useful to analyze performance characteristics
of Java programs as interface calls are usually slower than
virtual calls in Java [23].

primitives by the programmer. The mechanisms can be clas-
sified into the following two categories:

Extensible languages allow the application programmer
to define rules to parse and compile new pointcut prim-
itives. The rules are written in the same language by
using a dedicated API [6], in different languages like
a logic programming language [10, 26] or a query lan-
guage [9].

Conditional pointcut with reflection API allows to eval-
uate arbitrary expressions, including the ones that in-
vestigate properties of a program, at runtime.

As this effectively makes it possible to describe ex-
pressive pointcuts without extending the language, we
propose to use this mechanism as an alternative to the
extensible language approach for providing expressive
pointcuts.

AspectJ offers a conditional pointcut primitive called
if pointcut in which arbitrary Boolean expressions can
be written inside. By using the reflection API in Java
and AspectJ language, it is possible to define point-
cuts that examines various properties of a program.
The following pointcut tests the same condition as the
above hypothetical isInterface() pointcut by access-
ing meta-level information through thisJoinPoint ob-
ject in AspectJ:

1 pointcut profiledCall (): call (* *(..)) &&
2 if(isInterface(thisJoinPoint));
3
4 static boolean isInterface(JoinPoint tjp){
5 return tjp.getSignature ()
6 .getDeclaringType (). isInterface ();
7 }

When a base program is to call a method, the pro-
gram evaluates the expression in the if pointcut,
which invokes isInterface method with argument
thisJoinPoint, which is an object containing meta-
level information about the current join point. Method
isInterface tests whether the method being invoked
at the join point is declared in an interface, through
reflection APIs in AspectJ (i.e., getSignature(),
getDeclaringType(), and isInterface()).

It would be possible to describe a large part of expres-
sive pointcuts by replacing expressions inside the if

pointcut.

2.4 Comparison of Approaches to Provide User-
defined Pointcut Primitives

We identify that the following four criteria illustrate the dif-
ferences between the above two approaches to user-defined
pointcuts. The differences, which are summarized in Ta-
ble 1, are discussed in the following subsections.

2.4.1 Evaluation Time
When a language evaluates the new pointcut primitives
against join points determines the runtime performance.
Whereas the extensible languages do at compile-time for

extensible cond. pointcut
criteria languages +reflection API

evaluation time compile-time runtime
evaluation context before weaving after weaving
definition language different same
information source compiler reflection APIs

Table 1: Comparison of approaches to define new pointcut
primitives

avoiding runtime overheads, conditional pointcuts in As-
pectJ are evaluated at runtime. This makes it possible to de-
scribe dynamic conditions, but the compiled code is tremen-
dously sluggish even if the conditions merely examines static
properties of a program.

2.4.2 Evaluation Context
Evaluation context is the environment under which the lan-
guage evaluates new pointcut primitives. In other words, it
is the code base examined by the new pointcut primitives.
It can be the code before weaving or after weaving (or in
the middle of weaving).

The choice of the evaluation context greatly affects the se-
mantic model for the user-defined pointcuts, and also the
implementation. If the evaluation context is the code before
weaving, the new pointcut primitives, which might examine
class membership or control reachability, can not observe ef-
fects from aspects. If the evaluation context is the code after
weaving, the implementation of the language would become
difficult. The following example explains those trade-offs.

Assume there is a pointcut written by using a user-defined
pointcut primitive that judges whether the current join point
has any control flow to a constructor of a class that imple-
ments the Runnable interface. Given the following class def-
initions, Starter implements Runnable but AppFrame does
not. The pointcut hence matches to calls to initialize but
not to makeFrame and terminate:

1 class Starter implements Runnable { ... }
2 class AppFrame { ... }
3 class Main {
4 void initialize () {... new Starter ();...}
5 void makeFrame () {... new AppFrame ();...}
6 void terminate () {/* empty */}
7 }

When there is an aspect that adds a class member and
modifies control flow, the pointcut would match differently.
For example, when the above program runs with the as-
pect shown in Listing 1, the inter-type declaration (ll.2–4)
makes AppFrame class to implement Runnable, and the ad-
vice (ll.6–8) makes executions of terminate method to cre-
ate a Starter object. Consequently, the abovementioned
pointcut should match calls to makeFrame and terminate as
well.

Most existing extensible languages use the code before weav-
ing as the evaluation context, although the authors failed in
finding clear semantics in terms of evaluation context. It
seems to be reasonable to provide the code before weaving
as only the code after weaving is not usually available at

Listing 1: An aspect which changes the class hierarchy and
control flow

1 aspect InterfaceAndControlFlowChanging {
2 declare parents:
3 AppFrame implements Runnable;
4 void AppFrame.run () { ... }
5
6 before (): execution(void Main.terminate ()){
7 ... new Starter () ...
8 }
9 }

the compile-time. An alternative semantics would provide
the code after weaving only inter-type declarations. In this
case, initialize and makeFrame match the pointcut but
terminate does not. However, it would be difficult to pro-
vide the code after weaving advice declarations. In fact, such
a system could easily cause a paradox (e.g., when the con-
trol flow from the join point can reach a call to this method,
advise so as not to perform the operation [15]).

Contrary, the conditional pointcuts are evaluated under the
evaluation environment with the code after weaving. This
is simply because the evaluation of conditions is taken place
at runtime. In other words, the effects of other aspects are
visible to the conditional pointcuts.

Although both evaluation contexts have advantages and dis-
advantages, we believe that the code after weaving gives a
comprehensible model to the programmers who define new
pointcut primitives.

2.4.3 Definition Language
In order to define a new pointcut primitives, most extensible
languages use different languages (e.g., logic programming
languages or query languages) from the host (i.e., AspectJ)
language. Some (e.g., Josh) use a similar (i.e., Java) lan-
guage, but require to use a special-purpose API to obtain
properties of a program. Conversely, the conditions in the
conditional pointcuts are written in the same (i.e., AspectJ)
language and can use standard reflection APIs (i.e., those in
Java and AspectJ).

Both choices of definition languages have advantages and
disadvantages. Special-purpose languages/APIs are good
for defining pointcut primitive concisely, but the program-
mers may need to learn a new language or API.

Another difference between the choices of definition lan-
guages: whether aspects affect the definitions of new point-
cut primitives. If we had a rich aspect library such as for
optimizations, we may want to use the library for imple-
menting new pointcut primitives. Defining new pointcut
primitives within the same language gives a chance to apply
such aspects to the definitions being written.

2.4.4 Information Source
Where the new pointcut primitives obtain information about
program properties can affect the expressiveness of the point-
cuts. The extensible languages usually provides information
from internals of the compiler. On the other hand, condi-

tional pointcut rely on the standard reflection APIs in Java
and AspectJ as the means of obtaining program properties.

Conditional pointcuts are less expressive since the standard
reflection APIs do not provide detailed information about
the program, such as control and data dependency, which is
basically available inside the compiler.

However, we believe that the standard reflection APIs al-
ready provide information to describe many interesting point-
cut primitives, including the one to test interface methods
(e.g., isInterface), field and method membership (e.g., has
and hasfield proposed for JBoss AOP and AspectWerkz)
and to check most of the Law of Demeter [18]. In addition,
if we plugged in a richer reflection API such as Javassist [5],
more expressive pointcut primitives could be described by
using conditional pointcuts.

3. OUR APPROACH
Our compilation framework evaluates conditional pointcuts
at compile-time when the conditions inside the conditional
pointcuts are static. With this framework, we aim to let the
programmer to simulate new pointcut primitives by writ-
ing conditional pointcuts without introducing runtime over-
heads. Even though our approach evaluates conditional
pointcuts at compile-time, it has the same characteristics to
the conditional pointcuts approach discussed in Section 2.4.

Before explaining the compilation framework, we discuss
several prerequisites in our approach in this section.

3.1 Compilation of AspectJ Programs
We explain our compilation framework as a modified ver-
sion of an AspectJ compiler. An existing AspectJ compiler
processes a program consisting of base class definitions and
aspect definitions in the following ways [1, 11,21]:

1. After parsing the program, it visits each parse tree
node that creates join points at runtime. Such a node
is called a join point shadow [11, 21].

2. For each advice declaration in the aspect definitions,
there are the next two cases:

(a) If the pointcut of the advice tests only static prop-
erties of the join point (e.g., call or within point-
cut), it decides whether the pointcut matches,
and when matches, it inserts instructions that run
the advice body around the join point shadow.

(b) If the pointcut can test dynamic properties (e.g.,
args, cflow, or if pointcut), it inserts instruc-
tions that run the advice body around the shadow
with a guard that tests the dynamic properties.

When the advice has an if pointcut, it generates
a boolean method that returns a value of the ex-
pression in the pointcut, and the guard invokes
the method with the values of the free variables
in the expression. We call the generated method
the conditional method of the pointcut.

For example, the compilation of the Logger class in Listing 2
with the profiling aspect in Section 2.1 with the conditional
pointcut in Section 2.3 yields the code in Listing 3.

Listing 2: Base Class Definition

1 class Logger {
2 List list;
3 public void addMessage(String msg){
4 list.add(msg);// interface call
5 }}

Since the line 4 in Listing 2 is an interface call, and the
pointcut tests by calling isInterface method inside an if

pointcut, the compiled code in Listing 3 has instructions2

that creates a (dynamic) join point (ll.3–4), and calls (l.6)
the conditional method (ll.11-12) that is generated from the
expression inside the conditional pointcut. If the result is
true, it runs the body of advice by calling (ll.7–8) a method
generated from the advice body.

Listing 3: Compiled Code by Plain AspectJ Compiler

1 class Logger {
2 public void addMessage(String msg){
3 JoinPoint jp =
4 Factory.makeJP(ajc$tjp_0 , this , list , msg);
5 list.add(msg);// interface call
6 if (Profiling.ajc$if_0(jp))
7 Profiling.aspectOf ().
8 ajc$after$Profiling1bc0f1d0d ();
9 }}

10 class Profiling {
11 static boolean ajc$if_0(JoinPoint jp) {
12 return isInterface(jp); }
13 void ajc$after$Profiling1bc0f1d0d () {
14 ...}}

3.2 Static Conditional Pointcuts
A conditional pointcut is static when the expression in the
pointcut always has the same value with respect to each
join point shadow. For example, profiledCall pointcut in
Section 2.3 is static because the expression inside always
gives true for calls to interface methods.

Although the definition of staticness is simple, we should
note the next two points:

• In order to evaluate conditional pointcuts that use es-
sential reflection APIs, our compilation framework as-
sumes that the same set of classes are given at compile-
time and at runtime. Without this assumption, the re-
flection APIs, whose result may depend on the classes
provided to the virtual machine, could return different
results over different runs.

• Our compilation framework automatically finds static
conditional pointcuts and evaluates them at compila-
tion. This is done by analysis similar to binding-time
analysis in partial evaluation techniques. An alterna-
tive approach is to let the programmer explicitly de-
clare static pointcuts by adding annotations. We chose
the automatic approach because (1) it is easier to pro-
grammers, and (2) the alternative approach would also
need a similar analysis in order to reject incorrectly
annotated pointcuts.

2We decompiled and edited the actual compiled code for
readability.

binding−time checker

unoptimized code

matching status

static conditional pointcuts

conditional pointcut evaluator

plain AspectJ compiler optimized compiler

optimized code

Base Class Aspects

(2)

(1)

(3)

(4)

Figure 1: Overview of Double Compilation

4. DOUBLE COMPILATION FRAMEWORK
We propose a double compilation technique in order to en-
sure that the analysis and evaluation of pointcuts correctly
uses the code after weaving as the evaluation context. The
compilation takes place in the following steps, as also illus-
trated in Figure 1:

1. A plain AspectJ compiler compiles the whole program
and generates the unoptimized code.

2. By analyzing the unoptimized code, the binding-time
checker selects all static conditional pointcuts.

3. The conditional pointcut evaluator evaluates the ex-
pressions in the static conditional pointcuts with re-
spect to each join point shadow. The evaluation use
the unoptimized code as the evaluation context.

4. The customized compiler recompiles the whole pro-
gram. For advice declarations with static conditional
pointcuts, the compiler does/does not insert instruc-
tions to call advice body based on the matching status
computed in the previous step.

4.1 First Compilation
We use the AspectBench Compiler (abc) [1] to generate un-
optimized code. We extended the compiler so that it records
each conditional pointcut and the free variables in the con-
ditional expression. Note that the expression is compiled
into a method in the unoptimized code.

4.2 Binding-Time Checking
The binding-time checker judges whether the conditional
pointcuts are static or not by applying the following rules.
The rules approximate the intuitive notion of static condi-
tional pointcuts in Section 3.2:

A conditional pointcut if(e) is static when the expression
e satisfies the next two:

• e accesses variables other than
thisJoinPoint, thisJoinPointStaticPart and
thisEnclosingJoinPointStaticPart. (In other
words, e accesses no global variables and variables
bound by other pointcuts.)

• All methods called in e are static3, as defined below.

A method is static (as opposed to dynamic) when the body
satisfies the next three:

• It accesses no global variables.

• It accesses no dynamic fields/methods of specific classes
(e.g., JoinPoint.getThis()).

• All methods called in the body are static.

We can intuitively understand that an expression that sat-
isfies the above rules does not have different values with re-
spect to the same join point shadow, because the evaluation
of the expression can use only values derived from constants
or the specific fields in thisJoinPoint object that are con-
stant with respect to the join point shadow.

The formal rules are given in a similar style to typing rules,
whose details are omitted in the paper.

4.2.1 Class Set
Since a naive implementation of the binding-time checking
is not precise enough and inefficient, we devise an improved
technique to minimize the number of classes examined by
the analysis.

The above rules need to examine all the methods that can
be reachable from the expression in a conditional pointcut.
If there is a call to a method defined in a class that has many
descendants, it has to examine every respective method de-
fined in each subclass. This not only degrades the efficiency
of the analysis, but also degrades the precision of the anal-
ysis.

Our technique reduces the number of methods to be investi-
gated by analyzing a set of classes that can be created during
the evaluation of the expression in the conditional pointcut.
Since an expression in a static conditional pointcut has no
access to objects that are created outside the expression, we
can have a set of classes that are possibly created during the
evaluation of the expression. By using the set, the target of
the analysis can be limited to the methods defined in the
classes included in the set.

4.3 Evaluation of Conditional Pointcuts
Given a static conditional pointcut, the evaluator matches
the pointcut at each join point shadow, and records the
matching status in a table for later use. To do so, the evalu-
ator calls a method that is generated from the expression in
the conditional pointcut with appropriate parameters. The
generated method takes parameters for thisJoinPoint etc.,
the evaluator builds a JoinPoint filled with only static infor-
mation such as signatures and source code locations. This
information is also generated at first compilation time.

The evaluator is responsible to provide an accurate evalua-
tion context to the expressions in the conditional pointcuts.

3Note that this definition includes both instance methods
and class methods.

Since evaluation of a conditional pointcut is done by calling
a method in the unoptimized code, investigation through re-
flection APIs automatically gives information in the unop-
timized, or after weaving, code, rather than the code before
weaving.

When the evaluator catches an unhandled exception during
the evaluation a conditional pointcut with respect to a join
point shadow. In this case, it records the matching status
as “dynamic” so that the later process do not optimize the
pointcut at the shadow at all. An alternative design would
report a compile error for an unhandled exception, but it
would be annoying if the exception is raised by dead code.

4.4 Second Compilation
The customized compiler for the second compilation gen-
erates optimized code. When it visits a join point shadow
that can match an advice declaration with a static condi-
tional pointcut, it retrieves the matching status of the point-
cut with respect to the join point shadow. If the matching
status is “matched” it inserts the instructions to invoke ad-
vice body without guards. If the matching status is “un-
matched”, it just does nothing. If the matching status is
“dynamic”, it inserts the instructions with guards, as if no
optimizations are done.

5. EVALUATION
An implementation of the proposed compilation framework,
which is built by modifying AspectBench Compiler (abc), is
evaluated in terms of expressiveness and efficiency.

5.1 Expressiveness Evaluation
In order to verify that the reasonably many expressive point-
cuts can be described by means of conditional pointcuts, and
to verify whether our compilation framework generates the
compiled code with no runtime overheads for those point-
cuts, we have described several expressive pointcuts includ-
ing the ones proposed by the other researchers. We con-
firmed that the following pointcuts can be written and com-
piled out in our framework:

1. isInterface

2. withinstaticinitialization [12]

3. has and hasfield [4]

4. regular expressions

5. checking violations of the Law of Demeter [19]

As we already have seen the first pointcut, we present the
implementations of the rest pointcuts below.

5.1.1 WITHINSTATICINITIALIZATION
This is a kind of lexical pointcut that matches join points
which are in the body of a staticinitialization method. We
can emulate this by using thisEnclosingJoinPointStaticPart

as Listing 4. The after advice prints the static fields of the
class Target which is initialized in the static initializer of
the class.

Listing 4: withinstaticinitialization

1 static boolean withinstaticinitialization(
2 JoinPoint.StaticPart ejp ,String cname){
3 return cname.equals(ejp.getSignature ()
4 .getDeclaringTypeName ())&&
5 ejp.getKind ()== JoinPoint.STATICINITIALIZATION;
6 }
7 after ():if(withinstaticinitialization(
8 thisEnclosingJoinPointStaticPart ,
9 "Target "))&&

10 set(static * Target .*){
11 System.out.println(thisJoinPoint);
12 }

Listing 5: hasmethod

1 static boolean hasMethod(Class c,String name ,
2 Class return_type ,Class [] param_types){
3 Class current=c;
4 do{
5 Method [] methods=current.getDeclaredMethods ();
6 for(int i=0,end=methods.length;i<end;++i){
7 if(methods[i]. getReturnType ()== return_type &&
8 Arrays.equals(methods[i]. getParameterTypes (),
9 param_types)&&

10 name.equals(methods[i]. getName ()))
11 return true;}
12 current=current.getSuperclass ();
13 }while(current !=null);
14 return false;}

5.1.2 HAS and HASFIELD
These two pointcut primitives check whether a class has the
specific method or field. We can describe them as Listing 5.
Though we ignore the modifiers and asterisk pattern match-
ing, we can easily emulate them.

5.1.3 Pointcuts with Regular Expressions
We can define more flexible pointcuts with these than aster-
isks in AspectJ. For example, when counting up the method
calls of which name is constructed with only lower-case al-
phabets, the aspect looks like follows.

1 public aspect Profiler{
2 static int counter_ =0;
3 pointcut lower_case_methods_called ():
4 call (* *(..)) && (! within(Profiler)) &&
5 if(thisJoinPoint.getSignature ().
6 getName (). matches ("^[a-z]+$"));
7 before () : lower_case_methods_called (){
8 ++ counter_;
9 }

10 }

We have a conditional pointcut with regular expressions in
the fifth and sixth line. Since its result is statically available,
we can evaluate it at compile time.

5.1.4 Checking Violations of Law of Demeter
The most violations of Law of Demeter (LoD) [19] is stati-
cally checkable with our compiler. The checked law excludes
preferred-acquaintance classes from preferred-supplier classes
since our compiler cannot evaluate the conditional pointcuts
which use global variables statically.

Figure 3: Compilation Times Relative to abc Compiler with-
out Aspects

As [18] shows the messages which warn the violations are
available only at runtime in our example while our compiler
evaluates all conditional pointcuts at compile time. This is
because currently we cannot use any conditional pointcuts
in the inter-type declarations.

5.2 Performance Evaluation
We measured compilation and execution performance of our
compiler in order to see how much our double compilation
scheme adds to the compilation time, and to see the com-
piled code generated by our compiler does not have runtime
overheads, which was significant with existing compilers.

We used Java Grande benchmark suites as base application,
and compiled them with aspects that counts the number
of invocations to the methods (1) whose names consist of
only lowercase characters, and (2) which violate the Law
of Demeter. As comparison, we compiled and executed the
same combinations of programs with the AspectJ compiler
version 1.2 (ajc) and the AspectBench compiler version 1.0.0
(abc). We also measured the performance of the base pro-
grams without aspects, and with aspects that cache the re-
sults.

All benchmark tests were executed on top of Sun HotSpot
Client Java VM 1.5.0 with the system libraries in J2SE
1.4.2 06, running on dual Xeon 3.06GHz Linux machine with
6GB memory.

5.2.1 Execution Speed
Since our compiler eliminates all runtime checks for the con-
ditional pointcuts, the compiled code runs faster than the
code generated by the other compilers. Figure 2 shows the
execution times relative to the respective applications com-
piled by the abc compiler without aspects.

As we can see, the code compiled with our compiler takes
longer time than the code compiled without aspects by the
factors of 1 to 1.08. We conjecture the overheads are due to
the body of aspects. If the compiled code evaluates point-
cuts at runtime, the overhead became 32% to 36,929 %.
Caching the results of conditions would reduce the over-
heads, but the resulted code still has overhead up to 36%.

5.2.2 Compilation Speed
Figure 3 shows the compile times of the benchmark pro-
grams relative to the compile times by the abc compiler
without aspects. Although our compiler employs the double
compilation scheme, it merely have 54% to 82% overheads

Figure 2: Execution Times Relative to abc Compiler without Aspects

(i.e., less than 100%) compared to the compilation in abc.
This would be due to the caching mechanism in the inter-
nals of the abc compiler, and also due to our compilation
framework that reduces the number of join point shadows
being advised.

Since the abc compiler is much slower than the ajc com-
piler, an implementation that based on ajc would achieve
significant speedup in compilation times. We are also plan-
ning to use backpatching techniques for the second compila-
tion phase, rather than generating the compiled code from
scratch.

6. RELATED WORK
As mentioned, there are incresing number of languages that
enable user-defined pointcut primitives [6,9,26]. Those lan-
guages requires to use a different language or API to define
pointcuts. Moreover, the evaluation context of the defined
pointcuts may not be runtime.

XAspects is a system that integrates domain-specific aspect
languages and component languages [25]. Although the pur-
pose of the language is different from ours, it employs a com-
pilation technique similar to our double compilation scheme.

Our compilation framework can be seen as partial evalua-
tion [13] of conditional pointcuts with respect to join point
shadows. However, our framework is much simpler than
the standard partial evaluation techniques as our compiler
only evaluates expressions that are totally static. If we had a
powerful partial evaluator for Java that generaets reasonable
code [2], our compilation framework could further optimize
the pointcuts in which some of, but not all of the expressions
are static with respect to a join point shadow.

7. CONCLUSION
In this paper we proposed a compilation framework for con-
ditional pointcuts in AspectJ-like languages. The framework
allows the programmer to describe expressive pointcuts by
simply writing conditions in a conditional pointcut without
introducing runtime overheads.

We also pointed out that the evaluation context of the user-
defined pointcut primitives could change the semantics of
the defined pointcuts. Our compilation framework assures
to provide runtime context, or the code after weaving, which
is consistent with the views to the ordinary conditional point-

cuts.

We implemented the framework by modifying the Aspect-
Bench Compiler, which successfully compiles several expres-
sive pointcuts defined by means of conditional pointcuts.

The expressiveness of the conditional pointcuts in our ap-
proach can be enriched by employing more powerful reflec-
tion APIs. For example, when we move on to the system
based on Java 5 (or AspectJ 5), we will be able to define
pointcut primitives to examine metadata of programs. If
we employ Javassist or similar bytecode analysis tools, the
pointcut primitives that uses more elaborated properties
such as control dependencies could be written.

The future work includes the following topics. A mecha-
nism to bypass the binding-time checking would allow the
programmer to exploit global variables in order to accelerate
the evaluation of conditional pointcuts. A load-time point-
cut evaluation mechanism could alleviate the prerequisite to
provide the same classes at compile and execution times. A
backpatching mechanism that transforms the unoptimized
code into the optimized code would be a faster alternative
to the second compilation step.

Acknowledgments
We would like to thank all individuals who gave valuable
comments on our work and an early draft of the paper, in-
cluding Kris de Volder and the members of Software Prac-
tices Lab at University of British Columbia, Karl Liberherr
and Mich Wand and the members of their group at North-
eastern University, Kenichi Asai, Shigeru Chiba and the
members of his group at Tokyo Institute of Technology, the
members of Kumiki research project, Tetsuo Tamai and his
group at University of Tokyo, the members of PPP group,
and the SPLAT’05 organizers.

8. REFERENCES
[1] P. Avgustinov, et al. abc: An extensible AspectJ

compiler. In AOSD.05, 2005. to apper.

[2] M. Braux and J. Noyé. Towards partially evaluating
reflection in Java. In PEPM’00, pp.2–11, 2000.

[3] J. Brichau, W. D. Meuter, and K. D. Volder. Jumping
aspects. In ECOOP Workshop on Aspects and
Dimensions of Concerns, 2000.

[4] B. Burke, A. Brok. Aspect-oriented programming and
JBoss. The O’Reilly Network, 2003. http://

www.oreillynet.com/pub/a/onjava/2003/05/28/

aop jboss.html

[5] S. Chiba. Load-time structural reflection in Java.
ECOOP2000, pp.313–336, 2000.

[6] S. Chiba and K. Nakagawa. Josh: an open
AspectJ-like language. In [22], pp.102–111.

[7] J. Davies, et al. An aspect oriented performance
analysis environment. In AOSD’03 Practitioner
Report, 2003.

[8] R. Douence, P. Fradet, and M. Südholt. Trace-based
aspects. In R. E. Filman, T. Elrad, S. Clarke, and
M. Akşit, eds., Aspect-Oriented Software Development,
pp.201–217. Addison-Wesley, 2005.

[9] M. Eichberg, M. Mezini, and K. Ostermann. Pointcuts
as functional queries. In APLAS’04, pp.366–382, 2004.

[10] K. Gybels and J. Brichau. Arranging language
features for more robust pattern-based crosscuts. In
AOSD’03, pp.60–69. 2003.

[11] E. Hilsdale and J. Hugunin. Advice weaving in
AspectJ. In [22], pp.26–35.

[12] W. Isberg, within{static}initialization — was Re:
withincode(clinit). AspectJ Users’ Mailing List.
https://dev.eclipse.org/mailman/listinfo/

aspectj-users. December, 2004.

[13] N. D. Jones, C. K. Gomard, and P. Sestoft. Partial
evaluation and automatic program generation.
Prentice-Hall, 1993.

[14] T. Kamio and H. Masuhara. A value profiler for
assisting object-oriented program specialization. In
Proc. of Workshop on New Approaches to Software
Construction (WNASC 2004), pp.95–102. 2004.

[15] G. Kiczales. The fun has just begun. Keynote talk at
AOSD’03, 2003.

[16] G. Kiczales, E. Hilsdale, J. Hugunin, et al. Getting
started with AspectJ. Commun. ACM, 44(10):59–65,
2001.

[17] G. Kiczales, et al. Aspect-oriented programming. In
ECOOP’97, pp.220–242. 1997.

[18] K. Lieberherr, D. H. Lorenz, and P. Wu. A case for
statically executable advice: checking the law of
Demeter with AspectJ. In AOSD’03, pp.40–49. 2003.

[19] K. J. Lieberherr and I. M. Holland. Assuring good
style for object-oriented programs. IEEE Software,
6(5):38–48, 1989.

[20] H. Masuhara and K. Kawauchi. Dataflow pointcut in
aspect-oriented programming. In APLAS’03,
pp.105–121, 2003.

[21] H. Masuhara, G. Kiczales, and C. Dutchyn. A
compilation and optimization model for
aspect-oriented programs. In CC2003, pp.46–60, 2003.

[22] G. C. Murphy and K. J. Lieberherr, editors.
Proceedings of AOSD 2004, March, 2004.

[23] I. Pechtchanski and V. Sarkar. Dynamic optimistic
interprocedural analysis: A framework and an
application. In OOPSLA’01, pp.195–210, 2001.

[24] K. Sakurai, H. Masuhara, N. Ubayashi, S. Matsuura,
and S. Komiya. Association aspects. In AOSD’04,
pp.16–25. 2004.

[25] M. Shonle, K. Lieberherr, and A. Shah. XAspects: An
extensible system for domain specific aspect
languages. In OOPSLA’03 Domain-Driven
Development Track, 2003.

[26] K. D. Volder. Aspect-Oriented Logic Meta
Programming. In Proceedings of Reflection ’99,
pp.250–272. 1999.

[27] R. J. Walker and G. C. Murphy. Implicit context:
easing software evolution and reuse. In FSE’00,
pp.69–78, 2000.

