
A Spontaneous Code Recommendation Tool
Based on Associative Search

Watanabe Takuya
Graduate School of Arts and Sciences

University of Tokyo
sodium@graco.c.u-tokyo.ac.jp

Hidehiko Masuhara
Graduate School of Arts and Sciences

University of Tokyo
masuhara@acm.org

ABSTRACT
We present Selene, a source code recommendation tool based
on an associative search engine. It spontaneously searches
and displays example programs while the developer is editing
a program text. By using an associative search engine, it can
search a repository of two million example programs within
a few seconds. This paper discusses issues that are revealed
by our ongoing implementation of Selene, in particular those
of performance, similarity measures and user interface.

Categories and Subject Descriptors
D.2.3 [Software Engineering]: Coding Tools and Tech-
niques—Program editors; D.2.6 [Software Engineering]:
Programming Environments—Interactive environments

General Terms
Languages

Keywords
Recommender, associative search, software repository

1. INTRODUCTION
Practical software systems often exploit libraries and frame-

works that consists of many modules, classes and methods,
which require the developers to have deep and wide knowl-
edge of their usage and idioms. For example, the Swing
framework in Java 6 contains 633 types that the developer
can access to.
We therefore believe that the developers spend consider-

able amount of time for finding and understanding usage
and idioms of the libraries and frameworks that the system
is using. For example, a developer, who is writing an appli-
cation program with a graphical user interface by using the
Swing framework in Java 1.4, wants to show a window with
a button. Even with limited experience on Swing, the devel-
oper manages to write the following lines by remembering
the names of the window and button classes.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’11, May 21–28, 2011, Waikiki, Honolulu, HI, US
Copyright 2011 ACM 978-1-4503-0597-6/11/05 ...$10.00.

JFrame w = new JFrame("a window");

JButton b = new JButton("OK");

Then the developer realizes that he/she does not know the
ways to place the button on the window. There are several
typical actions that the developer can take, each of which
has problems.

Inspecting types.
The developer looks into the list of the methods defined in

the directly related types (JFrame and JButton in this case)
to seek for an appropriate method to add a button. Most
integrated development environments (IDEs) have functions
to display such information in a quick way.

However, this approach does not work well when the so-
lution is indirect [8]. For the above example, a solution is as
follows.

w.getContentPane().add(b); // add a button

w.pack(); // adjust layout

Since calling add of JFrame is not appropriate, it is not easy
to find the calling sequence from the list of methods. In
addition, idioms like calling the pack method for adjusting
the layout are rarely found.

Reading a tutorial text.
The developer reads a tutorial text of the library or frame-

work to find a typical procedure to create a window with
components.

Though it might work well for simple problems like above,
finding an appropriate tutorial text and locating an appro-
priate description in the text would take some time. For
more complicated problems, it takes more time and becomes
less likely to find an appropriate description.

Searching example programs.
The developer searches a program that performs similar

operations by using a search engine, and studies subsequent
operations. For the above problem, an example Swing pro-
gram that creates JFrame and JButton probably tells the
operations that should be performed after creation of ob-
jects.

Though this approach would work well even for compli-
cated problems, use of a search engine requires the devel-
oper’s time and attention. The developer has to carefully
compose a query (for example, picking the type names JFrame
and JButton from the code), and has to browse search re-
sults to filter out suitable programs as results from a general-

masuhara
タイプライターテキスト
In Proceedings of the 3rd International Workshop on Search-driven development: Users, Infrastructure, Tools and Evaluation (SUITE 2011). Co-located with 33rd International Conference on Software Engineering (ICSE 2011), Waikiki, Honolulu, Hawaii, 2011

editing
program text

Eclipse IDE

relevant
code snippets

server
frontend

client
backend

associative text
search cluster (GETA)

Figure 1: An overview of Selene.

purpose search engine often contain documents other than
programs.
Search engines for source code, such Koders and Google

Code Search, alleviate the problem, yet need careful selec-
tion of queries and manual filtering from the results. For
example, the first result from Koders for “JFrame JButton”
is a sequence of import declarations at the beginning of a
Java program.

2. SELENE CODE RECOMMENDATION
SYSTEM

2.1 Overview
Based on the above observations, we are developing a code

recommendation system called Selene that (1) uses the en-
tire editing code as a search query and (2) quickly searches
and displays similar program fragments from a repository
of example programs. By initiating searches automatically
and by putting a large number of source programs of open-
source software into the repository, we expect that Selene
assists the developers to find usage and idioms of libraries
and frameworks suitable to their contexts with few manual
operations.
Figure 1 shows an architectural overview of Selene, whose

main components are an Eclipse plug-in on the client com-
puter and an associative search engine on the cluster server
side. They work in the following steps.

1. The plug-in constantly monitors the active editor pane
in Eclipse, and periodically sends the entire text to the
sever.

2. The search engine searches, given the program text
from the plug-in, the repository for the top N files
similar to the text, and sends back pointers to those
files.

3. The plug-in, after receiving the pointers of the search
results, retrieves contents of the first M files from the
repository. It then performs a local search for each re-
trieved file in order to identify the lines that are simi-
lar to the text around the cursor position in the editor
pane.

4. The plug-in finally shows those lines of the first M
retrieved files next to the editor pane.

2.2 Associative Search Engine
As the search engine for looking up similar programs,

we use the GETA associative search engine [10]. Unlike
keyword-based search engines, whose single search retrieves
documents that contains a specified keyword, single search
of GETA retrieves, given a set of keywords as a query, top
N similar documents that contain similar set of keywords.
Its similarity measures, such as a vector cosine similarity, do
not require existence of all query keywords in the document.
This property is suitable for using the entire editing code as
a query.

As indexing terms of the repository and query keywords,
we simply use all the alpha-numeric tokens in a program.
In other words, we include not only names appearing in
API specifications, but also non-public names, local variable
names, language constructs, and words in comment texts.

As a similarity measure, we use the cosine similarity
of term frequencies normalized by a variant of the term
frequency-inverse document frequency (TF-IDF). When
building a query vector, we put more weight on the oc-
currences of tokens near the cursor position so as to find
programs that contain similar fragments to the code around
the cursor position.

2.3 Repository
The repository contains 2,037,204 Java files that are ob-

tained from the UCI Source Code Data Sets [7]. The index,
which is used for associative searching, summarizes frequen-
cies of tokens in each file. It is 4.04 GB large in total, and
deployed to back-end nodes after splitting.

2.4 Client-side Plug-in
The user interface is built as an Eclipse plug-in. It con-

sists of four components, namely (1) the one that initiates a
search by monitoring the active editor pane, (2) the one that
sends a query text to and receives results from the server,
(3) the one that performs local search, and (4) the one that
displays the result files next to the editor pane.

As for (1) search initiation, our current implementation
starts searching whenever the component notices either any
issue of an editor command such as cut and paste, or a jump
of cursor position. In other words, it ignores minor activities
such as insertion of a character and movement of a cursor
by one character.

As for (3) local searching, we currently use a naive algo-
rithm to identify the lines to be displayed. It first splits
a result file received from the server into segments of 20
lines, calculates similarity score between each segment and
the editing code, and finds the segment that gives the max-
imum score.

2.5 Performance
The search engine cluster currently consists of one front-

end node with a 1.86 G Hz dual-core Intel Xeon 3040 proces-
sor and four back-end nodes, each of which has a 3.0 G Hz
dual-core Intel Xeon E3110 processor with 2 GB memory.

Our experiments with the repository of two million Java
files showed that the average time for a single search is 2.70
seconds with a standard deviation of 1.25 for 50 times trials.
The actual latency for displaying search results will include
network latency and local searches performed by the plug-
in. We believe that the latency is not so different from the

search time at the server when we use a quick local search
algorithm, though we have not yet measured.

3. DISCUSSION

3.1 Performance and Scalability
As mentioned above, the average search time of our cur-

rent system is 2.7 seconds, which we believe reasonable for
interactive use. In particular, our strategy to spontaneously
initiate a search makes the search latency less noticeable to
the developer.
Though we are satisfied with the current response time

with respect to the repository size, we should be careful with
scalability of the repository. Roughly speaking, a search
time by GETA is proportional to the number of the files
(and the number of different indexed terms in each file).
At the same time, a search time can be easily reduced by
increasing the number of processor nodes. We therefore pre-
sume that availability of low-cost multi-core processors will
support larger repository without difficulty.

3.2 Repository Management
When building the repository from the archives of open

source projects, we found many duplicated files. Majority of
those files are from common libraries bundled with project
archives. We removed identical files before constructing the
index.
The repository still contains files that are not identical,

yet very close to each other, which are very difficult to be
eliminated in advance. We observe that those are typically
(1) the files in different versions of the same library, and (2)
a file copied from a library, which is slightly modified for
adaptation purposes (like changing the package name).
From our experience, those almost-identical files degrade

search quality. When one of those files gets high score to the
query, others usually have the similar score as well. Hence,
the system sometimes recommends those almost-identical
files at the same time, which is waste of space.
Since it is computationally expensive to remove those sets

of files at the time of index construction, we plan to filter
out those almost-identical files after obtained search results.
An ad-hoc filtering algorithm would be sufficient for the top
N files when N is small.

3.3 Similarity Measures
There are several possible directions to improve similarity

measures, as we will briefly discuss below.

Associating semantic information.
A preprocess can associate semantic information to tokens

in programs (both in the repository and in the editing code)
before calculating similarity. For example, it can expand an
abbreviated type name (e.g., String) to the fully qualified
one (e.g., java.lang.String) so that the semantically same
yet differently represented tokens can match each other. It
can also associate static type information to occurrences of
variables so that avoid matching semantically different, yet
having the same name variable occurrences.
A problem of this approach is that it cannot be applied

to incomplete programs, which are often the case during
development. The preprocess would also be expensive for a
large-scale repository.

Semantic-based weighting.
Semantic information can also be useful to give different

weights on different kind of program elements. For exam-
ple, names of public types and public methods could have
more weights than private or local ones; tokens in comments
could have less weights than those in the code; and language
constructs such as if and int would have less weight than
others. Even though we already use TF-IDF weighting, cus-
tomized weighting that takes semantics into account might
work better.

Using ontology.
When the associative engine compares tokens in the

repository and in the editing code, we can use ontology-
based techniques instead of simple string equality. A
simple example is to split a multi-word identifier (e.g.,
DirectedEdgeWithWeight) to its constituents. The subtype
relation can used for matching tokens that are semantically
related. Moreover, an ontology database for text process-
ing could match different names that refer similar concepts
(e.g., Edge and Arc classes in different graph manipulation
programs).

3.4 Local Search
Our experience so far suggests that quality of the local

search is a crucial factor to determine overall usefulness of
the tool. In fact, we found that our current algorithm often
displays inappropriate lines.

We are currently investigating several algorithms for im-
proving file local searching. One possibility is to use an al-
gorithm to find the longest common subsequence, or to use
Levenshtein distances. The algorithms that uses program
structure [3, 8, 9] or ontology [1] would also be usable as the
number of files is small at this point.

3.5 User Interface

Search latency and frequency.
We found that, through our experiences with different

server configurations, the search latency has a dramatic im-
pact on usefulness. Under our spontaneous search model,
the search latency that the developer feels is the period from
when the developer wants for help until display of search re-
sults. Because a search might have been started before the
developer’s desire, a noticed latency can be shorter than an
actual one. On the other hand, our current initiation policy
often misses an appropriate timing by ignoring minor edi-
tor activities. When the search latencies were much longer
(around 10 seconds), we felt that the search results are up-
dated almost at random timing with less related contents.

More frequent initiation of searching will reduce (subjec-
tive) latency, but could also annoy the developer. We experi-
enced that the tool unexpectedly updates the search results
while we are inspecting the results. When a fragment of a
search result file displayed on the screen provides the exact
information that the developer wants to know, the developer
would read the contents without touching any input device,
which is difficult to be distinguished from a situation when
the developer is uninterested in the current search results.
One possible approach is to smoothly relocate result win-
dows by using animation like Code Bubbles [2] does.

Showing search results.
We also feel that the number of the results shown on the

screen and the number of lines shown in each result are cru-
cially important. With our preliminary experiences, we of-
ten needed to go through the results, and to scroll within a
result to find a suitable example fragment. It is however dif-
ficult to increase both the number of results and the number
of lines in each result, given a limited size of the screen.
One possible remedy is to show results in bubbles [2],

which consume less space around the contents. Also, tech-
niques that elide unimportant parts of the code, zooming
interfaces, and contour views would be useful.

4. RELATED WORK
CCFinder is a tool that, given a set of program files, find

pairs of program fragments that are almost identical [5].
Since its main usage is to find candidates of program refac-
toring and to detect plagiarism, its similarity measure is
more strict and more computationally expensive than ours.
CodeBroker is one of the seminal systems that suggest

usage of libraries and frameworks by using information in
the editing code as a search query [11]. As it primarily
suggests method signatures in a library, the developer needs
to infer usage from documentation. The experiment in the
paper used 673 classes in the repository.
Prospector [8], XSnippet [9] and RECOS [1] are tools

that find a sequence of method calls to obtain an object
of a type (e.g., BufferedReader) from another type (e.g.,
InputStream). Those tools use call graphs, code reposito-
ries, ontology-based representation and static program anal-
ysis for improving precision. They are limited to situations
when the developer knows the type of an object that he or
she wants to obtain and require computationally expensive
algorithms. An experiment with XSnippet to find example
code fragments uses a repository of 2,000 classes.
Strathcona is a tool that recommends example programs

that would be useful to problems in the editing code [3]. It
exploits semantic and structural information of programs in
order to find program fragments that are written in contexts
similar to the editing code’s. The paper reports that the re-
sponse time to a query varies between 4 and 12 seconds over
a repository of 17,456 classes, though their implementation
is claimed to be an unoptimized prototype.
Sourcerer is a code search engine with a large-scale soft-

ware repository consisting of open source software project
archives [6]. In addition to techniques for text-based search
engines, it can use structural information for searching. Such
a large-scale repository is also useful to code recommenda-
tion tools1.
Code Conjurer is a test-based code search engine over a

repository of 8 million Java files [4]. It can find class defi-
nitions that satisfy given test cases in between 3 seconds to
26 minutes, when it searches classes that exactly have the
designated class and method names. When it searches by
ignoring class and method names in candidate definitions,
the search times go up between 47 seconds to more than 20
hours.

5. SUMMARY
Selene is a source code recommendation tool based on

a text-based search engine over a source code repository.

1In fact, our repository is built from the archives collected
by the Sourcerer project [7].

A fast parallel associative search engine allows it to use a
large-scale repository, currently containing two million files
with maintaining query response time within a few seconds.
While it exhibits promising basic performance numbers, its
effectiveness in practical software development yet to be in-
vestigated. We also pointed out several interesting research
issues that we found so far, especially of performance, simi-
larity measures, and user interface.

Acknowledgement
We would like to thank Sushil Bajracharya and Cristina
Lopes for their help to access the UCI Source Code Data
Sets, and to thank Akihiko Tanako for his comments on the
usage of the GETA search engine. This work was partly sup-
ported as a Microsoft Research CORE Project. We to thank
the members of the PPP research group at the University of
Tokyo for their valuable comments on the paper.

6. REFERENCES
[1] A. Alnusair, T. Zhao, and E. Bodden. Effective API

navigation and reuse. In Information Reuse and
Integration (IEEE IRI), pp.7–12. 2010.

[2] A. Bragdon, et. al. Code bubbles: rethinking the user
interface paradigm of integrated development
environments. In Proceedings of International
Conference on Software Engineering (ICSE’10),
pp.455–464, 2010.

[3] R. Holmes and G. C. Murphy. Using structural
context to recommend source code examples. In
Proceedings of International Conference on Software
Engineering (ICSE’05), pp.117–125, 2005.

[4] O. Hummel, W. Janjic, and C. Atkinson. Code
Conjurer: Pulling reusable software out of thin air.
IEEE Software, 25:45–52, 2008.

[5] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: a
multilinguistic tokenbased code clone detection system
for large scale source code. IEEE Trans. Softw. Eng.,
28(7):654–670, 2002.

[6] E. Linstead, et. al. Sourcerer: mining and searching
internet-scale software repositories. Data Mining and
Knowledge Discovery, 18(2):300–336, 2009.

[7] C. Lopes, S. Bajracharya, J. Ossher, and P. Baldi. UCI
source code data sets (SDS source-repo-18k), Apr.
2010. http://www.ics.uci.edu/~lopes/datasets/.

[8] D. Mandelin, L. Xu, R. Bod́ık, and D. Kimelman.
Jungloid mining: helping to navigate the API jungle.
In Proceedings of Programming Language Design and
Implementation (PLDI’05), pp.48–61, 2005.

[9] N. Sahavechaphan and K. Claypool. XSnippet: mining
for sample code. In Proceedings of Object-Oriented
Programming Systems, Languages, and Applications
(OOPSLA’06), pp.413–430, 2006.

[10] A. Takano. Association computation for information
access. In Proceedings of International Conference on
Discovery Science, LNCS 2843, pp.33–44, 2003.

[11] Y. Ye and G. Fischer. Supporting reuse by delivering
task-relevant and personalized information. In
Proceedings of International Conference on Software
Engineering (ICSE’02), pp.513–523, 2002.

