
Duplication Removal for a Search-Based Recommendation System

Hidehiko Masuhara
Graduate School of Arts and Sciences

University of Tokyo
Tokyo, Japan

masuhara@acm.org

Naoya Murakami
Graduate School of Arts and Sciences

University of Tokyo
Tokyo, Japan

murakami@graco.c.u-tokyo.ac.jp

Takuya Watanabe

Edirium K. K.
Japan

Abstract—A search-based recommendation system looks, in
the code repository, for programs that are relevant to the
program being edited. Storing a large amount of open source
programs into the repository will make the search results better,
but also causes the code clone problem; i.e., recommending
a set of program fragments that are almost idential. To
tackle this problem, we propose a novel approach that ranks
recommended programs by taking their “freshness” count into
account. This short paper discusses the background of the
problem, and illustrates the proposed algorithm.

Keywords-Code recommendation system; open source pro-
grams; code clones

I. INTRODUCTION

Example programs are useful in remembering usages
of libraries that are not so frequently used, discovering
useful libraries themselves, and learning algorithms. Among
sources of examples, including textbooks, tutorials, and
documentation, real programs are superior in volume and
variety as we can easily access many open source programs.

It is however not easy to find appropriate examples that
suit to a context of a problem that the programmer wants
to solve. By using a keyword-based web search, we usually
have to spend a lot of time for building reasonable keywords,
and for browsing down to appropriate examples.

In order to easily find appropriate examples, several tools,
such as CodeBroker [1] and Strathcona [2], search program
fragments that have a similar context to the one that the
programmer is editing. Roughly speaking, when an example
program has more similar context, the rest of the program
is more likely to suggest what the programmer should do
next.

The authors have also developed such a tool, called Se-
lene, that searches similar program fragments from a repos-
itory, and displays subsequent fragments as examples [3].
A couple of characteristics of Selene that should be noted
here.

• Selene shows more than one example so that the
programmer can find useful information from any of
them. In fact, we found that showing 6 or 7 examples
works best, given a fixed area on a screen [4].

Figure 1. A Screenshot of Selene

• Selene uses a large repository of open source programs,
containing more than 2 million files1.

Figure 1 shows a screenshot of Selene, running as an
Eclipse plug-in. The left hand-side is a regular programming
editor. The smaller windows stacked on the right-hand side
are the example programs shown by Selene.

Selene’s activity consists of two search tasks. The first
is search based on vector similarity of token frequencies
in texts [6] that chooses the top (e.g.,) 10 files from the
repository that are similar to the text in the editor. The
second search chooses the top (e.g.,) 3 code fragments
(approximately 10 lines of code) in those 10 files that are
similar to the code fragment around the cursor position in
the editor. For each of 3 code fragments, Selene displays
a subsequent code fragment as an example. More detailed
design and implementation of Selene can be found in the
other literature [3].

1The open source programs in the repository were collected by the UCI
Source Code Data Sets [5].

masuhara
テキストボックス
to appear in Proceedings of the 4th International Workshop on Search-driven development:
Users, Infrastructure, Tools and Evaluation (SUITE'12)

1class Calc extends JFrame {
2Calc() {
3JButton ok = new JButton() {
4public void paint(Graphics g) {
5g.setColor(Color.WHITE);
6g.drawString("OK",0,0);
7}
8};

Listing 1. A program written in the editor window.

68g2.setColor(Color.YELLOW);
69g2.drawString(freemindVersion,

xCoordinate , yCoordinate);
70g2.setColor(Color.WHITE);
71g2.drawString(freemindVersion,

xCoordinate+1 , yCoordinate+1);
72}
73};
74getContentPane().add(l, BorderLayout.

CENTER);
75pack();
76Dimension screenSize = Toolkit.

getDefaultToolkit().getScreenSize();

Listing 2. A code fragment from a version of FreeMindSplash.java
distributed in the cpblogclient project.

Assume a programmer is writing a program as shown in
listing 1. Selene then finds a code fragment that corresponds
to the upper-half (until line 73) of listing 2, and displays the
lower-half as an example. The programmer can then easily
remember how to put the button on the frame, and other
possible operations that would be performed afterward.

II. PROBLEM: FILE AND FRAGMENT CLONES

Since Selene shows more than one example obtained from
a large repository of open source programs, it suffers the
code clone problem [7]. For example, listing 3 is another
file in the Selene’s repository. Even though such a file itself
would be useful, it is less useful if it is shown along with
a very similar file like listing 2. When we are limited in
the space of showing examples, code clones would decrease
chances of giving useful information to the programmer.

We here classify two types of code clones, namely file
clones and fragment clones. The former are pairs of files that
have entirely identical or similar texts. They appear when
a repository accidentally includes multiple instances of the
same project (of different versions), when a project in the
repository contains the source tree of another project also in
the repository, when a project adapted some files in another
project, and so forth. Listings 2 and 3 are an instance of
file clones. From the recorded path names, the file shown
in listing 2 seems to be copied from the original project.
As the original project evolves, the same file in the original
project becomes as shown in listing 3.

The latter, a fragment clone, is a pair of code fragments in
two files (or sometimes within one file), that have identical

114 g2.setColor(Color.WHITE);
115 g2.drawString(freemindVersion,

xCoordinate , yCoordinate);
116 g2.setColor(Color.GREEN);
117 g2.drawString(freemindVersion,

xCoordinate+1 , yCoordinate+1);
118 }
119 };
120 getContentPane().add(l, BorderLayout.

CENTER);
121 mProgressBar = new JProgressBar();
122 mProgressBar.setIndeterminate(true);
123 mProgressBar.setStringPainted(true);

Listing 3. A code fragment from FreeMindSplash.java in the FreeMind
project.

or similar texts. It is typically made by copying a code
fragment from one project to another. Boilerplate code can
often become fragment clones.

III. EXISTING TECHNIQUES TO REMOVE CLONES

Even though there are many existing techniques for code
clone detection and for clustering textual data, we cannot
apply those techniques to our problem for the following
reasons. Below, we discuss removing clone either offline
(i.e., upon constructing a repository from millions of files) or
online (i.e., when Selene retrieved about 10 files from the
repository) as feasibility of those techniques largely differ
with respect to the number of elements.

A. Offline Techniques

One approach is to carefully construct a repository so that
it contains no duplicated or similar file. It might be effective
for a small scale repository like the one for educational
purposes.

Clustering techniques such as the k-means algorithm
or the hierarchical clustering can group texts into several
similar ones. While they are proved to be useful in texts like
newspaper articles, it is not clear if these techniques can be
used for distinguishing similar files and clones. Moreover,
those techniques usually require careful specification of
parameters such as the number of clusters or the minimum
distance between clusters.

Clone detection tools can visualize candidates of fragment
clones for manual detection. CCFinder [8] is one of such
tools that is efficient enough to scan over an entire source
tree in a large project with thousands of files. However, it is
not obvious that the technique can scale to millions of files.

B. Online Techniques

When we remove clones online, we can apply rather
expensive algorithms as we only need to deal with a small
amount of code fragments to be shown.

However, since the number of examples is limited, it
becomes more difficult to judge whether a pair of code
fragments are clones or not. Assume we applied the k-means

algorithm to 500 code fragments extracted from the 10 files
in the repository. It is not obvious for us the number of
clusters that should be specified to the algorithm in advance.

Moreover, we should rank examples in terms of relative
usefulness. For example, if we showed lines 74–76 in
listing 2 and lines 120–123 in listing 3, the line 120 in the
second one is useless as it is identical to the line 74 in the
first one. However, as the rest of the lines are different each
other, both code fragments can be useful if there are no other
good examples.

IV. PROPOSAL: RANKING BY FRESH TOKEN COUNTS

A. Overview

To overcome the code clone problem, we propose a
novel method that ranks examples by using “freshness” in
addition to existing similarity measures. Intuitively, a piece
of information in an example is “fresh” if it is unknown to
the programmer, and it is not provided by the other examples
with higher ranks.

We here regard each token in program code as a piece
of information, and assume that the tokens appeared in
the editing window are not fresh (because the programmer
somehow knew them to type-in). The proposed algorithm
therefore displays examples, each of which has the following
properties:

1) Its preceding code fragment is similar to the code
fragment around the cursor position in the editor
window. (Similarity measure)

2) It contains as many tokens that do not appear in the
entire editor window and the examples that are higher-
ranked than the current one. (Freshness count)

If we choose the bottom 5 lines of listing 2 as the first
example, its freshness count is 10 as all the tokens do
not appear in the editing program2. The bottom 5 lines of
listing 3 then has the freshness count 5 because the tokens
in the two lines beginning with getContentPane()...
already appeared in the first example. As a result, if there
is another example that has higher freshness count, it could
be ranked higher than listing 3 regardless of a less similar
preceding code fragment.

B. The Algorithm

In order to take both the similarity measure (s) and the
freshness count (f) into account, we assume a function
c(s, f) that combines those two measures appropriately.
Though we plan to use a linear function optimized by using
a mechanical evaluation method3, it can be any function that
is monotonic with respect to f ; i.e., f ≤ f ′ ⇒ c(s, f) ≤
c(s, f ′).

2We ignore punctuation, operator symbols and one letter tokens.
3The proposed method calculates an average recall ratio of tokens over

a problem set that is generated from open source programs [4].

1 / / a code f r a g m e n t t o be shown
2class CF implements Comparable<CF> {
3 Set<Token> tokens; / / s e t o f t o k e n s
4 float similarity; / / s i m i l a r i t y t o t h e que ry
5 float score; / / c (s i m i l a r i t y , # f r e s h t o k e n s)
6 void renew(Set<Token> appeared) {
7 score = c(similarity,
8 tokens.diff(appeared).size());
9 }

10}
11

12List<CF> rankFrags(
13 int n, / / # f r a g m e n t s t o show
14 SortedSet<CF> cand, / / l i s t o f f r a g m e n t s
15 Set<Token> appeared) { / / s e t o f t o k e n s shown
16

17 List<CF> result = /∗ an empty l i s t ∗ /;
18 for (/∗ n t i m e s ∗ /) {
19 / / t h e f i r s t f r a g m e n t i n t h e c a n d i d a t e l i s t
20 / / i s t h e n e x t one t o be shown
21 CF f = cand.removeFirst();
22 result.add(f);
23 appeared.addAll(f.tokens); / / merge f ’ s t o k e n s
24 SortedSet<CF> updated = /∗ an empty l i s t ∗ /;
25 / / u p d a t e s c o r e s o f f r a g m e n t s i n cand t h a t
26 / / have b e t t e r s c o r e t h a n t h e b e s t one so f a r
27 do {
28 f = cand.removeFirst();
29 f.renew(appeared);
30 updated.add(f); / / e l e m e n t s a r e s o r t e d
31 } while (cand.firstElement().score
32 > updated.firstElement().score);
33 cand.addAll(updated); / / merge two s o r t e d l i s t s
34 }
35 return result;
36}

Listing 4. The algorithm that ranks code fragments based on the similarity
and fresh token counts.

The ranking algorithm assumes that each code fragment is
already assigned a similarity score of its preceding fragment,
a combined score based on a freshness count with respect
to the entire text in the editor window (i.e., no examples are
shown yet).

Naively, we can easily select the top n fragments by
repeating the following steps.

1) Among the candidate fragments, identify the code
fragment that has the highest combined score, and take
it out as the next example to be shown.

2) Add tokens in the selected example into the “ap-
peared” token set, which originally contains the tokens
in the editor window.

3) Update the combined scores of all the remaining
candidate fragments by excluding the appeared token
set from freshness count.

The complexity of this algorithm is O(nm) where m is the
number of candidate fragments.

Though the naive algorithm would work well as the
number of shown examples (n) will be limited due to a
screen size, we also designed a modified algorithm that
avoids unnecessary recalculation of combined scores.

The modified algorithm, shown in listing 4, is written
in a Java-like pseudo-language. The first 10 lines show the
information assigned to each code fragment. We assume that
every fragment has an initialized score field with respect
to the tokens in the editor window.

The algorithm begins from line 12, which takes the
number of fragments to be selected, a list of candidate
code fragments sorted in the descending order of combined
scores, and a set of tokens in the editor window. As same as
the naive algorithm, (step 1) it takes the code fragment that
has the highest combined score (lines 21–22), and (step 2)
adds tokens into the appeared token set (line 23). Instead
of updating all remaining fragments (step 3), it updates
fragments that can have better score than the best one that
have found so far (lines 27–32). Since the combined scores
monotonically decreasing for a larger appeared token set, we
do not need to update the scores of fragments that already
have lower score than the best one.

The worst time complexity of the algorithm is still
O(nm). However, the inner loop of the modified algorithm
needs to scan over many elements only when the combined
score of a fragment becomes significantly smaller, which
can happen with existence of many code clones. If there are
few code clones, the inner loop should only scan for a few
elements, thus the entire algorithm finishes quickly.

V. DISCUSSION

We proposed an algorithm that ranks the code fragments
by taking the freshness count into account, so as to avoid
the code clone problems.

The proposed algorithm is not yet implemented. Since
the current implementation of Selene ranks code fragments
by calculating scores of the fragments one-by-one, it would
require major refactoring in the ranking engine.

Identifying duplications could also suggest about useful-
ness of the code fragments. As we found that copies of com-
mon libraries tend to appear in many projects, duplication
could be an indicator of popularity of the code. We would be
able to verify this by inspecting correlation between chances
of duplication and some popularity measures.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for the
insightful comments. One of the reviewers even suggested

the relations between existence of code duplications and
usefulness. We would like to thank Sushil Bajracharya and
Cristina Lopes for their help to access the UCI Source Code
Data Sets [5]. This work was partly supported as a Microsoft
Research CORE Project. We are grateful to Manabu Toyama
for comments on the draft version of the paper.

REFERENCES

[1] Y. Ye and G. Fischer, “Supporting reuse by delivering task-
relevant and personalized information,” in Proceedings of the
24th International Conference on Software Engineering (ICSE
2002), 2002, pp. 513–523.

[2] R. Holmes and G. C. Murphy, “Using structural context to
recommend source code examples,” in Proceedings of the
27th International Conference on Software Engineering (ICSE
2005), 2005, pp. 117–125.

[3] T. Watanabe and H. Masuhara, “A spontaneous code recom-
mendation tool based on associative search,” in Proceedings of
the 3rd International Workshop on Search-driven development:
Users, Infrastructure, Tools and Evaluation (SUITE’11), May
2011, pp. 17–20.

[4] N. Murakami, H. Masuhara, and T. Watanabe, “Optimizing a
search-based code recommendation system,” in Proceedings of
the 3rd International Workshop on Recommendation Systems
for Software Engineering (RSSE’12), Jun. 2012, to appear.

[5] C. Lopes, S. Bajracharya, J. Ossher, and P. Baldi, “UCI
source code data sets (SDS source-repo-18k),” Apr. 2010,
http://www.ics.uci.edu/∼lopes/datasets/.

[6] A. Takano, “Association computation for information access,”
in Proceedings of the 6th International Conference on Dis-
covery Science, ser. Lecture Notes in Computer Science, vol.
2843, 2003, pp. 33–44.

[7] B. S. Baker, “On finding duplication and near-duplication in
large software systems,” in Proceedings of the 2nd Working
Conference on Reverse Engineering, (WCRE’95). IEEE, Jul.
1995, pp. 86–95.

[8] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: a
multilinguistic tokenbased code clone detection system for
large scale source code,” IEEE Trans. Softw. Eng., vol. 28,
no. 7, pp. 654–670, 2002.

