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Abstract

This paper presents an online partial evaluator with a mechanism to handle I/O-type

side-e�ects using preactions, and reports our experiment of using the partial evaluator as

a compiler for the reective language Black we are designing. Black is a Scheme-based

reective language, which allows user programs to access and modify its metalevel inter-

preter (or the language semantics) from within the same language framework. Because

the semantics may change during computation, it is impossible to compile using a conven-

tional Scheme compiler. To cope with this exibility, we implemented an online partial

evaluator, and specialized a Scheme meta-circular interpreter with respect to a modi�ed

interpreter to obtain an e�cient version of the modi�ed interpreter. The resulting inter-

preter turns out to be quite e�cient in that it is almost identical to the original Scheme

interpreter, except that it correctly reects the modi�cation made by users. In fact, we

got more: by supplying a speci�c user program, we obtained a compiled program under

the modi�ed language semantics.

1 Introduction

This paper presents an online partial evaluator with a mechanism to handle I/O-type side-

e�ects using preactions[14], and reports our experiment of using the partial evaluator as

a compiler for our reective language called Black [2]. Black is a Scheme-based reective

language, which allows user programs to access and modify its metalevel interpreter (or the

language semantics) from within the same language framework. For example, suppose that

we want to change the language system so that it prints traces, i.e., it prints expressions

whenever it evaluates them. To achieve this with a conventional Scheme interpreter, we

would have to fully understand its low-level implementation (which is usually written in

lower level languages), and carefully modify appropriate places in the implementation code.

Reective languages substantially simplify such modi�cations by representing a high-level

abstraction view of the interpreter within the same language framework, relieving the user

from unnecessary details of the low-level implementation.

The structure of the metalevel interpreter in Black is given by an ordinary meta-circular

interpreter[1]. With clear knowledge of how the metalevel interpreter is constructed, we can

easily program the above trace example in Black as follows:

0-1> (exec-at-metalevel

(let ((old-eval eval))

(set! eval

(lambda (exp env)

�
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(write 'trace:)

(write exp)

(newline)

(old-eval exp env)))))

Exec-at-metalevel is a special construct in Black: the body of the construct is evaluated

at the metalevel, installing a `wrapper' to the metalevel evaluator in this case. After this

program is executed, traces are displayed every time the metalevel interpreter executes the

eval function:

0-2> (+ 3 4)

trace:(+ 3 4)

trace:+

trace:3

trace:4

0-2: 7

The performance of conventional reective languages such as 3-LISP[8] and I

R

[11], how-

ever, su�ers substantially due to such exibility.

Under straightforward implementation schemes, user programs would be initially inter-

preted by an e�cient directly executable metalevel interpreter. However, an interpreted met-

alevel interpreter would be lazily created once a user program executes exec-at-metalevel to

perform modi�cations at metalevel. Henceforth, user programs are interpreted by the created

metalevel interpreter, which is interpreted by a directly executable metametalevel interpreter.

Due to this `double' interpretation, the overall execution becomes quite ine�cient.

The direct execution technique, employed in Brown[9, 17] and Blond[7], cannot be used

here, because Black allows user programs to modify the metalevel interpreter itself. Direct

execution of metalevel interpreter makes modi�cation of interpreters impossible.

One way to e�ciently execute reective programs that are allowed to modify its metalevel

interpreter is to enumerate the changes users are likely to perform and prefabricate an e�-

cient customized metalevel interpreter for each. This method, however, severely restricts the

exibility of reective languages. Instead, we take a more general approach: to cope with

every change users may make, we employ a partial evaluator as a compiler that can account

for the modi�ed metalevel interpreter. We faithfully follow the �rst Futamura projection[10].

This method might seem to be overly general, in that residual code would preserve too much

of the `double' interpretation structure above, resulting only in minor performance gains.

But according to our experiment, the obtained interpreter turns out to be quite e�cient, and

runs more than 30 times faster than the double interpretation. It is almost identical to the

standard Scheme interpreter, except that it correctly reects the modi�cation made by users

and contains error-handling routines, which were originally in the specialized interpreter.

Figure 1 summarizes the overall scenario. Initially, a user program P is interpreted by a

directly executed metalevel interpreter I

1

1

(a). (The squares and ovals in the �gure represent

directly executed code and interpreted code, respectively.) If the user program executes an

exec-at-metalevel construct, a metametalevel interpreter I

2

is lazily created (b) and the

body of exec-at-metalevel is executed at the metalevel, possibly modifying the metalevel

interpreter I

1

to obtain I

0

1

(c). As a result, the baselevel user program is ine�ciently inter-

preted by two interpreters I

2

and I

0

1

. Using a partial evaluator, we obtain an e�cient directly

1

We use a calligraphic font (such as I) to denote a directly executing program, and a typewriter font (such

as I) to denote a program that is being interpreted by a metalevel interpreter, respectively.
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Figure 1: Overall Scenario

executed interpreter I

0

1

, which is almost identical to the original directly executed interpreter

I

1

, except that it correctly reects the modi�cation made by the user program (d).

We could conceive further use of the partial evaluator: we could obtain a compiled user

program P

0

(e) by partially evaluating the modi�ed interpreter I

0

1

with respect to the user

program P. Currently, we do not directly do so, because the partial evaluator cannot handle

letrec forms (as opposed to recursive define forms) which are output from the �rst partial

evaluation. Instead, we obtain a compiled user program P

0

(e) directly from (c) by partially

evaluating the metametalevel interpreter I

2

with respect to the modi�ed metalevel interpreter

I

0

1

and the baselevel user program P. The obtained program P

0

is a compiled program under

the modi�ed language semantics.

The partial evaluator we have designed is an online[15], polyvariant, higher order par-

tial evaluator, which allows partially static values and I/O-type side-e�ects. We choose

online instead of o�ine, because of its simplicity and power. Symbolic values and graph

representations[18] are used to solve the code duplication/elimination problem. I/O-type

side-e�ects are supported by attaching preactions[14] to symbolic values. We use �lters[5]

(user annotations) to make unfold/residualize decisions, rather than employing automatic

termination mechanisms, since it is quite di�cult to devise a su�ciently strong termination

detection mechanism and such mechanisms does not seem to �t very well in the online setting.

This paper is organized as follows: the next section presents the input language for our

partial evaluator. The partial evaluator itself is described in Section 3. Section 4 illustrates an

example of compiling a modi�ed interpreter using the partial evaluator. Section 5 discusses

some related work, and Section 6 concludes the paper.

2 The Language to be Partially Evaluated

The language our partial evaluator can handle is a subset of Scheme. Figure 2 shows the

syntax. Programs are a set of define forms followed by an expression. An expression is either

a constant, a variable, a lambda closure, a conditional, a function application, a sequence, or

a known? special form, which will be explained below. A �lter is attached to each lambda

closure to indicate when to unfold/residualize. If the body of a �lter evaluates to 'unfold,

the lambda closure is unfolded, whereas if it evaluates to a list of boolean values, the closure

is residualized. Each boolean value exactly corresponds to each argument to the closure, and

indicate whether or not the value of the argument is propagated on specialization.

3



hprogrami ::= (define (hvari ...) h�lteri hexpi)

�

hexpi

h�lteri ::= (filter hexpi)

hexpi ::= const constants

j hvari variables

j (lambda (hvari ...) h�lteri hexpi) lambda closures

j (if hexpi hexpi hexpi) conditionals

j (begin hexpi ...) sequences

j (hexpi ...) applications

j (known? hvari) known? special forms

Figure 2: Syntax of the Input Language (abridged)

Known? special forms are used exclusively in �lters and evaluates to true if its argument

is a known value at partial evaluation time. The following power program shows the typical

use of �lters:

(define (power1 m n acc)

(filter (if (known? n) 'unfold '(#t #f #f)))

(if (= n 0)

acc

(power1 m (- n 1) (* m acc))))

(define (power m n)

(filter 'unfold)

(power1 m n 1))

Since power is not recursive, it can always be safely unfolded. As for power1, if the

value of n is known at partial evaluation time, it can be completely unfolded. Thus, partially

evaluating (power m 3) will yield (* m (* m (* m 1))). When the value of n is unknown,

however, power1 needs to be residualized to avoid non-termination. In such a case, the value

of m can be safely propagated to obtain more e�cient residualized code: e.g., specializing

(power 3 n) will yield

(letrec ((power1 (lambda (n acc)

(if (= n 0)

acc

(power1 (- n 1) (* 3 acc))))))

(power1 n 1))

in which the value of m is inlined in the residualized code. The value of acc, however, cannot

be propagated, because it may lead to in�nite residualizations; that is, if the value of m is

known, the partial evaluator will create in�nite versions of residualized code for power1, each

corresponding to the value 1, m, m

2

, m

3

, : : : for acc.

3 The Partial Evaluator

An online partial evaluator can be regarded as an interpreter that can handle unknown values.

For known input values, it behaves just the same way as an interpreter. When it encounters

unknown values, it creates code which computes its result at runtime. To treat both values

and code uniformly, we use symbolic values[18].
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Symbolic Value Dumped Form

Known Value const(value) value

pair(a, b) (cons a b)

closure(params, body, env) (lambda params body)

Unknown Value unknown(var) var

if (p, t, e) (if p t e)

application(f, a, ...) (f a ...)

letrec(t, body, a, ...) (letrec ((t (lambda (a ...)body)))

(t a ...))

Figure 3: Symbolic Values (without Preactions) and their Dumped Form

3.1 Symbolic Values

The symbolic values we employ consist of values or pieces of code, together with an ordered

sequence of preactions[14]. Value are used in normal interpretation, while pieces of code

are used for constructing residual code. Preactions are used for pinning down possibly dan-

gling interactions of I/O-type side-e�ects. Intuitively, we treat the value of (begin (write

e1) (newline) e2) as e2 with preactions hh(write e1); (newline)ii. We denote this by:

hh(write e1);(newline)ii

e2.

Figure 3 lists all the symbolic values (without preactions). Const, pair, and closure are

known values, which represent a constant, a pair, and a lambda closure, respectively. The

other four values are unknown values, which become pieces of code in the output. The

unknown represents an unknown variable. Letrec appears only as the result of residualization.

The �gure also shows how these symbolic values are dumped into code. Note that since parts

of symbolic values may be shared, let forms are inserted into the dumped code if necessary

to express such sharing.

3.2 The Partial Evaluator with Preactions

Figure 4 shows the core of our partial evaluator PE . It takes an expression, an environment,

and a cache which holds specializations that have been previously constructed, and returns a

symbolic value. When the expression is either a constant, a variable, or a lambda closure, PE

returns the constant itself, a value stored in the environment, or a lambda closure, respectively,

coupled with an empty preaction hhii. If the expression is a conditional, it �rst executes its

predicate-part to determine its subsequent behavior: if the value is true or false (with possible

preactions, written as P), it evaluates the then-part or the else-part, respectively, and returns

the result with the preaction of the predicate-part. In a case where the predicate value is

unknown, PE constructs if code that evaluates if at runtime. Observe how the preaction

of the predicate-part propagates out of the if expression. This enables PE to reduce, for

example, (if (begin (write e1) #t) e2 e3) into (begin (write e1) e2).

When the expression is a begin form, PE evaluates its body and returns the last value

with all the previous values as preactions. Here, concatenation of two preactions is de�ned

in an obvious way to preserve the order of I/O-type side-e�ects:

hha

1

; : : : ; a

n

ii � hhb

1

; : : : ; b

m

ii = hha

1

; : : : ; a

n

; b

1

; : : : ; b

m

ii:

Finally, function applications are performed by �rst gathering all the preactions of the function

and the arguments, and then calling the auxiliary function A.
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PE : Exp ! Env ! Cache ! Sval

� 2 Env : Var ! Sval

c 2 Cache : Var ! (Sval � Sval

�

)

A : (Sval � Sval

�

� Cache) ! Sval

PE [[con]]�c =

hhii

const(con)

PE [[var ]]�c =

hhii

�(var)

PE [[(lambda params body)]]�c =

hhii

closure(params; body; �)

PE [[(if p t e)]]�c = case PE [[p]]�c of

P

true :

P

PE [[t ]]�c

P

false :

P

PE [[e]]�c

P

p :

P

if (p;PE [[t]]�c;PE [[e]]�c)

PE [[(begin a

1

: : : a

n

)]]�c = let

A

1

a

0

1

= PE [[a

1

]]�c

� � �

A

n

a

0

n

= PE [[a

n

]]�c

in

A

1

�hha

0

1

ii���A

n�1

�hha

0

n�1

ii�A

n

a

0

n

PE [[(f a

1

: : : a

n

)]]�c = let

F

f

0

= PE [[f ]]�c

A

1

a

0

1

= PE [[a

1

]]�c

� � �

A

n

a

0

n

= PE [[a

n

]]�c

in

F �A

1

���A

n

A(f

0

; a

0

1

; : : : ; a

0

n

; c)

Figure 4: The Core of the Partial Evaluator

Notice that the rules in the �gure preserve the order of execution. In each of these rules,

the returned code will be executed in the same order as the original expression. This is a

crucial property in the presence of I/O-type side-e�ects, because without this, the resulting

output could be in a wrong order.

3.3 Function Application Rules with Preactions

The function A, shown in Figure 5, receives an operator, arguments, a cache, and returns a

symbolic value that represents the result of the application. Partial evaluation of expressions

other than application results in tree-like construction of symbolic values; i.e., there are

no sharings of substructures neither between di�erent symbolic values, nor within a symbolic

value. On the other hand, partial evaluation of function application causes sharing of symbolic

values to occur, where preactions play an important role.

Because application of primitives or lambda closures might not use all their arguments, a

naive implementation of A could cause code elimination. Two possible cases are: (1) when

an operator is a data constructor (in our case, cons), since no selector functions might be

applied to the data, and (2) when it is a lambda closure, since formal parameters might never

be used in the body of the closure. In such cases, we place their arguments into the preaction

of the result, so that they will not be inadvertently eliminated.

When cons is applied to symbolic values a

1

and a

2

, A returns a pair consisting of a

1

and

a

2

, together with a preaction hha

1

; a

2

ii. In the returned value, the occurrences of a

1

in the

preaction and within the pair constructor are shared; this holds as well for a

2

. (See Figure 6.)
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A(cons; a

1

; a

2

; c) =

hha

1

;a

2

ii

pair(a

1

, a

2

)

A(f = closure(x

1

; : : : ; x

n

; body; �); a

1

; : : : ; a

n

; c)

=

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

hha

1

;:::;a

n

ii

PE [[body]]�[a

1

=x

1

; : : : ; a

n

=x

n

]c

if �lter evaluates to

0

unfold

hhii

application(t

0

; a

1

; : : : ; a

n

)

if cache hits : c(t

0

) = (f; a

0

1

; : : : ; a

0

n

)

hha

1

;:::;a

n

ii

letrec(t;PE [[body]]�[a

0

1

=x

1

; : : : ; a

0

n

=x

n

]c

0

; a

1

; : : : ; a

n

)

otherwise

where c

0

= c[(f; a

0

1

; : : : ; a

0

n

)=t]

a

0

i

=

(

a

i

if to be propagated

unknown(x

i

) otherwise

t = a fresh variable

A(prim; a

1

; : : : ; a

n

; c) =

(

hhii

prim(a

1

; : : : ; a

n

) if all known

hhii

application(prim; a

1

; : : : ; a

n

) otherwise

Figure 5: Function A

hh � ; � ii

pair( � ; � )

a

1

a

2

�

�

�

�	

�

�

��

@

@

@

@R

A

A

A

AU

Figure 6: Symbolic Value Returned by Applying cons

For example, suppose we have the following expression:

(cdr (cons (if p (write 1) (write 2)) 3))

where p is an unknown variable. To specialize this expression, PE �rst constructs a symbolic

value:

hhif (p;(write 1);(write 2));3ii

pair(if (p, (write 1), (write 2)), 3). Since both arguments are

put into the preaction, they correctly propagate out of the application of cdr. The result

would be

hhif (p;(write 1);(write 2));3ii

3 or, in textual form:

(begin (if p (write 1) (write 2)) 3 3).

(The redundant 3 in the result is eliminated by simple post-processing in our partial evalua-

tor.)

Note that if the arguments were not placed in the preaction, the result would become

incorrect. Without preactions, PE will extract 3 out of pair(...) discarding if (...). The result

will display nothing, whereas the original program will display either 1 or 2 according to the

dynamic value of p.

It might initially seem that this technique would have the drawback of code being dupli-

cated, if both of the arguments are eventually used in the original program. Fortunately, this

is not the case, since they are shared ; instead of being duplicated, they are collected to form

a let form by �nding the least upper bound of shared values[18]. Thus, specializing

(car (cons (if p (write 1) (write 2)) 3))

will yield

7



(let ((t1 (if p (write 1) (write 2)))) (begin t1 t1))

which is reduced to (if p (write 1) (write 2)) via post-processing.

The situation is exactly the same for applying lambda closures, because formal parameters

may never be used in the body of a closure. We put the arguments of a lambda closure into

its preaction as well, so that they will not be eliminated.

For a lambda closure, we also need to decide if it should be unfolded or residualized.

This is determined by evaluating �lters[5] . Filters allow us to avoid incorporating complex

termination detection algorithm, maintaining the simplicity of online partial evaluation. If

the �lter evaluates to 'unfold, the lambda closure is unfolded: the body of the lambda

closure is partially evaluated in the extended environment. On the other hand, when the

�lter evaluates to a list of boolean values, the lambda closure is residualized: a cache is

�rst looked-up to determine whether the same lambda closure has already been residualized

with the same set of arguments. If so, a piece of code to call this specialization is returned.

When the cache misses, residualized letrec code is constructed, with the body of the lambda

closure being evaluated under the extended environment plus the cache that contains the

current residualization. Here, the environment is extended only for those arguments whose

value the �lter indicates that they should be propagated|the arguments for which the �lter

indicates not to propagate are discarded, and become completely unknown in the extended

environment.

Finally, application of primitive functions (other than cons) is done by actually applying

the primitive to its arguments if both the function and the arguments are all known, and

otherwise constructing a pieces of code for application. Speci�cally, application of unknown

functions always returns application code.

3.4 Post-Processing

Here, we briey mention the post-processing, performed by our partial evaluator. After an

output symbolic value is obtained, the partial evaluator �rst specializes residualized lambda

closures (which are left unspecialized) on completely unknown arguments. Then, the resulting

symbolic value is dumped into code, preserving sharings using let forms. Finally, the obtained

code is beauti�ed by repeatedly applying post-processing rules, such as:

� (begin const exp ...) ! (begin exp ...)

� (begin var exp ...) ! (begin exp ...)

� (begin exp) ! exp

� If a variable bound by a let form is used only once, inline.

4 Specializing an Interpreter on a Modi�ed Interpreter

In this section, we experiment the power of our online partial evaluator through compiling

a modi�ed interpreter. Let the interpreter to be partially evaluated be I

2

and the modi�ed

interpreter I

0

1

. We will specialize I

2

(I

0

1

) to obtain I

0

1

, which is a directly executable version

of the modi�ed interpreter.
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4.1 Interpreter to be Specialized

Figure 7 shows the overview of I

2

. It is a standard continuation-passing style metacircular in-

terpreter. Filters are attached to interpreter functions base-eval

2

, eval-begin, eval-list,

eval-lambda, and some other environment manipulation functions, which are not shown

here

3

. The �lters usually have a common form, stating that if the expression is known, then

unfold, otherwise residualize without propagating any of the values of arguments. Interpreter

functions are thereby unfolded only when the expression to be interpreted is known at partial

evaluation time.

The �lter in eval-lambda is somewhat di�erent from others: this �lter avoids in�nite

unfolding in the case where the interpreted program contains recursion. Even though the

interpreter is unfolded only when expressions are known, the partial evaluation process may

still unfold in�nitely. For example, suppose we are specializing I

2

with respect to a factorial

program, i.e., PE(I

2

((fac n))) for some unknown n. Because the expression is known to

be (fac n), the partial evaluator unfolds it and evaluates the body of fac. Eventually, it

encounters fac again in the body of fac. Because the expression is still known to be fac,

however, it is unfolded again, leading to in�nite unfolding.

Since we employed the �lter approach rather than automatic detection approach for ter-

mination, we again take the same approach here to avoid such non-termination: we attach

�lters to interpreted programs themselves. For example, given a recursive de�nition of fac

in interpreted programs:

(define (fac n) (if (= n 0) 1 (* n (fac (- n 1)))))

we attach a �lter in the following way:

(define (fac n)

(filter (if (known? n) 'unfold '(#f)))

(if (= n 0) 1 (* n (fac (- n 1))))).

(Note that I

2

in Figure 7 supports the known? special form.)

Eval-lambda uses this �lter to avoid non-termination. It returns a metalevel lambda

closure, which corresponds to a closure in a baselevel interpreted program. When it is applied

to arguments during partial evaluation, the baselevel �lter is used to form a �lter of the

metalevel closure; i.e., the �lter in the body of the baselevel closure is extracted and evaluated

to make the unfold/residualize decision of the metalevel closure.

4.2 Modi�ed Interpreter

Figure 8 shows the modi�ed interpreter I

0

1

, on which I

2

is specialized. Since interpreted

programs now need �lters, I

0

1

is very similar to I

2

, including �lter descriptions. The last let

expression of I

0

1

speci�es user modi�cation: it is essentially equivalent to the trace example

presented in Section 1.

The set! statement in I

0

1

is handled by eval-set! in I

2

, in which set! is realized by

an assignment to a global variable. This does not cause a problem, because the program

we are treating contains only unconditional toplevel set!. (For more elaborate treatment of

assignments, see our forthcoming paper[3].)

2

We use the name base-eval rather than eval to distinguish it from the Scheme eval function.

3

The code for interpreting exec-at-metalevel is not shown here, either. Because exec-at-metalevel

involves metalevel interactions, we have to treat it separately[2].
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(define (base-eval exp env cont)

(filter (if (known? exp) 'unfold '(#f #f #f)))

(cond ((number? exp) (cont exp))

((symbol? exp) (eval-var exp env cont))

((eq? (car exp) 'quote) (eval-quote exp env cont))

((eq? (car exp) 'if) (eval-if exp env cont))

((eq? (car exp) 'define) (eval-define exp env cont))

((eq? (car exp) 'set!) (eval-set! exp env cont))

((eq? (car exp) 'lambda) (eval-lambda exp env cont))

((eq? (car exp) 'begin) (eval-begin (cdr exp) env cont))

((eq? (car exp) 'known?) (eval-known? (car (cdr exp)) env cont))

(else

(eval-list exp env

(lambda (l) (base-apply (car l) (cdr l) env cont))))))

(define (eval-var exp env cont) ...)

(define (eval-quote exp env cont) (cont (car (cdr exp))))

(define (eval-if exp env cont) ...)

(define (eval-define exp env cont) ...)

(define (eval-set! exp env cont) ...)

(define (eval-lambda exp env cont)

(let ((lambda-body (cdr (cdr exp)))

(lambda-params (car (cdr exp))))

(cont (lambda operand

(filter (base-eval (car (cdr (car lambda-body)))

(extend env lambda-params operand)

(lambda (directive) directive)))

(eval-begin (cdr lambda-body)

(extend env lambda-params operand)

(lambda (x) x))))))

(define (eval-begin body env cont)

(filter (if (known? body) 'unfold '(#f #f #f)))

(cond ((null? body) '())

((null? (cdr body))

(base-eval (car body) env cont))

(else

(base-eval (car body) env

(lambda (x) (eval-begin (cdr body) env cont))))))

(define (eval-known? exp env cont) ...)

(define (eval-list exp env cont)

(filter (if (known? exp) 'unfold '(#f #f #f)))

(if (null? exp)

(cont '())

(base-eval (car exp) env

(lambda (val1)

(eval-list (cdr exp) env

(lambda (val2)

(cont (cons val1 val2))))))))

(define (base-apply operator operand env cont)

(if (procedure? operator)

(cont (scheme-apply operator operand)))

(error (list 'Not 'a 'function: operator)))

Figure 7: The Interpreter to be Partially Evaluated I

2
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(define (base-eval exp env cont) ...)

...

(define (base-apply operator operand env cont) ...)

(Up to here is identical to I

2

(Figure 7))

(let ((old-eval base-eval)) ; modify base-eval to print traces

(set! base-eval (lambda (exp env cont)

(write exp)

(old-eval exp env cont))))

base-eval ; returns the modified interpreter

Figure 8: The Modi�ed Interpreter I

0

1

4.3 The Result

Figure 9 shows the actual result of partial evaluation using our partial evaluator. (We have

renamed some bound variables for better readability.) The output value is a lambda closure,

which, when applied, prints its �rst argument, and then calls base-eval de�ned in letrec.

Base-eval has almost the same structure as the original base-eval, but it precedes every

call to base-eval with write expressions, correctly reecting the user modi�cation. In fact,

according to our preliminary experiment, it runs more than 30 times faster than the `double'

interpretation. We could even compile the modi�ed interpreter into directly executable code

under the underlying Scheme compiler.

Another point to notice is that error-handling code is inlined into the residualized code.

If the continuation argument is not a function, it reports an error

4

. These error-handling

routines were originally in I

2

, but were inherited to the resulting modi�ed interpreter via the

partial evaluation.

To proceed further, we now specialize I

2

with respect to I

0

1

and a baselevel user program:

i.e., we specialize I

2

(I

0

1

(P)). We replace the last base-eval in Figure 8 with

(base-eval '(+ 3 4) init-env (lambda (x) x)).

That is, instead of returning the modi�ed base-eval, we use it directly to evaluate '(+ 3

4).

The result of this partial evaluation is as expected:

(begin (write (list '+ 3 4)) (write '+) (write 3) (write 4) 7).

The behavior is identical to the execution under the `doubly interpreted' reective Black in

Section 1, but entirely specialized. That is to say, user program is successfully compiled under

the modi�ed language semantics.

5 Related Work

There seems to be only a few papers that propose the use of partial evaluation for e�cient

implementation of reective languages. Danvy[6] pointed out the similarity between a reec-

4

Notice that the continuation can take non-function values, if the user erroneously modi�es the metalevel

interpreter.
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(lambda (exp1 env1 cont1)

(write exp1) ; write

(letrec ((base-eval

; the definition of base-eval

(lambda (exp2 env2 cont2)

(cond ((number? exp2)

(if (procedure? cont2) ; error handling

(cont2 exp2)

(list 'not 'a 'function: cont2)))

((symbol? exp2) ...)

((eq? (car exp2) 'quote) ...)

((eq? (car exp2) 'if)

(let ((pred-part (car (cdr exp2))))

(write pred-part) ; write

(base-eval pred-part env2

(lambda (pred)

(if pred

(let ((then-part (car (cdr (cdr exp2)))))

(write then-part) ; write

(base-eval then-part env2 cont2))

(let ((else-part (car (cdr (cdr (cdr exp2))))))

(write else-part) ; write

(base-eval else-part env2 cont2)))))))

...

(else ; function application

(letrec ((eval-list (lambda (exp3 env3 cont3)

(if (null? exp3)

(if (procedure? cont3) ; error handling

(cont3 '())

(list 'not 'a 'function: cont3))

(let ((t103 (car exp3)))

(write t103) ; write

(base-eval t103 env3 (lambda (val1)

(eval-list (cdr exp3) env3 (lambda (val2)

(if (procedure? cont3) ; error handling

(cont3 (cons val1 val2))

(list 'not 'a 'function: cont3)))))))))))

(eval-list exp2 env2

(lambda (l)

(let ((t109 (car l)))

(if (procedure? t109)

(if (procedure? cont2) ; error handling

(cont2 (apply t109 (cdr l)))

(list 'not 'a 'function: cont2))

(list 'not 'a 'function: t109)))))))))))

; end of the definition of base-eval

(base-eval exp1 env1 cont1)))

Figure 9: The Result of Specializing I

2

(I

0

1

)
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tive tower and the Futamura projection[10]. This is in contrast to our approach, in which we

use a partial evaluator as a tool for e�ciency in reective languages.

The partial compilation technique[13] used in the implementation of the reective con-

current object-oriented language ABCL/R2 takes a similar approach to ours using partial

evaluators, but it is strictly limited. In ABCL/R2, the expression patterns that can be

modi�ed are statically predetermined to compile-out unmodi�able parts. As a result, some

expressions are always interpreted even if the metalevel interpreter is not modi�ed at all.

Their approach, although faster than `full' interpretation, proves to be slower than the direct

(non-interpretive) execution by an order of magnitude.

Kiczales et al.[12] designed an `open compiler' based on the Meta Object Protocol (MOP)

approach. By allowing users to control the compilation process using MOP, they avoid using

a general partial evaluator for compilation. They are advantageous in controlling language

properties that are static at compile-time (e.g., to modify the run-time representation of a data

structure), while our partial evaluation based compilation is suitable for modifying language

properties that depends on run-time conditions. This is because the partial evaluator unfolds

the user extensions that can be determined at compile-time, and residualize the others, while

in the MOP approach, such residualization is not generally supported. We also provide the

user with a concise and high-level view of the language implementation by exposing the entire

interpreter, instead of `spreading out' the implementation among multiple metaobjects.

The reective language Refci[16] allows user programs to rede�ne a metalevel interpreter,

which is divided into two pieces, called prelim and dispatch. By restricting user modi�cations

to only these two parts, it achieves good performance. Through employing a partial evaluation

technique, we obtain e�cient interpreters without restricting possible modi�cations.

The partial evaluator we designed is based on Fuse[15]. It is an online partial evaluator

with a sophisticated automatic termination detection mechanism. We did not employ the

automatic termination detection approach, however, because it complicates the partial eval-

uator considerably and it is not clear whether recursions on both metalevel and baselevel

programs can be automatically detected.

Similix[4] is an o�ine partial evaluator, which can treat both I/O-type side-e�ects and

assignments to global variables. However, we did not use Similix as our compiler, because

it seemed rather di�cult to identify which parts of a program were static and which were

dynamic to control the behavior of Similix. The online approach, with our simple preaction

mechanism for I/O-type side-e�ects, gave us su�cient control, with which interpreters were

compiled successfully.

6 Conclusion

We presented an online partial evaluator with a new mechanism to handle I/O-type side-

e�ects using preactions, and reported our experiment of using the partial evaluator as a

compiler for reective languages. Although the approach taken here is quite general, the

result shows that the partial evaluator is powerful enough to obtain compiled interpreters for

reective languages. Moreover, we have succeeded in compiling user programs under modi�ed

language semantics. We are now undergoing work to actually incorporate the partial evaluator

as a compiler for both Black and ABCL/R2 systems.
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