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Abstract. In widely-used actor-based programming languages, such as
Erlang, sequential execution performance is as important as scalability of
concurrency. In order to improve sequential performance of Erlang, we
develop Pyrlang, an Erlang virtual machine with a just-in-time (JIT)
compiler by applying an existing meta-tracing JIT compiler. In this
paper, we overview our implementation and present the optimization
techniques for Erlang programs, most of which heavily rely on func-
tion recursion. Our preliminary evaluation showed approximately 38%
speedup over the standard Erlang interpreter.
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1 Introduction

Erlang [4] is a dynamically-typed, functional and concurrent programming lan-
guage based on the actor model [1]. It is widely used for practical applications
that require distribution, concurrency and availability. The application area
ranges from telecommunication, banking, electric commerce to instant messag-
ing [2], and recently expanding to server side like Cowboy1, Chicago Boss2, and
MochiWeb3.

We consider that sequential execution performance in Erlang is as important
as scalability of concurrency. In this regard, the two mainstream implementa-
tions of Erlang, namely the BEAM virtual machine (or BEAM in short) [3]
and the HiPE compiler (or HiPE in short) [13], are either less efficient or less
portable. BEAM is a bytecode interpreter, and guarantees bytecode level porta-
bility across different platforms. Its sequential execution is however slow due
to the interpreter-based execution4. HiPE is a static native code compiler, and
1 https://github.com/ninenines/cowboy.
2 https://github.com/ChicagoBoss/ChicagoBoss.
3 https://github.com/mochi/mochiweb.
4 According to the Computer Language Benchmarks Game (http://benchmarksgame.

alioth.debian.org/), BEAM is slower than C by the factors of 4–95 with 10 benchmark
programs.
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is faster than BEAM5. However, despite of the performance improvement, the
compiled code using HiPE loses the compatibility, which means we cannot use it
cross-platform. Moreover, users cannot re-compile libraries without source-code
into native code using HiPE.

Alternatively, we propose Pyrlang, a virtual machine for the BEAM bytecode
with a just-in-time (JIT) compiler. We use the RPython’s meta-tracing JIT
compiler [5] as a back-end. Although the back-end is primarily designed for
imperative programming languages like Python (as known as the PyPy project),
Pyrlang achieved approximately 38% speedup over BEAM.

Contributions. The contributions of the paper can be explained from the two
viewpoints: as an alternative implementation of Erlang, and as an application of
a meta-tracing JIT compiler to a mostly-functional language.

As an alternative implementation of Erlang, Pyrlang demonstrates a poten-
tial of JIT compilation for Erlang6. Even though our initial implementation was
the result of a few month’s work, the performance was comparable to an exist-
ing static Erlang compiler. This suggests that, by reusing a quality back-end, we
could provide Erlang a JIT compiler with a number of modern optimizations.

From a viewpoint of tracing JIT compilers, Pyrlang is equipped with a new
more strict tracing JIT policy, which focus on detecting more frequently executed
path under conditional branch. In our research, we found that a naive applica-
tion of a tracing JIT compiler suffers overheads when the compiler chooses less
frequent paths. We showed that a new tracing policy reduces the overheads by
the factor of 2.9% on average.

Organization of the Paper. The paper is organized as follows. Section 2 intro-
duces the instruction set of BEAM as well as an overview of a meta-tracing
JIT compiler. Section 3 describes the key design decisions in Pyrlang. Section 4
proposes an optimization technique for improving performance of functions with
recursive calls. Section 5 evaluates the performance of Pyrlang by comparing
against the existing Erlang implementations. Section 6 discusses related work.
Section 7 concludes the paper with discussing future work.

2 Background

2.1 Erlang and BEAM Bytecode

The mainstream Erlang implementation compiles an Erlang program to byte-
code, and executes on BEAM. We here briefly explain the architecture of the
bytecode language by using a few examples.
5 Though HiPE is known to exhibit largely different performance improvements

depending on the types of application programs [12], it speeds up by the factors
from 1.8 to 3.5 according to the benchmark results in a literature [15] and our
experiments.

6 Other than BEAM and HiPE, there are a few attempts to support JIT compilation
for Erlang, which we discuss in the later section of the paper.
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BEAM is a bytecode-based register machine, whose instruction set
includes register transfers (e.g., move), conditional jumps (e.g., is eq exact and
is lt exact), arithmetic operations (expressed as calls to built-in functions like
“gc bif erlang:+/2”), and function calls (e.g., call and call only). There are three
sets of registers, namely X, Y and F, which are denoted as x(i), y(i) and f(i),
respectively. The X and F registers store values of any types other than floating
point numbers, and values of floating point values, respectively. They are used
for passing parameters to and returning results from functions, and can also be
used as caller-saved temporary variables. The Y registers are callee-saved, and
can be used for storing local variables in a function body. There are instructions
to save (allocate zero) and restore (deallocate) Y registers.

; f unc t i on my module : add/2
L2 : ; x (0 ) := x (0) + x (1)

g c b i f 2 e r l ang :+/2 x (0 ) x (1 ) x (0 )
re turn
. . .

L5 : move #3 x (0)
move #5 x (1)
c a l l L2
. . .

Fig. 1. An add function and its invocation in BEAM bytecode

; f unc t i on f a c t : f a c t /2
L2 : ; i f x(0)==0, jump to L3

i s e q e x a c t L3 , x ( 0 ) , #0
; x (0 ) := x (1)
move x (1 ) , x (0 )
re turn

L3 : ; x (2 ) := x (0) − 1
g c b i f 2 e r l ang :−/2 , x ( 0 ) , #1, x (2 )
; x (1 ) := x (0) ∗ x (1 )
g c b i f 2 e r l ang :∗/2 , x ( 0 ) , x ( 1 ) , x (1 )
move x (2 ) , x (0 )
c a l l o n l y L2 ; t a i l c a l l

Fig. 2. A tail-recursive factorial function in BEAM bytecode

Figures 1, 2 and 3 show three simple functions in BEAM bytecode.
Figure 1 shows a function that adds two parameters (from L2) and a code

fragment that calls the function with parameters 3 and 5 (from L5). The function
expects parameters in registers x(0) and x(1), and returns a result by storing it
in x(0). The instruction immediately after L2 (gc bif2 erlang:+/2) is a built-in
function that stores the sum of two registers into a register. To invoke a function,
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; f unc t i on f a c t : f a c t /1
L2 : ; i f x(0)==0, jump to L3

i s e q e x a c t L3 , x ( 0 ) , #0
move #1, x (0 ) ; x (0 ) := 1
return

L3 : a l l o c a t e z e r o 1 , 1 ; save Y r e g i s t e r s
; x (1 ) := x (0) − #1
g c b i f 2 e r l ang :−/2 , x ( 0 ) , #1, x (1 )
move x (0 ) , y ( 0 ) ; save x (0 ) to y (0 )
move x (1 ) , x (0 )
c a l l 1 , L2 ; non−t a i l c a l l
; x (0 ) := y (0) ∗ x (0 )
g c b i f 2 e r l ang :∗/2 , y ( 0 ) , x ( 0 ) , x (0 )
d e a l l o c a t e 1 ; r e s t o r e Y r e g i s t e r s
re turn

Fig. 3. A non-tail recursive factorial function in BEAM bytecode

the caller sets parameters on X registers, and then executes the call instruction.
As can be seen in the code, the caller and the callee share the X registers.

Figure 2 shows a factorial function written in a tail recursive manner, where
the second parameter accumulates the product of numbers computed so far.
The first instruction from L2 (is eq exact) compares two parameters and jumps
if they are the same. The last instruction of the function (call only) is a tail-call.
Note that BEAM uses different instructions for tail (call only) and non-tail calls
(call).

Figure 3 shows a non-tail recursive factorial function. Since the function mul-
tiplies the result from a recursive call by the given argument, it saves the argu-
ment (x(0)) into a callee-saved register (y(0)) before the recursive invocation.
The block from L3 saves and restores the Y registers at the beginning and the
end of the block, respectively.

2.2 Meta-tracing JIT Compiler

A meta-tracing JIT compiler [5,7] monitors an execution of an interpreter of a
target language, and generates optimized native code for a frequently executed
instruction sequence (called a hot trace) of the subject program (which is the
Erlang program in our work). Though it can be seen as an application of a tracing
JIT compiler to an interpreter program, annotations specialized to interpreters
optimizations make it possible to generate compiled code of the subject program,
rather than compiled code of the interpreter. As a result, the technique enables to
build a JIT compiler of a language by writing an interpreter of that language with
proper annotations. In the case of Pyrlang, we use a meta-tracing JIT compiler
for interpreters written in RPython, a subset of Python. In other words, we write
a BEAM bytecode interpreter in RPython.
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Meta-tracing JIT compilers basically have the same mechanism as tracing
JIT compilers. We therefore explain the mechanisms of tracing JIT compilers
first, and then the notions specific to meta-tracing JIT compilers.

A tracing JIT compiler works by (1) detecting a frequently executed instruc-
tion (called a JIT merge point) in an execution of a program, which is usually a
backward jump instruction, (2) then recording a series of executed instructions
from the merge point (which we call a trace), and (3) compiling the trace to opti-
mized code. When the control reaches the merge point again, the optimized code
runs instead of the original one. Since a trace is a straightline code fragment span-
ning over multiple functions, the compiler effectively achieves aggressive inlining
with low-level optimizations like constant propagation.

When the counter of a JIT merge point hits a threshold, the compiler records
a trace, which is a series of executed instructions, until the control comes back
to the same JIT merge point. The compiler converts the trace into native code
by applying optimizations like the constant propagation. When a conditional
branch remains in a trace, it is converted to a guard, which checks the condition
and jumps back to the original program when the condition code holds differently
from the recorded trace.

Meta-tracing JIT compilers are tracing JIT compilers that optimize an inter-
preter program (which is the interpreter written by RPython in our case). Their
mechanisms for monitoring and tracing an execution of the subject program
are the same as the one in general tracing JIT compilers, except for the notion
of program locations. While general tracing JIT compilers select a trace from
the loops in the interpreter program, meta-tracing JIT compilers do so from
the loops in an subject program. To do so, they recognize the program counter
variable (denoted as pc hereafter) in the interpreter, and assign a different execu-
tion frequency counter to different pc values. With this extension, the compilers
detect frequently executed instruction in the subject program, and record the
interpreter’s execution until it evaluates the same instruction in the subject pro-
gram.

In the rest of the paper, we simply refer JIT merge points as locations in
subject programs. Except that the program locations are indirectly recognized
through variables in the interpreter, the readers can understand the subsequent
discussion in the paper as if we are working with a dedicated tracing JIT compiler
for BEAM.

3 Implementation Overview

This section overviews the design of Pyrlang’s JIT compiler, which is embodied
as a BEAM bytecode interpreter written in RPython. We first show the repre-
sentation of data structures in the interpreter, and then describes the design of
the dispatch loop (i.e., the interpreter’s main loop).



Improving Sequential Performance of Erlang 49

3.1 Data Representation

Instructions and Literal Values. We represent a BEAM bytecode program as
an RPython array of instruction objects. An instruction object is an RPython
object that contains operands in its fields. Literal values are stored in literal
tables, whose indices are used in the operands.

We made the following design decisions in order to let the JIT compiler
perform obvious operations at compile time. (1) We separately manage the literal
table for integers, and the table for other types. This will eliminate dynamic type
checking for integer literals. (2) We mark the instruction array and all fields of
instruction objects as “immutable.” This will eliminate operations for fetching
instructions and operands from the generated code.

Atoms. We represent an atom by an index of a global atom table, which contains
the identifiers of dynamically created atoms. This will make the equality test
between atoms constant time.

X and F Registers. We use two RPython lists for X and F registers, respec-
tively. We also mark those lists virtualizable7, which is an optimization hint in
RPython. This hint encourages the compiler to perform scalar replacement of
marked objects, so that they do not need to be allocated, as a result fields read-
s/writes can be treated as pure data dependencies and their data are ideally
kept in registers only.

Y Registers and Stack Frame. We represent Y registers and the stack frame
as a pair of resizable lists with stack pointers. The first list serves as a stack of
Y registers whose indices are shifted by its stack pointer. The stack pointer is
adjusted by the allocate zero and deallocate instructions. The second list serves
as a stack of return addresses. The runtime initially constructs those two lists
with fixed lengths, yet re-allocates a new lists with twice length of the current
one when the stack pointer reaches to the end of either list.

Our representation differs from a linked-list of frames, which is found in
typical implementations of interpreters. The rationales behind our representation
are as follows. (1) We use single list a fixed-length (yet resizable) list for avoiding
allocation overheads of frames that were required at every function invocation
in the linked-list representation. (2) We separately manage the local variables
and the return addresses so as to give static types to the return addresses.

3.2 Dispatch Loop

The core of the BEAM bytecode interpreter is a single loop called the dispatch
loop, which fetches a bytecode instruction at the program counter, and jumps
to the handler code that corresponds to the instruction. A handler performs

7 https://pypy.readthedocs.org/en/release-2.4.x/jit/virtualizable.html.

https://pypy.readthedocs.org/en/release-2.4.x/jit/virtualizable.html
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operations of the respective instruction, such as moving values between regis-
ters, performing arithmetic operations, and changing the value of the program
counter.

The design of the dispatch loop is similar to typical bytecode interpreters,
except for the following three Pyrlang specific points. (1) We use a local variable
for managing the program counter, which is crucial for the JIT compiler to
eliminate accesses to the program counter. (2) The handler for call only merely
changes the program counter value as the instruction is for tail calls, which
effectively realizes tail call elimination. (3) The dispatch loop yields its execution
for realizing the green threading. To do so, the loop has a yield counter, and the
handlers of some instructions (those can become an end of a trace) terminates
the dispatch loop when the counter is decremented to zero.

4 Finer-Grained Path Profiling

4.1 The False Path Problem

A tracing JIT compiler sometimes chooses an execution path as a compilation
target, even if it is not frequently executed. We call this problem the false path
problem, as an analogy to the false loop problem [10].

One of the causes of the false path problem is mismatch between profiling
and compilation. A tracing JIT compiler selects the first execution path executed
from a merge point whose execution counter exceeds a threshold. When there
are conditional branches after the merge point, the selected path can be different
from the one that is frequently executed.

When a false path is selected and compiled, it puts a considerable amount
of performance penalty on the frequently executed paths that share the same
merge point. This is because the execution from the merge point has to follow
the compiled false path, and then frequently fails; i.e., a conditional branch goes
to a different target from the compiled path. Upon a failure, the runtime needs
to reconstruct an intermediate interpreter state.

4.2 An Naive Profiling Policy for Functions

A naive profiling policy for functional programs can cause the false path problem.
Let us illustrate this by using a simple concrete program after we introduced a
naive profiling policy.

For functional programs where loops are realized by recursive function calls,
a naive profiling policy places merge points at the beginnings of functions. In
fact, we used this policy in our first implementation, which we refer as pyrlang-
naive in the rest of the paper. Technically, pyrlang-naive actually marks call
(non-tail function invocation), call only (tail function invocation), and return as
JIT merge points. Since we have tail call elimination as introduced in Sect. 3, tail
recursions in Pyrlang are similar with typical loops in an imperative language,
as a tracing JIT compiler expects.
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; f unc t i on cd : cd/1
L2 :

i s e q e x a c t L3 , x ( 0 ) , #1
move #10, x (0 )
c a l l o n l y L2

L3 :
g c b i f 2 e r l ang :−/2 , x ( 0 ) , #1, x (0 )
c a l l o n l y L2

A
B

C

Fig. 4. A countdown function which restarts itself from 10

Fig. 5. Control flow graph of the count-down function. (The alphabets in the nodes
correspond to the basic blocks in Fig. 4. The doubly-circled node denotes the JIT merge
point.)

Figures 4 and 5 show a countdown function in the BEAM bytecode with its
control flow graph. The function infinitely repeats counting numbers from 10
to 1. While imperative languages realize the computation double nested loops,
functional languages typically realize it a recursive function with a conditional
branch as can be seen in the control flow graph. In this case, node B is executed
one out of ten iterations.

The two loops, namely A–B–A and A–C–A in the control flow graph, share
the single JIT merge point, namely A. This means that the compiler has 10%
of chance to select the less frequently path (i.e., A–B–A). Then, the subsequent
executions from A use the compiled trace for the path A–B–A, and fail 9 out of
10 cases.

4.3 Pattern Matching Tracing

We propose an improved policy for tracing called pattern matching tracing.
The basic idea is to place JIT merge points on the destinations of conditional
branches, instead of the beginnings of functions so as to distinguish different
paths as different traces. For the countdown function, we place JIT merge points
on the target nodes of conditional branches, namely B and C as in the control-
flow graph shown in Fig. 6.
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Fig. 6. Control flow graph of the countdown function for pattern matching tracing

With this policy, the compiler will select more frequently executed paths
because the merge points are placed in all branch targets. In the example, the
merge point C will hit the threshold before B will, and the path starting from
the next execution of C (i.e., C–A–C) will be compiled first.

We implemented this policy in the Pyrlang’s dispatch loop by marking con-
ditional branch destinations, instead of function entries, as JIT merge points.

4.4 Two State Tracing

In addition to the pattern matching tracing, we also use two state tracing policy
proposed for Pycket [6]. The basic idea of two state tracing is to distinguish
entries of recursive functions by the caller instruction address. We implement it
by using the program counter as well as the caller’s address (we refer as caller-pc
hereafter) as the interpreted program’s location.

5 Evaluation

5.1 Benchmark Environment

We evaluate the performance of Pyrlang and its optimization technique with
subsets of two benchmark suites. The one is the Scheme Larceny benchmark
suite8 that is translated by the authors from Scheme to Erlang. The other is
the ErLLVM benchmark suite9, which is developed to evaluate the HiPE LLVM
backend. Since the current implementation of Pyrlang supports a limited set of
primitives, we excluded programs that test concurrency, binary data process-
ing, and modules using the built-in functions that are not yet implemented in
Pyrlang. Also, currently there is an unsolved bug in Pyrlang which causes the
execution crashing when dealing with float datatype during context switching, so
we have to excluded benchmark programs related to it like fibfp and fpsum, too.

8 https://github.com/pnkfelix/larceny-pnk/tree/master/test/Benchmarking/
CrossPlatform/src.

9 https://github.com/cstavr/erllvm-bench/tree/master/src.

https://github.com/pnkfelix/larceny-pnk/tree/master/test/Benchmarking/CrossPlatform/src
https://github.com/pnkfelix/larceny-pnk/tree/master/test/Benchmarking/CrossPlatform/src
https://github.com/cstavr/erllvm-bench/tree/master/src
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We evaluate three different versions of Pyrlang, namely (pyrlang) the version
using pattern matching tracing, (pyrlang-two-state) the version using only two
state tracing, which is the same as pyrlang except JIT merge points are placed
in function entities rather than functional branch destinations, (pyrlang-naive)
the version using only naive tracing policy, as we introduced in Sect. 4.2.

Fig. 7. Execution Times with pyrlang, pyrlang-two-state, pyrlang-naive and HiPE,
relative to BEAM (the shorter is the better)

We emphasize that Pyrlang does not apply low-level optimizations such as
calling convention for the x86 architecture [15], and the local type propaga-
tion [16] that are used in BEAM or HiPE. Furthermore, we use the original
BEAM instruction set for the ease of implementation, unlike BEAM which inter-
nally uses superinstructions [9, Sect. 3.15] in order to reduce interpretation over-
heads.

All the benchmark programs are executed on a 1.87 GHz Intel Core i7 pro-
cessor with 8 MB cache memory and 8 GB main memory, running GNU/Linux
14.04. The version of the BEAM runtime and HiPE is Erlang R16B03, with the
highest optimization option (-o3) for HiPE. The backend of Pyrlang is RPython
revision b7e79d170a32 (timestamped at 2016-01-13 04:38).

Each program is executed inside a loop, whose number of iterations is man-
ually selected so that the loop runs for at least 5 s. The benchmark results in
this section are indicated by the execution times relative to the ones with the
BEAM runtime.

5.2 Overall Performance

Figure 7 shows the execution times of 30 programs in the benchmark suites,
executed with the three versions of Pyrlang, HiPE and the BEAM runtime. The
height of each bar shows the relative time to the execution time with BEAM.
The rightmost 4 bars (geo mean) are the geometric means.

As can be seen in Fig. 7, pyrlang-match is 38.3% faster than the BEAM, yet
still 25.2% slower than HiPE. With some benchmark programs that are relatively
non-trivial, such as deriv, pi, nucleic, and qsort, pyrlang-match is the fastest
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among 5 implementations. There is a group of the programs (string, length c,
pseudoknot, ring, stable, sum, zip, zip3, and zip nnc) where Pyrlang is slower
than BEAM and HiPE. We conjecture that most of the slow cases are caused by
the overhead of Erlang datatype allocation. This is expected since we simply use
RPython objects to implement datatypes such as lists, function closures without
any further low-level optimizations. The programs ring and stable are the only
two benchmark programs using green threads in our benchmark suite, which
indicate room of optimization around thread implementations.

5.3 Effect of Pattern Matching Tracing

Improvements by Pattern Matching Tracing. In this section, we evaluate
effectiveness of our proposed pattern matching tracing by comparing execution
times of benchmark programs with three versions of Pyrlang, namely the one
with pattern matching tracing (pyrlang), one with two state tracing (pyrlang-
two-state) and naive tracing (pyrlang-naive). In pyrlang-naive, we mark merely
3 kinds of instructions as JIT merge points, namely call (non-tail invocation),
call only (tail invocation), and return. Also, in this version, the JIT merge points
are identified by only pc but not by caller-pc, which we introduced in Sect. 4.

As we can see, pyrlang is 1.3% and 2.9% faster than pyrlang-two-state and
pyrlang-naive on average, respectively.

There are programs where pyrlang is significantly slower, namely sum and
pseudoknot. Sum is a program using two Erlang built-in functions, namely
lists:seq and lists:sum, to generate a long Erlang list and to calculate the sum
of the elements in the generated list, respectively. Pseudoknot is a program
that generates pseudoknot matrix from a database of nucleotide conformations.
With sum, we found Pyrlang only generates a trace for lists:sum, but not for
lists:seq, which contributed to the significant performance degradation. Cur-
rently we are not clear why the lists:seq is missed, which remains as the future
work to be resolved. With pseudoknot, we found a loop of a long series of con-
ditional branches that serves as a dispatch loop. This control structure created
overly many JIT merge points with Pyrlang-match, though only a few of them
are compiled. We conjecture that we can reduce the number of JIT merge points
so as to improve performance.

Also, there are two programs where Pyrlang is significantly faster, namely
deriv and qsort. Deriv is a program that performs symbolic derivation of mathe-
matical expressions. Qsort is a program that performs quick-sorting of a number
sequence. We observed that, in both benchmark programs, Pyrlang generated
much longer traces. In deriv, the longest compiled trace corresponds to an expres-
sion of a specific shape (namely multiplication of variables). We presume that
the trace is significantly effective as the program has many sub-expressions in
the same shape. In Qsort, the longest compiled trace corresponds to a loop in
partition function. In fact, Pyrlang records a whole execution of the partition
for a short sequence. We have to point out that these two cases heavily depend
on the program inputs, which might not be as effective when inputs can vary
among executions. In other words, those results indicate that Pyrlang with the
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pattern matching tracing is quite effective when a program follows a few specific
paths in a complicated control structure.

6 Related Work

PyPy [5], an alternative implementation of Python, is the primary target system
of the meta-tracing JIT compiler in RPython. It is reported to be faster than
an interpreter implementation (CPython) by the factor of 7.110 while achieving
high compatibility. This suggests that the meta-tracing JIT compiler is a realistic
approach to provide an efficient and highly compatible language implementation
with a JIT compiler. The meta-tracing JIT compiler’s design is implicitly affected
by the language features of PyPy (or Python), such as a stack-based bytecode
language and use of loop constructs in source programs.

Pycket [6] is an implementation of Racket runtime system based on the meta-
tracing JIT compiler in RPython. Similar to Erlang, Racket is a Scheme-like
functional programming language, in which user programs use recursive calls for
iterations. It proposes a two-state-tracing [6], which is a light-weight solution to
the false loop problem [10]. The basic idea of two-state-tracing is to record the
previous abstract syntax tree node of the node in a function head, and use both
previous node (1st state) and current node (2nd state) to identify a JIT merge
point. It means a function head node in a control flow graph is duplicated. The
pattern matching tracing extends the two-state-tracing by moving the 2nd state
from a function head to a conditional jumping destination. By this approach, in
addition to duplicate the function head nodes in a control flow graph, we also
duplicate the nodes of conditional jumping destinations.

BEAMJIT [8] is a tracing JIT compiler implementation for Erlang. It extracts
the basic handler code for each BEAM instruction from the BEAM runtime. The
extracted handler code is then used to construct the content of a trace. The JIT
therefore can be integrated in the BEAM runtime with high compatibility. The
implementation work is quite different between our work and BEAMJIT because
we already have a JIT compiler provided by RPython that almost for free, and
target to build a BEAM VM using RPython that can match best to RPython
JIT compiler, while BEAMJIT uses BEAM VM with full compatibility, and tries
to build a JIT compiler that can match best to existing BEAM VM. BEAMJIT
is reported 25% reduction in runtime in well-behaved programs.

ErLLVM [17] is a modified version of HiPE that uses LLVM as its back-end
instead of the original code generator. Similar to Pyrlang, it uses an existing
compiler backend, but it inherits other characteristics, like ahead-of-time compi-
lation, from HiPE. It is reported that ErLLVM has almost the same performance
as HiPE.

PyHaskell [19] is another functional programming language implementation
that uses the RPython meta-tracing JIT compiler. Similar to Pyrlang, it is imple-
mented as an interpreter of an intermediate language (called the Core language).

10 According to the data from http://speed.pypy.org.

http://speed.pypy.org
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To the best of the authors’ knowledge, current PyHaskell supports a few primi-
tives, and still slower than an existing static compiler, GHC in most cases.

HappyJIT [11] is a PHP implementation that uses the RPython meta-tracing
JIT compiler. Its stack representation is a pre-allocated array of RPython
objects, similar to the Y registers in Pyrlang. However, HappyJIT is slower
than Zend Engine for the programs mainly performing recursive function calls.
As far as the authors know, HappyJIT does not have a tracing policy specialized
to recursive functions.

7 Conclusions and Future Work

We proposed Pyrlang, a virtual machine for the BEAM bytecode language with
a meta-tracing just-in-time (JIT) compiler. At the high-level view, we merely
needed to write a BEAM interpreter in RPython in order to adapt the compiler
for Erlang. We however needed to make careful decisions in the interpreter design
for achieving reasonable runtime performance. We also proposed an optimization
technique called the pattern matching tracing for performance improvement.
With the technique (and the two state tracing for Pyret), the compiler can
select longer traces (which usually give better performance) by distinguishing
different branches in a loop.

Our current implementation runs micro-benchmark programs 38.3% faster
than the standard BEAM interpreter. Though it is still slower than HiPE in
some benchmark programs, we believe that a JIT compiler with our approach
can achieve similar level of performance by introducing further low-level opti-
mizations.

We also emphasize that most of the implementation decisions of Pyrlang
in Sect. 3 using RPython can be also easily applied to any other functional
programming language implementations, because most functional programming
languages share the similar feature in common.

Pattern Matching Tracing is also a general approach to improve tracing
JIT policy, it focus on determining the path selection below some conditional
branches, which means it can be also applied to any other tracing JIT compiler.

Our implementation is has several points of improvements and extensions as
discussed below.

Improvement of Pattern Matching Tracing: As we explained in Sect. 5.2,
there are programs that are poorly optimized with the pattern matching
tracing. While we identified the causes of overheads for some programs, we
need to collect more cases and generalize the causes of overheads so that we
can improve the strategy of trace selection.

List Optimization: Our experiments showed that Pyrlang performs more
poorly than BEAM and HiPE with programs that allocate a large amount of
objects (e.g., very long lists). While we are still investigating the underlying
memory manager’s performance in RPython, we plan to introduce well-known
optimizations for functional style list processing, such as cdr-coding [14] and
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list unrolling [18]. We also consider to use the live variable hints in the BEAM
bytecode during garbage collection.

Compatibility: There are still data types and operators that need to be imple-
mented in Pyrlang. Those data types include bit strings and binaries. Though
it is a matter of engineering, an (semi-)automated approach would be helpful
to ensure compatibility.

References

1. Agha, G.: Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press, Cambridge (1986)

2. Armstrong, J.: Erlang: a survey of the language and its industrial applications. In:
Proceedings of the Symposium on Industrial Applications of Prolog, INAP 1996,
pp. 16–18 (1996)

3. Armstrong, J.: The development of Erlang. In: Proceedings of International Con-
ference on Functional Programming 1997, pp. 196–203. ACM (1997)

4. Armstrong, J.L., Virding, S.R.: Erlang: an experimental telephony programming
language. In: Proceedings of XIII International Switching Symposium, pp. 43–48
(1980)

5. Bolz, C.F., Cuni, A., Fijalkowski, M., Rigo, A.: Tracing the meta-level: PyPy’s
tracing JIT compiler. In: Proceedings of the 4th workshop on the Implementa-
tion, Compilation, Optimization of Object-Oriented Languages and Programming
Systems, pp. 18–25. ACM (2009)

6. Bolz, C.F., Pape, T., Siek, J., Tobin-Hochstadt, S.: Meta-tracing makes a fast
Racket. In: Proceedings of Workshop on Dynamic Languages and Applications
(2014)

7. Bolz, C.F., Tratt, L.: The impact of meta-tracing on VM design and implementa-
tion. Sci. Comput. Program. 98, 408–421 (2015)

8. Drejhammar, F., Rasmusson, L.: BEAMJIT: a just-in-time compiling runtime for
Erlang. In: Proceedings of the Thirteenth ACM SIGPLAN Workshop on Erlang,
pp. 61–72. ACM (2014)

9. Hausman, B.: The Erlang BEAM virtual machine specification. http://www.cs-
lab.org/historical beam instruction set.html, October 1997. Rev. 1.2

10. Hayashizaki, H., Wu, P., Inoue, H., Serrano, M.J., Nakatani, T.: Improving the per-
formance of trace-based systems by false loop filtering. In: Proceedings of the Six-
teenth International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, pp. 405–418. ACM (2012)
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