
Towards Efficient Adjustment of Effect
Rows

Naoya Furudono1(B), Youyou Cong1, Hidehiko Masuhara1, and Daan Leijen2

1 Tokyo Institute of Technology, Tokyo, Japan
naoyafurudono@prg.is.titech.ac.jp, cong@c.titech.ac.jp, masuhara@acm.org

2 Microsoft Research, Seattle, USA
daan@microsoft.com

Abstract. Koka is a functional programming language with native sup-
port for algebraic effects and handlers. To implement effect handler oper-
ations efficiently, Koka employs a semantics where the handlers in scope
are passed down to each function as an evidence vector. At runtime,
these evidence vectors are adjusted using the open constructs to match
the evidence for a particular function. All these adjustments can cause
significant runtime overhead. In this paper, we present a novel transfor-
mation on the Koka core calculus that we call open floating. This trans-
formation aims to float up open constructs and combine them in order
to minimize the adjustments needed at runtime. Open floating improves
performance by 2.5× in an experiment. Furthermore, we formalize an
aspect of row-based effect typing, including the closed prefix relation on
effect rows, which clarifies the constraint on open floating.

Keywords: Algebraic effect and handlers · Type and effect system ·
Compiler optimization

1 Introduction

Algebraic effect handlers [14] are a language feature for user-defined effects. For
instance, using effect handlers, we can support exception, asynchronous program-
ming [8], nondeterminism, and so on, not as builtin features but as libraries.
While effect handlers are convenient, they incur more runtime overhead com-
pared to native effects. In order to fill in the gap of the performance, suitable
semantics have been explored [2,15,19,20].

In this study, we focus on the evidence passing semantics [20], which is
employed by the Koka language [7,9,20]. The key idea of the semantics is to
pass around a vector of handler implementations, called an evidence vector, and
propagate it to algebraic effect operation calls, exposing optimization oppor-
tunities. The row-based type-and-effect system ensures the correctness of the
dynamic semantics, where the static effect row type corresponds directly to the
shape of the dynamic evidence vector at runtime.

The Koka compiler automatically inserts open constructs during type infer-
ence to adjust evidence vectors at runtime. Unfortunately, each adjustment
c© Springer Nature Switzerland AG 2022
W. Swierstra and N. Wu (Eds.): TFP 2022, LNCS 13401, pp. 169–191, 2022.
https://doi.org/10.1007/978-3-031-21314-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21314-4_9&domain=pdf
https://doi.org/10.1007/978-3-031-21314-4_9

170 N. Furudono et al.

incurs runtime cost and, being type-directed, the automatic insertion tends to
generate many redundant open calls around function applications.

In this paper, we present the open floating algorithm to remove such opens as
a compile-time optimization. The algorithm first removes existing opens in a top-
down way and then re-assigns effect adjustment constructs back in a bottom-up
way. Unlike type inference phase insertion, the re-assignment is driven by the
now explicit effect types, ensuring preservation of the meaning of programs. To
give the reader a rough idea of the algorithm, we present programs before and
after open floating.
handler { ask �→ λx . λk . k 3 } λ_.
let x = open 〈read 〉 safediv(3, 2) in
let y = open 〈read 〉 safediv(3, x) in
open 〈read 〉 safediv(3, y)

�

handler { ask �→ λx . λk . k 3 } λ_.
restrict 〈 〉 (
let x = safediv(3, 2) in
let y = safediv(3, x) in
safediv(3, y))

The one on the right is faster than the one on the left, because the former has
less adjustment operations open and restrict. Both of them perform the same
adjustment.

The difference is that open is used solely to functions, while restrict can be
applied to general expressions.

This is essential to share a single adjustment over multiple function applica-
tions.

In Sect. 2, we give an overview of our study, and in the subsequent sections,
we discuss the following contributions.

– We define System Fpwo , a system of effect handlers with the open construct.
The system is a core calculus of the Koka language, and is an extension of
System Fpw by Xie and Leijen [20]. We elaborate on effect typing in the
extended system, showing

• the way the type system checks the use of effect handlers (Sect. 3.3)
• an advantage of using rows for effect types rather than sets, which are

popular in effect handler calculi [1,16] (Sect. 3.4)
• an effect type restriction on open and restrict, which we call the closed

prefix relation (Sect. 3.4).
In particular, the closed prefix relation clarifies what program transformations
are allowed. This helps us define open floating.

– We give a definition of the open floating algorithm, which floats up redundant
opens (Sect. 4) by analyzing the effect type of expressions.

– We implemented open floating in the Koka compiler [11].
– We evaluated open floating via a preliminary benchmark (Sect. 5), which

improved performance by 2.5×. Based on the results, we make it clear what
kind of programs benefit from open floating.

We discuss future work in Sect. 6 and related work in Sect. 7.

Towards Efficient Adjustment of Effect Rows 171

2 Overview

In this section, we give an overview of this thesis. We first give an overview of
the calculus of study, and explain the need for open. We then show an example
with redundant opens and describe the idea of our solution.

2.1 Effect Handlers

Algebraic effects are declared with an effect label l and a list of operation signa-
tures. For instance, suppose we have a read effect with a single operation ask ,
which takes a unit argument and returns an integer value.

read : { ask : () → int }
An effect handler for read specifies what the ask operation should do when it is
called in the handled expression.

handler { ask → λ_. λk . k 3 } λ_. perform ask () + perform ask ()

In this example, perform ask () calls operation ask with argument (), which is
evaluated to 3 according to the handler. The behavior of an operation call is
formalized as follows: (1) find the innermost handler of the effect, (2) capture
the resumption – continuation delimited by the handler –, and (3) apply the
handler clause to the argument and the resumption.

1. handler { ask → λ_. λk . k 3 } λ_. perform ask () + perform ask ()
2. resume = λz . handler { ask → λ_. λk . k 3 } λ_. z + perform ask ()
3. (λ_. λk . k 3) () resume

The handler resumes the resumption with argument 3, so that the example is
evaluated to the following.

handler { ask → λ_. λk . k 3 } λ_. 3 + perform ask ()

The two occurrences of perform ask () are both evaluated to 3, therefore the
whole expression is evaluated to 6.

Using effect handlers, it is easy to combine different effects in a single pro-
gram. Let us combine read with the exception effect exn, which has an operation
throw of type ∀α.int → α

exn : { throw : ∀α.int → α }
Using a handler for exn as we did for read , we can perform the throw operation.

handler { ask �→ λx . λk . k 3 } (λ_.

handler { throw �→ λx . λk . x } (λ_.

perform ask () + perform ask () + perform throw 1))

In this program, perform ask () is evaluated to 3 as before, but the entire expres-
sion is evaluated to 1 due to perform throw 1. The handler for the throw oper-
ation discards the resumption k and returns the argument x , which exits the
computation out of the handler expression.

172 N. Furudono et al.

2.2 Evidence Passing Semantics and Row-Based Effect System

Among different formalizations of the dynamic semantics of effect handlers, we
adopt the evidence passing semantics (EPS) [20], which exploits the invariants
derived from the row-based effect system and allows the compiler to translate
programs to efficient code.

Under the EPS, we pass all handlers in scope to the handled expres-
sion so that operation calls can access their handler locally. The oper-
ation clauses passed to expressions are represented as an evidence vec-
tor [19]. For instance, in the read and exn examples discussed above, the
expression perform ask () is performed with the evidence vector of the form
〈〈exn : {throw �→ . . .}, read : {ask �→ . . . }〉〉. Xie and Leijen [20] show that EPS
often allow us to avoid lookups and resumption captures, which are one of main
sources of inefficiency in effect handler execution.

The static semantics of our calculus is defined by a row-based effect system. In
the effect system, every expression is related to an effect row type in addition to
a usual type. Effect rows indicate what kind of evidence vector is provided from
the context to evaluate the expression. For instance, in the example with read
and exn, the expression perform ask () + perform ask () + perform throw 1
has type int and effect row 〈exn, read 〉.

The typing rules maintain the correspondence between evidence vectors and
effect rows. For instance, a function application uses the same evidence vector for
the function, the argument, and the β-reduced expression. Correspondingly, the
typing rule for function application requires the effect rows of the three parts
(occurrences of ε in the premises) to agree with that of the entire expression
(occurrence of ε in the conclusion).

Γ � e1 : σ1 → ε σ2 | ε Γ � e2 : σ1 | ε

Γ � e1 e2 : σ2 | ε
[APP]

We ignore the order of labels in effect rows (except for parameterized effect labels
that are discussed in Section 3.1.2 and Sect. 3.4). For instance, we regard two
rows 〈exn, read 〉 and 〈read , exn 〉 as equivalent. This flexible row equivalence
allows the type system to ignore the order of handlers in evaluation contexts. As
a consequence, both programs below are judged well-typed as one would expect.

handler { ask �→ λx . λk . k 3 } (λ_.
handler { throw �→ λx . λk . x } f)

handler { throw �→ λx . λk . x } (λ_.
handler { ask �→ λx . λk . k 3 } f)

where f = λ_.perform ask () + perform ask () + perform throw 1

We formally define the effect row equivalence in Section 3.1.2 and discuss it in
Sect. 3.4.

2.3 Effect Type Adjustment for Function Types

The typing rule [APP] is too restrictive on some occasions. Consider a function
safediv of type (int , int) → 〈 〉 maybe〈int 〉, which returns Nothing if the divider
is 0, instead of throwing an exception. This function causes no effect, hence we

Towards Efficient Adjustment of Effect Rows 173

should be able to call the function in any context. However, the type system
prevents us from calling safediv in certain contexts. For instance, the following
expression is judged ill-typed.

handler { ask �→ λx . λk . k 3 } λ_.safediv(3, 2)

The expression safediv(3, 2) expects an evidence vector of type 〈 〉, whereas the
context provides an evidence vector of type 〈read 〉. Due to this inconsistency,
the expression is rejected by the type system.

To call functions with a “smaller” effect, we introduce the expression open ε′ v
into the calculus. At compile time, open allows a function to have a “bigger” effect
type according to the following typing rule.

Γ �val v : σ1 → ε σ2 ε � ε′

Γ �val open ε′ v : σ1 → ε′ σ2

[OPEN]

At runtime, open adjusts evidence vectors so that the callee receives an evidence
vector of the expected shape and thus runs correctly. Using open, we can make
the above example well-typed.

handler {ask �→ λx . λk . k 3} λ_.(open 〈read 〉 safediv)(3, 2)

We call the smaller effect row a closed prefix of the larger one. The closed prefix
relation is defined as:

〈l1, . . ., ln 〉 � 〈l1, . . ., ln | ε 〉 (n ≥ 0)

It turns out that different formulations are possible but some seemingly benign
generalizations can make the type system unsound – we discuss the closed prefix
relation in detail in Sect. 3.4.

2.4 Motivating Open Floating

Our calculus is designed as an intermediate language of a compiler.
This means the user does not need to explicitly write opens; they
are automatically inserted by the type inferencer. The user expres-
sion handler { ask �→ . . . } λ_.safediv(3, 2) is translated to explicitly typed
handler〈 〉 { ask �→ . . . } λ_.(open 〈read 〉 safediv) (3, 2), for example.

Unfortunately, naive insertion of opens makes programs inefficient. Consider
a program that calls safediv three times. The compiler inserts opens into each
function call as follows.

handler〈 〉 { ask �→ λx : int . λk : int → 〈 〉 int . k 3 } λ_.

let x = open 〈read 〉 safediv(3, 2) in

let y = open 〈read 〉 safediv(3, x) in

open 〈read 〉 safediv(3, y)

As open causes evidence vector adjustment at runtime, having many open calls
makes execution slow. In order to avoid this inefficiency, we design the open
floating optimization that eliminates redundant open calls. By open floating,
the above program is transformed to the following one.

174 N. Furudono et al.

handler〈 〉 { ask �→ λx : int . λk : int → 〈 〉 int . k 3 } λ〈read 〉_.

restrict 〈 〉 (
let x = safediv(3, 2) in

let y = safediv(3, x) in

safediv(3, y))

Here, restrict ε e allows e to be typed with effect ε, which is smaller than the
effect of the context. In this particular example, e is typed with 〈 〉, not 〈read 〉.
At runtime, as open does, restrict ε e changes the shape of the evidence vector
to fit ε and pass it to e.

In general, open floating erases open in a β-redex and re-assigns appropriate
open or restrict to make the whole expression type check in a bottom-up way.
The closed prefix relation plays an essential role in determining the new effect
type of each sub-expression.

We formally define open, restrict, and the closed prefix relation in Sect. 3,
present the open floating algorithm in Sect. 4, and discuss a preliminary bench-
mark in Sect. 5.

3 System Fpwo

In this section, we present System Fpwo , a calculus with algebraic effect handlers
and the open. The calculus is an extension of System Fpw [20], an explicitly
typed polymorphic lambda calculus with effect handlers. The semantics is based
on evidence passing semantics [20], which leads to an efficient implementation
of effect handlers. Furthermore, both calculi have row-based effect types, which
denote the static meaning of evidence vectors. We extend Fpw with open, restrict
and parameterized effect labels. These features have previously been discussed
by Leijen [10]. In that work, the idea of open was formalized as a typing rule,
and parameterized effect labels were formalized in a way that does not fit well
to our calculus.

We have confirmed the soundness of the type system through the compiler
implementation. We are currently developing formal proofs. We first introduce
the syntax, dynamic semantics, and static semantics of Fpwo . After that, we
describe the typing with effect rows, including the closed prefix relation. Effect
typing plays an important role in this study, since open floating depends heavily
on it.

3.1 Syntax

The syntax is defined in Fig. 1.

Expressions. Expressions e include values v , applications e e, type applica-
tions e σ, let-bindings let x = e in e, prompt prompt m h e, yield yield m v ,
and restrict restrict ε e. Prompts and yields are internal constructs that only
appear as an intermediate result of evaluation. We will give the definition of
internal constructs in Definition 1 more precisely.

Towards Efficient Adjustment of Effect Rows 175

Fig. 1. Syntax of system Fpwo

Values v include variables x , lambda abstractions λεx :σ.e, type abstrac-
tions Λαk.v , effect handlers handlerε h, operation calls perform op ε σ, and open
open ε v .

Handlers clauses h consist of a sequence of pairs of an operation name op
and a function value f . The meta-variable f is syntactically a value, but we
use it specifically as a function, which takes (type) arguments. The type system
maintains the intention.

Types. Types σ include type variables αk of kind k, type application for type
constructors ck σ (where ck is applied to arguments σ), function types σ1 →ε σ2

(indicating the body of the function can cause effect ε), and polymorphic types
∀αk.σ.1 By extending σ with type-level lambdas, we obtain a set of types τ that
appear in effect signatures. Effect signatures are explained later in this section.

Kinds k include the regular kind ∗, functions k→k, effect labels lab, and effect
rows eff. Types of the function kind k→k are either an effect constant cl , a row
type constructor 〈_ | _ 〉, or a type τ in an effect signature. Effect labels l are
types of kind lab.

Effect constants cl are of kind lab parameterized with zero or more types of
regular kind. Effect labels are used to structure effect rows and evidence vectors,
while effect constants are used for effect contexts and effect labels.

Effect rows ε include the empty effect 〈 〉, extension with effect label 〈l | ε 〉,
and type variables αeff of kind eff. We use the following abbreviation for rows:
〈l1, . . ., ln | ε 〉 .= 〈l1 | . . . 〈 ln | ε 〉 . . . 〉 and 〈l1, . . ., ln 〉 .= 〈l1, . . ., ln | 〈 〉 〉.
We use μ to denote type variable of kind eff. The equivalence of effect rows
is defined in Fig. 2. We can ignore the order of occurrences of two effect labels

1 Kind annotations directly relate their types to the specific symbols associated with
them, such as μ and cl . This allows us to use these symbols just as aliases.

176 N. Furudono et al.

Fig. 2. Effect row type equivalence

in a row if two labels consist of different effect constants. See Sect. 3.4 for details
of effect rows.

An effect context Σ is a sequence of pairs of an effect constant and an effect
signature. It maintains the relation between the name of an effect and the type
of its operations. We assume Σ is given externally in this calculus, while in
practical language one may define Σ by top-level definitions.

Effect signatures sig are a sequence of a pair of an operation name and its
type. The type τ in an effect signature takes zero or more type arguments of
regular kind. The type arguments will be passed if the effect is parameterized.
We will show an example with type rule [PERFORM] in Sect. 3.3.

Evidence Vectors. Evidence vectors w include the empty vector 〈〈 〉〉 and exten-
sion 〈〈l : ev | w 〉〉 with a pair of an effect label l and an evidence ev . Evidences
ev are a triple (m, h, w) of a marker m, a handler h, and an evidence vector
w where h is defined. The evidence vector in the triple is key to general use of
effect handlers, but the discussion is out of the scope of this paper. See [20] for
details.

3.2 Dynamic Semantics

The dynamic semantics is defined in Fig. 3. The semantics consists of three rules:
stepping �−→, multi-stepping �−→∗, and reduction −→.

Evaluation Steps. The rules (∗stepwR) and (∗stepwT) defines multi-stepping
as the reflexive transitive closure of stepping. The rules (step) and (stepw) reduce
a redex without and with an evidence vector w , respectively. In these rules, the
evaluation context of the redex must be F, not E. F excludes prompt frames and
restrict frames.

The (promptw) rule extends the evidence vector. Conversely, the (restrictw)
rule shortens the evidence vector using the select meta-function so that the shape
of the new evidence vector fits the effect row ε′ of the restrict frame.

Reduction Rules. The (app), (let) and (tapp) rules are standard. The
(handler) rule reduces a handler application by calling the passed function f
under prompt with fresh marker m. The marker acts as a control delimiter [3].

Towards Efficient Adjustment of Effect Rows 177

Fig. 3. Dynamic semantics of system Fpwo

The (promptv) rule removes the prompt frame if the handled expression is a
value.

Operation call is divided into two rules: (perform) and (prompt). The
(perform) rule prepares the marker m and handler clause f using the evidence
vector. In the right-hand side of the (prompt), the handler clause is applied to
(type) arguments and wrapped by a lambda to take a resumption. The (prompt)
rule captures the resumption λεx :σ2. prompt m h E[x] by finding the marker
m and applies the operation clause to it, which is instantiated by the (perform)
rule.

178 N. Furudono et al.

The (open) rule generates a restrict frame using the effect annotation of the
function value. Here, effectof meta-function is used to extract the effect type
from the function value, which is either a lambda abstraction, an operation call,
or a handler. The effect row of an open expression is used for type checking. The
(restrictv) rule removes the restrict frame if the sub-expression is a value.

3.3 Static Semantics

The static semantics is mutually defined with three relations � ,�val, and�ops in
Fig. 4.

– Γ � e : σ | ε means expression e is typed σ under type environment Γ and
contextual effect ε, i.e., the type of the evidence vector provided for evaluation
of e.

– Γ �val v : σ means value v is typed σ under type environment Γ . Note that
if value v can be typed with�val relation, then it can be typed with any effect
type ε with � relation, according to type rule [VAL].

– Γ �ops h : σ | l | ε means that the sequence of operation clauses h has return
type σ and handles effect operation of label l under effect type ε.

We also use well-formedness relation �wf and definitional equality of types �eq
defined in Appendix.

Let us now look at the typing rules (Fig. 4). These rules are syntax directed
in the sense that the syntax of the expressions determines the applicable type
rule. The [VAL] rule types values as expressions with any effect type ε. The
[VAR] rule is usual. The [ABS] rule type checks the body e with the effect
annotation ε of the lambda abstraction. The [APP] is standard except for the
effect type: the operator (e1) and operand (e2) need to be typed under the
contextual effect of entire expression (e1 e2). Furthermore, the effect type of the
body of the operator also needs to agree with the one of the entire expression.
The restriction guarantees that the evidence vector is passed correctly to sub-
expressions. This may seem too restrictive, but the open construct liberates the
restriction. The [BIND] rule is similar to the [APP] rule; both sub-expressions
are required to be typed under the contextual effect ε. The [TABS] and [TAPP]
rules are standard except for bound type variables, which cannot have kind lab.

The [PERFORM] rule determines the type of the operation call referring to
the effect context Σ and the effect row 〈cl σ′ | ε 〉. The signature of the operation
is found in the effect context and the type arguments σ are substituted for the
type variables in the argument type τ1 and the result type τ2. Furthermore, the
type arguments σ′ from the effect row are applied to τ1[α:=σ] and τ2[α:=σ].

As an example, assuming Σ = { exn : { throw : ∀α.string → α }}, we can
write λ〈exn 〉 x : string . 1 + perform throw 〈exn 〉 int x as a well-typed function.
The operation call in the body is typed with an instance of the [PERFORM] rule
as follows.

throw : ∀β.string → β ∈ Σ(exn)
�eq string [β:=int] ≡ string �eq β[β:=int] ≡ int

x : string �val perform throw 〈exn 〉 int : string → 〈exn 〉 int

Towards Efficient Adjustment of Effect Rows 179

Fig. 4. Typing rules of system Fpwo

In this case, cl = exn and σ′ is an empty sequence of types. If we replace throw
with polythrow string , cl = polyexn and σ′ is a singleton sequence string .

polythrow : ∀β.(λα.α) → (λα.β) ∈ Σ(polyexn)
�eq (λα.α)[β:=int] string ≡ string �eq (λα.β)[β:=int] string ≡ int
x : string �val perform polythrow 〈 〉 int : string → 〈polyexn string 〉 int

180 N. Furudono et al.

The [HANDLER] rule is defined for handler expressions. A handler takes a com-
putation of type (() → 〈l | ε 〉 σ) and handles the effect l . Hence, the effect row
of the entire function type is ε, not 〈l | ε 〉.

The [OPS] rule determines the effect labels cl σ′, which indicate the handled
effect. Each operation clause fi takes an operation argument of type σin

i and a
resumption of type σout

i → ε σ. The result type (σ) of the handler is the result
type of all resumptions and operation clauses, because handlers in System Fpwo

are deep ones. The condition αi � ∩ftv(ε, σ, σ′) avoids unexpected binding in the
type of fi . The arguments of effect constants σ′ are derived from the typing of
each operation clause. By combining them with the effect constant cl , we derive
the effect label cl σ′.

The [YIELD] rule requires careful reading. Recall that f is a wrapped handler
clause that will be applied to a resumption. The result type of f , which is the
result type of the handler clause, must agree with the result type of the resump-
tion. Therefore the two σ′ need to agree. The two σ indicate that the input type
of f , which is the type of the “result” of the operation call, must agree with the
type of the yield expression. Note that the effect type ε of yield is not related
to the effect ε′ of the operation clause, as the evaluation contexts of yield and
prompt (in which f will be evaluated) are different in general.

The [PROMPT] rule extends the contextual effect ε with the effect label l to
type check sub-expression e. The result type of e and that of handler clauses h
need to agree, and it becomes the type of the entire prompt expression.

The [OPEN] rule opens (make bigger) the effect type to the given effect ε. The
original effect type ε′ must be a closed prefix of the resulting effect type ε. An
effect row ε1 is a closed prefix of ε2 if and only if ε1 consists of labels in a prefix
of ε2 and ends in 〈 〉. We discuss the definition of the closed prefix relation in the
next section. The [RESTRICT] rule is similar to [OPEN] and allows expression e
to be typed under a closed prefix ε′.

3.4 Effect Rows and Closed Prefix Relation

In this section, we discuss how the type system exploits effect rows to per-
form type checking against effect handlers and discuss requirement for open and
restrict to entail type safety.

Recall the typing rule [PERFORM] for operation calls. The conclusion of the
rule has an effect row 〈cl σ′ | ε 〉, which tells us that evaluation of the operation
call needs to access a handler of effect label cl σ′. The accessibility of the required
handler is guaranteed by the row equivalence rules defined in Fig. 2. For instance,
among the two examples below, the first one is correctly rejected due to the
inapplicability of [EQ-SWAP], and the second one is accepted as desired.

handler hpolyexn int (handler hpolyexn string (λ_. throw 1))
handler hpolyexn int (handler hpolyexn string (λ_. throw ”hello”))

We design the closed prefix relation so that restrict does not increase handlers
accessible from the sub-expressions.

This is stated as the following property.

Towards Efficient Adjustment of Effect Rows 181

Proposition 1.
If ε.l is defined and ε � ε′, then ε′.l is also defined and ε.l = ε′.l .

It is obvious that the closed prefix relation satisfies this property, but what
about other candidates? Initially, we considered an open prefix relation defined
as follows.2

〈l1, . . ., lk | μ 〉 �? 〈l1, . . ., lk , lk+1, . . ., ln | μ 〉
Here, μ is a type variable of kind eff. The open prefix relation leads to loss of
type safety, as shown by the following example.

(Λμ.λ〈polyexn int|μ 〉 f : ()→μ (). restrict μ (f ()))
〈polyexn string 〉 λ〈polyexn string 〉_.polythrow ”blame!”

Here, the example would be accepted with an open prefix relation because
μ �? 〈polyexn int | μ 〉 holds. However, the effect annotation 〈polyexn int | μ 〉
indicates that the innermost polyexn handler expects polyexn int , while
polythrow raises a string value, causing a type mismatch at runtime! Fortunately,
using the closed prefix relation will reject the example and preserve soundness.

4 Open Floating

In this section, we present open floating, a transformation algorithm defined on
System Fpwo . We first provide the design of open floating intuitively (Sect. 4.1).
We next describe how to implement the idea with defining auxiliary definitions
(Sect. 4.2). We then detail the definition of open floating (Sect. 4.3). Lastly, we
show an example of the transformation (Sect. 4.4).

If the reader is interested in the overall idea of the algorithm instead of the
details, the reader may skip the formal sections (Sects. 4.2 and 4.3).

4.1 Design of Algorithm

Open floating is designed under the strategy assign minimum effect for each sub-
expression. The first half of this section motivates the strategy and the latter
half explains a post-process of open floating. In order to reduce open constructs,
we first float up open constructs and then collapse redundant ones. We call the
first phase open floating, and the second phase the post-process.

The aim of open floating is to fuse multiple open constructs into one. We
saw an example in Sect. 1 that shows open floating fuses two opens into one
restrict. There is one constraint that must be satisfied by open floating: the
transformed program is well-typed. The simplicity of the constraint is due to
the formalization of open and restrict we saw in Sect. 3. Now the question is: how

2 In the Koka-related literature [9,19,20], an effect row is called closed when it ends
with 〈 〉, and open when its tail ends with a type variable. We adopt the naming
convention of the above literature.

182 N. Furudono et al.

can we reduce open constructs while satisfying this constraint? Our answer is to
assign minimum effect for each sub-expression.

Before open floating, open constructs are used to assign the maximum effect
type to each expression. Effect adjustments are never inserted in the middle
of ASTs. Instead, every expression is assigned a big effect, and if a function
call requires effect adjustment, an open construct is inserted to the function
call. If adjacent sub-expressions perform the same effect adjustment, we can
avoid adjustments at function calls by making the adjustment surround those
sub-expressions, which makes the effect types of sub-expressions smaller. Based
on this idea, in open floating, we assign the minimum effect type to each sub-
expression.

Unfortunately, the above strategy is naive in that it may insert redundant
restrict in a corner case. For instance, the following transformation increases the
number of open/restrict constructs from three to four. The problem is the restrict
in line 3 of the transformed program. We eliminate it by the post-process.

f : () → 〈l1 〉 (), g : () → 〈l2 〉 (), h : () → 〈l3 〉 ()

λ〈l1,l2,l3 〉_.
let x = open 〈l1, l2, l3 〉 f () in
let y = open 〈l1, l2, l3 〉 g () in
open 〈l1, l2, l3 〉 h ()

�

λ〈l1,l2,l3 〉_.
let x = restrict 〈l1 〉 f () in
restrict 〈l2, l3 〉 (

let y = restrict 〈l2 〉 g () in
restrict 〈l3 〉 h ())

It is not hard to see the validity of this removal: the necessary effect adjustment
is performed by the restricts on lines 4 and 5. In general, a restrict is redun-
dant if removing it does not force the sub-expressions to use additional open or
restrict. We can detect such restricts by checking the sub-expressions of restrict-
expressions.

4.2 Organization of Definition

The algorithm consists of three kinds of rules, taking care of expressions, values,
and operation clauses.

– Γ � e | ε � e ′ : σ | ϕ
– Γ �val v � v ′ : σ
– Γ �ops h � h ′ : σ | l | ε

In this study, proper programs are well-typed and internal-safe expressions.

Definition 1. (Internal-free expression, Internal-safe expression)
An expression is internal-safe if it is (1) internal-free (contains no prompt or
yield expressions) or (2) reduced from an internal-safe expression.

Open floating takes a proper program fragment and outputs proper program
fragment with an effect requirement ϕ (defined in Sect. 4.3). To define open

Towards Efficient Adjustment of Effect Rows 183

Fig. 5. Effect requirement and auxiliary definitions

floating, we represent the “minimum effect” of an expression as an effect require-
ment. It is an extension of effect row types with the bottom (least) value ∅. Open
floating calculates the effect type of the transformed expression in a bottom-up
way with effect requirements. If the effect requirement of the expression is an
effect row type, then the expression is assigned that effect type as the output of
the algorithm. If the effect requirement of the expression is the bottom value,
the expression is assigned an appropriate effect type determined later by the
surrounding context.

When we assign effect types to expressions, we need to maintain well-
typedness of expressions. The auxiliary functions defined in Fig. 5 help us do
so. For instance, in the case of a function application, the effect types of the
operation, the operand, and the body of operation must be the same. To ensure
this, we first calculate the effect requirement of the whole function application
using the sup function, and then make the effect types consistent by inserting
open constructs using open ′ and restrict ′. Note that open ′ may produce let bind-
ings to ensure that the function is syntactically a value, which is required by the
syntax rule of open.

4.3 The Definition

We define the open floating algorithm in Fig. 6 following the idea described in the
previous section. The light propositions are invariants, not side conditions; we
write them to clarify the intention of the algorithm design. The transformation
is syntax directed, except for applications (e e), in which case both [Open-App]
and [App] rules may apply.

Rule [Var] simply returns the variable with its type. Rule [Lam] recursively
applies the algorithm to the body e. We do not simply return λϕx :σ1.e ′ but
return λε restrict ′ ϕ ε e ′ in order to preserve the type of the lambda abstraction.

184 N. Furudono et al.

Fig. 6. Open floating algorithm

Rule [Val] assigns a null requirement ∅ to value. Rule [App] treats three effect
requirements: the requirements of the two sub-expressions (ϕ1 and ϕ2) and the
effect type of the function body. The rule uses the supremum of these require-
ments for the result. Rule [Bind] also takes the supremum of the two effect rows.

Towards Efficient Adjustment of Effect Rows 185

Rules [TAbs], [TApp], [Perform], [Handler], and [Ops] simply recursively call the
algorithm and propagate the results.

Rule [Open-App] processes application of an opened function. It removes open
and may assign a smaller effect to the expression. This rule conflicts with the
[App] rule, hence we give priority to [Open-App]. Rule [Open-Preserve] recursively
calls the algorithm while keeping open. This rule is required for function argu-
ments, for instance. Let us consider the following example.

safemap : list〈int 〉 → 〈 〉 (int → 〈exn 〉 int) → 〈 〉 list〈int 〉
safemap [1, 2, 3, 4] (open 〈exn 〉 addone)

The safemap function expects a function argument of int → 〈exn 〉 int and han-
dles the exception effect. If we want to pass a function of effect 〈 〉 as the argument
(addone in this case), we need to open it to make the entire program type check.
The last rule [Restrict] ignores the existing restrict.

4.4 Example

Recall from Sect. 4.1 that open floating assigns the minimum effect to each sub-
expression. Let us observe how this principle is implemented by the definition.
Assume we have the following bindings in the type environment, where l1, l2,
and l3 are distinct effect labels.

Γ = f : int → 〈l1, l2 〉 int , g : int → 〈l2, l3 〉 int

Then, open floating performs the following transformation.

λ〈l1,l2,l3 〉x : int .
let y = (open 〈l1, l2, l3 〉 f) x in
let z = (open 〈l1, l2, l3 〉 g) y in
(open 〈l1, l2, l3 〉 g) z

�

λ〈l1,l2,l3 〉x : int .
let y = restrict 〈l1, l2 〉 f x in
restrict 〈l2, l3 〉 (

let z = g y in
g z)

First, rules such as [Abs] and [Bind] are applied to the lambda abstraction and
let-expressions. The function application (open 〈l1, l2, l3 〉 g) z in the last line is
processed by rule [Open-App]; it outputs expression g z with effect requirement
〈l2, l3 〉. The let-expression in the second-last line is processed by rule [Bind];
it outputs expression let z = g y in g z with effect requirement 〈l2, l3 〉. Notice
that two opens in this let-expression are eliminated. This is because the effect
type of the original program is 〈l1, l2, l3 〉, while the transformed one has effect
type 〈l2, l3 〉, which agrees with the effect of function g .

Focusing our attention on the top-most let-expression, we see that two
restricts are inserted. The transformed definition of the let-expression is f x with
effect requirement 〈l1, l2 〉. The whole let-expression need to require the effect
that “satisfies” the requirements of both sub-expressions. This invariant is main-
tained by the [Bind] rule, which calculates the overall requirement using the sup
function and inserts restrict using the restrict ′ function if needed. Here, both the
definition and the body require different effects than the entire let-expression,

186 N. Furudono et al.

Fig. 7. Benchmarking open floating (the ideal case)

hence restricts are inserted (the inner let-expression does not require restrict as
there is no gap). Lastly, the [Abs] rule (which is the first rule applied to the
program) outputs the overall result of the transformation. Thus, open floating
floats up open constructs by determining the effect type of each sub-expression
in a bottom-up way.

5 Evaluation

We implemented our open floating algorithm in the Koka compiler [11] and
evaluated open floating with artificial programs. The results show that, in the
best case, open floating makes programs about 2.5 times faster, while in some
cases, it makes programs slower. In this section, we summarize the experiments
and discuss what kind of programs are made faster by open floating.

5.1 Ideal Case

Figure 7 includes a fragment of a small benchmark with the execution times.
The number of open calls is the sum of open and restrict expressions in the
program. As we can see, open floating is very effective here and the enabling
open floating improves performance by 2.5×. The execution times are averaged
over 3 runs, on an Intel Core i5 at 3Ghz with 8GiB memory running macOS
11.6.3, with Koka v2.3.9 extended with open floating. In the program, we use
three kinds of effects: read1, read2, and exn. The function test-one has the
effect 〈read1,read2,exn〉, while the other functions use smaller effects. In the
body of test-one, the Koka type inferencer inserts the following open calls
around the square, square-ask1, and square-ask2 functions:

Towards Efficient Adjustment of Effect Rows 187

Fig. 8. Benchmark of failure case

let x = open(square)(1) + . . . + open(square)(1) (call open(square)(1) 20 times)
let y = open(squareask1)()
let z = open(squareask2)()
x + y + z

This program contains 22 open calls initially and open floating reduces them to
3 restricts as follows:

let x = restrict(square(1) + . . . + square(1)) (call square(1) 20 times)
let y = restrict(squareask1())
let z = restrict(squareask2())
x + y + z

Here all individual open calls around each square invocation are floated up to a
single restrict, leading to the improved performance.

5.2 Failure Case

However, making a small modification to the program can make open floating
less effective. Consider a modified version of the square function in Fig. 7.

noinline fun square’(i : int) : 〈exn〉 int
if True then i * i else throw("impossible: ")

We have removed ++ ask1().show and changed the effect from 〈ask1, exn〉 to
〈exn〉. Just as before, the open floating reduces the number of open calls in the
test-one function, but now the program runs slightly slower as shown in Fig. 8.

The reason why this happens is that the opened function (square’) has an
effect row type of length one. In such case, the Koka runtime already optimizes
the use of open by avoiding allocating an explicit evidence vector and directly
using the single evidence as is. Since no allocation happens, this can be faster,
in particular since the current implementation of the restrict operation is not
optimized in a similar fashion yet. Instead, it is implemented combining a lambda
abstraction and an open operation, as restrict e .= open(λ_. e)(). We plan to
improve the implementation of restrict in which case it should always be beneficial
to perform open floating.

188 N. Furudono et al.

6 Future Work

Even though our open floating algorithm is effective, there are still situations
where it can be improved. In particular, for certain higher-order programs, such
as calls of map and fold, open floating can be improved. Consider the following
program.

fun map(xs : list〈a〉, f : a → e b) : e list〈b〉
fun g(x : int) : 〈ask, ndet〉 int

fun f() : 〈ask, exn, ndet〉 int
...
map(lst, g)
...

The Koka compiler wraps the function g with an open call to make the program
type check. This gives us the following expression.

map int int 〈ask , exn,ndet 〉 lst (open〈ask , exn, ndet 〉 g)

The current open floating algorithm does not change the program due to the
rule [Open-Preserve] as we discussed in Sect. 4.3. At runtime, the opened function
is applied to each element in the list lst by the map function. It would be better
to float the open to surround the entire map call which reduces the number of
open calls to one like restrict〈ask , ndet 〉(map int int 〈ask , ndet 〉 lst g).

7 Related Work

Our work is in the context of passing dynamic evidence vectors at runtime that
correspond to the static effect types, as described by Xie and Leijen [20]. The
idea of passing dynamic runtime evidence for static properties is not new and
is a standard way of implementing qualified types and type classes [5,18]. Here,
the evidence takes the form of a dictionary of overloaded operations and corre-
sponds to the qualified type constraints. In our work, open adjusts the run-
time evidence vectors, while with type classes instances are used to modify
runtime dictionaries. For example, a function with a Show a constraint may
call a function with a Show [a] constraint. To call this, the received dictio-
nary for Show a is transformed at runtime to a Show [a] dictionary using the
instance Show a => Show [a] declaration. Usually, these “evidence adjust-
ments” are called context reduction and generalized by the entailment relation
in the theory of qualified types [6]. Peyton Jones et al. [13] explore the design
space of sound context reduction in Haskell.

Gaster and Jones [4] present a system for extensible records based on the
theory of qualified types. Here, a lacks constraint l/r corresponds to a run-
time evidence, providing the offset in the record r where the label l would be
inserted. When modifying the record, the evidence is also adjusted at runtime

Towards Efficient Adjustment of Effect Rows 189

to reflect a new offset. For example, if another label is inserted before l , its offset
is incremented. A similar mechanism is used in the system of type-indexed rows
developed by Shields and Meijer [17].

In all of the above examples, we can imagine transformations similar to open
floating that try to minimize the evidence adjustments, although we are not
aware of any previous work that addresses this issue specifically.

Our formalization of effect row can roughly be understood as an instance
of scoped rows discussed by Morris and McKinna [12]. They define a general
row theory and row algebra with qualified types. Scoped rows are shown as
an instance of them. Closed prefix relation is almost represented as left con-
tainment relation. Note that our calculus uses polymorphic effect rows such as
∀μ.〈l1, l2 | μ 〉 while scoped rows in [12] do not seem to entail it.

8 Conclusion

In this paper, we formalized open and restrict with their restriction of the closed
prefix relation. The formalization clarifies the nature of the Koka language and
the constraint of open floating. We also defined the open floating algorithm on the
formalized calculus and developed an implementation in Koka. The benchmark
shows the effectiveness of open floating and points out room to improve the
implementation.

Acknowledgement. We acknowledge the reviewers’ efforts put into evaluation of our
paper. We also appreciate the FLOPS 2022 reviewers’ feedback on an earlier version of
the paper. Lastly, we thank members of Masuhara laboratory. This work was supported
in part by JSPS KAKENHI under Grant No. JP19K24339.

Appendix

We present the well-formedness relation�wf and definitional equality of types�eq
in Fig. 9. The type rules (Fig. 4) use these relations.

190 N. Furudono et al.

Fig. 9. Well-formedness and definitional equality of types of system Fpwo

References

1. Brachthäuser, J.I., Schuster, P., Ostermann, K.: Lightweight effect polymorphism
for handlers. Technical report. University of Tübingen, Germany, Effekt (2020)

2. Dolan, S., White, L., Sivaramakrishnan, K.C., Yallop, J., Madhavapeddy, A.: Effec-
tive Concurrency through algebraic effects. In: OCaml Workshop, vol. 13 (2015)

3. Felleisen, M.: The theory and practice of first-class prompts. In: Proceedings of the
15th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pp. 180–190. POPL ’88. Association for Computing Machinery, New York,
NY, USA (1988). 10.1145/73560.73576

4. Gaster, B.R., Jones, M.P.: A Polymorphic Type System for Extensible Records
and Variants. NOTTCS-TR-96-3. University of Nottingham (1996)

https://dx.doi.org/10.1145/73560.73576

Towards Efficient Adjustment of Effect Rows 191

5. Jones, M.P.: A theory of qualified types. In: Krieg-Brückner, B. (ed.) ESOP 1992.
LNCS, vol. 582, pp. 287–306. Springer, Heidelberg (1992). https://doi.org/10.1007/
3-540-55253-7_17

6. Jones, M.P.: Simplifying and improving qualified types. In: Proceedings of the
7th International Conference on Functional Programming Languages and Com-
puter Architecture, pp. 160–169. FPCA ’95. La Jolla, California, USA (1995).
10.1145/224164.224198

7. Leijen, D.: Koka: programming with row polymorphic effect types. In: MSFP’14,
5th Workshop on Mathematically Structured Functional Programming (2014).
10.4204/EPTCS.153.8

8. Leijen, D.: Structured asynchrony with algebraic effects. In: Proceedings of the
2nd ACM SIGPLAN International Workshop on Type-Driven Development, TyDe
2017. Oxford, UK, pp. 16–29 (2017). 10.1145/3122975.3122977

9. Leijen, D.: Type directed compilation of row-typed algebraic effects. In: Proceed-
ings of the 44th ACM SIGPLAN Symposium on Principles of Programming Lan-
guages, pp. 486–499 (2017)

10. Leijen, D.: Type directed compilation of row-typed algebraic effects. In: Proceed-
ings of the 44th ACM SIGPLAN Symposium on Principles of Programming Lan-
guages (POPL’17), Paris, France, pp. 486–499 (2017). 10.1145/3009837.3009872

11. Leijen, D.: Koka repository (2019). https://github.com/koka-lang/koka
12. Morris, J.G., McKinna, J.: Abstracting extensible data types: or, rows by any other

name. In: Proceedings of the ACM on Programming Languages, vol. 3 (POPL).
ACM New York, NY, USA, pp. 1–28 (2019)

13. Jones, S.P., Jones, M., Meijer, E.: Type classes: an exploration of the design space.
In: Haskell Workshop (1997)

14. Plotkin, G.D., Pretnar, M.: Handling algebraic effects. In: Logical Methods in
Computer Science, vol. 9, no. 4 (2013). 10.2168/LMCS-9(4:23)2013

15. Pretnar, M., Saleh, A.H., Faes, A., Schrijvers, T.: Efficient compilation of algebraic
effects and handlers. CW Reports. Department of Computer Science, KU Leuven,
Leuven, Belgium (2017). https://lirias.kuleuven.be/retrieve/472230

16. Saleh, A.H., Karachalias, G., Pretnar, M., Schrijvers, T.: Explicit effect subtyping.
In: Ahmed, A. (ed.) ESOP 2018. LNCS, vol. 10801, pp. 327–354. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-89884-1_12

17. Shields, M., Meijer, E.: Type-indexed rows. In: Proceedings of the 28th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL’01, London, United Kingdom, pp. 261–275 (2001) 10.1145/360204.360230

18. Wadler, P., Blott, S.: How to make ad-hoc polymorphism less ad hoc. In: Pro-
ceedings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL ’89. ACM, Austin, Texas, USA, pp. 60–76 (1989).
10.1145/75277.75283

19. Xie, N., Brachthäuser, J.I., Hillerström, D., Schuster, P., Leijen, D.: Effect handlers,
evidently. In: Proceedings of the ACM on Programming Languages, vol. 4 (ICFP).
ACM New York, NY, USA, pp. 1–29 (2020)

20. Xie, N., Leijen, D.: Generalized evidence passing for effect handlers: efficient compi-
lation of effect handlers to C. In: Proceedings of the ACM Programming Languages,
vol. 5 (ICFP). Association for Computing Machinery, New York, NY, USA (2021).
10.1145/3473576

https://doi.org/10.1007/3-540-55253-7_17
https://doi.org/10.1007/3-540-55253-7_17
https://dx.doi.org/10.1145/224164.224198
https://dx.doi.org/10.4204/EPTCS.153.8
https://dx.doi.org/10.1145/3122975.3122977
https://dx.doi.org/10.1145/3009837.3009872
https://github.com/koka-lang/koka
https://dx.doi.org/10.2168/LMCS-9%25284:23%25292013
https://lirias.kuleuven.be/retrieve/472230
https://doi.org/10.1007/978-3-319-89884-1_12
https://dx.doi.org/10.1145/360204.360230
https://dx.doi.org/10.1145/75277.75283
https://dx.doi.org/10.1145/3473576

	Towards Efficient Adjustment of Effect Rows
	1 Introduction
	2 Overview
	2.1 Effect Handlers
	2.2 Evidence Passing Semantics and Row-Based Effect System
	2.3 Effect Type Adjustment for Function Types
	2.4 Motivating Open Floating

	3 System Fpwo
	3.1 Syntax
	3.2 Dynamic Semantics
	3.3 Static Semantics
	3.4 Effect Rows and Closed Prefix Relation

	4 Open Floating
	4.1 Design of Algorithm
	4.2 Organization of Definition
	4.3 The Definition
	4.4 Example

	5 Evaluation
	5.1 Ideal Case
	5.2 Failure Case

	6 Future Work
	7 Related Work
	8 Conclusion
	References

