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Abstract. Koka is a functional programming language that has alge-
braic effect handlers and a row-based effect system. The row-based effect
system infers types by naively applying the Hindley-Milner type infer-
ence. However, it infers effect-polymorphic types for many functions,
which are hard to read by the programmers and have a negative run-
time performance impact to the evidence-passing translation. In order to
improve readability and runtime efficiency, we aim to infer closed effect
rows when possible, and open those closed effect rows automatically at
instantiation to avoid loss of typability. This paper gives a type inference
algorithm with the open and close mechanisms. In this paper, we define
a type inference algorithm with the open and close constructs.
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1 Introduction

Koka [12,21] is a functional programming language that has algebraic effects
and handlers [7,15] which are a recently introduced abstraction of computa-
tional effects. An important aspect1 of Koka is that it tracks the (side) effects of
functions in their type. For example, the following function:

fun sqr( x : int ) : 〈 〉 int
x * x

has an empty effect row type 〈 〉 as it has no side effect at all. In contrast, a
function like:

fun head( xs : list〈a〉 ) : 〈exn〉 a
match xs

Cons(x,xx) → x

1 Koka is the first practical language that tracks the (side) effects of functions in their
type. .
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gets the 〈exn〉 effect row type as it may raise an exception at runtime (if we pass
an empty list). To track effects, Koka uses row-based effect types [9]. These are
quite suitable to combine with standard Hindley-Milner type inference as row
equality has decidable unification (unlike subtyping for example).

When doing straightforward Hindley-Milner type inference with row-based
effect types many functions will be polymorphic in the tail of the effect row
(we call such effect rows open). For example, the naively inferred types of the
previous two functions would be:

fun sqr : int → e int
fun head: list〈a〉 → 〈exn|e〉 a

Observe that both types are polymorphic in the effect tail as effect variable e.
These are in a way the natural types, signifying for example that we can use
sqr in any effectful context. However, in practice, we prefer closed types instead,
as these are easier to explain, and easier to read and write without needing to
always consider the polymorphic tail.

Moreover, it is possible to generate more efficient code for functions with
closed effect rows. When executing an effect operation (which is similar to raising
an exception), there is generally a dynamic search at runtime for a corresponding
handler of that effect. This can be expensive, and Koka uses evidence passing [20,
21] to pass handler information as a vector at runtime. When an effect row is
closed, the runtime shape of the vector is statically determined, and instead of
searching for a handler, we can select the right handler at a fixed offset in the
vector. This can be much more efficient.

Therefore, the type inference algorithm in the current Koka compiler gener-
ally infers closed effect rows for function bindings, where it relies on two mech-
anisms, open and close, for converting between open and closed function types.
However, the opening and closing features of the inference algorithm have never
been formalized.

In this paper, we make the following contributions:

– We formalize type inference with the open and close mechanisms precisely
(Sect. 4).

– We prove that the type inference algorithm is sound and complete (Sect. 5)
and infers most general types.

First, we give an introduction to algebraic effects and handlers, and explain what
kind of types we would like to infer (Sect. 2). Next, we present an implicitly typed
calculus with algebraic effects and handlers, and give a set of declarative type
inference rules (Sect. 3). Then, we define syntax-directed type inference rules
and show they are sound and complete with respect to the declarative rules
(Sect. 4). We also define a type inference algorithm and prove its soundness and
completeness (Sect. 5). Lastly, we discuss related work (Sect. 6) and conclude
with future directions (Sect. 7).
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2 Motivation

2.1 Algebraic Effects and Handlers

Algebraic effects and handlers [7,15] are a uniform mechanism for representing
computational effects. When programming with algebraic effects and handlers,
the user first declares an effect with a series of operations. They then define a
handler that specifies the meaning of operations, using the continuation (resume
in Koka) surrounding the operations. As an example, let us implement a reader
effect in Koka.

effect read2
ask-int() : int
ask-bool(): bool

The reader effect read2 has two operations ask-int and ask-bool, which take no
argument and return an integer and a boolean, respectively. Below is a program
that uses the two operations.

handler {
ask-int() { resume(12) }
ask-bool() { resume(True) }

} {
if ask-bool() then ask-int() else 42

}

In the above program, the conditional expression is surrounded by a handler that
specifies the meaning of ask-int and ask-bool. The evaluation goes as follows.
First, ask-bool() is interpreted by the second clause of the handler, which
says: continue (resume) evaluation with the value True. Second, the conditional
expression reduces to the then -clause. Third, ask-int() is interpreted by the
first clause of the handler, which says: continue evaluation with the value 12.
Thus, the program evaluates to 12.

2.2 Naive Hindley-Milner Type Inference with Algebraic Effects
and Handlers

Koka employs a row-based effect system similar to a record type system [9]. It is
also equipped with polymorphic type inference, which is similar to the Hindley-
Milner type inference but has an additional mechanism for manipulating effects.

It turns out that the types inferred by a natural extension of the Hindley-
Milner inference are not suitable for evidence passing [20,21]. As an example,
consider the function f below.

fun f(x)
ask-int()
x

This function f is inferred to have the type forall〈a,e1〉 a → 〈read2|e1〉 a.
The type contains an effect variable e1, representing the effects of the function
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body. Now, suppose we have the following user program (where head may raise
an exception).

if True then f(1) else head([1])

As the two branches must have the same effect row, 〈read2|e1〉 and 〈exn|e2〉
are unified to 〈exn,read2|e3〉 or 〈read2,exn|e3〉, where e3 is a fresh effect
variable. In the former case, the Koka compiler has to dynamically search for
the read2 handler because the effect row of f has been changed from 〈read2|e2〉
to 〈exn,read2|e3〉. In the latter case, the Koka compiler would dynamically
search for the exn handler because the effect row of head has been changed from
〈exn|e2〉 to 〈read2,exn|e3〉. To avoid dynamic search, we would like to infer
the type forall〈a〉 a → 〈read2〉 a for f. We call this function type closed, in
the sense that we cannot grow the effect row by instantiating the effect variable.
When f is given this closed function type, we know that f only performs the
read2 effect. Therefore, we can obtain a corresponding handler in constant time
(see [20,21] for more details). Intuitively, higher order functions such as map must
have a effect variable and need to dynamically search for the corresponding
handler because the Koka compiler cannot statically determine the effects of
function body at runtime. The other functions such as f should not have a effect
variable in order to generate the efficient code by evidence passing, because the
set of effects of function body can be statically determined.

The Hindley-Milner type inference also occasionally yields type signatures
that are more general than what the user may expect. Consider the identity
function.

fun id( x )
x

It is likely that the user defines id as a function of the following type.

fun id( x : a ): 〈 〉 a
x

Notice that the effect of function body is an empty row 〈 〉. This is because the
body of id is variable, which has no effect. However, based on the Hindley-
Milner inference, id is given type forall〈a,e〉 a → e a. Here, e is an effect
variable representing any effects. When the user is shown this type, they might
be surprised because they did not introduce the effect variable e. In contrast,
the type forall〈a〉 a → 〈 〉 a, which has a total effect 〈 〉, seems more natural.

We might take other approaches to show the precise type signatures, but we
believe our approach is useful for users. For example, we could treat all effect
rows as open ones by implicitly inserting an effect variable. This approach is
adopted in the Frank language; we will provide more details in Sect. 6.

2.3 Type Inference with open and close

In order to optimize more functions and display precise types, the Koka compiler
manipulates effect types using special mechanisms open and close. In this paper,



148 K. Ikemori et al.

we formalize type inference with these mechanisms. The key principle is to close
the effect row of all named functions (bound by the let/val expression), and
open the effect row when we encounter variables of a closed function type. Let
us illustrate how open and close work through an example.

val id = fn(x) x
id( ask-int() )

In the type system described in this paper, the function fn(x) x is given the
most general type forall〈a,e〉 a → e a. When the function is bound to id,
the type is closed to forall〈a〉 a → 〈 〉 a. This ensures that, when the type of a
named function is displayed to the user, it must be of the closed form. When id is
instantiated in the body, the type is opened again, first to forall〈a,e〉 a → e a
and then unified to int → 〈read2〉 int so that id( ask-int() ) is well-typed
in its context.

In general, open introduces a fresh effect variable e into a closed effect row
〈l1,...,ln〉, yielding 〈l1,...,ln|e〉. Dually, close removes an effect variable
from an open effect row. Together these allow us to avoid dynamic handler
search and display simplified type signatures.

The reader may find opening and closing similar to subtyping. We use these
mechanisms to avoid complex constraints over the subtyping relation and unde-
cidability of the unification algorithm. In the following sections, we will show
simple type inference for open and close.

3 Implicitly Typed Calculus for Algebraic Effects
and Handlers

In this section, we present ImpKoka, an implicitly typed surface language that
has algebraic effects and handlers, as well as polymorphism and higher-order
kinds à la System Fω. The structure of this section is as follows. First, we define
the syntax of kinds, types, and effect rows (Sects. 3.1.1–3.1.3). Next, we define
the syntax of expressions (Sect. 3.1.4). Lastly, we give a set of declarative type
inference rules (Sect. 3.2).

Note that we do not define an operational semantics for ImpKoka, but instead
define a translation from ImpKoka to an extension of System Fε [20]. The defi-
nition can be found in the appendix.

3.1 Syntax

3.1.1 Kinds and Types We define the syntax of kinds and types of ImpKoka
in Fig. 1. Similar to System Fε [20], we have kinds for value types (∗), type con-
structors (k → k), effect rows (eff), and effect labels (lab). Differently from Sys-
tem Fε, we distinguish between monotypes and type schemes. Monotypes consist
of type variables αk , type constructors ck τ . . .τ , and function types τ → ε τ . In
particular, sk is a special type constructors used in a unification function for
operations, and the detail of sk will be explained in Sect. 5.2. Note that type
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Fig. 1. Types, kinds, effect signatures, and effect rows of ImpKoka

variables and constructors have a kind annotation k . The effect ε in a function
type τ → ε τ represents the effect performed by the function body. We will use
α and β for value type variables and μ for effect type variables, often without
kind annotations.

3.1.2 Signatures We define operations op, effect signatures sig , and sets of
effect signatures Σ again as in System Fε (Fig. 1). An effect signature is a set
of pairs of an operation name and a type. A set of effect signatures associates
each effect label li with a corresponding effect signature sig i . We assume that
operation names and effect labels are all unique, and that Σ is defined at the
top level.

3.1.3 Effect Rows In ImpKoka, we use effect rows [5,11] to represent a col-
lection of effects to be performed by an expression. As in System Fε, an effect
row is either an empty row 〈 〉, or an effect variable μ, or an extension 〈l | ε〉 of
an effect row ε with an effect label l , respectively. For example, assuming exn is
an effect label representing exceptions, 〈exn, read2〉 is an effect row represent-
ing a collection of exception and reader effects. The kinds of 〈 〉 and l are eff
(representing an effect type) and lab (representing an effect label), respectively.
The kind of 〈_ | _〉 is lab → eff → eff. We will use 〈 〉 and 〈_ | _〉 without kind
annotations.

The equivalence relation for effect rows is also defined in the same way as in
System Fε (Fig. 2). The [refl] and [eq-trans] rules are the reflexivity and transi-
tivity rules. The [eq-swap] rule says that two effect labels l1 and l2 can be swapped
if they are distinct. The [eq-head] rule tells us that two effect rows are equivalent
when their heads and tails are equivalent.

Note that effect rows can have multiple occurrences of the same effect label.
For example, we may have 〈exn〉 and 〈exn, exn〉, and they are treated as different
effect rows. The advantage of this design is that we can define type inference
rules in a simple manner, by using only type equivalence.
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Fig. 2. Equivalence of row types

Fig. 3. Expressions of ImpKoka

3.1.4 Expressions We define the syntax of expressions of ImpKoka in Fig. 3.
In addition to the standard lambda terms, we have let-binding let x = v in e,
handlers handler h and operation performing perform op. Note that we treat
both handler h and perform op as a value. If we want to handle an expression
e with handler h, we write handler h (λ_.e) via application. Similarly, if we
want to perform an operation op with argument e, we write perform op e via
application.

3.2 Declarative Type Inference Rules

We now turn to the declarative type inference rules with open and close (Fig. 4).
Here, we use a typing judgment of the form Ξ | Γ | Δ � e : σ | ε. The judg-
ment states that, under type variable context Ξ and typing context Γ and Δ,
expression e has type σ and performs effect ε. Among the two contexts, Δ is a
type assignment for named (i.e., let -bound) functions, which inhabit a function
type with a closed effect row (we will call such types closed function types). The
other context Γ is a type assignment for all other variables.

The [var] and [varopen] rules in Fig. 4 are interesting. The [var] rule concludes
with a type σ that comes from either Δ or Γ , and an arbitrary effect ε. Note
that, although a variable does not perform any effects, we cannot replace ε by
〈 〉, because we do not have subeffecting rules in ImpKoka. Note also that the
rule applies only to variables whose type is not a closed function type. The
[varopen] rule derives an open function type for a variable of a closed function
type. The variable must reside in Δ, because we can only open the type of named
functions. As an example, we can use [varopen] to make id (perform ask -int ())
well-typed, because we can derive Ξ | Γ | Δ � id : int → 〈read2〉 int by [varopen]
and Ξ | Γ | Δ � perform ask -int () : int | 〈read2〉 by [perform] and [app].
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Fig. 4. Declarative type inference rules

Other type rules in Fig. 4 are standard. The [lam] rule derives a function type
for a lambda abstraction. Observe that the effect ε of the body e is integrated
into the type τ1 → ε τ2 in the conclusion. Note that the lambda-bound variable
x is added to Γ , not Δ. Therefore, in the derivation of the body e, the type of x
cannot be opened using [varopen]. The [app] rule requires that the function e1, the
argument e2, and the body of the function have the same effect ε. The [gen] rule
derives a polymorphic type. Similar to the value restriction in ML we only allow
values v [19], which is necessary for soundness of the translation from ImpKoka to
System Fε + restrict. The [inst] rule is completely standard. The [let] rule is used
to bind values with polymorphic types. As in the [gen] rule, the expression being
bound is a value, and must have a total effect 〈 〉. Notice that bound variable x
is added to the context Δ, not Γ . Therefore, in the derivation of the body e2,
the type of x can be opened via [varopen].
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Fig. 5. Type substitution and type ordering

The [perform], [handler] and [ops] rules are also standard and used for algebraic
effects and handlers. The [perform] rule is used to type an operation call. The
type in the conclusion is a monotype, which is instantiated by using a sequence
of types τ . The notation op : ∀αk .τ1 → τ2 ∈ Σ(l) of the premise means that the
operation op : ∀αk .τ1 → τ2 belongs to the effect signature corresponding to the
effect label l . The [handler] rule is used to type a handler. It takes a thunked
computation (action) of type () → 〈l | ε〉 τ and handles the effect l . The [ops]
rule takes care of operation clauses of a handler. The type of each operation
clause is a nested function type of the form ∀αk

i . τ i
1 → ε ((τ i

2 → ε τ) → ε τ),
where τ i

1 is the input type of the operation, and τ i
2 → ε τ is the type of the

continuation. The condition αk
i 	∈ ftv(ε, τ) is necessary for type preservation of

the translation from ImpKoka to System Fε + restrict.

4 Syntax-Directed Type Inference Rules

In this section, we formalize the syntax-directed type inference rules with open
and close, following [6,10]. These rules allow us to determine which typing rule
to apply to an expression from the syntax. In what follows, we first define type
substitution and type ordering, and then elaborate the key cases of the inference
rules.

4.1 Type Substitution

Figure 5 shows the definition of type substitution, which is inspired by [4]. The
judgment � θ : Ξ1 ⇒ Ξ2 means substitution θ replaces type variables in con-
text Ξ1 with types well-formed under context Ξ2. There are two formation rules
for substitutions: [empty] forms an empty substitution, and [extend] extends a
substitution θ with [αk := τ ]. As a convention, we write id to mean the identity
substitution.

4.2 Type Ordering

Figure 5 shows the definition of type ordering, which is similar to that of System
F. The judgment Ξ � σ1 � σ2 means type σ2 is more specific than type σ1
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Fig. 6. Syntax-directed type inference rules (excerpt)

under context Ξ. The context Ξ is used to inspect the kinds of the types τ that
replace the type variables αk . For example, the following relationship holds.

Ξ � ∀α . α → 〈 〉 α � int → 〈 〉 int

Ξ � ∀α μ . α → μ α � ∀β. (β → 〈exn〉 β) → 〈exn〉 (β → 〈exn〉 β)

Using type ordering, we define type equivalence as follows.

σ1 = σ2 ⇔ σ1 � σ2 ∧ σ2 � σ1

4.3 Inference Rules with open and close

Figure 6 is an excerpt of the syntax-directed type inference rules, consist-
ing of those rules that are changed from the declarative rules. Compared to
the declarative rules we saw in Sect. 3.2, there are no rules corresponding to
[gen] and [inst], because these rules are not syntax directed. All other rules
are identical to the declarative rules. Another difference is that we use two
auxiliary functions Gen(·, ·, ·) and Close(·). The Gen function is the stan-
dard generalization function, with a standard definition of free type variables.
The Close function closes the effect row of a function type. For example,
Close(∀μ α. α → μ α) = ∀α. α → 〈 〉 α.

Gen(Γ , Δ, τ) = ∀(ftv(τ) − ftv(Γ , Δ)). τ

Close(∀μ αk . τ1 → 〈l1, . . ., ln | μ〉 τ2) = ∀αk . τ1 → 〈l1, . . . , ln 〉 τ2 iff μ �∈ ftv(τ1, τ2)
Close(σ) = σ otherwise
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Among the key rules, [var] is standard and derives the type instantiated by τ .
The [varopen] rule derives an open function type from a closed one by inserting an
arbitrary effect row. The [let] rule generalizes the type of the bound expression
using Gen, and derives the type of the body under an extended type context
Δ, x : Close(σ). In the [ops] rule, we derive a monomorphic type without the
type variables bound by the quantifier.

The syntax-directed type inference rules are sound and complete with respect
to the declarative type inference rules.

Theorem 1. (syntax-directed inference rules is sound)

If Ξ | Γ | Δ�s e : τ | ε thenΞ | Γ | Δ � e : τ | ε.

Theorem 2. (syntax-directed inference rules is complete)

If Ξ | Γ | Δ � e : σ | ε thenΞ ′ | Γ | Δ�s e : τ | ε,

whereΞ ⊆ Ξ ′ andΞ ′ � Gen(Γ , Δ, τ) � σ.

4.4 Principles on the Use of [LET] Rule

It is important that the Close function is applied only in the [let] rule. The reason
is that, if Close is used to close a function type that is not universally quantified,
the type system cannot track the effects to be handled. Let us illustrate the
problem using a variation of Close and [lam] rule. We first define Close1 as a
function that closes the effect variable of a monomorphic function type. For
example, Close1(α → μ α) = α → 〈 〉 α, where Γ = ∅ and Δ = ∅.

Close1(τ1 → 〈l1, . . ., ln | μ〉 τ2) = τ1 → 〈l1, . . . , ln〉 τ2 iff μ 	∈ ftv(τ1, τ2)
Close1(τ) = τ otherwise

We next define [lam1] as a typing rule that closes the monomorphic function
type of a lambda-bound variable using Close1 and derives the type of the body
under an extended type context Δ, x : τ ′

1. This allows more functions to have
a closed function type as their domain.

Ξ | Γ | Δ, x : τ ′
1 �s e : τ2 | ε τ ′

1 = Close1(τ1)
Ξ �wf τ1 : ∗ Ξ �wf ε′ : eff

Ξ | Γ | Δ�s λx . e : τ1 → ε τ2 | ε′ [lam1]

With [lam1], it is possible to derive wrong effects. Consider the following expres-
sion.

let f = λg . g () in f (λ_. perform ask -int ())

First, we derive ∅ | ∅ | ∅�s λg . g () : (() → μ α) → 〈 〉 α by the [lam1] and
[varopen] rules. Next, we extend the type context Δ with f : ∀μ α.
(() → μ α) → 〈 〉 α by the [let] rule. Then, we obtain the following derivation
by the [app] rule.

∅ | ∅ | f : ∀μ α. (() → μ α) → 〈 〉 α �s f (λ_. perform ask -int ()) : int | 〈 〉



Sound and Complete Type Inference for Closed Effect Rows 155

This typing judgment is clearly wrong, because it does not track the read2 effect.
The problem can be avoided if we use Close only in the [let] rule: in that case,
f will be given a correct type ∀μ. α (() → μ α) → μ α.

4.5 Fragility of [LET] Rule

An unfortunate aspect of our current rules is that the [let] rule is fragile in the
sense that insertion of a let-binding may change the typability of programs. Let
us consider the following functions:

remote = λf . perform ask -bool ()
foo = λf . remote f ; f ()

In our type system, the type of the function remote is inferred as
α → 〈read2 | μ〉 bool. The function foo is also well-typed. First, the lambda-
bound variable f is added to the context Γ , second, the type of remote f
is inferred as Ξ | Γ | Δ�s remote f : bool | 〈read2 | μ〉 by the [app] rule,
and finally, the type of f is inferred as Ξ | Γ | Δ�s f : () → 〈read2
| μ〉 β | 〈read2 | μ〉 by the [app] rule, where e1; e2 is a syntax sugar of (λ_. e2) e1.
Therefore, the type of function foo is inferred as (() → 〈read2 | μ〉 β)
→ 〈read2 | μ〉 β and foo is judged well-typed.

Suppose though that we have a function remote that is explicitly annotated
with type (() → 〈 〉 ()) → 〈read2〉 bool.

remote : (() → 〈 〉 ()) → 〈read2〉 bool

remote = λf . perform ask -bool ()

foo = λf . remote f ; f ()
bar = λf . remote f ; let g = f in g ()

Here foo and bar only differ in the explicit let-binding for f . The naive Hindley-
Milner type inference without open and close mechanisms rejects both foo
and bar , because a closed function type cannot be opened. In contrast, our
inference rules reject foo but accept bar . The type of remote f is inferred as
Ξ | Γ | Δ�s remote f : bool | 〈read2〉, and the type of f is unified to a closed
type () → 〈 〉 () by remote. Its type cannot be opened to () → 〈read2〉 (), because
the lambda-variable f is included in Γ and cannot be applied the [varopen] rule.
Hence, we cannot apply the [app] rule to f (). On the other hand, the bar defi-
nition is well-typed. The function f is now a let -bound variable, thus its type
can be opened to () → 〈read2〉 () by the [varopen] rule. Hence, we can apply the
[app] rule to g ().

This is clearly not desirable and we would like to address this in future
work. On the other hand, it is not uncommon to find this form of fragility in
practical type systems (like the monomorphism restriction in Haskell, inference
for GADT’s [14], etc.) and it may work out fine in practice. Experiments on all
the standard libraries of Koka (~15000 lines) showed only 2 instances where a
let binding was required.
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dom : Subst→TypeVars
dom(∅) = ∅
dom(θ[αk : = τ ]) = { αk } ∪ dom(θ)

codom : Subst→MTypes
codom(∅) = ∅
codom(θ[αk : = τ ]) = { τ } ∪ dom(θ)

(−) : (Subst, TypeVars)→Subst

∅ − αk = ∅
θ[βk : = τ ] − αk = θ − αk (βk ∈ αk )
θ[βk : = τ ] − αk = (θ − αk ) [βk : = τ ] (βk �∈ αk )

const : MTypes→Con
const(∅) = ∅
const({ sk } ∪ τ) = { sk } ∪ const(τ)
const({ τ } ∪ τ) = const(τ)

tail : Eff -> Eff
tail( ) =
tail( )  = 
tail( l | ) = tail( )

µ µ

Fig. 7. Auxiliary functions

5 Type Inference Algorithm

In this section, we formalize the type inference algorithm with open and close as
an extension of Algorithm W [3]. We first define auxiliary functions (Sect. 5.1),
and then discuss the unification algorithm (Sect. 5.2) and the type inference
algorithm (Sect. 5.3).

5.1 Auxiliary Functions

In Fig. 7, we define auxiliary functions. The functions dom( ·), codom( ·) , and
tail( ·) are completely standard. The dom function takes a substitution θ and
returns a set of type variables that are included in the domain of θ. The codom
function also takes a substitution θ and returns a set of monomorphic types
that are included in the codomain of θ. The tail function takes an effect row
and returns the tail of the effect row. Note that the function is defined only
on non-empty effect rows. The (−) and const functions are used in the unifyOp
function (Sect. 5.2). The former takes a substitution θ and set of type variables
αk , and returns a new substitution with αk removed from the domain of θ. The
latter takes a set of monomorphic types, and returns a set of skolem constants.

5.2 Unification Algorithm

In Fig. 8, we define the unification algorithm. The algorithm is a natural exten-
sion of the standard Robinson unification algorithm [18]. It consists of three
functions unify(·, ·, ·), unifyEffect(·, ·, ·), and unifyOp(·, ·, ·), which take care of
value types, effect types, and the type of operation clauses, respectively. Among
these functions, unify and unifyEffect are standard. The unifyOp function orig-
inates from the special treatment of Koka’s operation clauses.

Let us look at the unify and unifyEffect functions. Given a triple (Ξ, ε, l)
of a type context, an effect row type, and an effect label, unifyEffect returns a
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Fig. 8. Unification algorithm

triple (Ξ1, θ1, ε1) of a new type context, a substitution, and an effect row. We
can transform ε into an effect row whose head effect label is l . As an example,
let us consider the following unification problem.

unifyEffect(Ξ, 〈read2 | μ〉, exn)

This succeeds and returns the following effect row and substitution:

ε1 = 〈read2 | μ1〉 θ1 = id [μ := 〈exn | μ1〉]
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The unifyEffect function is sound. That is, if unifyEffect(Ξ, ε, l) succeeds, it
returns a substitution θ1 and an effect row ε1 that satisfy θ1(ε) ≡ 〈l | θ1(ε1)〉.
Theorem 3. (unifyEffect is sound)
If Ξ �wf ε : eff, Ξ �wf l : lab and unifyEffect(Ξ, ε, l) = (Ξ1, θ1, ε1), then
� θ1 : Ξ ⇒ Ξ1 and θ1(ε) ≡〈l | θ1(ε1)〉.
The unifyEffect function is also complete. That is, if ε can be rewritten to an
effect row of the form 〈l | θ(ε′)〉 by the substitution θ, unifyEffect(Ξ, ε, l) suc-
ceeds and returns the most general substitution θ1.

Theorem 4. (unifyEffect is complete)
If Ξ �wf ε : eff, Ξ �wf l : lab, � θ : Ξ ⇒ Ξ2 and θ(ε) ≡ 〈l | θ(ε′)〉, then
unifyEffect(Ξ, ε, l) = (Ξ1, θ1, ε1) and there exists � θ2 : Ξ1 ⇒ Ξ2 such
that θ = θ2 ◦ θ1.

The unify function is similar to unifyEffect . Given a triple (Ξ, τ1, τ2) of a type
context and two monomorphic types, unify returns a pair (Ξ1, θ1) of a new type
context and a substitution. The most interesting case of the unification algo-
rithm is unify(Ξ, 〈l | ε1〉, 〈l ′ | ε2〉) that corresponds to [uni-row] case in the [9].
First, unifyEffect(Ξ, 〈l ′ | ε2〉, l) in the first line returns a substitution θ1 and
an effect row ε3, where 〈l | ε3〉 ≡ θ1(〈l ′ | ε2〉). Next, tail(ε1) 	∈ dom(θ1) in the
second line confirms that effect variable of ε1 is not included in the domain
of θ1. This is needed to ensure the termination of the unification algorithm.
Then, unify(Ξ1, θ1(ε1), ε3) in the third line returns a substitution θ2, where
θ2(ε3) ≡ (θ2 ◦ θ1)(ε1). Thus, we obtain the following equation.

(θ2 ◦ θ1)(〈l | ε1〉) ≡ (θ2)(〈l | ε3〉) ≡ (θ2 ◦ θ1)(〈l ′ | ε2〉)

The unification algorithm is sound: if unify(Ξ, τ1, τ2) succeeds, it returns the
substitution θ1 that unifies τ1 and τ2.

Theorem 5. (unify is sound)
If Ξ �wf τ1 : k , Ξ �wf τ2 : k , and unify(Ξ,τ1, τ2) = (Ξ1, θ1), then � θ1
: Ξ ⇒ Ξ1 and θ1(τ1) = θ1(τ2).

The unification algorithm is also complete: if two types τ1 and τ2 are unifiable,
unify(Ξ, τ1, τ2) succeeds and it returns the most general substitution θ1.

Theorem 6. (unify is complete)
If Ξ �wf τ1 : k , Ξ �wf τ2 : k , � θ : Ξ⇒Ξ2 and θ(τ1) = θ(τ2), then
unify(Ξ, τ1, τ2)= (Ξ1, θ1) and there exists � θ2 : Ξ1 ⇒ Ξ2 such that θ =
θ2 ◦ θ1.

We now look at the unifyOp function. The function takes a triple (Ξ, ∀αk . τ1,
τ2) of a type variable context, a type scheme, and a monomorphic type τ , and
returns a pair (Ξ1, θ1) of a new type context and a substitution. Following [10],
we use skolem constants to ensure that bound type variables αk do not escape
or occur free in the substitution [sk �→ αk ] ◦ θ1. The algorithm reads as follows.
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We first replace the free type variables αk of τ1 with fresh skolem constants
sk , and unify the resulting type with τ2. When we obtain a substitution θ1
as the result, we check the codomain of θ1 − ftv(τ2) does not contain skolem
constants sk , using the const function. If this checking succeeds, we construct a
new substitution by replacing the skolem constants sk in θ1 back to type variables
αk , and return the resulting substitution. As an example, consider the following
unification problem:

unifyOp(Ξ, ∀α. α → exn ((α → 〈exn〉 int) → 〈exn〉 int), β1 → μ β2)

This succeeds and returns the following substitution:

[s �→ α] ◦ θ1 = id [β1 := α, β2 := ((α → 〈exn〉 int) → 〈exn〉 int), μ := 〈exn〉]

where θ1 = id [β1 := s, β2 := ((s → 〈exn〉 int) → 〈exn〉 int), μ := 〈exn〉].
The soundness and completeness of unifyOp can be proven in a similar way

to that of unify and unifyEffect .

Theorem 7. (unifyOp is sound)
If Ξ �wf ∀αk . τ1 : k , Ξ �wf τ2 : k and unifyOp(Ξ, ∀αk . τ1, τ2) = (Ξ1,θ1),
then � θ1 : Ξ ⇒ Ξ1 and θ1(∀αk . τ1)= ∀αk . θ1(τ2).

Theorem 8. (unifyOp is complete)
If Ξ �wf ∀αk . τ1 : k , Ξ �wf τ2 : k , � θ : Ξ ⇒ Ξ2 and θ(∀αk . τ1) = ∀αk .

θ(τ2), then unifyOp(Ξ, ∀αk . τ1, τ2) =(Ξ1, θ1) and there exists � θ2 : Ξ1

⇒ Ξ2 such that θ = θ2 ◦ θ1.

5.3 Type Inference Algorithm

In Figs. 9 and 10, we define the type inference algorithm. The algorithm is
an extension of Algorithm W [3] with kinding and a row-based effect system.
The functions infer(·, ·, ·, ·) and inferHandler(·, ·, ·, ·) are defined by mutual
induction. Given a quadruple (Ξ, Γ , Δ, e) of a type variable context, two typ-
ing contexts, and an expression, infer returns a quadruple (Ξ, θ, τ, ε) of a new
type variable context, a substitution, a monomorphic type, and an effect row.
The effect row ε represents the effect performed by the expression e.

Let us go through individual cases. In the variable case, if x has a closed
function type and resides in Δ, infer yields the most general type by opening
the closed effect row to μ1. The infer function also yields an arbitrary effect μ2

as x is a value. If x does not have a closed function type, infer generates a new

type variable β
k

as in a standard type inference algorithm.
The abstraction and application cases are standard, except that they involve

inference of effect rows.
In the case of a let-expression, the bound expression is generalized by Gen

and the effect row of the function type is closed by Close. Then, the type context
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Fig. 9. Type inference algorithm

Δ is extended with the closed effect row and used for the inference of the body
of the let-expression. Consider the inference of the following let-expression.

let f = λx . x in f 1
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Fig. 10. Type inference algorithm for handlers

The type of f is inferred to be ∀α μ. α → μ α, where μ is an effect variable. Since
the effect row of the function is closed immediately after generalization, the infer-
ence of the body f 1 is done by infer(Ξ, Γ , (Δ, f : ∀α. α → 〈 〉 α) , f 1).

In the case of an operation call, infer simply returns the type instantiated
with a new effect variable. Here, Op(·, ·) is an auxiliary function that selects
from Σ the signature of the operation op.

In the handler case, we use two auxiliary functions inferHandler and Label.
The inferHandler function infers the type of a handler. It receives a quadruple
(Ξ, Γ , Δ, h) of a type variable context, two typing contexts, and a handler, and
returns a quintuple (Ξ, θ, τ, l , ε) of a new type variable context, a substitution,
a monomorphic type, an effect label, and an effect row. Here, τ is the return type
of the continuation captured by the handler h, l is the effect label handled by
h, and ε is the rest of the effect row. The Label function returns the effect label
corresponding to the given operation.

It is important to use unifyOp instead of unify in the type inference of han-
dlers. For example, consider the following effect signature and handler:

Σ = { l1 : { op : ∀α. α → α }}
handler { op → λx k . k (x + 1) }

This handler should be rejected for the following reason. First, the operation op
is defined as having type ∀α. α → α. Therefore, the operation clause of op must
have a type of the form ∀α. α → μ ((α → μ β) → μ β), where the input and
output types of the operation are universally quantified. Second, the operation
clause λx k . k (x + 1) is inferred to have type int → μ ((int → μ β) → μ β),
where the input and output types are a concrete type int. If we use unifyOp,
unification of ∀α. α → μ ((α → μ β) → μ β and int → μ ((int → μ β) → μ β)
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fails, because the bound variable α and int cannot be unified. On the other hand,
if we use unify , unification of the two types succeeds, because we would pass a
monomorphic type α → μ ((α → μ β) → μ β) to unify , which can be unified
with int → μ ((int → μ β) → μ β).

The soundness and completeness with respect to the syntax-directed infer-
ence rules of infer can be proven by induction on the structure of e.

Theorem 9. (infer is sound with respect to syntax-directed inference rules)
If infer(Ξ, Γ , Δ, e) = (Ξ1, θ, τ, ε), then � θ : Ξ ⇒Ξ1 and Ξ1 | θ(Γ ) |
θ(Δ) �s e : τ | ε.

Theorem 10. (infer is complete with respect to syntax-directed inference rules)
If � θ : Ξ ⇒ Ξ2 and Ξ2 | θ(Γ ) | θ(Δ) �s e : τ | ε, then infer(Ξ,Γ ,Δ,e) =
(Ξ1, θ1, τ, ε) , and there exists � θ2 : Ξ1 ⇒ Ξ2 such that θ = θ2 ◦ θ1.

Using the results so far, we can prove the main theorems: the type inference
algorithm for the declarative inference rules is sound and complete.

Theorem 11. (infer is sound)
If infer(Ξ, Γ , Δ, e) = (Ξ1, θ, τ, ε), then � θ : Ξ ⇒ Ξ1 and Ξ1 | θ(Γ ) |
θ(Δ) � e : τ | ε.

Proof. By Theorem 1 and Theorem 9.

Theorem 12. (infer is complete)
If � θ : Ξ ⇒ Ξ2 and Ξ2 | θ(Γ ) | θ(Δ) � e : τ | ε, then infer(Ξ, Γ , Δ,
e) = (Ξ1, θ1, τ, ε), and there exists � θ2 : Ξ1 ⇒ Ξ2 such that θ = θ2 ◦ θ1.

Proof. By Theorem 2 and Theorem 10.

6 Related Work

There are a variety of languages supporting effect handlers in the literature.
Eff [1] is an ML-like language that employs the Hindley-Milner type inference [8,
16]. Differently from Koka, Eff has an effect system based on subtyping. As a
result, the type inference algorithm [8] of Eff is more complex than the one
presented in this paper.

Frank [2,13] is a language that has effect rows and effect polymorphism sim-
ilar to Koka. The difference is that Frank treats all effect rows as open ones by
implicitly inserting effect variables. This means the user does not need to write
type variables to express effect polymorphism, but it also means error messages
may contain effect variables that the user did not write. Moreover, this approach
to treating effect rows is not suitable for evidence passing because it gives rise
to unnecessary search for handlers.
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Links [5] is another language with a row-based effect system and effect poly-
morphism. What is different from Koka is that effect rows in Links are based on
Remy’s record types [17], where each effect label is annotated with a presence
type. Presence types increase the expressiveness of the language, but they also
complicate the inference algorithm.

There is a type inference algorithm for an older version of Koka [11], which
solely supports built-in effects such as exceptions and references. Similar to the
current Koka, it has effect rows [9] and effect polymorphism. The type inference
algorithm is an extension of the Hindley-Milner algorithm, but it infers an open
effect row for all functions due to the lack of open and close.

7 Conclusion and Future Work

In this paper, we formalized a type inference algorithm with open and close
and proved its soundness and completeness. The inference algorithm helps the
Koka compiler statically determines handlers, and thus improves performance.
Moreover, it allows the compiler to display precise signatures.

In future work, we plan to improve the current typing rules in order to make
the typability of programs robust against small syntactic rewrites. One possible
approach is to add the open keyword to avoid implicit opening of closed function
types. This construct is similar to �·� in [4] that avoids implicitly instantiating
variables. However, this choice gives a gap between the formalization and imple-
mentation of Koka, because the current Koka implicitly opens closed functions
types.
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Appendix

In this appendix, we present an extension of System Fε, which we call System
Fε + restrict, and a type-directed translation from ImpKoka to System Fε +
restrict. The translation allows us to prove the type soundness of ImpKoka with-
out directly defining an operational semantics for ImpKoka. This is a well-known
technique, and is used in [10], for instance. The target calculus of the translation
has a new construct restrict, which is necessary for establishing soundness of the
translation.

A System Fε + restrict

In Figs. 12, 13 and 14, we define the syntax, operational semantics, and typing
rules of System F ε + restrict. The typing rule [restrict] extends the closed effect
row 〈l1, .., ln〉 of the expression e to 〈l1, . . .ln | ε〉, where ε is an arbitrary effects.
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Fig. 11. Translation to system Fε+restrict

We can prove the type soundness of System Fε + restrict by showing the
following theorems.

Theorem 13. (progress)
If ∅ � e1 : σ | 〈 〉 then either e1 is a value or e1 �−→ e2.

Theorem 14. (preservation)
If ∅ � e1 : σ | 〈 〉 and e1 �−→ e2 then ∅ � e2 : σ | 〈 〉.
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Fig. 12. Types of system Fε+restrict

Fig. 13. Expressions and operational semantics of Fε+restrict
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Fig. 14. Typing rules of Fε+restrict

B Type-Directed Translation to System Fε + restrict

In Fig. 11, we next define the type-directed translation from ImpKoka to System
Fε + restrict. The judgment Ξ | Γ | Δ � e : σ | ε � e ′ states that an expres-
sion e has type σ and effect ε under the type variable context Ξ and typing
contexts Γ and Δ, and translates to an expression e ′ of System Fε + restrict.
We can easily prove the soundness of the type-directed translation.

Theorem 15. (soundness of type-directed translation)
If Ξ | Γ | Δ � e : σ | ε � e ′ then Γ , Δ � e ′ : σ | ε.

Proof. By straightforward induction on the typing derivation.
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