
T O K Y O I N S T I T U T E O F T E C H N O L O G Y

D O C T O R A L T H E S I S

Memory-Efficient Object-Oriented
Programming on GPUs

Author:
Matthias S P R I N G E R

Student Number:
1 5 D * * * * *

Supervisor:
Prof. Dr. Hidehiko M A S U H A R A

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

in the

Programming Research Group
Department of Mathematical and Computing Sciences

August 19, 2019

ar
X

iv
:1

90
8.

05
84

5v
1

 [
cs

.P
L

]
 1

6
A

ug
 2

01
9

http://www.titech.ac.jp
http://prg.is.titech.ac.jp/

iii

Declaration of Authorship
I, Matthias S P R I N G E R , declare that this thesis titled, “Memory-Efficient Object-
Oriented Programming on GPUs” and the work presented in it are my own. I confirm
that:

• This work was done wholly or mainly while in candidature for a research
degree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

v

TOKYO INSTITUTE OF TECHNOLOGY

Abstract
Graduate School of Information Science and Engineering

Department of Mathematical and Computing Sciences

Doctor of Philosophy

Memory-Efficient Object-Oriented Programming on GPUs

by Matthias S P R I N G E R

Object-oriented programming (OOP) is often regarded as too inefficient for high-
performance computing (HPC), even though many important HPC problems have an
inherent object structure. To make HPC available to engineers and researchers in other
domains, our goal is to bring efficient, object-oriented programming to massively
parallel Single-Instruction Multiple-Data (SIMD) architectures, especially GPUs.

In this thesis, we develop techniques and prototypes for optimizing the memory
access of object-oriented GPU code. Our first prototype I K R A - R U B Y explores mod-
ular array-based GPU computing in Ruby, a high-level programming language. Our
main prototype I K R A - C P P explores object-oriented programming within parallel
GPU code in CUDA/C++.

We propose a new object-oriented programming model called Single-Method
Multiple-Objects (SMMO) that can express many important HPC problems and that
can be implemented efficiently on GPUs. Our main optimization is the well-known
Structure of Arrays (SOA) data layout, which improves vectorized access and cache
performance. The main contributions of this thesis are threefold: First, we develop
an embedded C++/CUDA data layout for I K R A - C P P that allows programmers
to experience the performance benefit of SOA without breaking OOP abstractions.
Second, we design D Y N A S O A R , a lock-free, dynamic GPU memory allocator
for I K R A - C P P that is based on hierarchical bitmaps and optimizes the usage of
allocated memory with an SOA data layout. In contrast to other state-of-the-art GPU
allocators, D Y N A S O A R trades raw (de)allocation performance for better memory
access performance, resulting in an up to 3 times speedup of SMMO application
code. Finally, we extend D Y N A S O A R with a memory defragmentation system
called C O M PA C T G P U , which further increases the performance benefits of SOA
and lowers the overall memory usage through less fragmented allocations.

We evaluated I K R A - C P P with nine SMMO applications. Our experiments show
that the SMMO programming model is powerful enough to express many important
HPC problems from various domains. They also demonstrate that programmers can
have the benefits of object-oriented programming and good runtime performance at
the same time.

HTTP://WWW.TITECH.AC.JP

vii

Acknowledgements
First and foremost, I would like to thank my academic advisor Prof. Hidehiko
Masuhara for accepting me as a doctoral student in the Programming Research
Group, for giving me the opportunity to freely pursue my research interests, and for
supervising, guiding and supporting my work throughout these last four years. I
would also like to thank Prof. Robert Hirschfeld, my academic advisor during my
Bachelor’s and Master’s studies for the continuous support and collaboration even
after my Master’s studies.

In 2016 and 2018, I had to pleasure to work with Peter Wauligmann and Yaozhu
Sun, who joined the Programming Research Group as part of a university exchange
program. Chapters 3 and 4 contain material from two ARRAY workshop papers,
which were co-authored by Peter Wauligmann and Yaozhu Sun. My co-authors
have approved the inclusion of these papers in my thesis. I am grateful for their
contributions to my research artifacts and wish them all the best with their own
careers in industry and academia.

The financial support of MEXT (Japanese Ministry of Education, Culture, Science
and Technology) and JSPS (Japan Society for the Promotion of Science) through their
scholarship and fellowship programs allowed me focus entirely on my research. I am
grateful for their support and their decision to fund my research proposal. I would
also like to thank NVIDIA for donating a TITAN Xp GPU to our lab, which allowed
me to run my experiments on the latest hardware architecture.

ix

Contents

Declaration of Authorship iii

Abstract v

Acknowledgements vii

1 Introduction 1

2 Background 5
2.1 GPU Execution Model . 5

2.1.1 Parallel Execution . 6
2.1.2 Memory Hierarchy . 7
2.1.3 CUDA Programming Model . 9
2.1.4 Memory Coalescing . 14
2.1.5 Memory Coalescing Experiment 15

2.2 Object-oriented Programming . 18
2.2.1 Class-based Object-oriented Programming 18
2.2.2 Problems of Object-oriented Programming on GPUs 19

2.3 Array of Structure (AOS) vs. Structure of Arrays (SOA) 20
2.3.1 Abstractions for Object-oriented Programming 21
2.3.2 Performance Characteristics of Structure of Arrays 21
2.3.3 Object vs. SOA Array Alignment 24
2.3.4 Choosing a Data Layout . 24

3 Expressing Parallelism in Object-oriented Programs 25
3.1 I K R A - R U B Y: A Parallel Array Interface 26

3.1.1 Parallel Operations . 30
3.1.2 Mapping Ruby Types to C++ Types 33
3.1.3 Object Tracer . 34
3.1.4 Example: Image Manipulation Library 35
3.1.5 Summary . 35

3.2 I K R A - C P P : A C++/CUDA Library for SMMO Applications 37
3.2.1 Single-Method Multiple-Objects 37
3.2.2 Programming Interface and Notation 38
3.2.3 Implementation Details . 41
3.2.4 Conclusion . 42

3.3 Related Work . 42
3.3.1 Parallel Array/Tensor Interface 43
3.3.2 For-Loop Parallelization . 44

x

4 Optimizing Memory Access 45
4.1 Kernel Fusion in I K R A - R U B Y . 46

4.1.1 Kernel Fusion . 47
4.1.2 Host Sections . 49
4.1.3 Symbolic Execution in Host Sections 50
4.1.4 Type Inference . 51
4.1.5 Code Generation . 56
4.1.6 Benchmarks . 56
4.1.7 Future Work . 59
4.1.8 Related Work . 60

4.2 A Data Layout DSL for I K R A - C P P . 60
4.2.1 Language Overview . 61
4.2.2 Implementation Details . 62
4.2.3 Addressing Modes . 67
4.2.4 Code Generation Experiment . 71
4.2.5 Preliminary Performance Evaluation 73
4.2.6 Related Work . 74
4.2.7 Summary . 75

4.3 Inner Arrays in a Structure of Arrays . 76
4.3.1 Data Layout Strategies for Inner Arrays 76
4.3.2 Performance Evaluation . 81
4.3.3 Conclusion and Related Work . 84

4.4 Summary . 84

5 Dynamic Mem. Allocation with SOA Performance Characteristics 85
5.1 Design Goals . 87

5.1.1 Programming Interface . 88
5.1.2 Memory Access Performance . 90
5.1.3 High Density Memory Allocation 91
5.1.4 Parallel Object Enumeration Strategy 91
5.1.5 Scalability . 91

5.2 Architecture Overview . 92
5.2.1 Block Structure . 92
5.2.2 Block Capacity . 93
5.2.3 C++ Data Layout DSL and Object Pointers 94
5.2.4 Block Bitmaps . 95
5.2.5 Object Slot Allocation . 96
5.2.6 Object Deallocation . 97
5.2.7 Parallel Object Enumeration: parallel_do 98

5.3 Optimizations . 99
5.3.1 Hierarchical Bitmaps . 100
5.3.2 Reducing Thread Contention . 103
5.3.3 Efficient Bit Operations . 105

5.4 Concurrency and Correctness . 106
5.4.1 Object Slot Reservation/Freeing 106
5.4.2 Safe Memory Reclamation with Block Invalidation 107
5.4.3 Object Allocation . 109
5.4.4 Object Deallocation . 109
5.4.5 Correctness of Hierarchical Bitmap Operations 111

5.5 Related Work . 113
5.6 Benchmarks . 115

xi

5.6.1 Performance Overview . 117
5.6.2 Space Efficiency . 117
5.6.3 Detailed Analysis of wa-tor . 119
5.6.4 Raw Allocation Performance . 120
5.6.5 Parallel Object Enumeration . 120

5.7 Conclusion . 121

6 GPU Memory Defragmentation 123
6.1 Why GPU Memory Defragmentation? 125
6.2 Heap Layout and Data Structures . 126

6.2.1 Running Example . 126
6.2.2 Overview of the D Y N A S O A R Allocator 127

6.3 Defragmentation with C O M PA C T G P U 129
6.3.1 Defragmentation Candidate Bitmaps 130
6.3.2 Defragmentation Pass . 131
6.3.3 Copying Objects . 131
6.3.4 Storing Forwarding Pointers . 134
6.3.5 Rewriting Pointers . 134
6.3.6 Updating Block State Bitmaps . 136
6.3.7 Multiple Defragmentation Passes 136
6.3.8 Defragmentation Frequency . 137

6.4 Pointer Rewriting Alternatives . 137
6.4.1 R E C O M P U T E - G L O B A L . 137
6.4.2 R E C O M P U T E - S H A R E D . 140

6.5 Evaluation . 140
6.5.1 Defragmentation Quality . 140
6.5.2 Number of Defragmentation Passes 141
6.5.3 Benchmark Applications . 142
6.5.4 Runtime Overhead . 144

6.6 Related Work . 146
6.7 Conclusion . 147

7 SMMO Examples 149
7.1 nbody: N-body Simulation . 151

7.1.1 Data Structure . 151
7.1.2 Application Implementation . 153
7.1.3 Further Optimizations . 154

7.2 collision: N-Body Simulation with Collisions 154
7.2.1 Data Structure . 156
7.2.2 Application Implementation . 156
7.2.3 Benefits of Object-oriented Implementation 159
7.2.4 Further Optimizations . 159

7.3 barnes-hut: Approximating N-Body with a Quad Tree 160
7.3.1 Data Structure . 160
7.3.2 Application Implementation . 161
7.3.3 Virtual Function Calls . 167
7.3.4 Benefits of Object-oriented Programming 167
7.3.5 Further Optimizations . 169

7.4 structure: Finite Element Method . 169
7.4.1 Data Structure . 170
7.4.2 Application Implementation . 170

xii

7.5 traffic: Traffic Flow Simulation . 171
7.5.1 Data Structure . 173
7.5.2 Application Implementation . 175
7.5.3 Object-oriented Traffic Simulations 177

7.6 wa-tor: Fish and Sharks Simulation . 177
7.6.1 Data Structure . 177
7.6.2 Application Implementation . 178
7.6.3 Benefits of OOP and Dynamic Allocation 180

7.7 sugarscape: Simulation of Population Dynamics 180
7.7.1 Data Structure . 180
7.7.2 Application Implementation . 182

7.8 gol: Game of Life . 183
7.8.1 Data Structure . 183
7.8.2 Application Implementation . 184
7.8.3 generation: Generational Cellular Automaton 184

7.9 Conclusion . 186

8 Conclusion 187

xiii

List of Figures

1.1 Overview of this thesis . 1

2.1 Architecture of NVIDIA GP100 . 6
2.2 Architecture of a single NVIDIA GP100 SM 7
2.3 GPU memory access paths . 7
2.4 Basic block diagram for critical sections in CUDA 12
2.5 Array layout of memory coalescing experiment in CUDA 15
2.6 Memory coalescing experiment results 17
2.7 Example: C++ object layout on NVIDIA GPUs 19
2.8 N-body simulation in AOS and SOA data layout 21
2.9 Running time of n-body simulation in AOS and SOA data layout . . . 23

3.1 High-level overview of the I K R A - R U B Y compilation process 28
3.2 Integration of I K R A - R U B Y in Ruby . 29
3.3 Union type struct definition for polymorphic types 33
3.4 Usage of image manipulation library example 35
3.5 Architecture of image manipulation library example 35
3.6 Example: Object set before and after a parallel do-all operation 38

4.1 Example: Kernel fusion of I K R A - R U B Y operations 49
4.2 I K R A - R U B Y: List of types . 53
4.3 I K R A - R U B Y: Typing rules . 53
4.4 I K R A - R U B Y microbenchmark results 57
4.5 I K R A - C P P : Address translation of a fake pointer 66
4.6 I K R A - C P P : Storage buffer layout in zero addressing 67
4.7 I K R A - C P P : Storage buffer layout in storage-relative zero addressing . 69
4.8 I K R A - C P P : Storage buffer layout in first field addressing 70
4.9 N-body in I K R A - C P P : Host mode running time 74
4.10 N-body in I K R A - C P P : Device mode running time 74
4.11 Inner array layout: No inlining . 77
4.12 Inner array layout: Full inlining . 77
4.13 Inner array layout: Partial inlining . 77
4.14 Inner array layout: Array as object . 77
4.15 Inner array inlining: Synthetic benchmark 82
4.16 Inner array inlining: Frontier-based BFS benchmark 82
4.17 Inner array inlining: traffic benchmark 83

5.1 Data layouts: SOA layout and D Y N A S O A R’s SOA-style layout . . . 91
5.2 D Y N A S O A R heap layout of structure 93
5.3 D Y N A S O A R block state transitions . 93
5.4 D Y N A S O A R fake object pointer example 94
5.5 Thread assignment of D Y N A S O A R parallel_do 98
5.6 Bitmap compaction with prefix sum . 99

xiv

5.7 Hierarchical bitmap data structure . 100
5.8 Running time of SMMO applications . 118
5.9 Space efficiency of SMMO applications 118
5.10 Detailed analysis of wa-tor benchmark 118
5.11 Memory fragmentation experiment . 120
5.12 Scaling study with different memory allocators 121

6.1 D Y N A S O A R heap layout of wa-tor . 127
6.2 C O M PA C T G P U block state transitions 127
6.3 Bitmap compaction with prefix sum (simplified) 132
6.4 C O M PA C T G P U: Assigning source and target blocks 132
6.5 C O M PA C T G P U: Relocating objects . 133
6.6 C O M PA C T G P U: Defrag. records for pointer rewriting alternatives . . 138
6.7 C O M PA C T G P U experiment: Achieved fragmentation level 141
6.8 C O M PA C T G P U experiment: Number of defragmentation passes . . . 141
6.9 C O M PA C T G P U benchmark: collision 142
6.10 C O M PA C T G P U benchmark: structure 143
6.11 C O M PA C T G P U benchmark: generation 143
6.12 C O M PA C T G P U benchmark: wa-tor (memory profile) 144
6.13 C O M PA C T G P U benchmark: wa-tor (running time) 144

7.1 Example: Dummy classes . 150
7.2 nbody: Data structure and screenshot . 152
7.3 collision: Data structure and screenshot 156
7.4 collision: Preparing a body merge operation 157
7.5 collision: Detecting a merge race condition 157
7.6 barnes-hut: Quad tree structure and screenshot 160
7.7 barnes-hut: Data structure . 161
7.8 barnes-hut: Computing quad tree summaries 163
7.9 barnes-hut: Removing bodies from the quad tree 165
7.10 barnes-hut: Inserting a body in an empty slot 166
7.11 barnes-hut: Creating a new quad tree node 166
7.12 structure: Data structure . 170
7.13 traffic: Representation of street networks 174
7.14 traffic: Data structure . 174
7.15 wa-tor: Data structure . 177
7.16 wa-tor: Cell interaction and screenshot 178
7.17 wa-tor: Data structure (merged agents into Cell) 180
7.18 sugarscape: Screenshot . 181
7.19 sugarscape: Data structure . 181
7.20 gol: Data structure . 183
7.21 gol: Cell interaction and screenshot . 185
7.22 generation: Screenshot . 186

xv

List of Tables

3.1 I K R A - R U B Y: Mapping Ruby types to C++ types 33

4.1 I K R A - R U B Y: Input access patterns of array commands 47

5.1 Comparison of dynamic memory allocators 114
5.2 Description of SMMO benchmark applications 116

6.1 C O M PA C T G P U benchmark characteristics and running time 145

xvii

List of Algorithms

1 D Y N A S O A R: DAllocatorHandle::allocate<T> 97
2 D Y N A S O A R: DAllocatorHandle::deallocate<T> 97
3 Hierarchical Bitmap: Bitmap::try_clear 101
4 Hierarchical Bitmap: Bitmap::try_find_set 102
5 Hierarchical Bitmap: Bitmap::indices . 102
6 D Y N A S O A R: DAllocatorHandle::allocate<T>, with req. coalescing . . 104
7 D Y N A S O A R: Block::reserve . 105
8 D Y N A S O A R: Block::deallocate . 105
9 Bit Operations: nth_set_bit . 106
10 D Y N A S O A R: DAllocatorHandle::initialize_block<T> 106
11 D Y N A S O A R: DAllocatorHandle::invalidate 108
12 D Y N A S O A R: DAllocatorHandle::deallocate<T>, w/o deadlock 111

13 C O M PA C T G P U Extension: DAllocatorHandle::allocate<T> 131
14 C O M PA C T G P U Extension: Block::reserve 131
15 C O M PA C T G P U Extension: DAllocatorHandle::deallocate<T> 132
16 C O M PA C T G P U: move_objects<T> . 134
17 C O M PA C T G P U: place_forwarding_ptrs<T> 134
18 C O M PA C T G P U: rewrite_pointer<T> . 135
19 C O M PA C T G P U Ptr. Rewr. Alternative: choose_source_blocks<T> . . . 139
20 C O M PA C T G P U Ptr. Rewr. Alternative: choose_target_blocks<T> . . . 139
21 C O M PA C T G P U Ptr. Rewr. Alternative: rewrite_pointer<T> 140

xix

Listings

2.1 Example: Grid-stride loop . 11
2.2 Implementation of a critical section . 12
2.3 Implementation of memory coalescing experiment 17
2.4 N-body simulation in AOS layout . 22
2.5 N-body simulation in hand-written SOA layout 22
2.6 Example: Memory consumption of an object set in AOS/SOA 24

3.1 Example: Ruby Array::map . 27
3.2 Example: Caching the result of I K R A - R U B Y operations 29
3.3 Example: Definition of image manipulation filters 36
3.4 Example: Image manipulation library usage 36
3.5 I K R A - C P P : N-body simulation with AOS layout 40
3.6 I K R A - C P P : Dynamic object allocation 40

4.1 Example program for I K R A - R U B Y kernel fusion 48
4.2 Generated CUDA code without kernel fusion 48
4.3 Generated CUDA code with kernel fusion 48
4.4 Example: Iterative I K R A - R U B Y computation in host section 49
4.5 Example: I K R A - R U B Y type inference 50
4.6 I K R A - R U B Y: Circular union type . 52
4.7 I K R A - R U B Y: Eliminated circular union type 54
4.8 Example: Iterative I K R A - R U B Y computation in SSA form 55
4.9 I K R A - C P P : N-body simulation with SOA layout but AOS notation . 61
4.10 I K R A - C P P : Allocation restrictions of IkraSoaBase 62
4.11 I K R A - C P P : Macro-expanded Body class 63
4.12 I K R A - C P P : Dereferencing a fake pointer 64
4.13 I K R A - C P P : Implementation of proxy types 65
4.14 I K R A - C P P : Field proxy type notation 66
4.15 I K R A - C P P : Address computation in zero addressing 67
4.16 I K R A - C P P : Fake pointers in zero addressing mode 67
4.17 Example: Writing a field of an object in AOS/SOA/I K R A - C P P 72
4.18 Generated assembly code for field write 72
4.19 Data structure of frontier-based BFS in I K R A - C P P 77
4.20 I K R A - C P P : Notation: AOS without inlining 78
4.21 I K R A - C P P : Notation: AOS with full inlining 78
4.22 I K R A - C P P : Notation: AOS with partial inlining 79
4.23 I K R A - C P P Notation: SOA without inlining 79
4.24 I K R A - C P P : Notation: SOA with full inlining 80
4.25 I K R A - C P P : Notation: SOA with partial inlining 80
4.26 I K R A - C P P : Notation: SOA with array as object 80
4.27 Inner Array Inlining: Synthetic Benchmark 82
4.28 Frontier-based BFS . 82

xx

5.1 D Y N A S O A R API Example: n-body . 89
5.2 D Y N A S O A R: Field address computation 95
5.3 Structurally recursive C++ bitmap implementation 100

6.1 Example: C O M PA C T G P U block structure for class of wa-tor 135

7.1 Example: Dummy classes with hand-written SOA layout (no OOP) . . 150
7.2 Example: Dummy classes in AOS layout (with OOP) 150
7.3 nbody: Data structure . 152
7.4 nbody: Conceptual nested loop structure 154
7.5 nbody: Application logic . 155
7.6 collision: Application logic . 158
7.7 collision: Range-based for loop instead of device_do 158
7.8 collision: Field access notation in hand-written SOA layout 160
7.9 barnes-hut: Bottom-up quad tree traversal 163
7.10 barnes-hut: Force computation via top-down quad tree traversal 164
7.11 barnes-hut: Inserting a body into the quad tree 166
7.12 barnes-hut: Collapsing the quad tree . 168
7.13 barnes-hut: Handwritten virtual method call 168
7.14 barnes-hut: Field access notation in hand-written SOA layout 169
7.15 structure: Removing disconnected nodes with BFS 172
7.16 traffic: Avoiding collisions and speed limit violations 176
7.17 wa-tor: Application logic . 179
7.18 gol: Application logic . 185

1

Chapter 1

Introduction

High-performance, general-purpose GPU computing has long been a tedious job,
requiring programmers to write hand-optimized, low-level programs. Such programs
are hard to develop, debug and maintain. Even though object-oriented programming
is well established in other domains and appreciated for its good abstraction, ex-
pressiveness, modularity and developer productivity, it is regarded as too inefficient
for high-performance computing (HPC). This is despite the fact that many impor-
tant HPC applications exhibit an inherent object structure. Our goal is to bring fast
object-oriented programming to SIMD architectures, especially GPUs.

Thesis Statement. Efficient object-oriented programming is feasible on GPUs.

In the course of this thesis, we present the design and implementation of li-
braries/prototypes that allow programmers to utilize object-oriented programming
on GPUs (Figure 1.1). We show that an object-oriented programming style, with
most of its benefits, is feasible on GPUs without sacrificing performance. We investi-
gate (a) how GPU parallelism can be expressed with object orientation and (b) how
object-oriented code that runs on GPUs can be optimized.

Expressing Parallelism: Parallel Array Interface Our first prototype, I K R A - R U B Y,
is a Ruby library for high-level, array-based GPU programming. Programmers ex-
press parallelism over an array with small, functional, customizable operations such
as parallel map or parallel stencil. Programmers can utilize the full range of Ruby’s
object-oriented capabilities to compose a larger GPU program from multiple parallel

Ikra-CppIkra-Ruby
• Ruby Library with Ruby → CUDA Compiler
• Array-based GPU Programming
• Parallel Array Interface (Sec. 3.1)

• Kernel Fusion through Type Inference (Sec. 4.1)

peach, pmap, pnew, preduce,
pstencil, pzip, with_index,
to_command

(1..100).pmap do |i| i * i end

• C++/CUDA Framework for OOP on GPUs
• Single-Method Multiple-Objects (Sec. 3.2, Sec. 7)
• Only Two Operations: Parallel Do-all, Parallel New

• Structure of Arrays (SOA) Data Layout DSL (Sec. 4.2)
• SOA Extension for Inner Arrays (Sec. 4.3)

parallel_do<T, &T::func>()
parallel_new<T>

DynaSOAr
• Dynamic Memory Allocator for GPUs (Sec. 5)
• Custom Object Layout with SOA Performance
• Uses Lock-free Hierarchical Bitmaps (Sec. 5.3.1)

CompactGpu
• GPU Global Memory Defragmentation (Sec. 6)
• Improving the Efficiency of Vectorized Access

Ik
ra

• https://github.com/prg-titech/ikra-ruby
• https://github.com/prg-titech/ikra-cpp
• https://github.com/prg-titech/dynasoar

Background
• GPU Architecture: SIMD (Sec. 2.1)
• Structure of Arrays Data Layout (Sec. 2.3)

F I G U R E 1 . 1 : Overview of this thesis

2 Chapter 1. Introduction

operations in a modular way. By combining multiple parallel operations, program-
mers build a computation graph. I K R A - R U B Y optimizes this computation graph by
fusing multiple parallel operations into a small number of CUDA kernels.

Expressing Parallelism: Single-Method Multiple-Objects Our second prototype,
I K R A - C P P , explores object-oriented programming within parallel GPU code in
C++/CUDA. While I K R A - R U B Y provides various parallel operations, we found
that a simpler model with only one type of operation, parallel do-all, is sufficient
for a many applications. We discovered a broad programming model based on
parallel do-all with many object-oriented applications that can be implemented
efficiently on massively parallel SIMD accelerators. We call this model Single-Method
Multiple-Objects (SMMO), because parallelism is expressed by running a method
on all objects of a type. SMMO fits well with the data-parallel execution pattern
of GPUs and has many important real-world applications such as simulations for
population dynamics, evacuations, wildfire spreading, finite element methods or
particle systems. SMMO can also express breadth-first graph traversals and dynamic
tree updates/constructions.

Optimizing Memory Access Object-oriented programming is slow on SIMD ar-
chitectures mainly because of inefficient memory access. Getting data into and out
of vector registers is often the biggest bottleneck and peak memory bandwidth uti-
lization can be achieved only with efficient vector transactions. To optimize the
memory access of I K R A - C P P applications, we developed an embedded C++ DSL
that stores objects of the same type in the well-known Structure of Arrays (SOA) data
layout. SOA is a form of structure splitting that stores all values of a field together.
SOA is a standard optimization and best practice for GPU programmers but without
proper language support, it leads to less readable code and breaks language abstrac-
tions. I K R A - C P P allows programmers to experience the performance benefit of SOA
without sacrificing code readability or object-oriented abstractions in C++.

Dynamic Memory Allocation Dynamic memory management and the ability/flex-
ibility of creating/deleting objects at any time is one of the corner stones of object-
oriented programming. Unfortunately, existing GPU memory allocators are either
notoriously slow in serving allocations or miss key optimizations for structured
data, leading to poor data locality and low memory bandwidth utilization when
accessing data. For this reason, many GPU programmers still avoid dynamic memory
management entirely and try to statically allocate all memory.

As the main research contribution of this thesis, we extended I K R A - C P P with
D Y N A S O A R, a fully-parallel, lock-free, dynamic memory allocator. D Y N A S O A R

improves the usage of allocated memory with an SOA data layout and achieves low
memory fragmentation through efficient management of free and allocated memory
blocks with lock-free, hierarchical bitmaps. Contrary to other state-of-the-art alloca-
tors, our design is heavily based on atomic operations, trading raw (de)allocation
performance for better overall application performance. In our benchmarks, D Y N A -
S O A R achieves a speedup of SMMO application code of up to 3x over state-of-the-art
allocators. Moreover, D Y N A S O A R manages heap memory more efficiently than
other allocators, allowing programmers to run up to 2x larger problem sizes with the
same amount of memory.

Chapter 1. Introduction 3

Memory Defragmentation In a system with dynamic memory allocation, the effi-
ciency of an SOA data layout depends heavily on low memory fragmentation. If data
is fragmented, more vector accesses are needed for the same number of bytes, reduc-
ing the benefit of SOA. To further improve memory fragmentation and vectorized
access, we extended D Y N A S O A R with C O M PA C T G P U , an incremental, fully-
parallel, in-place memory defragmentation system. C O M PA C T G P U defragments
the heap by merging partly occupied memory blocks. We developed several imple-
mentation techniques for memory defragmentation that are efficient on SIMD/GPU
architectures, such as finding defragmentation block candidates and fast pointer
rewriting based on bitmaps.

Summary In this thesis, we show that, contrary to common belief, object-oriented
programming is feasible on GPU without sacrificing performance, if the program-
ming system provides well-designed abstractions and programming models that
can be implemented efficiently on GPUs. SMMO is the main programming model
throughout this thesis and we show through various examples that it is sufficiently
expressive and that it can run efficiently on GPUs.

While this thesis focuses mostly on memory access performance, future work
could focus more on control flow divergence or advanced features of object-oriented
programming such as virtual function calls or advanced modularity constructs such
as multiple inheritance. We also plan to integrate I K R A - C P P into I K R A - R U B Y

in the future, so that programmers can develop SMMO applications in a high-level
programming language.

Outline This thesis is organized as follows. Chapter 2 gives an overview of the
execution model and memory hierarchy of GPUs, as well as a brief summary of the
object-oriented programming model and its challenges on GPUs. Chapter 3 investi-
gates how object orientation can be used to express GPU parallelism. In particular,
we describe the APIs of I K R A - R U B Y and I K R A - C P P . Chapter 4 shows how to
optimize the memory access of I K R A - R U B Y and I K R A - C P P applications with
kernel fusion and with a Structure of Arrays (SOA) data layout. Chapter 5 presents
the design and implementation of the D Y N A S O A R dynamic memory allocator.
Chapter 6 describes how memory that was dynamically allocated with D Y N A S O A R

can be defragmented with C O M PA C T G P U to improve the efficiency of the SOA
layout and to lower the overall memory consumption. Chapter 7 illustrates the design
and implementation of a various SMMO applications from different domains, which
underlines the importance of the SMMO programming model. Finally, Chapter 8
concludes this thesis.

5

Chapter 2

Background

This chapter gives an overview of the architecture and execution model of recent
NVIDIA GPUs (Section 2.1), as well as a brief background on object-oriented pro-
gramming (Section 2.2) and the Structure of Arrays (SOA) data layout (Section 2.3).

Contents
2.1 GPU Execution Model . 5

2.1.1 Parallel Execution . 6
2.1.2 Memory Hierarchy . 7
2.1.3 CUDA Programming Model 9
2.1.4 Memory Coalescing . 14
2.1.5 Memory Coalescing Experiment 15

2.2 Object-oriented Programming . 18
2.2.1 Class-based Object-oriented Programming 18
2.2.2 Problems of Object-oriented Programming on GPUs 19

2.3 Array of Structure (AOS) vs. Structure of Arrays (SOA) 20
2.3.1 Abstractions for Object-oriented Programming 21
2.3.2 Performance Characteristics of Structure of Arrays 21
2.3.3 Object vs. SOA Array Alignment 24
2.3.4 Choosing a Data Layout . 24

2.1 GPU Execution Model

Graphics processing units (GPUs) have become more and more popular in the last
decade. While in the early years, GPUs were mainly used for producing visual output
on a computer monitor and to accelerate graphical computations of computer games,
they are now well established in a variety of other areas such as high-performance
computing or machine learning.

The three main GPU manufacturers at present are AMD, Intel and NVIDIA [160].
We are focusing on NVIDIA architectures and the NVIDIA CUDA programming
model in this work, as NVIDIA GPUs are most widely used in high-performance
computing according to the TOP500 list of supercomputers [38]. Since most GPU
architectures follow similar design principles, we expect that our findings also apply
to other architectures.

NVIDIA GPUs can be programmed with CUDA and OpenCL. Both are C++
dialects. While OpenCL works with a variety of GPU architectures, CUDA is specific
to NVIDIA GPUs and provides access to more fine grained control flow, memory and
synchronization primitives that may not be available on other architectures [163]. On

6 Chapter 2. Background

F I G U R E 2 . 1 : Architecture of NVIDIA GP100 (Source: NVIDIA Tesla P100 Whitepaper [35])

NVIDIA architectures, CUDA code has also been shown to be more performant than
comparable OpenCL code [99, 61, 127].

2.1.1 Parallel Execution

Figures 2.1 and 2.2 show the hardware architecture (SM block diagram) of an NVIDIA
GP100 GPU (Pascal architecture)1. This GPU consists of 60 streaming multiprocessors
(SMs). Each SM has 64 CUDA cores (green boxes), amounting to a total of 3840 CUDA
cores. Every group of 32 CUDA cores (warp) has a warp scheduler that schedules
processor instructions for all 32 cores. Each GP100 SM can also be seen as a dual-core
processor, with each core operating on vector registers that hold 32 scalars (128 bytes).

GPUs are commonly referred to as massively parallel SIMD architectures. However,
they actually have three different ways of achieving parallelism.

• SIMD: All 32 CUDA cores of a warp execute the same processor instruction
as determined by their warp scheduler. Therefore, GPUs are Single-Instruction
Multiple-Data (SIMD) architectures. They achieve parallelism by executing the
same instruction on a vector register (multiple data).

• MIMD: Each warp has its own warp scheduler, so different warps can execute
different instructions. Therefore, GPUs also have Multiple-Instruction Multiple-
Data (MIMD) parallelism. (Most CPU systems are MIMD architectures.)

• Instruction-Level Parallelism (ILP): Warp schedulers can issue two instruc-
tions per processor cycle (dual-issue), e.g., an arithmetic instruction and a mem-
ory access instruction. Details vary from architecture to architecture. On older
NVIDIA archiectures, ILP was necessary to achieve peak performance [192, 193],
but on Pascal single-issue can fully utilize all CUDA cores [42].

1We used a GP102-450-A1 GPU (TITAN Xp; Pascal architecture) for most of our benchmarks. NVIDIA
has not published a whitepaper for this GPU, so there is no published SM block diagram for this GPU.
However, its architecture is similar to a GP100 GPU.

2.1. GPU Execution Model 7

F I G U R E 2 . 2 : Architecture of a single NVIDIA GP100 SM (Source: NVIDIA Tesla P100
Whitepaper [35])

Ke
rn

el

Texture

Global
RO

Global

Local

ATOMs

REDs

Shared

Texture
Cache

L1
Cache

Shared
Memory

L2
Cache

Sy
st

em
 M

em
or

y
D

ev
ic

e
M

em
or

y

F I G U R E 2 . 3 : Memory access paths (Source: NVIDIA Visual Profiler)

SIMD and MIMD parallelism can be exploited with thread-level parallelism (TLP)
in CUDA2. There are no dedicated abstractions for instruction-level parallelism (ILP)
in CUDA. The scheduling of instructions is up to the compiler and the hardware.
However, programmers can sometimes achieve better ILP by manually unrolling
loops [192].

2.1.2 Memory Hierarchy

Recent NVIDIA GPUs have five main types of memory. The size of each memory
type can differ among GPU architectures and models. In this work, we are focusing
mainly on device memory (red access path in Figure 2.3).

In the following list, we briefly describe each memory type and report memory
sizes for an NVIDIA TITAN Xp GPU, which we used for most of our benchmarks.
Memory types are sorted from slowest to fastest.

2This is a key difference from C++, where SIMD parallelism is not expressed via threads but via
automatic vectorization and SIMD intrinsics (manual vectorization).

8 Chapter 2. Background

• Device Memory: This is the largest type of memory. It resides in the GPU’s
DRAM. Device memory accesses are always routed through the L1/L2 caches [34]
(Figure 2.3). The L1 cache acts as a coalescing buffer: Data is accumulated in the
L1 cache before it is delivered to a warp [43]. A memory request of a warp
is potentially broken down into multiple requests, one per cache line (i.e., a
memory instruction may be executed multiple times) [39]. Our TITAN Xp GPU
has 12 GB of device memory. The latency of device memory access can be
as high as 1,000 cycles in case of an L1/L2 cache miss [95]. In CUDA, device
memory is referred to as global memory.

• Level 2 Cache: All device memory accesses are cached in the L2 cache, which
is 3 MB large on our TITAN Xp GPU. The L2 cache is shared by all SMs and has
a cache line size of 128 bytes. Each cache line consists of four 32 byte segments,
which can be read/written independently. The latency of an L2 hit is around
220 cycles [95].

• Level 1 Cache: By default, all device memory accesses are cached in the L1
cache. This behavior can be changed with compiler flags [43]. Our TITAN Xp
GPU has 48 KB (or 24 KB3) of L1 cache per SM. The L1 cache line size is 128 bytes.
Data is loaded from the L1 cache in 32 byte transactions, but written in 128 byte
transactions [95]. L1 caches of different SMs are incoherent. The latency of an
L1 hit is around 80 cycles [95].

• Shared Memory: Until the NVIDIA Kepler architecture, L1 and shared memory
used the same on-chip memory. In recent architectures, the shared memory
is separate. Shared memory is the fastest kind of GPU memory that can be
explicitly programmed/accessed in CUDA code. Our TITAN Xp GPU has
96 KB of shared memory per SM.

• Registers: Processor registers are the fastest kind of memory. On Pascal, each
SM has 65,536 32-bit registers (256 KB). Since each SM has 64 CUDA cores, an
SM can execute exactly two warps at a time. However, more than two warps
may be able to reside in its register file, depending on the number of registers
that each warp uses. To hide the latency of (mostly memory) instructions, the
SM can then issue instructions from another warp that is not blocked by a
dependent instruction (latency hiding [193]).

The CUDA Toolkit Documentations mentions two additional memory types.
These types of memory are not relevant for our work and will not be mentioned
outside of this section.

• Local Memory: If an SM does not have enough resources, it uses (thread-)local
memory. For example, registers may be spilled to local memory. On Pascal,
the number of registers is limited to 255 per thread, but with a large number
of threads per block, an SM may run out of registers earlier. Local memory
actually resides in device memory and is not a separate address space.

• Constant Memory: Memory that does not change throughout a kernel can
be stored in constant memory, which is a small part of the device memory
but cached by a separate constant cache. The size of the constant cache is not
published, but believed to be 2 KB per SM on Pascal [95, 37]. Constant memory
accesses cannot be coalesced. However, they can be broadcasted to other threads

3There is no officially published number and other work reports contradicting numbers.

2.1. GPU Execution Model 9

in a warp, should those threads access the same constant memory address. Our
TITAN Xp GPU has 64 KB of constant memory.

Details of memory access, the memory hierarchy and memory coalescing (Sec-
tion 2.1.4) are constantly changing with new GPU architectures. With every new
architecture, NVIDIA publishes a Tuning Guide for achieving good performance on
that architecture. However, many architectural/hardware details remain undisclosed,
so that often the only way of understanding why certain programming/memory
access patterns achieve good performance is through exhaustive microbenchmarking,
profiling and reverse engineering [206, 95, 136, 213]. Many architecture/hardware
characteristics mentioned in this chapter were originally obtained in this way.

2.1.3 CUDA Programming Model

CUDA is an extension of C++. Programmers express thread-level parallelism with
CUDA kernels. A kernel is a C++ function, annotated with the __global__ keyword.
When programmers launch a CUDA kernel, they have to specify the number of threads
that should execute the kernel (C++ function). Inside the kernel, programmers can
access special variables to determine a thread’s ID, so that different threads run the
same code but with different data.

In many cases, a thread ID is used as an index into an array of jobs. If the number
of threads equals the number of jobs, threads can be directly (one-to-one) mapped to
jobs: A thread ti processes job i. However, CUDA limits the number of threads per
kernel and, furthermore, using too many threads can cause runtime inefficiencies.
If the number of jobs exceeds the number of threads, then each thread may have to
process more than one job, typically with a grid-stride loop [80].

Besides the __global__ keyword, functions and top-level variable declarations
can be annotated with the __device__ and/or __host__ keyword. The former key-
word instructs the compiler to generate GPU code for a function or to statically
allocate the variable on device (GPU) in global memory. The latter keyword (default
if no keyword specified), instructs the compiler to generate CPU code for a func-
tion or to statically allocate the variable on the host (CPU). In essence, __global__
functions are like __device__ functions but only the former ones can be invoked as
kernels from CPU code. It is not possible to call __device__ functions from __host__
functions or vice versa.

Thread Hierarchy CUDA threads are organized in a hierarchy. Every thread be-
longs to one CUDA block. The size of a block (block dimension) can be between 1
and 1024 threads4. The number of blocks (grid dimension) can be between 1 and
231 − 1, so a kernel can have up to billions of CUDA threads. Programmers have to
specify block/grid dimensions as kernel launch parameters. Inside a CUDA kernel,
programmers can access four special variables.

• threadIdx.x: The ID of the current thread within the block.

• blockDim.x: The size/dimension of each block.

• blockIdx.x: The ID of the block of the current thread.

• gridDim.x: The number of blocks (dimension of the grid).

4We are focusing on 1D blocks and grids.

10 Chapter 2. Background

The ID of a thread and the total number of threads is then calculated as follows.

tid = blockIdx.x · blockDim.x + threadIdx.x (thread ID)

gridDim.x · blockDim.x (number of threads)

Besides blocks, there is a second thread hierarchy level that cannot be directly
controlled programmers. Every consecutive group of 32 threads of a block (thread
IDs [32 · i; 32 · (i + 1)) is called a warp.

warp_id =

⌊
threadIdx.x

32

⌋
(warp ID of a thread within a block)

lane_id = threadIdx.x % 32 (lane ID of a thread)

CUDA warps map to physical warps, so threads of a warp execute the same
instructions at the same time (SIMD parallelism). The threads within a warp are
mapped to lanes with IDs between 0 and 31. CUDA provides warp-level primitives
for exchanging (shuffling) values between different lanes of a warp [123]. Such
primitives are not easy to use and require a certain amount of CUDA programming
experience, but they are often necessary to achieve the best performance [47].

Block/Warp Scheduling Every CUDA block runs on a single SM and cannot be
split to run on multiple SMs. If SM resources allow (as outlined below), multiple
blocks may reside on a single SM. If the number of CUDA cores of an SM is less than
the number of resident threads (i.e., block dimension times number of resident blocks
per SM), then not all threads can run simultaneously and the SM has to context-switch
between warps. This is usually the case so that memory latency can be hidden [193].
Among all resident warps (i.e., warps of all resident blocks), the warp scheduler
selects a warp that is ready to execute (e.g., not blocked by a memory operation),
until eventually the entire block finished executing. The block scheduler then selects a
new CUDA block for execution (if there are more blocks). Context-switching between
warps is extremely fast on GPUs because the state of each warp is kept in the register
file, which is much larger on GPUs compared to CPUs, so that registers do not have
to be swapped to device memory.

The maximum number of resident blocks per SM depends on the computate
capability version, the resource requirements of each block and the available resources
of an SM, as described in the CUDA Toolkit Documentation. On our TITAN Xp with
compute capability version 6.1, those limitations are as follows.

• The total number of registers of all resident blocks must fit into the register file.
I.e., all resident blocks together cannot use more than 256 KB of registers.

• The total amount of requested shared memory of all resident blocks must not
exceed the SM’s shared memory, which is 96 KB.

• No more than 32 blocks can reside on one SM.

• No more than 64 warps can reside on one SM. This limits the maximum number
of resident threads per SM to 2048.

2.1. GPU Execution Model 11

The NVIDIA Visual Profiler can be used to analyze such constraints. In the past,
NVIDIA also provided an Occupancy Calculator Excel sheet.

Grid-Stride Loops CUDA programs with fewer threads than jobs typically process
jobs with a grid-stride loop [80, 102]. In a grid-stride loop, a thread ttid processes job
tid and increments of n, where n is the total number of threads.

L I S T I N G 2 . 1 : Example of a grid-stride loop
1 #define N 1000000
2 __device__ float data[N];
3

4 __global__ void kernel_increment_data() {
5 for (unsigned int i = threadIdx.x + blockIdx.x * blockDim.x;
6 i < N; i += blockDim.x * gridDim.x) { data[i] += 10.0f; }
7 }
8

9 int main() { kernel_increment_data<<</*gridDim.x=*/ 128, /*blockDim.x=*/ 128>>>(); }

Listing 2.1 shows an example of a grid-stride loop. Grid-stride loops often have
better performance than a different assignment of jobs to threads because of better
memory coalescing (Section 2.1.4). This is because the threads of a warp process
jobs that are spatially local in memory and can thus be serviced with more efficient
vectorized memory loads/stores. This listing also illustrates CUDA’s kernel launch
notation, which allows programmers to specify the number of blocks/threads (Line 9).

Warp Divergence CUDA warps are mapped to physical warps of an SM. Since
physical warps only have one warp scheduler, all threads of a warp execute the
same instructions. If the control flow of the threads of a warp diverges (e.g., because
they enter different if branches), then the different control flow paths are executed
sequentially until the control flow converges again. This phenomenon is called warp
divergence (also called thread divergence or branch divergence).

There are no guarantees about the order in which divergent branches are executed
or when the control flow reconverges again [123]. Warp divergence can make GPU
programs significantly harder to reason about and is the main reason why locking is
discouraged on GPUs.

As an example, consider the two implementations of a critical section in Listing 2.2.
Both implementations seem identical, but the first one deadlocks on our TITAN Xp
GPU and the second one works [119]5. In fact, whether either one of them deadlocks
or not may vary among GPU architectures and compilers.

To understand why the first implementation deadlocks, we have to take a look
at the basic block structure of the compiled PTX (Figure 2.4A). Each thread must
aquire the lock in L_4 to enter the critical section and then release the lock in the third
segment of L_4, so that the next thread can enter the critical section. PTX instructions
that start with an at character are guarded and conditionally executed (based on the
result of the preceding instructions). The problem in (A) is that one thread acquires
the lock, but then the other 31 unsuccessful threads jump back to the beginning
of the loop. This is a control flow divergence and both control flows are executed
sequentially. Unfortunately, our TITAN Xp happens to always schedule the jump
of the unsuccessful threads before executing the critical section with the successful
thread, so the lock is never released.

5See also: https://stackoverflow.com/questions/31194291/cuda-mutex-why-deadlock.

https://stackoverflow.com/questions/31194291/cuda-mutex-why-deadlock

12 Chapter 2. Background

L I S T I N G 2 . 2 : Implementation of a critical section
1 __device__ int lock = 0;
2 __device__ int result = 0; // Modified in critical section
3

4 __global__ void deadlock() {
5 while (true) {
6 if (atomicCAS(&lock, 0, 1) == 0) { // lock
7 result += 0x7777;
8 atomicExch(&lock, 0); // unlock
9 break;

10 }
11 }
12 }
13

14 __global__ void no_deadlock() {
15 bool continue_loop = true;
16 while (continue_loop) {
17 if (atomicCAS(&lock, 0, 1) == 0) { // lock
18 result += 0x7777;
19 atomicExch(&lock, 0); // unlock
20 continue_loop = false;
21 }
22 }
23 }
24

25 int main() {
26 deadlock<<<1, 32>>>(); // Run with 32 threads, 1 warp
27 }

.global_Z8deadlockv

.type_Z8deadlockv,@function

.size_Z8deadlockv,(.L_29 - _Z8deadlockv)

.other_Z8deadlockv,<no object>
_Z8deadlockv:
.text._Z8deadlockv:
 MOV R1, c[0x0][0x20];

.L_4:
 MOV32I R2, 32@lo(lock);
 MOV32I R3, 32@hi(lock);
 MOV32I R5, 0x1;
 MOV R4, RZ;
 ATOM.E.CAS R0, [R2], R4, R5;
 ISETP.NE.AND P0, PT, R0, RZ, PT;

@P0 BRA `(.L_4);

MOV32I R4, 32@lo(result);
 MOV32I R5, 32@hi(result);
 LDG.E R0, [R4];
 IADD32I R6, R0, 0x7777;
 STG.E [R4], R6;
 ATOM.E.EXCH RZ, [R2], RZ;

EXIT;

(a) With deadlock (b) Without deadlock

.global_Z11no_deadlockv

.type_Z11no_deadlockv,@function

.size_Z11no_deadlockv,(.L_28 - _Z11no_deadlockv)

.other_Z11no_deadlockv,<no object>
_Z11no_deadlockv:
.text._Z11no_deadlockv:
 MOV R1, c[0x0][0x20];
 MOV32I R2, 32@lo(lock);
 MOV32I R3, 32@hi(lock);
 MOV32I R0, 0x1;

.L_4:
{ MOV32I R5, 0x1;
 SSY `(.L_3);}
 MOV R4, RZ;
 ATOM.E.CAS R4, [R2], R4, R5;
 ISETP.NE.AND P0, PT, R4, RZ, PT;

@P0 SYNC (*"TARGET= .L_3 "*);

MOV32I R4, 32@lo(result);
 MOV32I R5, 32@hi(result);
 LDG.E R0, [R4];
 IADD32I R6, R0, 0x7777;
 STG.E [R4], R6;
 ATOM.E.EXCH RZ, [R2], RZ;

{ XMAD.PSL.CLO R0, R0.H1, 0x1, RZ;
 SYNC (*"TARGET= .L_3 "*);}

.L_3:
 LOP.AND.NZ P0, RZ, R0, 0xff;

@P0 BRA `(.L_4);

EXIT;

F I G U R E 2 . 4 : Basic block diagram for critical sections

2.1. GPU Execution Model 13

Now consider (B). Before jumping back to the beginning of the loop, the compiler
places a SYNC instruction, which converges threads after a conditional branch. If
control flow is divergent, the GPU schedules the other not yet executed branches
before continuing with the following instructions. Therefore, the successful thread
now has a chance to execute the critical section and to release the lock.

Unfortunately, we do not know why the compiler generates a SYNC instruction in
(B) but not in (A). This is unspecified and may even change with different CUDA
Toolkit versions [57]. Interestingly, if we invert the boolean flag continue_loop6, then
our CUDA compiler generates the same deadlock-prone PTX as in (A). This example
illustrates why locking within a warp is problematic on GPUs7. We avoid locking in
our work as much as possible and resort to lock-free algorithms.

Consistency Model CUDA has a weak memory consistency model. In particular,
global (device) memory accesses are not necessarily sequentially consistent. E.g., if
a thread t1 writes two variables a and b, then another thread t2 is not guaranteed
to see the changes of a and b in the same order. Moreover, there are no guarantees
that t2 will see the changes of a and b at all. Such weak behaviors are in part due to
incoherent L1 caches. For example, the old value of a may still be in t2’s L1 cache
while b is a cache miss. In such a case, t2 would read the old value of a but the
new value of b. Unfortunately, weak GPU behavior is not well documented by GPU
manufacturers, so that researchers have to resort to reverse engineering or litmus
testing to fully understand GPU concurrency [10, 173].

Weak semantics on GPUs and how to avoid them has been discussed in previous
work [171]. There are four main ways of addressing weak behavior in CUDA.

• A thread fence (CUDA __threadfence()) ensures that all global memory
changes of the current thread before the thread fence become visible to other
threads before global memory changes after the thread fence become visible. Af-
ter executing the thread fence, the L1 cache of the executing thread is guaranteed
to be consistent with the L2 cache.

• Atomic operations bypass the L1 cache and go straight to the L2 cache. Atom-
ics can ensure sequential consistency and visibility of changes if data is both
read/written with atomics. Atomic instructions have a higher latency than
comparable non-atomic instructions, but they became considerably faster with
recent GPU architectures [69, 95].

• The CUDA/C++ volatile qualifier indicates that a memory address may be
concurrently read/written by another thread. It disables certain optimizations
(such as keeping a value in a register) and always causes a memory read/write
upon data access, bypassing the L1 cache.

• The L1 cache can also be entirely turned off with a compiler flag: -Xptxas
-dlcm=cg. Note that this is not equivalent to making every memory access a
volatile access, since the volatile qualifier also deactivates other optimiza-
tions (such as caching data in registers).

In this thesis, we develop various lock-free algorithms. Their implementation
depends heavily on atomic operations, which are sequentially consistent. Atomic
operations and retry loops are common patterns in lock-free algorithms [26].

6Initialize to false, check for !continue_loop in the loop condition, set to true in the critical section.
7If only one thread per warp acquires a lock, locking is unproblematic.

14 Chapter 2. Background

2.1.4 Memory Coalescing

Many GPU applications are memory bound and for such applications, accessing
device memory is the biggest bottleneck. Memory coalescing is a fundamental opti-
mization of the GPU memory controller that combines multiple memory requests
into a smaller number of physical memory transactions, if certain conditions are met.

• This optimization is specific to device memory (i.e., CUDA global memory).

• Only memory accesses (reads/writes) from the same warp can be combined.

• Memory addresses must be properly aligned and fall into an L1/L2 cache line.

The rules of memory coalescing differ among different NVIDIA compute capabil-
ity versions. With compute capabilities between 3.x and 5.x, the NVIDIA CUDA C
Programming Guide states that hits in the L1 cache can be coalesced into 128-byte
transactions [39]. I.e., if the threads of a warp access memory locations on the same
L1 cache line (L1 cache lines are 128 bytes long and 128-byte aligned), then these
accesses are serviced by one physical 128-byte transaction. Starting from compute
capability 6.x (Pascal), the NVIDIA Pascal Tuning Guide states that the L1 cache
services loads (but not stores) at a granularity of 32 bytes [43], so memory loads can
only be coalesced into smaller 32-byte transactions8.

In the worst case, if each thread of a warp loads a 32-bit word and those memory
accesses cannot be coalesced, then each thread’s access generates a 32-byte trans-
action, which increases the amount of memory transfer by 8 [40], compared to one
perfectly coalesced 128-byte transaction (CC 3.x-5.x) or four perfectly coalesced 32-
byte transactions (CC 6.x).

Memory accesses of a warp that hit in the L2 cache and belong to the same
L2 cache line, are coalesced into 32-byte transactions [39]. Whether these memory
addresses must correspond to the same 32-byte L2 cache line segment is not specified,
but this is likely the case.

All device memory is accessed through the L1/L2 caches. If a memory load
does not hit in the L1/L2 caches, then the data must first be loaded from the GPU’s
DRAM into the L2 cache (and maybe L1 cache). The DRAM is accessed with 32-byte
transactions. In the worst case, if the uncached 32-bit word accesses of each thread in
a warp cannot be coalesced, then each 32-bit word access triggers a 32-byte DRAM
transaction, which increases the amount of memory transfer by 8.

Memory coalescing is one of the most fundamental optimizations. The CUDA C
Best Practices Guide puts a high priority note on coalesced access [36] and programmers
should try to achieve good coalescing before trying any other optimizations.

The details of memory access and memory coalescing are changing with every
new GPU architecture. While, until now, the number of generated memory transac-
tions served as a good mental model to explain why memory coalescing increases
performance, this no longer seems to be the case with the most recent architectures9.
In fact, NVIDIA removed certain metrics and performance counters from their pro-
filing tools, so that those values are no longer exposed to programmers. While we
can no longer clearly explain how the hardware optimizes certain memory access
patterns, the basic CUDA programming rules for achieving good memory coalescing
and good memory bandwidth utilization fortunately remain the same.

8This is presumably to avoid overfetching, which required disabling the L1 cache for global memory
access before Pascal.

9See also: https://stackoverflow.com/questions/56142674/memory-coalescing-and-nvprof-
results-on-nvidia-pascal.

https://stackoverflow.com/questions/56142674/memory-coalescing-and-nvprof-results-on-nvidia-pascal
https://stackoverflow.com/questions/56142674/memory-coalescing-and-nvprof-results-on-nvidia-pascal

2.1. GPU Execution Model 15

container

segment

array slot

F I G U R E 2 . 5 : Array layout of memory coalescing experiment

Memory Coalescing vs. Vectorized Access Memory coalescing on GPUs is similar
to vectorized memory access on CPUs but differs in one crucial aspect: Memory
coalescing is a run-time optimization of the memory controller, whereas vectorization
is a compile-time optimization10.

On CPU systems, there are two main techniques for utilizing SIMD parallelism:
Either the programmer manually vectorizes the code with SIMD intrinsics, which is
tedious. Or the compiler auto-vectorizes code as part of an optimization pass. Both
techniques require the programmer/compiler to fully understand the memory access
pattern. Otherwise, the code cannot be vectorized. The resulting vectorized assembly
code contains vector load/stores such as movaps, which, given a memory address,
loads four packed (consecutive) floats (128 bits) into an SSE vector register.

On GPU systems, the memory controller coalesces memory accesses by analyzing
the requested memory addresses at runtime. There is nothing to do for the compiler.
The resulting PTX assembly code contains scalar loads/stores such as ld.global,
which, given one memory address per thread, performs a memory load for each
thread in the warp. The memory controller analyzes the memory addresses and de-
termines the number of times that this instruction has to be repeatedly executed such
that all memory load requests in the warp can be fulfilled with 128-byte transactions.

2.1.5 Memory Coalescing Experiment

To analyze the exact benefit of memory coalescing on a TITAN Xp GPU, we imple-
mented a simple benchmark that increments every value of a large 32-bit floating
point numbers array. The size of the array is 8 GB. We measured the runtime perfor-
mance with different assignments of array slots (jobs) to CUDA threads.

Experiment Setup The array of size (number of elements) N is divided into numC ∈
{1, 2, 4, 8, 16, 32} containers of equal size, where numC is a configurable parameter.
Each container is divided into segments of equal size (number of elements) sizeS,
where sizeS depends on the parameter numC (Figure 2.5).

sizeS =
32

numC
(segment size)

For the moment, let us assume that the number of array slots N is equal to the
number of GPU threads. We assign CUDA threads to array slots in such a way that
every warp is processing one segment per container11. For example, for numC = 4,
the threads of a warp are assigned to one segment (size 8) per container. These

10See also: https://stackoverflow.com/questions/56966466/memory-coalescing-vs-vectorized
-memory-access

11Recall that the warp size is 32. Moreover, sizeS · numC = 32.

https://stackoverflow.com/questions/56966466/memory-coalescing-vs-vectorized-memory-access
https://stackoverflow.com/questions/56966466/memory-coalescing-vs-vectorized-memory-access

16 Chapter 2. Background

segments are in totally different memory areas, so at least four memory transactions
are required for a warp to load all assigned array values. By increasing numC, we can
increase the degree of scattering and thus the number of required memory transactions.
In the best case (numC = 1), each warp is accessing only consecutive array slots, which
should result in perfect memory coalescing and best performance.

Access Pattern Details Let pos be the array slot index that a given thread ttid is
processing. This index is the sum of three parts: The offset into the array at which
the respective container begins, the offset into the container at which the respective
segment begins and the offset of the respective array slot within the segment.

pos(tid) = array_offset(tid) + container_offset(tid) + segment_offset(tid) (array slot)

The size of a container sizeC depends on the number of containers. All containers
have the same number of array elements.

sizeC =
N

numC
(container size)

Each warp consists of 32 threads. Within a warp, threads are numbered from 0 to
31 (lanes). Containers are divided equally among lanes. sizeS is the number of lanes
per container. For example, container 0 is processed by lanes 0 through sizeS − 1 of
all warps. The offset of the container for thread ttid is then computed as follows.

array_offset(tid) =
⌊

lane_id(tid)
sizeS

⌋
· sizeC (array offset)

=

⌊
tid % 32

32 / numC

⌋
· N

numC

Within a container, each segment is processed by the sizeS threads of each warp.
Segment i is processed by warp i. The offset of the segment for thread ttid is computed
as follows.

container_offset(tid) = warp_id(tid) · sizeS (container offset)

=

⌊
tid
32

⌋
· 32

numC

Finally, among the sizeS threads per segment, we assign one thread to each array
slot. The offset of the array slot within the segment for ttid is computed as follows.

segment_offset(tid) = tid % sizes (segment offset)

= tid %
32

numc

Listing 2.3 shows the source code of the benchmark. Threads process array
elements with a grid-stride loop, because spawning one thread per array slot would
be too much overhead. This does not affect memory coalescing.

Results Figure 2.6 shows the results of the benchmark. We ran the benchmark
with six different parameters numC ∈ {1, 2, 4, 8, 16, 32} and with a disabled L1 cache.

2.1. GPU Execution Model 17

L I S T I N G 2 . 3 : Implementation of memory coalescing experiment
1 __global__ void kernel(float* volatile data, unsigned int N, unsigned int C) {
2 for (unsigned int tid = threadIdx.x + blockIdx.x * blockDim.x;
3 tid < N; tid += blockDim.x * gridDim.x) {
4 unsigned int index = ((tid % 32) / (32 / C)) * (N / C) // array offset
5 + (tid / 32) * (32 / C) // container offset
6 + tid % (32 / C); // segment offset
7 data[index] += 8.0f; // 1 global memory read, 1 global memory write.
8 }
9 }

10

11 int main() {
12 float* data;
13 cudaMalloc(&data, sizeof(float) * 2ULL * 1024 * 1024 * 1024);
14

15 kernel<<<512, 512>>>(data, /*N=*/ 2ULL * 1024 * 1024 * 1024, /*C=*/ 4);
16 cudaDeviceSynchronize();
17 }

(A) Running time (B) DRAM bytes read/written

F I G U R E 2 . 6 : Memory coalescing experiment results (lower is better)

Higher values of numC increase the degree of scattering, which reduces memory
coalescing and increases the running time (Subfigure A). The worst-case running
time of numC = 32 is 29.8 times slower than the best-case running time of numC = 1.

Subfigure B shows the number of bytes read/written from the GPU’s DRAM. For
numC ∈ {1, 2, 4}, this value is almost the same because the DRAM is always accessed
in 32-byte transactions. Only for higher values of numC does the number of bytes
increase. In the worst case (numC = 32), 127.4 GB are read/written from the DRAM.
In this case, every 4-byte read/write access was serviced by a 32-byte transaction.

2 · 8 · 1024 · 1024 · 1024 byte
4 byte

· 32 byte = 128 GB (exp. #bytes accessed in DRAM)

The measured number of DRAM bytes is a bit less than 128 GB because a few
transactions hit in the in the L2 cache and profiler metrics are not 100% accurate.

The results of this experiment highlight the importance of coalesced memory ac-
cess and show that significant running time speedups can be achieved by optimizing
memory access. Our work focuses largely on achieving good memory coalescing
with object-oriented programming on GPUs.

18 Chapter 2. Background

2.2 Object-oriented Programming

Object-oriented programming (OOP) is a widely used programming paradigm. As of
May 2019, 16 of the 20 most widely used programming languages (according to the
TIOBE index12) support object-oriented programming.

Objects In well designed programs, objects represent abstract or real-world entities.
This can help programmers in building a good mental model of the data structures
and code interactions in a program. An object in OOP consists of three fundamental
parts.

• State: The state of an object defines its properties. In pure OOP, the state of an
object is private and cannot be directly accessed by other objects.

• Identity: Even if two different objects have the same state, they have different
identity. Identity can be seen as a special property that is different for each
object.

• Behavior: In pure OOP, objects communicate by exchanging messages. Upon
receipt, an object may process the message by executing code, which may in
turn read/modify the object’s state. Mainstream languages follow the notion of
method calls instead of message sends.

Object-oriented programming is widely used in academia and industry. Some
of its main advantages are good abstraction, encapsulation, modularity, good code
understandability and high programmer productivity [148].

2.2.1 Class-based Object-oriented Programming

The most prominent variant of object-oriented programming is class-based object-
oriented programming. Objects are instances of classes, which define the state (fields)
and behavior (methods) of objects. CUDA and OpenCL are extensions of C++, a
class-based, object-oriented programming language.

Class-based, object-oriented programming languages can increase code reuse and
abstraction through subclassing/inheritance. In typed languages, a subclass relation-
ship usually creates a subtype relationship. This means that, with respect to type
safety, an object of a superclass can be substituted with an object of a subclass (Liskov
Substitution [124]). If a subclass overrides a method of a superclass, the programming
system should dispatch to the correct method based on an object’s runtime type as
opposed to its static type (virtual function call).

C++ Object Layout The layout of objects in memory depends on the programming
language/compiler and the platform’s application binary interface (ABI) [150]. In
C++, field values of an object are arranged in memory in the same order in which they
are declared in the struct/class. If a struct/class inherits from another struct/class,
then inherited fields come first13. Furthermore, if the struct/class has at least one
virtual member function, then the object starts with a pointer to the virtual method
table (vtable), which contains pointers to all virtual function implementations. The
ABI defines the size and alignment of primitive types. For example, on recent NVIDIA

12https://www.tiobe.com/tiobe-index/
13We are focusing on single inheritance. There are more complex rules for multiple inheritance.

https: //www.tiobe.com/tiobe-index/

2.2. Object-oriented Programming 19

class A {
int f1; double f2; char f3;
void foo();
virtual void bar();

};

class B : public A {
int f4;
virtual void bar() override;
virtual void qux();

};

f1

vtable pointer

f2

f3

0

4

8

12

16

20

24

28

32

f1

vtable pointer

f2

f3

0

4

8

12

16

20

24

28

32
f4

&A::bar
vtable (class A)

&B::bar
vtable (class B)

&B::qux

object layout (class A) object layout (class B)

F I G U R E 2 . 7 : Example: C++ object layout on NVIDIA GPUs

GPUs, char is 1 byte, int is 4 bytes and double is 8 bytes. In addition, values of these
types must be aligned to their respective byte size [41].

Figure 2.7 shows an example with two classes, where class B inherits from class A.
Due to alignment, objects of both classes are 32 bytes in size, even though class B has
an extra field. In particular, class A has a size of 32 bytes instead of 25 bytes. This is to
ensure that if multiple A objects are allocated in an array, field values of each object
are properly aligned.

2.2.2 Problems of Object-oriented Programming on GPUs

Even though object-oriented programming has a wide range of applications in high-
performance computing [15, 98, 11, 46, 29] it is often avoided due to bad perfor-
mance [151]. In C++, there are four main performance problems with object-oriented
programming on GPUs.

• Data Layout: While the object-oriented programming paradigm does not dic-
tate any particular layout of objects in memory, most systems/compilers store
each object in one contiguous block of memory. Such a layout may not be ideal
for execution on GPUs. To achieve good memory access performance, GPU
programmers have to tune data layouts to maximize memory coalescing and
L1/L2 cache performance [169], but current GPU languages such as CUDA and
OpenCL do not allow programmers to change the layout of objects.

• Dynamic Memory Allocation: The ability/flexibility of creating and deleting
objects at any time is one of the corner stones of object-oriented programming.
CUDA provides a dynamic memory allocator (malloc/free interface) in GPU
code, but this allocator is notoriously slow and unreliable [175]. Due to the
massive number of threads and expensive inter-thread communication/syn-
chronization, it is difficult to design efficient, dynamic memory allocators for
GPUs.

• Virtual Function Calls: GPU compilers aggressively inline functions, because
jumps and function calls are generally more expensive on GPUs [209, 212]. In
C++, virtual functions are typically compiled into a jump to an address in the
virtual method table (vtable). However, such jumps cannot be inlined by the
compiler and are by a factor of 10x slower than regular function calls [110].
Moreover, virtual function calls can lead to warp divergence.

• 64-Bit Pointers: Memory pointers on recent GPU architectures are 64 bits long.
Therefore, if an object stores a pointer to another object, an 8-byte field is

20 Chapter 2. Background

required. Without object-oriented abstractions (i.e., object pointers), a 4-byte
integer ID may be sufficient, so object-oriented programming can indirectly
increase the memory usage. Similar overheads have been observed in Java
applications when switching from a 32-bit address space to a 64-bit address
space. Related work proposed pointer compression to refer to objects with 32-bit
values [190]. Similar techniques could be adopted to optimize GPU programs.

Related work describes techniques for optimizing the last two problems. In the
course of this work, we are addressing the first two problems, which are largely
unsolved and the main source of slowdowns: Data layout and dynamic memory
allocation.

Optimizing Virtual Function Calls Virtual function calls are expensive because
they are usually not inlined and compiled into jump/call instructions. Such jumps
are particular expensive on GPUs, which were originally designed for highly regular
control flow and neither have a branch target predictor nor execute code speculatively.
We briefly review two techniques for inlining virtual function calls in C++:

• Switch-Case Statements: Instead of generating a vtable pointer lookup and
a jump, generate an exhaustive switch-case statement that dispatches to the
correct method implementation based on the receiver’s type (example in List-
ing 7.13). This is possible because C++ is a statically-typed language and GPU
programs are usually not separately compiled (i.e., one compilation unit). There-
fore, the compiler knows all types that a receiver can have at runtime. Related
work describes an instrumentation-based variant of this technique that works
even in the absence of full compile-time type information [8].

• Expression Templates [188]: This advanced C++ template metaprogramming
technique encodes the structure of a computation in its type. It is heavily
utilized in linear algebra libraries [89].

As our focus is on efficient memory access, we do not attempt to optimize vir-
tual function calls in this thesis. Instead, we hand-write the respective switch-case
statements whenever we encounter a virtual function call in our examples.

2.3 Array of Structure (AOS) vs. Structure of Arrays (SOA)

Structure of Arrays (SOA) and Array of Structures (AOS) describe memory layouts
for a fixed-size set of objects [20]. In AOS, the standard layout of most systems, objects
are stored as contiguous blocks of memory. In SOA, all values of a field are stored
together (Figure 2.8).

Running Example As an example, we consider a simplified n-body simulation (full
example in Section 7.1). Every body in the simulation is an object with fields for 2D
position, 2D velocity, mass, etc. Listing 2.4 shows an excerpt of the source code in
AOS layout. All bodies are stored in an array of Body base type, where Body is a C++
class/struct; thus the name Array of Structures. Objects are constructed with C++’s
placement-new syntax, which runs the constructor on a given memory address.

Alternatively, instead of allocating objects in an array, objects could be dynamically
allocated on the heap. While objects were still stored as contiguous blocks of memory,
there would be no guarantee that the dynamic memory allocator places them next to

2.3. Array of Structure (AOS) vs. Structure of Arrays (SOA) 21

Body bodies[32000];

float Body_pos_x[32000];
float Body_pos_y[32000];
float Body_vel_x[32000];
float Body_vel_y[32000];
float Body_force_x[32000];
float Body_force_y[32000];
float Body_mass[32000];

(b) Structure of Arrays (SOA)(a) Array of Structures (AOS)
po

s_
x 1

po
s_

y 1
ve

l_x
1

ve
l_y

1

for
ce

_x
1

for
ce

_y
1

ma
ss

1

po
s_

x 2
po

s_
y 2

ve
l_x

2

ve
l_y

2
...

struct Body {
 float pos_x, pos_y;
 float vel_x, vel_y;
 float force_x, force_y;
 float mass;
};

po
s_

x 1
po

s_
x 2

po
s_

x 3
po

s_
x 4

... po
s_

y 1
po

s_
y 2

po
s_

y 3
po

s_
y 4

... ...

strided memory access (slow) vector load possible (fast)

__device__ void move(int id) {
 /* Compute force, vel ... */

 pos_x[id] += Δt * vel_x[id];

 pos_y[id] += Δt * vel_y[id];
}

SIMD: All threads (in a warp) perform this load in parallel.
Current NVIDIA GPU coalesce these loads into as few
128-byte vector loads as possible. In SOA, fewer vector
loads are required to cover all pos_x values than in AOS.

...

(c) SOA Code Example

F I G U R E 2 . 8 : N-body simulation in AOS and SOA data layout

each other in an array-like form. Therefore, such a layout is no longer AOS and has
likely performance characteristics different from AOS.

Listing 2.5 shows the same program in SOA layout. The array of base type Body
was replaced by seven arrays, one for every field; thus the name Structure of Arrays.
We call these arrays SOA arrays.

2.3.1 Abstractions for Object-oriented Programming

At first sight, the SOA code is harder to read/understand than the AOS code. This is
mainly because most programmers are familiar with object-oriented programming
and its syntax/notation. However, even objectively, the AOS code does a better job at
expressing the object-oriented design:

• Abstraction and Encapsulation: Values that belong together are defined to-
gether. In AOS, pos_x, pos_y, etc. are defined and encapsulated inside the
scope of class Body. Furthermore, Body’s fields could be made private, such that
they can only be accessed from within the class.

• Type System: In AOS, objects can be referred to with class pointers. In SOA,
they are referred to with integer IDs. In AOS, the type system can catch pro-
gramming mistakes early on, while, in SOA, many programming mistakes can
remain unnoticed until runtime.

• C++ OOP Abstractions: AOS allows C++ programmers to use C++ abstractions
for object-oriented programming, such as constructor syntax, the new keyword,
inheritance, member visibility, member function (method) calls and virtual
functions. This is not possible with SOA code.

There are programming languages that allow programmers to specify custom
memory layouts without breaking abstractions. Shapes [65] is one example for such a
language. However, we are focusing on C++/CUDA in this work because GPUs are
predominantly programmed in a C++ dialect. Unfortunately, standard C++/CUDA
does not allow programmers to specify custom memory layouts. This is possible
only with custom C/C++ dialects such as ispc [152] or custom preprocessors such as
ROSE [157]. Some compilers automatically perform data layout optimizations [215,
32, 131], but they often fail at complex programs.

2.3.2 Performance Characteristics of Structure of Arrays

SOA is a well-studied best practice on SIMD architectures. Such architectures achieve
parallelism by executing the same processor instruction on a vector register. Getting

22 Chapter 2. Background

L I S T I N G 2 . 4 : N-body simulation in AOS layout
1 class Body {
2 public:
3 float pos_x = 0.0; float pos_y = 0.0;
4 float vel_x = 1.0; float vel_y = 1.0;
5 float force_x; float force_y;
6 float mass;
7

8 // Class constructor
9 Body(float mass, float x, float y) : mass_(mass), pos_x(x), pos_y(y) {}

10

11 void move(float dt) {
12 pos_x = pos_x + vel_x * dt;
13 pos_y = pos_y + vel_y * dt;
14 }
15 };
16

17 Body bodies[50];
18 // Counter for number of objects (instances).
19 int Body_inst = 0;
20

21 void create_and_move() {
22 Body* b = bodies + bodies_inst++;
23 // Call constructor with C++ placement new.
24 new(b) Body(150.0, 1.0, 2.0);
25

26 b->move(0.5);
27 assert(b->pos_x == 1.5);
28 }

L I S T I N G 2 . 5 : N-body simulation in hand-written SOA layout
1 float Body_pos_x[50]; float Body_pos_y[50];
2 float Body_vel_x[50]; float Body_vel_y[50];
3 float Body_force_x[50]; float Body_force_y[50];
4 float Body_mass[50];
5

6 // Counter for number of objects (instances).
7 int Body_inst = 0;
8

9 int new_Body(float mass, float x, float y) {
10 int id = Body_inst++;
11 Body_vel_x[id] = 1.0;
12 Body_vel_y[id] = 1.0;
13 Body_mass[id] = mass;
14 Body_pos_x[id] = x;
15 Body_pos_y[id] = y;
16 return id;
17 }
18

19 void Body_move(int id, float dt) {
20 Body_pos_x[id] += Body_vel_x[id] * dt;
21 Body_pos_y[id] += Body_vel_y[id] * dt;
22 }
23

24 void create_and_move() {
25 int b = new_Body(150.0, 1.0, 2.0);
26 Body_move(b, 0.5);
27 assert(Body_pos_x[b] == 1.5);
28 }

2.3. Array of Structure (AOS) vs. Structure of Arrays (SOA) 23

(A) Host running time (B) Device running time

F I G U R E 2 . 9 : Running time of n-body simulation in AOS and SOA data layout

data into and out of vector registers is often the biggest bottleneck and peak memory
bandwidth utilization can be achieved only with memory coalescing. SOA is one of
the most basic optimizations that experienced GPU/CPU-SIMD programmers apply
to optimize global memory access [207]. Previous work has reported speedups of
SOA over AOS by multiple factors (e.g., [85]; see also Section 2.1.5).

Due to the data-parallel execution model, all threads of a SIMD work group
(warp in CUDA) execute the same processor instruction in parallel on a vector of
scalars. Therefore, if one thread is reading/writing a field such as Body::pos_x,
then all other threads in the SIMD work group are likely reading/writing the same
field (but usually of a different object). If neighboring threads process neighboring
objects, then these reads/writes can be combined into a small number of physical
memory transactions when using an SOA data layout (Figure 2.8). On GPUs, this is
implemented in hardware: The memory controller coalesces memory reads/writes
at run-time. On CPUs, the instruction set provides vectorized (packed) versions of
many commonly used instructions (including vector loads/stores) and the compiler
generates those instructions instead of their scalar versions (see Section 2.1.4). In AOS,
the memory access follows a much more inefficient strided pattern, which does not
allow for vector loads/stores because the memory addresses are not contiguous14.

Besides better memory coalescing, SOA can also improve cache utilization if not
all fields are used in a computation. Such fields do not occupy cache lines in SOA.
For example, the implementation of Body::move() does not access the fields force_x,
force_y and mass. However, since the L1 cache line size is 128 bytes on NVIDIA
GPUs, in AOS, these fields will occupy the same cache lines as the actually accessed
pos_x, pos_y, vel_x, vel_y fields, leaving less space in the cache for those fields.

Figure 2.9 shows the running time of Body::move with AOS and SOA data layout
for a varying number of Body objects (x-axis). We report the average running time
per Body object (y-axis). In host (CPU, Subfigure A) code, SOA is much faster at the
beginning. This is because the compiler generates SSE vector instructions for SOA
code. Furthermore, the cache is utilized more efficiently in SOA. This benefit starts
fading away with higher body numbers. The spikes in the SOA graph are due to
cache associativity issues. This could be resolved with a hybrid layout (Section 2.3.4).
In device (GPU, Subfigure B) code, SOA is always faster than AOS, mostly due to
better memory coalescing. For low body numbers, kernel invocation dominates the
running time, thus the poor performance at the beginning.

14Recent CPU SIMD extensions such as AVX2 provide gather/scatter vector loads/stores [13, 83], but
those instructions are not as fast as regular vector loads/stores.

24 Chapter 2. Background

2.3.3 Object vs. SOA Array Alignment

An object set stored in SOA layout can sometimes require less memory than the same
object set in AOS15. In AOS, every field and every object must be properly aligned,
whereas in SOA, only the SOA arrays themselves must be aligned.

L I S T I N G 2 . 6 : Example: Memory consumption of an object set in AOS/SOA
class DummyClass {

double field_0; // sizeof(double) = 8
char field_1; // sizeof(char) = 1

}; // sizeof(DummyClass) = 16
DummyClass objects [50]; // sizeof(objects) = 800

struct SoaContainer {
double soa_field_0 [50]; // sizeof(double [50]) = 400
char soa_field_1 [50]; // sizeof(char [50]) = 50

}; // sizeof(SoaContainer) = 456

As an example, consider the C++ source code in Listing 2.6. 50 objects in AOS
layout require 800 bytes because every double field value (and DummyClass object)
must be aligned to 8 bytes. However, 50 objects in SOA layout require only 456 bytes.

As a side note, the size of a C++ struct/class can sometimes be reduced by
rearranging its fields (structure packing). In the example of Listing 2.6, structure
packing cannot reduce the size of DummyClass.

2.3.4 Choosing a Data Layout

Choosing the best data layout for an application is challenging and depends on
hardware characteristics and on the data access patterns of the application. Previous
work has shown that, on different platforms, different layouts can sometimes achieve
the best performance. For example, on platforms with low cache associativity, SOA is
known to cause more cache evictions than AOS, which can increase the number of
cache misses and slow down an application [131, 116].

Previous work has shown that a mixture of AOS and SOA such as AoSoA can
sometimes achieve the best performance [65, 106, 199, 113, 134]. How to find good
data layouts has been studied before [106, 4, 76] and is out of the scope of our work.
When talking about custom data layouts, we are focusing on SOA in the remainder
of this theis. However, our work could be extended to other layouts in the future.

15For reasonably large object sets, SOA never requires more space than AOS.

25

Chapter 3

Expressing Parallelism in
Object-oriented Programs

This chapter investigates how object orientation can be utilized in GPU programs. We
are particularly interested in how object orientation can be used to express parallelism.

Contents
3.1 I K R A - R U B Y: A Parallel Array Interface 26

3.1.1 Parallel Operations . 30
3.1.2 Mapping Ruby Types to C++ Types 33
3.1.3 Object Tracer . 34
3.1.4 Example: Image Manipulation Library 35
3.1.5 Summary . 35

3.2 I K R A - C P P: A C++/CUDA Library for SMMO Applications . . . 37
3.2.1 Single-Method Multiple-Objects 37
3.2.2 Programming Interface and Notation 38
3.2.3 Implementation Details . 41
3.2.4 Conclusion . 42

3.3 Related Work . 42
3.3.1 Parallel Array/Tensor Interface 43
3.3.2 For-Loop Parallelization . 44

Overview and Outline We developed two techniques/prototypes for expressing
GPU parallelism in object-oriented programs.

• I K R A - R U B Y1 (Section 3.1): A data-parallel array class for Ruby with each/map/
reduce/stencil/... operations that run on the GPU. Object orientation allows
programmers to compose GPU programs of small parallel sections in a modular
way. I K R A - R U B Y is suitable mainly for mathematical computations.

• I K R A - C P P2 (Section 3.2): To allow for efficient object-oriented programming
within GPU code, we developed a CUDA framework for a subclass of object-
oriented applications that we call Single-Method Multiple-Objects (SMMO). In
SMMO, parallelism is expressed by running a method on all existing objects of
a type. Many interesting applications in high-performance computing can be
expressed with SMMO (Section 7).

1https://prg-titech.github.io/ikra-ruby/index.html
2https://github.com/prg-titech/ikra-cpp

https://prg-titech.github.io/ikra-ruby/index.html
https://github.com/prg-titech/ikra-cpp

26 Chapter 3. Expressing Parallelism in Object-oriented Programs

SMMO applications can also be implemented in I K R A - R U B Y by running a
parallel each operation on an array of objects. Besides being implemented in a
different programming language, I K R A - C P P is, in essence, a more restricted version
of I K R A - R U B Y with only one kind of operation: A parallel method call. This allows
us to develop better optimizations for object-oriented code that runs on the GPU.

Our vision is that I K R A - C P P will eventually become a part of I K R A - R U B Y ,
so that programmers can develop SMMO applications in a high-level language.
However, this is out of the scope of this thesis and up to future work.

Publications This chapter is in part based on the following papers.

• Matthias Springer, Hidehiko Masuhara. “Object Support in an Array-based
GPGPU Extension for Ruby.” In: Proceedings of the 3rd ACM SIGPLAN Inter-
national Workshop on Libraries, Languages, and Compilers for Array Programming.
ARRAY 2016. ACM, 2016, pp. 25–31. doi:10.1145/2935323.2935327

• Matthias Springer, Peter Wauligmann, Hidehiko Masuhara. “Modular Array-
Based GPU Computing in a Dynamically-Typed Language.” In: Proceed-
ings of the 4th ACM SIGPLAN International Workshop on Libraries, Languages,
and Compilers for Array Programming. ARRAY 2017. ACM, 2017, pp. 48–55.
doi:10.1145/3091966.3091974

• Matthias Springer. “DynaSOAr: Accelerating Single-Method Multiple-Objects
Applications on GPUs.” Extended Abstract. In: ACM Student Research Compe-
tition, Grand Finals, Graduate Category. Originally submitted to SPLASH 2018.
arXiv:1809.07444 (reviewed and published on ACM SRC website, no formal
proceedings)

3.1 I K R A - R U B Y: A Parallel Array Interface

Most mainstream, object-oriented programming languages, such as Java, Python or
Ruby, provide a rich collection API for arrays, linked lists, hash maps, etc. These
containers often have functional operations that execute a scalar computation on each
(sometimes multiple) element(s) of the collection. The most prominent operations are
map and reduce, popularized by the Map-Reduce programming model [48].

In this section, we investigate how collections can be used to express GPU paral-
lelism. Arrays are particularly interesting because they allow for efficient random
element access. Since the (functional) scalar computations are independent of each
other, they can run in parallel on the GPU.

Ruby Array Interface As an example, consider the array interface (class Array) of
the Ruby programming language. This interface provides many operations, but the
following four ones are among the most used ones.

• Array.new(n, &block): Creates a new array of size n. Each array slot is initial-
ized with the return value of the block.

• Array.map(&block): Applies a block (lambda function) to every element of an
array and returns a new array of results. The original array remains unchanged.

• Array.each(&block): Applies a block (lambda function) to every element of an
array. In contrast to all other operations, this operation does not return a new

http://dx.doi.org/10.1145/2935323.2935327
http://dx.doi.org/10.1145/3091966.3091974
https://arxiv.org/pdf/1809.07444.pdf

3.1. I K R A - R U B Y: A Parallel Array Interface 27

array. The original array remains unchanged. However, the block execution
usually has a side effect.

• Array.reduce(&block): Combines all elements of an array by applying a binary
operation over and over. Returns a scalar value. The original array remains
unchanged.

A Ruby block is an anonymous/lambda function. Programmers can customize
the above operations with a block that specifies the computation of each scalar value.
Blocks are ordinary Ruby objects. However, when defining/calling functions, Ruby
distinguishes between ordinary parameters and block parameters. Ruby provides a
special syntax for passing a block to a function (Listing 3.1).

L I S T I N G 3 . 1 : Example: Ruby Array::map

increment = Proc.new do |x| x + 1 end # Define a computation
[1, 2, 3].map(&increment) # Must pass blocks with ampersand ("block argument")
=> [2, 3, 4]

More compact: Inline block definition
[1, 2, 3].map do |x| x + 1 end
=> [2, 3, 4]

Parallel Array Operations To explore array-based GPU computing in a high-level,
object-oriented programming language, we developed I K R A - R U B Y , a language
extension for data-parallel and scientific computations on NVIDIA GPUs in Ruby.
I K R A - R U B Y uses arrays as an abstraction for expressing parallelism: We extended
Ruby’s Array class with parallel versions of the above operations and with a few
extra operations that we describe later. The notation and API for these operations is
similar to Ruby’s sequential counterpart operations but method names are prefixed
with p for parallel. In the simplest case, one CUDA thread is assigned to each array
element, such that the array can be processed in parallel.

Programming Style When using I K R A - R U B Y, we encourage a dynamic program-
ming style that is governed by the following two concepts.

Integration of Dynamic Language Features Code in (blocks passed to) parallel ar-
ray operations is limited to a restricted set of types and operations (dynamic
typing and object-oriented programming is allowed). This allows us to generate
efficient GPU code for parallel operations. All Ruby features (incl. metapro-
gramming) may still be used in other parts of a Ruby program. Therefore,
programmers can still use external libraries (e.g., I/O or GUI libraries).

Modularity [140] While optimized low-level programs typically consist of a small
number of kernels performing a variety of tasks, I K R A - R U B Y allows program-
mers to compose a GPU computation from multiple reusable, smaller parallel
array operations. I K R A - R U B Y generates efficient CUDA kernels from these
operations.

Compilation Process I K R A - R U B Y is essentially a source-to-source compiler that
compiles Ruby code to CUDA code. Ruby is a dynamically-typed programming

28 Chapter 3. Expressing Parallelism in Object-oriented Programs

require "ikra"

Execute in
Ruby Interpreter

Access
Result ...

Array
Command

Ruby Array

Retrieve Ruby
Source Code

Type
Inference

Generate C++/CUDA
Soure Code

Compile
(nvcc)

Transfer
Data

Run GPU ProgramTransfer
Data Back

Convert
Data

Convert
Data

Ruby Interpreter

Generated C++/CUDA Code

(Symbolic Execution) (Tree)

pmap, pstencil, ...

(or host section)

(AOS → SOA)(SOA → AOS)

F I G U R E 3 . 1 : High-level overview of the compilation process

language, while CUDA is a statically-typed language. Due to Ruby’s dynamic lan-
guage features, whole-program static (ahead of time) analysis is difficult. Therefore,
I K R A - R U B Y generates CUDA programs at runtime (just in time) when all type
information is known.

Figure 3.1 gives a high-level overview of I K R A - R U B Y’s compilation process.
I K R A - R U B Y executes parallel operations symbolically [103] in the Ruby interpreter.
The result is an array command object. Such an object contains all information required
for CUDA code generation and execution. An array command can be used like
a normal Ruby array. However, only when its contents are accessed for the first
time, I K R A - R U B Y generates CUDA/C++ source code, compiles it using the CUDA
compiler and runs the generated GPU program. The generated program copies data
to the GPU, executes the parallel operation(s) on the GPU, copies the result back to
the host memory and returns the result3. If a parallel operation modifies instance
variables of objects as a side effect, then these changes are also copied back to Ruby.

Array commands can have other array commands as inputs, forming a compu-
tation graph of array commands. Such a graph can be optimized as a whole before
emitting CUDA code. Recently, many machine learning framework follow such a
design [2, 184]. The main optimization of I K R A - R U B Y is kernel fusion: Compiling
the computation graph into a small number of CUDA kernels. We describe this
optimization in detail in Section 4.1.

Symbolic Execution During symbolic execution, I K R A - R U B Y retrieves the source
code of the block that is passed to a parallel operation and generates an abstract syntax
tree4. The result of symbolic execution is an array command. Within a parallel opera-
tion, I K R A - R U B Y currently supports expressions of primitive types, user-defined
classes and polymorphic types. Advanced Ruby features such as metaprogramming,
features that cannot be easily compiled to C++/CUDA (e.g., system calls, file I/O,
GUI or FFI), and nested parallel operations are not supported. Parallel sections typ-
ically perform mathematical computations, which can be implemented with most
basic Ruby functionality.

Array Commands A command object in the Command Design Pattern [70] is an
object that contains all information that is necessary to perform an action at a later
point of time. An array command in I K R A - R U B Y is an object that contains all

3If object-oriented programming is used inside a kernel, data is first converted to a memory
coalescing-friendly Structure of Arrays layout (Section 2.3).

4We utilize the Ruby parser library. See also: https://rubygems.org/gems/parser.

https://rubygems.org/gems/parser

3.1. I K R A - R U B Y: A Parallel Array Interface 29

Ikra

+to_command()
+pnew()

::Array

-input : ArrayCommand[]
-result : Object[]

+to_command()
+with_index()
+to_a()
+each()
+[](index)

ArrayCommand

+pcombine()
+pmap()
+pstencil()
+preduce()
+pzip()

<<mixin>>
ParallelOperations

<<mixin>>
::Enumerable -dimensions : Fixnum[]

ArrayIdentityCommand

-dimensions : Fixnum[]

ArrayIndexCommand

ArrayCombineCommand

ArrayStencilCommand

ArrayZipCommand

ArrayReduceCommand

...

input

0..*

<<instantiate>>

F I G U R E 3 . 2 : Integration of I K R A - R U B Y in Ruby

information required for code generation and running a parallel operation. For
example, a stencil array command contains the AST of the computation (block), a
reference to the input array command, an array of neighborhood indices, and an out
of bounds value (explained in Section 3.1.1).

An array command can be seen as a special Ikra array. It has all methods that an
ordinary Ruby array has, but its contents are computed once it is accessed for the first
time. The result of the computation is cached in Ruby, so that multiple accesses do
not trigger recomputation. If the input of an array command is changed, the cached
result is not invalidated (Listing 3.2). This is a deliberate decision and similar to how
standard Ruby behaves with normal (non-parallel) array operations. However, in
contrast to standard Ruby, results are computed upon access, so modifications of the
input of an array command after symbolic execution can affect its result.

L I S T I N G 3 . 2 : Example: Caching the result of parallel array operations
arr = [10, 20, 30, 40, 50]
squared = arr.pmap do |x| x * x end # No computation yet
arr[0] = 5 # Modifying "arr" before computation affects result of "squared"
squared[0] # First access triggers compilation and execution on GPU
=> 25

squared[1] # Result of "squared" is already in the cache
=> 400

arr[3] = 1000 # No recomputation of "squared"
squared[3]
=> 1600 (not 1000000)

Figure 3.2 gives an overview of I K R A - R U B Y’s integration in Ruby and the design
of array commands. There are a variety of subclasses of ArrayCommand corresponding
to the parallel operations that are supported in I K R A - R U B Y (Section 3.1.1). The
standard Ruby Array class and I K R A - R U B Y’s ArrayCommand class include two mix-
ins [24]: Enumerable and ParallelOperations. The first mixin provides standard
collection API functionality and requires an implementation of the each method in
the class that it is mixed into. The second mixin provides I K R A - R U B Y’s parallel
operations which are executed on the GPU.

30 Chapter 3. Expressing Parallelism in Object-oriented Programs

3.1.1 Parallel Operations

This section gives an overview of the parallel operations that are provided by I K R A -
R U B Y . All operations can handle multidimensional I K R A - R U B Y arrays, making
code more readable if data is inherently multidimensional (e.g., images). For presen-
tation reasons, we use only one dimension for most operations in this section.

If an operation performs a computation, then the size of the receiver (base array)
determines the number of CUDA threads that are used. By default, I K R A - R U B Y

uses one CUDA thread per array element, but this can be changed.

Array Identity This operation wraps a Ruby array A in an I K R A - R U B Y array
(command), denoted by id(A). Since an I K R A - R U B Y computation graph consists of
only array commands, this operation is necessary to make an external Ruby array A
(which is not computed on the GPU) available in I K R A - R U B Y.

Array identity is applied implicitly where required. For example, when a parallel
map operation is applied to a Ruby array, I K R A - R U B Y first wraps the Ruby array in
an array identity command.

Array identity can also be used to reshape a Ruby array. E.g., this is useful if
programmers want to convert a one dimensional Ruby array into a multidimensional
I K R A - R U B Y array. Reshaping does not change the actual data layout and is “for
free”. Array identity is exposed to Ruby programmers as to_command, taking an
optional parameter for dimensions.

A.to_command()
A.to_command(dimensions: [15, 20])

I K R A - R U B Y arrays can be converted back to Ruby arrays with to_a. This
executes the computation graph on the GPU, unless the graph was already executed
and the result is already cached.

Combine This operation is used to map over one or more arrays Ai of same size m
and dimensions. It takes as input n arrays and a block (anonymous function) f taking
n scalar values. It applies f to every element of the input and retains the original
shape of the input (all dimensions).

combine(A1, . . . , An, f) =

 f (A1[0], . . . , An[0])
...

f (A1[m− 1], . . . , An[m− 1])

By default, I K R A - R U B Y allocates m CUDA threads, i.e., every thread processes

one tuple. This operation is exposed to Ruby programmers as pcombine:

A1.pcombine(A2, ..., An, &f)

Map This operation is a special case of combine with only one input array. It corre-
sponds to an ordinary map operation but is executed in parallel.

map(A1, f) = combine(A1, f) = [f (A1[0]), . . . , f (A1[m− 1])]

This operation is exposed to Ruby programmers as pmap:

A1.pmap(&f)

3.1. I K R A - R U B Y: A Parallel Array Interface 31

For-Each This operation is similar to map: It runs a given Ruby block for every
element in an array A1. However, in contrast to all other operations, for-each is not a
functional operation and does not have a return value. The Ruby block may as a side
effect, just as in all other operations, modify the elements of A1 (if they are objects),
as well as other objects that are in scope, such as lexical variables. These changes are
written back to Ruby after running the operation. This operation is exposed to Ruby
programmers as peach:

A1.peach(&f)

Since for-each does not have a return value, it is not symbolically executed but
immediately executed. Furthermore, certain optimizations that are described later,
such as kernel fusion, are not applied to this operation.

Index This operation generates an array of size m of consecutive indices starting
from 0 and ending with m− 1.

index(m) = [0, 1, 2, . . . , m− 1]

In a multidimensional case, index takes d arguments mi (d is the number of
dimensions), where mi is the size of the i-th dimension. Every value in the resulting
array is then an array of size d containing the indices for every dimension.

index(m1, m2) =

[
[0, 0], . . . , [0, m1 − 1], . . . ,

[m2 − 1, 0], . . . , [m2 − 1, m1 − 1]

]
This operation is not directly exposed to programmers. Similar to standard Ruby,

programmers must invoke the method with_index after a parallel operation (the
parameter m is provided implicitly) or use Array.pnew (see below).

A1.pmap.with_index(&f)

API Example:
[10, 20, 30, 40, 50].map.with_index do |x, y| x + y end
=> [10, 21, 32, 43, 54]

New This operation is a combination of index and map. It creates a new array of size
m and initializes it using the block (anonymous function) f . It is a parallel version of
Ruby’s Array.new.

new(m, f) = map(index(m), f) = [f (0), . . . , f (m− 1)]

Similiar to index, this operation takes multiple arguments in a multidimensional
case. This operation is exposed to Ruby programmers as pnew:

Array.pnew(m, &f)

Stencil (Convolution) This operation takes as arguments an input array A, an array
of relative indices I (neighborhood) of size k, a block f , and an out-of-bounds value
o. It creates an array of same size and dimensionality where position i is initialized
using f , passing the values in the neighborhood of A[i] as arguments to f . Simple
examples of stencil computations are image filtering kernels.

32 Chapter 3. Expressing Parallelism in Object-oriented Programs

The following formula is used to calculate the value in the resulting array at
position i. If all indices are within bounds (case 1), i.e., 0 ≤ i + I[j] < m for all
0 ≤ j < k (where m is the size of A), the value of the stencil computation is used.
Otherwise (case 2), the fallback value o is used.

v(A, I, f , o, i) =

{
f ([A[i + I[0]], . . . , A[i + I[k− 1]]]), (case 1)
o, (case 2)

Using this helper function v, a stencil computation is defined as follows.

stencil(A, I, f , o) = [v(A, I, f , o, 0), . . . , v(A, I, f , o, m− 1)]

This operation is exposed to Ruby programmers as pstencil. The value of the
parameter I is inferred from the code of the block.

A.pstencil(o, &f)

API Example (Gaussian blur 3x3 image kernel):
img = load_pixels("pic.png").to_command(dimensions: [640, 480])
filtered = img.pstencil (0) do |v|

(1 * v[-1][-1] + 2 * v[0][-1] + 1 * v[1][-1] +
2 * v[-1][0] + 4 * v[0][0] + 2 * v[1][0] +
1 * v[-1][1] + 2 * v[0][1] + 1 * v[1][1]) / 16.0

end

Zip This operation does not perform a computation but groups values of two or
more arrays of same size and dimensionality.

zip(A1, . . . , An) =

 [[A1[0], . . . , An[0]]
...

[A1[m− 1], . . . , An[m− 1]]]

The result of this operation is an array of arrays. This operation is exposed to

Ruby programmers as pzip:

A1.pzip(A2, ..., An)

Reduce This operation takes as arguments an input array A and a block f , whose
function must be associative. Every block application reduces two elements into
a single one. The block is applied until only one element is left (dimensions are
ignored5). This operation is similar to Ruby’s Array.reduce, but the return value is
an array with one element instead of a scalar value.

reduce(A, f) = [f (. . . f (f (A[0], A[1]), f (A[2], A[3]), . . .) . . .)]

There are no guarantees about the order in which elements are reduced, because
reduction is done in parallel. This operation is exposed to Ruby programmers as
preduce:

5Machine learning libraries provide more powerful versions that reduce values along one or multiple
specified dimensions, e.g. reduce_sum in TensorFlow. This is not currently supported in I K R A - R U B Y.

3.1. I K R A - R U B Y: A Parallel Array Interface 33

Passing a block (function)
A.preduce(&f)
Symbols are also possible as shortcuts
E.g.: A.preduce do |a, b| a + b; end
A.preduce(:+)

3.1.2 Mapping Ruby Types to C++ Types

Ruby is a dynamically typed programming language. During type inference, I K R A -
R U B Y infers which types each expression in a parallel operation can have, based
on the runtime types of the input to the parallel operation. If an expression is
monomorphic (has a single type), a Ruby type is directly mapped to the corresponding
type in the C++/CUDA source code.

TA B L E 3 . 1 : Mapping Ruby types to C++ types

Ruby Type C++ / CUDA Type
Fixnum int
Float float
TrueClass bool
FalseClass bool
NilClass int
Array array_t, generated struct type
ArrayCommand array_command_t * (only in host sections, Section 4.1.3)
(other) object_id_t (int)
(polymorphic) union_t

Table 3.1 shows the mapping of Ruby data types to CUDA/C++ data types.
Numeric values are currently represented by int or float. nil is represented by int
value 0. Arrays are either represented by array_t (a pointer-size pair) or a generated
struct type for zip types. Other objects are represented by int object IDs generated
by I K R A - R U B Y’s object tracer (Section 3.1.3).

union union_v_t {
int int_;
float float_;
bool bool_;
void *pointer;
array_t array;
array_command_t array_command; // later...

};

struct union_t {
int class_id;
union_v_t value;

};

F I G U R E 3 . 3 : Union type struct definition

For polymorphic expressions (e.g., if Fixnums and nil are assigned to a variable),
union type [3] structs (Figure 3.3) are used. Values are stored in union_v_t which
can hold values (or pointers to values) for all C++ types of Table 3.1. The class ID
field contains a number that identifies the runtime type6. If a method is called on a
polymorphic expression, I K R A - R U B Y generates a switch-case statement with all
types that the expression can have at runtime. Such an implementation is much

6This is different from standard C++, where a vtable pointer is stored at the allocation site of an
object. Such an implementation would impose a large overhead in I K R A - R U B Y because we would
then have to heap-allocate primitive types and refer to them with pointers.

34 Chapter 3. Expressing Parallelism in Object-oriented Programs

more efficient in CUDA than a virtual function call because all call targets can be
inlined by the compiler. If a monomorphic value is assigned to a polymorphic lvalue,
I K R A - R U B Y wraps the value in a union type struct. Arrays of union type structs are
used to represent polymorphic arrays.

In contrast to other compilers that just-in-time generate GPU code from dynamic
language code [67], I K R A - R U B Y performs a conservative type inference pass, such
that no unexpected types can appear at GPU program runtime. Therefore, I K R A -
R U B Y does not need to insert runtime type checking guards and code is never
invalidated due to a failing runtime type check. This design decision is based on
our assumption that most GPU code is monomorphic or exhibits a very small set
of runtime types. In fact, we could not find any real GPU programs for which our
conservative type inference system would infer an excessively large set of types of
which only a few actually appear at GPU program runtime.

3.1.3 Object Tracer

If object-oriented programming is used within a parallel operation, we have to transfer
all objects to the GPU that the GPU program may be accessing during its runtime.
Object allocation and deallocation is not supported within parallel operations; only
existing objects can be modified. Before CUDA code is generated, the object tracer
identifies all objects that may potentially be accessed in a parallel operation. Since the
exact runtime behavior of a program cannot be predicted, this analysis is conservative
and may identify objects that are not actually accessed at runtime. The object tracer
performs three main tasks.

• Decide which Ruby objects may be accessed in the parallel operation and
must, therefore, be transferred to the GPU.

• Assign a unique ID to each such object.

• For each Ruby class that is used within a parallel operation, determine which
instance variables are read/written. Only those instance variables are transi-
tively traced and copied to the GPU (and copied back to Ruby after the kernel
finished executing).

The object tracer starts tracing with a set of root objects: All elements of the base
array and lexical variables that are accessed. Then, it traverses the object graph by
following all instance variables that are read or written inside the parallel section.
I K R A - R U B Y’s object tracer is somewhat similar to what a system tracer [73, 108] does
in Smalltalk-80 systems.

Object tracing can result in additional type inference passes. The reason for that
is Ruby’s dynamic typing. During object tracing, I K R A - R U B Y might find that the
set of possible types of an instance variable is larger than previously assumed. If a
method is called on such an instance variable, I K R A - R U B Y has to translate also this
new method to CUDA code. Furthermore, this method may, for the first time, access
another instance variable of objects of a class that we have already begun tracing. The
instance variable values of those already traced objects must now also be traced.

I K R A - R U B Y’s object tracer is currently not optimized for performance. The
current implementation allows us to explore object-oriented programming within
parallel operations, but object tracing and data transfers to the GPU can take a
considerable amount of time. Assuming that most computation-intensive code runs
on the GPU, future versions of I K R A - R U B Y should optimize this by allocating most
objects on the GPU and transferring them to the Ruby interpreter only upon access.

3.1. I K R A - R U B Y: A Parallel Array Interface 35

load (id) blur (stencil) blur (stencil) blur (stencil) blend (combine)

load (id) invert (map) overlay (combine) blend (combine)

F I G U R E 3 . 4 : Example: Gray boxes indicate CUDA kernels (kernel fusion, Section 4.1).

ImgLib

-block : Proc

+apply_to(cmd)
+blur()
+blend(other, ratio)

Filter

-args : ArrayCommand[]

+apply_to(cmd)

CombineFilter

-out_of_bounds_value

+apply_to(cmd)

StencilFilter

+apply_filter(filter)

<<mixin>>
Ikra::ParallelOperations

+load_png(filename)

ImgLib

return fiter.
 apply_to(self)

return cmd.pstencil(
out_of_bounds_value,
&block)

F I G U R E 3 . 5 : Architecture of image manipulation library example

3.1.4 Example: Image Manipulation Library

To illustrate I K R A - R U B Y’s API, we design a simple image manipulation library.
This library provides methods for loading images from the file system and a few
filters (image kernels) and effects.

As an example, Figure 3.4 shows which filters we are using and in which order we
apply them: First, we load a picture of the Tokyo Tower. Then, we apply a blur filter
multiple times. Next, we load a picture of a sunset and merge (blend) both pictures.
Finally, we load a picture of a forest, invert it, and overlay it with the previously
merged picture. Listing 3.4 shows the source code for this example. Notice how the
code is modular with respect to composability, reusability, understandability: Image
filters are provided by the library and can be arbitrarily combined.

The filters are implemented in the library using parallel map or stencil operations
(Figure 3.5, Listing 3.3). Images are represented as 2D array command objects. The
library defines an extension method apply_filter for applying a filter to an image
with double dispatch [90]. Multiple filters can be applied in a sequence by chaining
apply_filter method calls. Only when the final result is accessed, does I K R A -
R U B Y generate an optimized CUDA program, copy the images to device memory,
run the CUDA kernels and copy back the result.

3.1.5 Summary

In this section, we presented the design and implementation of I K R A - R U B Y, a Ruby
library for data-parallel computations. Programmers express parallelism by running
parallel operations on an array. I K R A - R U B Y allows programmers to write modular
code with respect to reusability and composability of parallel operations. Section 4.1
describes how I K R A - R U B Y optimizes such GPU programs with kernel fusion.

36 Chapter 3. Expressing Parallelism in Object-oriented Programs

L I S T I N G 3 . 3 : Example: Definition of image manipulation filters
module ImageLibrary::Filters
def self.load_png(filename)
Pixels are just integers.
image = read_png(filename)
return image.pixels.to_command(dimensions: [image.height, image.width])

end

def self.blend(other, ratio)
return CombineFilter.new(other) do |p1, p2|

pixel_add, pixel_scale: Helper functions for dealing with RGB values
pixel_add(pixel_scale(p1, 1.0 - ratio), pixel_scale(p2, ratio))

end
end

def self.pixel_add(p1, p2) # Add values for each channel, cap at 255.
return min(((p1 & 0xff0000) >> 16 + (p2 & 0xff0000) >> 16), 255) << 16 # red

+ min(((p1 & 0x00ff00) >> 8 + (p2 & 0x00ff00) >> 8), 255) << 8 # green
+ min((p1 & 0x0000ff) + (p2 & 0x0000ff), 255) # blue

end

def self.pixel_scale(p1, r) # Ratio r must be between 0.0 and 1.0
return (r * ((p1 & 0xff0000) >> 16)) << 16 # red

+ (r * ((p1 & 0x00ff00) >> 8)) << 8 # green
+ r * (p1 & 0x0000ff) # blue

end

def self.blur
return StencilFilter.new(0) do |v|

r = v[-1][-1][0] + ... + v[1][1][0]
g = v[-1][-1][1] + ... + v[1][1][1]
b = v[-1][-1][2] + ... + v[1][1][2]
[r / 9.0, g / 9.0, b / 9.0]

end
end

Source code of other filters omitted.
end

L I S T I N G 3 . 4 : Example: Image manipulation library usage
require "image_library"

tt = ImgLib.load_png("tokyo_tower.png")
for i in 0...3
tt = tt.apply_filter(ImgLib::Filters.blur)

end

sun = ImgLib.load_png("sunset.png")
combined = tt.apply_filter(ImgLib::Filters.blend(sun, 0.3))

forest = ImgLib.load_png("forest.png")
forest = forest.apply_filter(ImgLib::Filters.invert)
combined = combined.apply_filter(

ImgLib::Filters.overlay(forest, ImgLib::Masks.circle(tt.height/4)))

ImgLib::Output.render(combined) # Draw pixels

3.2. I K R A - C P P: A C++/CUDA Library for SMMO Applications 37

3.2 I K R A - C P P: A C++/CUDA Library for Single-Method
Multiple-Objects Applications

Based on our experiments, we found that I K R A - R U B Y is suitable for mathematical
and purely functional applications, but less suitable for applications that utilize
object-oriented programming inside of parallel operations. Such applications do not
take advantage of the full range of I K R A - R U B Y’s operations. Most of them use
only for-each (Array::peach) and modify object fields as a side effect, as opposed to
expressing state transitions in a functional way through a series of map operations.

In fact, in object-oriented programming languages, many programmers express
computation as objects imperatively changing their internal state upon receipt of a
message (method call). This is in contrast to functional programming, which favors
immutability of state. If the state of an object is modifed in a purely functional
system, the result is a brand new object [104]. Such a functional programming style
certainly has its benefits [62] and can make programs easier to reason about [50].
However, such functional objects [200]/value objects [161] lack object identity, which
many programmers see as a fundamental concept in object-oriented programming.

3.2.1 Single-Method Multiple-Objects

We identified a broad object-oriented programming model that can be implemented
efficiently on SIMD architectures such as GPUs and has many real-world applications
in the area of high-performance computing. We call this model Single-Method Multiple-
Objects (SMMO). We can think of SMMO as OOP-speech for SIMD (Single-Instruction
Multiple-Data). The most fundamental operation of SMMO is parallel do-all (for-each):
Running one method in parallel on all existing objects of a type (object set). Parallel do-
all operations typically perform some kind of computation by imperatively modifying
the state of objects.

SMMO fits well with the data-parallel SIMD execution model of GPUs and can be
implemented very efficiently. Since we only process objects (jobs) of the same type in
a parallel do-all operation, we expect those computations to be mostly uniform with
little warp divergence.

Definition and Runtime Semantics The SMMO programming model provides one
main abstraction/operation for expressing parallelism: Parallel do-all. This operation
runs a given method T::func for all objects of a given type S (and subtypes) that
exist at the beginning of the parallel do-all operation. T must be a supertype of S
or be equal to S, i.e., S <: T. If T::func is virtual, then the operation runs the most
specific (overridden) method for each object, similar to a virtual method call.

A parallel do-all operation typically runs in multiple threads. The number of
threads and the assignment of objects to threads is implementation-specific, but on
GPUs, certain assignments may result in better performance than others (Section 5.2.7).
Since objects are typically7 processed in parallel, there is no defined order in which
objects are processed. A parallel do-all operation returns when all threads finished
executing, i.e., when all objects were processed.

New objects of any type may be created within a parallel do-all operation. How-
ever, these objects are not being processed by the same parallel do-all operation.
Furthermore, existing objects may be deleted within a parallel do-all operation with

7A parallel do-all implementation that runs sequentially would also satisfy our definition of SMMO.

38 Chapter 3. Expressing Parallelism in Object-oriented Programs

void A::func() {
 if (rand() < 0.5) { new B(); delete this; }
 else { new A(); }
}

A C

B C

B

A

A

A

A

A

A

t0

t1

t2t3

t4

t6

t5C

C

C

A C

B C

B B*

AA

A

t2t3

t4

t5C

A*

A*

A*

C

B* C

(a) parallel_do<A, &A::func>()

B*

A*

(b) Object set after parallel_do

F I G U R E 3 . 6 : Example: Object set before (during) and after a parallel do-all operation

two limitations. Let S be the type of objects that are processed in a parallel do-all
operation and T::func be the method that is executed for all objects of type S.

• No object may be deleted more than once. This is forbidden even in ordinary
object-oriented programming.

• An object obj of type S may be deleted only at the end of T::func (last state-
ment) and only by the method execution that is bound to obj. In other words, a
method T::func can delete the object that it is bound to (delete this) but no
other objects of type S. This is to avoid that an object is deleted while it is being
processed by another thread.

Figure 3.6 illustrates a parallel do-all operation of a method A::func with an ex-
ample. In this example, one thread is spawned for each object of type A (Subfigure A).
The method A::func instantiates new objects of various types (annotated with a star),
including objects of type A. However, these new objects are not processed by the
same parallel do-all operation.

Example Applications SMMO is applicable to a broad class of problems8 with
many real-world applications, such as simulations for population dynamics, (e.g.,
Sugarscape [59]), evacuations [122], wildfire spreading [172], finite element methods
or particle systems, to name just a few. SMMO can also express breadth-first search
graph traversals and dynamic tree updates/constructions, e.g., in Barnes-Hut [28].
We show the design and implementation of a few SMMO applications in Chapter 7,
highlighting their SMMO structure and their parallel do-all operations.

3.2.2 Programming Interface and Notation

We developed I K R A - C P P , a C++/CUDA framework that implements the SMMO
programming model. I K R A - C P P facilitates the development of SMMO applications
by providing abstractions for parallel do-all operations. In the course of this thesis,
we will extend I K R A - C P P with a data layout DSL (Section 4.2), a dynamic memory
allocator (Chapter 5) and a memory defragmentation system (Chapter 6). We plan to
provide a Ruby frontend of I K R A - C P P in the future, so that programmers can write
SMMO applications in a high-level language.

8We implemented a few SMMO applications from different domains: https://github.com/
prg-titech/dynasoar/wiki/Benchmark-Applications

https://github.com/prg-titech/dynasoar/wiki/Benchmark-Applications
https://github.com/prg-titech/dynasoar/wiki/Benchmark-Applications

3.2. I K R A - C P P: A C++/CUDA Library for SMMO Applications 39

Class Definition I K R A - C P P applications must follow a certain notation. List-
ing 3.5 shows I K R A - C P P’s notation with an n-body simulation (details in Section 7.1).
User-defined classes/structs must inherit from a special template class IkraBase9.
This template has two arguments: The class/struct itself (curiously recurring template
pattern [33]) and the number of objects n of the class/struct that can exist at runtime.
The class/struct must be initialized with a helper macro IKRA_INITIALIZE_CLASS.
Finally, the programer must decide whether objects should reside on the host (CPU)
or on the device (GPU): IKRA_HOST_STORAGE or IKRA_DEVICE_STORAGE. These macros
statically allocate a storage array of size n, either on the host or on the device.

Data Layout and Object Creation All objects of a type are stored in their respective
statically-allocated storage array. Such a layout is called an Array of Structures (AOS;
Section 2.3). I K R A - C P P classes are not designed for heap allocation. This is in part
because the default CUDA dynamic memory allocator is so slow that runtime heap
allocation could severely reduce the performance of a GPU program, unless a custom
memory allocator is used.

There are two ways of creating new objects in I K R A - C P P (Listing 3.6): With the
C++ new keyword or with a parallel new operation (next paragraph). In either case,
new objects are stored inside the AOS storage buffer and not on the heap. Existing
objects cannot be deleted, so we can create at most 50 objects in the example code
before running out of memory. We will extend I K R A - C P P with an efficient and fully
fledged dynamic memory allocator in Chapter 5.

Expressing Parallelism I K R A - C P P provides a simple API for expressing paral-
lelism. This API allows programmers to run a member function for all objects of a
type, which is the foundation of SMMO. Our API abstracts from CUDA implementa-
tion details, resulting in more compact and readable code.

Programmers do not have to define kernels or write kernel invocation state-
ments. A boolean flag CUDA controls whether an operation is executed on the device
(GPU) or on the host (CPU). This flag is optional and omitted in all following exam-
ples. By default, parallel operations run where the data is located, as indicated by
IKRA_DEVICE_STORAGE or IKRA_HOST_STORAGE.

• parallel_do<CUDA, S, &T::func>(args...): Runs a member function T::func
for all objects of type S that exist at invocation time, where S <: T. If CUDA is
true, this operation spawns a GPU kernel and runs the the member function
inside the kernel in parallel. Otherwise, the code executes on the host10.

• parallel_do_and_reduce<CUDA, S, &T::func, &T::reducer>(args...):
Same as parallel_do, but the return values of T::func are reduced into a single
value by applying a binary, static function T::reducer over and over. Parallel
reductions can be implemented efficiently in CUDA with shared memory [79].
This operation is useful for termination detection of iterative algorithms where
the termination criteria depends on a property of multiple objects.

• parallel_new<CUDA, T>(n, args...): Instantiates n objects of type T. This
operation calls the constructor of T in parallel with an object index (between
[0; n)), followed by args.... T must have a suitable constructor.

9User-defined classes/structs cannot inherit from other user-defined classes/structs. We will remove
this limitation later in Chapter 5.

10Currently sequentially, but we could use OS threads in the future.

40 Chapter 3. Expressing Parallelism in Object-oriented Programs

L I S T I N G 3 . 5 : API example of I K R A - C P P

class Body : public IkraBase<Body, 50> {
public: IKRA_INITIALIZE_CLASS
float pos_x = 0.0f;
float pos_y = 0.0f;
float vel_x = 0.0f;
float vel_y = 0.0f;
float force_x = 0.0f;
float force_y = 0.0f;
float mass = 0.0f;

__device__ __host__ Body(float m, float x, float y)
: mass(m), pos_x(x), pos_y(y) {}

__device__ __host__ Body(int index) { /* ... */ } // parallel_new constructor

__device__ void apply_force(Body* other) {
if (other != this) {
// To avoid race conditions: Update other instead of this.
float dx = pos_x - other->pos_x;
float dy = pos_y - other->pos_y;
float dist = sqrt(dx*dx + dy*dy);
float F = kGravityConstant * mass * other->mass / (dist * dist);
other->force_x += F*dx / dist;
other->force_y += F*dy / dist;

}
}

__device__ void compute_force() {
force_x = force_y = 0.0f;
device_do<Body>(&Body::apply_force, this);

}

__device__ void update() {
pos_x = pos_x + vel_x * kDt;
pos_y = pos_y + vel_y * kDt;

}
};

// Preallocate memory for 50 Body objects on the GPU.
IKRA_DEVICE_STORAGE (Body);

int main() {
// Create a few random Body objects on the host. Alternative: parallel_new.
for (int i = 0; i < kNumBodies; ++i) {
new Body(/*m=*/ rand_float(100.0f, 1000.0f),

/*x=*/ rand_float(-1.0f, 1.0f), /*y=*/ rand_float(-1.0f, 1.0f));
}

for (int i = 0; i < kNumIterations; ++i) {
parallel_do<Body, &Body::update>();
parallel_do<Body, &Body::move>();

}
}

L I S T I N G 3 . 6 : Object creation in I K R A - C P P

parallel_new<Body>(49); // Create 49 objects from host code
Body* b = new Body(100.0f, 0.0f, 0.0f); // Create a new object from device/host code
delete b; // Not supported yet. Later in this thesis...
Body* b2 = new Body(50.0f, 0.0f, 0.0f); // Out of memory

3.2. I K R A - C P P: A C++/CUDA Library for SMMO Applications 41

• device_do<S, &T::func>(args...): Runs a member function T::func for all
objects of type S in the current CPU/GPU thread, where S <: T. This is a
sequential for-each loop. It is typically used inside of a parallel do-all for pro-
cessing all pairs of objects (e.g., in n-body simulations). Whether objects created
within the enclosing parallel do-all operation are enumerated is unspecified.

Note that a parallel operation does not necessarily have to run where the data
is located, as indicated by IKRA_*_STORAGE, as long as the function/constructor has
the correct __device__ and/or __host__ qualifiers. I K R A - C P P will take care of the
necessary data transfers. The following four configurations are supported.

• Code on GPU, Data on GPU: If the program is suitable for GPU execution,
then this configuration achieves the best performance.

• Code on CPU, Data on CPU: This configuration is useful if no GPU is available
and for debugging purposes.

• Code on CPU, Data on GPU: During our experiments, we found that it was
often very convenient to run setup code (e.g., loading and parsing data from an
external source and creating the necessary objects) on the host.

• Code on GPU, Data on CPU: This configuration may be useful for highly
compute-bound applications that access almost no memory.

To reduce the amount of data transfers and to achieve good runtime performance,
performance-critical code should in general run where the data is located.

3.2.3 Implementation Details

I K R A - C P P is implemented entirely in C++. It does not need a separate compiler
or preprocessor/code generator. I K R A - C P P consists mainly of two preprocessor
macros (IKRA_INITIALIZE_CLASS and IKRA_*_STORAGE) and API functions for run-
ning a constructor or running a member functions on all objects of a type.

Storage and Allocation The purpose of the two preprocessor macros is to declare
an array that contains all objects of the class. In particular, IKRA_DEVICE_STORAGE
in Listing 3.5 generates a variable that contain the array of structures and an object
counter variable.

__device__ Body objects_Body[50];
__device__ int counter_Body = 0;

The purpose of IKRA_INITIALIZE_CLASS is mainly to overload the C++ new opera-
tor, such that newly instantiated objects are always stored in the previously generated
array. Note that the counter variable must be incremented with an atomic operation
because multiple threads may be simultaneously instantiating objects.

__device__ void* Body::operator new() {
assert(counter_Body < 50);
return &objects_Body[atomicAdd(&counter_Body)];

}

In C++, object instantiation with the new keyword involves three steps.

42 Chapter 3. Expressing Parallelism in Object-oriented Programs

1. Allocate heap memory for the new object. This request is delegated to the
system-wide heap allocator (malloc) or to an overloaded operator new.

2. Zero-initialize the allocated memory. CUDA seems to omit this step.

3. Run the constructor. This includes field initializers.

Note that C++ operators can be overloaded for specific types. For example, the
above source code listing overloads the new operator only for class Body, so other
classes/structs are still heap-allocated with the system-wide memory allocator.

API Functions In the case of GPU execution, parallel_do and parallel_new vari-
ants launch a CUDA kernel with a configurable number of threads. By default,
I K R A - C P P launches 256 blocks with 256 threads per block. Inside the template-
generated CUDA kernel, I K R A - C P P processes objects with a grid-stride loop.

parallel_do and parallel_new are always called from host code. The functions
T::func and T::reducer are device functions and passed to parallel_do as function
pointers. Taking the address of a device function in host code is not allowed. This is
because the host code and device code are essentially two different programs. They
are compiled separately. However, the address of a device function can be taken in
host code if it is used to instantiate a template that resides in device code. When
calling such a template function pointer, the (CUDA) compiler can fully inline the
function [183] (instead of generating a jump), because the template instantiation is
specific to that function.

Memory Transfers If objects are accessed on a device that differs from the allocation
device (e.g., accessed on CPU, allocated on GPU), I K R A - C P P automatically performs
the required memory transfers. Programmers have to set a flag to enable support for
this. Instead of statically allocating a storage array, I K R A - C P P then allocates the
array at runtime in CUDA unified memory [164]. This CUDA feature automatically
performs the required memory transfers and was introduced with CUDA 6.

3.2.4 Conclusion

In this section, we presented a second, more restricted way of expressing GPU
parallelism: By running a method in parallel on all objects of a type. This simple
programming model (Single-Method Multiple-Objects) is expressive enough for many
important applications in high-performance computing (Chapter 7) and the full range
of I K R A - R U B Y operations is often not necessary.

We designed and implemented a small C++/CUDA framework I K R A - C P P for
SMMO applications. At this point, I K R A - C P P is not much more than a wrapper
around kernel invocation statements. The purpose of this section is to make the
reader familiar with the SMMO programming model. We will extend I K R A - C P P

with a data layout DSL (Section 4.2) and a full dynamic memory allocator (Chapter 5)
later in this thesis.

3.3 Related Work

This section gives an overview of how GPU parallelism is expressed in other systems.
Most systems fall into one of two categories: Parallel array interfaces or for loop
parallelization.

3.3. Related Work 43

3.3.1 Parallel Array/Tensor Interface

There are many libraries for various programming languages that provide parallel
array functions that execute on the GPU, similar to I K R A - R U B Y. This section is not
an exhaustive description of all of them, but gives an overview of a few major ones.

Ishizaki et al. developed a JIT compiler than translates lambda expressions of
Java 8 bytecode to NVVM IR, an LLVM IR-based intermediate representation that can
be compiled to NVIDIA PTX code [91]. Their compiler targets array-based computa-
tions that are expressed with the Java Streams API. Object-oriented programming is
supported within lambda expressions and virtual method calls are devirtualized: Ei-
ther directly, if the receiver type is found to be monomorphic at JIT compilation time,
or based on runtime profiling with a guard, otherwise. If the guard fails, the lambda
expression is executed on the host. Their compiler follows the same assumption as
I K R A - R U B Y, namely that GPU code is mostly monomorpic, so guards are expected
to fail rarely.

Fumero et. al. also developed an array-based GPU library for Java 8 [68]. Instead
of targeting the Java Streams API, their JIT compiler comes with a custom Java
array interface that provides functions that are similar to I K R A - R U B Y . Their JIT
compiler does not support object-oriented programming in GPU code, but parallel
array operations can be chained, similar to I K R A - R U B Y.

Fumero et al. designed also a GPU extension for the R programming language,
a dynamically-typed language [67]. Their implementation is built on top of the
Truffle AST interpreter framework [210] and the Graal JIT compiler. They use partial
evaluation to generate optimized OpenCL code for hot code sections. In contrast
to I K R A - R U B Y , the resulting OpenCL code can handle only monomorphic types,
whereas I K R A - R U B Y generates a single CUDA program with union types that can
handle all types which could theoretically show up during runtime. Consequently,
their generated OpenCL code is more efficient, but requires recompilation if the
runtime types are changing.

Lime is an object-oriented programming language for task-based and array-based
parallelism [52]. The Lime compiler decides automatically which code should be
executed on the device and which code should be executed on the host. In the
former case, the compiler generates OpenCL code and in the latter case, the compiler
generates a mixture of Java bytecodes.

Delite is a Scala framework for building and executing implicitly parallel DSLs [30].
Parallel operations form a computation graph of Delite ops, which are similar to array
commands in I K R A - R U B Y. Delite schedules the execution of the computation graph.
Independent parts of the computation graph can be executed in parallel. Delite also
provides abstractions for defining data-parallel computations.

Firepile is a Scala library for array-based GPU programming [147]. Firepile pro-
vides a parallel array class whose functional operations are executed in parallel on the
GPU. Similar to I K R A - R U B Y, the Firepile compiler is usually invoked right before a
kernel run (just-in-time). Object-oriented programming is supported in parallel GPU
code. Similar to I K R A - R U B Y , Firepile uses union types to represent polymorphic
types and devirtualizes virtual method calls with switch-case statements.

TensorFlow is a machine learning framework developed by Google [2]. Pro-
grammers build a computation graph of linear algebra nodes with a Python or C++
frontend. This graph is then scheduled to execute on one or multiple devices such
as CPUs, GPUs or TPUs (tensor processing units). In contrast to I K R A - C P P , Ten-
sorFlow operations cannot be customized with code. There are a variety of machine
learning frameworks that follow a similar design.

44 Chapter 3. Expressing Parallelism in Object-oriented Programs

3.3.2 For-Loop Parallelization

There are a variety of systems that accelerate programs with GPUs by finding and
offloading loops to the GPU. MegaGuards is a Python framework that transparently
compiles and offloads compute-intensive loop to the GPU [158]. It detects paralleliz-
able loops with polyhedral optimization techniques. MegaGuards avoids runtime
type checks (guards) inside GPU code with a type stability analysis. If positive, all
type checks within GPU code are replaced by a single, larger guard before the loop.

There are also parallelization frameworks that let programmers manually annotate
for loops for acceleration on GPUs. For example, OpenACC allows programmers to
annotate C/C++ loops with pragmas that trigger GPU code generation [181].

JaMP is a Java extension with OpenMP-style directives for parallel for loops [205].
It supports object-oriented programming within parallel for loops and generates a C
struct type for every Java class. Instead of referring to referenced objects with pointers,
objects are fully inlined into the C struct. JaMP distinguishes between shared objects,
which can be accessed by any thread and are replicated on all devices, and managed
arrays, which are partitioned among all devices.

Concord is a heterogeneous C++ programming framework for running irregular
application code on integrated GPUs [16]. It provides two abstractions for expressing
parallelism: A parallel for loop and a parallel reduction loop. Concord is implemented
with Clang and LLVM and generates OpenCL code for parallel loop bodies. Most
C++ features, including virtual function calls and multiple inheritance, are supported
in parallel GPU code. Virtual function calls are implemented with vtable pointers,
as usual in C++. Concord also provides a software-based shared virtual memory,
so that pointers can be shared between GPU code and CPU code. Concord’s main
selling point is improved energy efficiency of application code over a CPU-only
implementation.

45

Chapter 4

Optimizing Memory Access

Memory access is the one of the biggest bottlenecks in many GPU applications. In
this chapter, we describe two memory access optimizations for I K R A - R U B Y and
I K R A - C P P : Kernel fusion and a data layout DSL for the Structure of Arrays (SOA)
layout. These optimizations can improve memory bandwidth utilization and cache
performance, and thus increase the overall application performance.

Contents
4.1 Kernel Fusion in I K R A - R U B Y . 46

4.1.1 Kernel Fusion . 47
4.1.2 Host Sections . 49
4.1.3 Symbolic Execution in Host Sections 50
4.1.4 Type Inference . 51
4.1.5 Code Generation . 56
4.1.6 Benchmarks . 56
4.1.7 Future Work . 59
4.1.8 Related Work . 60

4.2 A Data Layout DSL for I K R A - C P P 60
4.2.1 Language Overview . 61
4.2.2 Implementation Details . 62
4.2.3 Addressing Modes . 67
4.2.4 Code Generation Experiment 71
4.2.5 Preliminary Performance Evaluation 73
4.2.6 Related Work . 74
4.2.7 Summary . 75

4.3 Inner Arrays in a Structure of Arrays 76
4.3.1 Data Layout Strategies for Inner Arrays 76
4.3.2 Performance Evaluation . 81
4.3.3 Conclusion and Related Work 84

4.4 Summary . 84

Outline This chapter is organized as follows. Section 4.1 describes how we extended
I K R A - R U B Y with kernel fusion. Section 4.2 describes the design and implementation
of an embedded SOA data layout DSL for I K R A - C P P. This DSL makes SOA easier to
use for CUDA/C++ programmers. Section 4.3 presents an extension of SOA to inner
array types and its implementation in I K R A - C P P. Finally, Section 4.4 concludes this
chapter.

46 Chapter 4. Optimizing Memory Access

Publications This chapter is in part based on the following papers.

• Matthias Springer, Peter Wauligmann, Hidehiko Masuhara. “Modular Array-
Based GPU Computing in a Dynamically-Typed Language.” In: Proceed-
ings of the 4th ACM SIGPLAN International Workshop on Libraries, Languages,
and Compilers for Array Programming. ARRAY 2017. ACM, 2017, pp. 48–45.
doi:10.1145/3091966.3091974

• Matthias Springer, Hidehiko Masuhara. “Ikra-Cpp: A C++/CUDA DSL for
Object-Oriented Programming with Structure-of-Arrays Layout.” In: Pro-
ceedings of the 4th Workshop on Programming Models for SIMD/Vector Processing.
WPMVP 2018. ACM, 2018, pp. 1–9. doi:10.1145/3178433.3178439

• Matthias Springer, Yaozhu Sun, Hidehiko Masuhara. “Inner Array Inlining
for Structure of Arrays Layout.” In: Proceedings of the 5th ACM SIGPLAN Inter-
national Workshop on Libraries, Languages, and Compilers for Array Programming.
ARRAY 2018. ACM, 2018, pp. 50–58. doi:10.1145/3219753.3219760

4.1 Kernel Fusion in I K R A - R U B Y

Unoptimized I K R A - R U B Y programs suffer from two types of slowdowns. I K R A -
R U B Y optimizes GPU programs using two techniques that are well-known in
statically-typed languages but not in dynamically-typed languages such as Ruby.

Global Memory Access I K R A - R U B Y encourages a programming style where a
GPU application is composed of many small parallel operations. The image
manipulation library of Section 3.1.4 illustrates this programming style. A naive
compilation strategy compiles each parallel operation into a separate CUDA
kernel. This is problematic because the intermediate results of each GPU kernel
must be loaded from/stored in global memory. To eliminate this slowdown,
I K R A - R U B Y fuses multiple parallel operations into one large CUDA kernels,
such that intermediate results can remain in GPU registers. Kernel fusion is a
common and well-studied GPU optimization [194, 64, 165].

Ruby Interpreter Loops Many GPU applications are iterative applications of parallel
operations. For example, the Himeno benchmark [153] is an iterative application
of a stencil operation. If the loops of iterative applications are executed in the
Ruby interpreter, the overall program performance can suffer for two reasons.
First, the Ruby interpreter is much slower than C++ code. Second, every
time a parallel operation executed in Ruby, it is symbolically executed, which
incurs some overheads even if the same parallel operation was seen before. To
eliminate such slowdowns, we introduce the concept of a host section. A host
section is a block of Ruby code that contains a more complex program (typically
with a loop) with multiple parallel operations. In such a case, the entire block
is translated to C++ code, avoiding switching from the Ruby interpreter to
external C++ programs multiple times.

Microbenchmarks show that both techniques together achieve performance that
is comparable to hand-written CUDA code. As the main contribution of this section,
we show how kernel fusion can be implemented as part of the type inference process
of host section code.

http://dx.doi.org/10.1145/3091966.3091974
http://dx.doi.org/10.1145/3178433.3178439
http://dx.doi.org/10.1145/3219753.3219760

4.1. Kernel Fusion in I K R A - R U B Y 47

4.1.1 Kernel Fusion

All array commands except for index and array identity have at least one input array
command (input in Figure 3.2). E.g., the inputs of a combine operation are the array
commands that are being mapped over. During code generation, I K R A - R U B Y

traverses the tree of dependent (input) commands (computation graph). Depending
on the access pattern of the dependent commands, I K R A - R U B Y may fuse multiple
array commands into a single CUDA kernel. This can increase the performance of
the generated CUDA code, because intermediate results can remain in GPU registers
and do not have to be written back to global memory.

Consider the I K R A - C P P code in Listing 4.1 as an example. This listing contains
two chained parallel map operations. Without kernel fusion (Listing 4.2), the first
kernel stores the temporary result of r1 in global memory and the second kernel
loads the temporary result of r1 from global memory. These two loads/stores can be
eliminated with kernel fusion (Listing 4.3).

TA B L E 4 . 1 : Input access patterns of array commands

Command Input Access Pattern
combine same location (for all inputs)
stencil multiple (fixed pattern)
reduce multiple
zip same location (for all inputs)
(with_index) no input, but always accessed as “same location”

Table 4.1 lists access patterns for dependent computations for all array commands.
“Same location” means that for the computation of the element at position i only the
element at the same position in the dependent command(s) is required. For example,
to calculate element 12 in map, only element 12 from the input is required. “Multi-
ple” means that an array command needs multiple elements from the dependent
command(s). For example, a stencil computation requires an entire neighborhood of
values from the input.

I K R A - R U B Y can currently merge dependent computations only if the access
pattern is “same location”. In that case, one thread can first compute the dependent
operation and then directly proceed with the following computation without any
synchronization (Listing 4.3).

In this section, we focus on the process of identifying which parallel operations
should be merged into a CUDA kernel. We omit implementation details of the
compilation process, e.g., how exactly the code of one parallel operation is inlined into
another parallel operation and how C++/CUDA code is generated from an AST.

Example Figure 4.1 shows an example. White boxes indicate parallel operations
and gray boxes indicate fused CUDA kernels. The leftmost gray box corresponds to
Lines 2–3. Those operations are fused together because the input access pattern for
combine/map is “same location”1. The first input of the stencil computation cannot be
fused because its access pattern is “multiple”. The index input can be fused because
input generated by with_index is always accessed as “same location”.

1id is added implicitly when programmers use Ruby arrays.

48 Chapter 4. Optimizing Memory Access

L I S T I N G 4 . 1 : Example program for kernel fusion
1 r0 = (0...1000).to_a
2 r1 = r0.pmap do |x| 2 * x end
3 r2 = r1.pmap do |x| x + 1 end
4 r2.to_a

L I S T I N G 4 . 2 : Generated CUDA code without kernel fusion
1 __global__ void kernel_1(float* input, float* output) {
2 for (unsigned int i = threadIdx.x + blockIdx.x * blockDim.x;
3 i < 1000; i += blockDim.x * gridDim.x) { output[i] = 2 * input[i]; }
4 }
5

6 __global__ void kernel_2(float* input, float* output) {
7 for (unsigned int i = threadIdx.x + blockIdx.x * blockDim.x;
8 i < 1000; i += blockDim.x * gridDim.x) { output[i] = input[i] + 1; }
9 }

10

11 void run_gpu_program(float* input, float* output) {
12 float *d_data1, *d_data2;
13 cudaMalloc(&d_data1, sizeof(float) * 1000);
14 cudaMalloc(&d_data2, sizeof(float) * 1000);
15 cudaMemcpy(d_data1, input, sizeof(float) * 1000, cudaMemcpyHostToDevice);
16

17 // Read input from d_data1, store temp. result in d_data2.
18 kernel_1<<<256, 256>>>(d_data1, d_data2);
19 cudaDeviceSynchronize();
20 // Read temp. result from d_data2, store final result in d_data1.
21 kernel_2<<<256, 256>>>(d_data2, d_data1);
22 cudaDeviceSynchronize();
23

24 cudaMemcpy(output, d_data1, sizeof(float) * 1000, cudaMemcpyHostToDevice);
25 }

L I S T I N G 4 . 3 : Generated CUDA code with kernel fusion
1 __global__ void kernel_fused(float* input, float* output) {
2 for (unsigned int i = threadIdx.x + blockIdx.x * blockDim.x;
3 i < 1000; i += blockDim.x * gridDim.x) {
4 float tmp_result_1 = 2 * input[i];
5 output[i] = tmp_result_1 + 1;
6 }
7 }
8

9 void run_gpu_program(float* input, float* output) {
10 float *d_data1, *d_data2;
11 cudaMalloc(&d_data1, sizeof(float) * 1000);
12 cudaMalloc(&d_data2, sizeof(float) * 1000);
13 cudaMemcpy(d_data1, input, sizeof(float) * 1000, cudaMemcpyHostToDevice);
14

15 // Read input from d_data1, store final result in d_data2.
16 kernel_fused<<<256, 256>>>(d_data1, d_data2);
17 cudaDeviceSynchronize();
18

19 cudaMemcpy(output, d_data2, sizeof(float) * 1000, cudaMemcpyHostToDevice);
20 }

4.1. Kernel Fusion in I K R A - R U B Y 49

1 A1 = [1, 2, 3]; A2 = [10, 20, 30] # Ruby arrays
2 a = A1.pmap.with_index do |e, idx| ... end # combine
3 b = a.pcombine(A2) do |e1, e2| ... end # combine
4 c = b.pstencil([-1, 0, 1], 0).with_index do |values, idx| ... end # stencil
5 d = c.preduce do |r1, r2| ... end # reduce

index

id [A1]

combine
[a]

id [A2]

combine
[b]

stencil
[c]

index

reduce
[d]

(root of
tree)

F I G U R E 4 . 1 : Example: Kernel fusion result. Gray boxes are kernels.

4.1.2 Host Sections

Many scientific computations (e.g., numerical partial differential equations) exhibit
an iterative structure where an array or matrix is updated for a fixed number of times
or until convergence. The example code in Listing 4.4 does not compute anything
meaningful but illustrates how to write such computations in I K R A - R U B Y. The loop
is enclosed in a host section, a code block that is compiled to C++ and executed on the
host, as opposed to parallel operations which are executed on the device. The value of
the last statement of a host section is the return value of the host section. Inside host
sections, only simple Ruby code may be written: Everything that is allowed inside a
parallel operation plus parallel operations themselves. More advanced Ruby features
(such as metaprogramming) are forbidden.

L I S T I N G 4 . 4 : Example: Iterative computation in host section
1 input = [10, 20, 30, 40, 50, 60]
2 result = Ikra.host_section do
3 arr = input.to_command(dimensions: [2, 3])
4 for i in 0...10
5 if arr.preduce(:+)[0] % 2 == 0
6 arr = arr.pmap do |i| i + 1; end # mapA
7 else
8 arr = arr.pmap do |i| i + 2; end # mapB
9 end

10 arr = arr.pmap do |i| i + 3; end # mapC
11 end
12 arr
13 end

One C++/CUDA program is generated for the code in Listing 4.4. That program
contains a C++ function for the host section and multiple CUDA kernels. As part
of code generation, control flow statements inside host sections are executed sym-
bolically as opposed to control flow statements outside of host sections, which are
executed by the Ruby interpreter.

Host sections are translated with a conservative kind of ahead-of-time compilation
and kernel fusion technique: In the above example, it is not clear until runtime if the
parallel operation in Line 10 will be executed together with the one in Line 6 (mapA +

50 Chapter 4. Optimizing Memory Access

mapC) or the one in Line 8 (mapB + mapC), or both in different iterations. Therefore,
I K R A - R U B Y generates both fused kernel variants and launches the appropriate one
at runtime.

4.1.3 Symbolic Execution in Host Sections

Host sections are pieces of Ruby code that are entirely translated to C++ code. They
may contain one or more parallel operations but no advanced language features like
metaprogramming. The compilation process of host sections is identical to the one
of parallel operations, but there are additional steps to handle parallel operations
within them. Since no code generation can be done once a host section (C++ code) is
executing, fused kernels must be generated up front.

I K R A - R U B Y statically analyzes all code paths through a host section with parallel
operations and generates a number of fused kernels, even some that might never be
used at runtime. At runtime, I K R A - R U B Y keeps track of which parallel operations
were executed symbolically and eventually launches a fused kernel, which may
contain multiple parallel operations, when the result is accessed.

Kernel Fusion via Type Inference Within host sections, there are additional type
inference rules to handle parallel operations. I K R A - R U B Y performs kernel fusion
through type inference: The type of a parallel operation is the array command object
that it evaluates (symbolically) to in the Ruby interpreter.

L I S T I N G 4 . 5 : Example: I K R A - R U B Y type inference
1 a = 10 # type(a) = Int
2

3 b = Array.pnew(a) do |i| 2.5 + i; end
4 # Eval Ruby: Array.pnew(CodeRef.new(:a)) do ... end
5 # => ArrayCombineCommand instance
6 # type(b) = ArrayCombineCommand3[Float, (ArrayIndexCommand[Float, ∅])]
7

8 c = b.pmap do |i| 0.5 + i; end
9 # Eval Ruby: type(b).pmap do ... end

10 # => (another) ArrayCombineCommand instance
11 # type(c) = ArrayCombineCommand8[Float, (
12 # ArrayCombineCommand3[Float, (ArrayIndexCommand[Float, ∅])])]
13

14 d = Array.pnew(a) do |i| 2.5 + i; end
15 # Eval Ruby: Array.pnew(CodeRef.new(:a)) do ... end
16 # => (yet another) ArrayCombineCommand instance
17 # type(d) = ArrayCombineCommand14[Float, (ArrayIndexCommand[Float, ∅])]

Listing 4.5 illustrates the type inference rules with an example. The type of
variable a is Int. The type of variable b is an ArrayCombineCommand object (Figure 3.2).
This is because a parallel new operation is implemented as a map/combine operation
wrapped around an index operation (see Section 3.1.1). The type of variable c is
another ArrayCombineCommand object.

All array commands with a code block have a subscript that identifies the block.
In the above example, code blocks are referred to with line numbers. Therefore,
even though the types of b and d look similar, they are actually different types. For
presentation reasons, we only account for array command base types (Float in all
types in the above example), code blocks and computation structure (i.e., the nesting

4.1. Kernel Fusion in I K R A - R U B Y 51

of array commands) in this section and omit other properties of array command types
such as array dimensions or out-of-bounds values of stencil operations.

Notice that ArrayCommand objects are not only used for code generation but also
serve as type representations/objects in our type inference engine. After type infer-
ence, I K R A - R U B Y generates a CUDA kernel for each array command type that is
executed. An expression of array command type is executed when its result is accessed,
via either Ruby method to_a or array subscript notation ([]).

Compilation Overview A host section is translated to C++/CUDA as shown below.
This process is similar to symbolic execution of parallel operations in the Ruby
interpreter (see Section 3.1). However, since host sections are entirely translated to
C++ code, parallel operations are now symbolically executed in C++ instead of in the
Ruby interpreter.

1. Retrieve the Ruby source code of the host section.

2. Generate an AST (abstract syntax tree) of the source code.

3. Convert the AST to SSA (static single assignment) form.

4. Insert a to_a method call on last expression.

5. Eliminate expressions with circular types by inserting to_a method calls.

6. Perform type inference. (This step also performs kernel fusion.)

7. Generate C++ source code for the host section and CUDA source code for all
array commands on which to_a or [] is called.

The SSA form simplifies type inference: If a variable is written a second time
with a value of different type, a new C++ variable is allocated and a union type can
sometimes be avoided. The return value (last expression) of a host section must be an
array command or an array. In the former case, to ensure that an array command is
executed, I K R A - R U B Y wraps the last expression in a to_a method call. That method
does not have any effect for arrays but triggers array command execution. The next
two steps, eliminating circular types and type inference, are described in detail in the
following paragraphs.

4.1.4 Type Inference

Ruby is a dynamically typed language. Since C++ and CUDA are statically typed
languages, we represent polymorphic expressions with union types (also known as
sum types [154]).

For simplicity, we assume that all expressions are monomorphic in this section.
Therefore, our types and typing rules do not account for union types. Furthermore,
we only describe the typing rules that involve array commands. In addition, we
assume that arrays are explicitly wrapped (boxed) in array commands before a parallel
operation is invoked on them.

Types Figure 4.2 gives a simplified overview of the types in our system that we
need for fusion of array commands. An expression can be of primitive type (TPrim),
of array type with a certain primitive base type (TArray) or of array command type

52 Chapter 4. Optimizing Memory Access

(TArrayCommand). There are multiple subtypes of ArrayCommand, depending on the
type of the operation (Figure 3.2).

Array command types have two parameters. The first parameter is the base type
of the array command, similar to the base type of an array. The second parameter
is a list of all dependent (input) array command types (AcInput). Similar to C++
expression templates [188], an array command type in I K R A - R U B Y encodes the
structure of a computation in its type. The code generator can use this information to
apply additional code optimizations, kernel fusion in the case of I K R A - R U B Y.

Typing Rules To perform kernel fusion, our type inference engine captures method
calls whose receiver types are a subclass of ArrayCommand. The type of such a method
call is the result of the evaluation of that method call in the Ruby interpreter, where the
receiver and all arguments are replaced with their respective types (T- PA R O P). The
rule T- PA R O P can be broken down into one rule per operation type: T- PA R M A P,
T- PA R C O M B I N E and rules for other operation types that we omit here.

As an example, consider T- PA R C O M B I N E. This typing rule captures pcombine
method calls on receivers with ArrayCommand subtype. If this method call has n
arguments (excluding the code block), then the code block b must be a function
taking n + 1 arguments: The type of the first argument is the base type of the receiver
array command. The types of the following n arguments are the base types of the
argument array command types. The resulting type is an ArrayCombineCommand
with a list of the receiver type and all argument types as the second type parameter,
encoding the structure of the computation.

Before programmers can run a parallel operation on an array, they must wrap it
in an array command, as described above (T- B O X). Similarly, an array command
can be converted into an array, which triggers execution on the GPU (T- U N B O X).

Breaking Circular Types The type of an array command encodes the structure of
its computation, so an array command type effectively encodes a data flow path
through the program. If there are multiple possible paths (one of which is chosen at
runtime), our type inference system uses a union type that contains all paths. This
is problematic with loops or recursion. Since the number of loop iterations is not
generally known ahead of time, the union type would grow infinitely, because every
additional loop iteration adds another path to the union type.

L I S T I N G 4 . 6 : Circular union type
1 arr = [1, 2, 3].to_command
2

3 for i in 1...100 do
4 arr = arr.pmap do |x|
5 x + 1
6 end
7 end
8

9 result = arr.to_a

Consider Listing 4.6 as an example. After Line 1, the type of variable arr is
ArrayIdentityCommand[Int, ∅]. After the first loop iteration, the type of arr is
ArrayCombineCommand4[Int, ArrayIdentityCommand[Int, ∅]]. Every additional
loop iteration wraps the type in another ArrayCombineCommand4.

4.1. Kernel Fusion in I K R A - R U B Y 53

TPrim ::= Bool | Float | Int

TArray ::= Array[TPrim]

TArrayCommand ::= ArrayCommandloc[TPrim, AcInput]
| ArrayIdentityCommand[TPrim, ∅]

| ArrayIndexCommand[Int, ∅]

| ArrayCombineCommandloc[TPrim, AcInput]
| ArrayStencilCommandloc[TPrim, (TArrayCommand)]
| ArrayReduceCommandloc[TPrim, (TArrayCommand)]

AcInput ::= ∅ | TArrayCommand ◦ AcInput

T ::= TPrim | TArray | TArrayCommand

(types omitted for classes, zip types, nil and arrays with non-primitive base types)

F I G U R E 4 . 2 : List of types

Γ ` ei : Ti Ti <: ArrayCommand∗[∗, ∗]
Γ ` e0.m(e1, ..., en, &b) : eval(T0.m(T1, ..., Tn, &b))

(T- PA R O P)

Γ ` e0 : T0 T0 <: ArrayCommand∗[B0, ∗] Γ ` b : B0 → R
Γ ` e0.pmap(&b) : ArrayCombineCommandloc(b)[R, (T0)]

(T- P M A P)

Γ ` ei : Ti Ti <: ArrayCommand∗[Bi, ∗] Γ ` b : B0 → B1 → . . .→ Bn → R
Γ ` e0.pcombine(e1, ..., en, &b) : ArrayCombineCommandloc(b)[R, (T0, T1, . . . , Tn)]

(T- P C O M B I N E)

(rules omitted for pnew, preduce, pstencil and pzip)

Γ ` e0 : Array[B]
Γ ` e0.to_command() : ArrayIdentityCommand[B, ∅]

(T- B O X)

Γ ` e0 : T0 T0 <: ArrayCommand∗[B, ∗]
Γ ` e0.to_a() : Array[B]

(T- U N B O X)

F I G U R E 4 . 3 : Typing rules

54 Chapter 4. Optimizing Memory Access

Since the number of loop iterations is generally unknown until runtime, the type
of arr after the loop is an infinite union type with one type for each possible number
of loop iterations.

type(arr) = { id,
map4[id],
map4[map4(id]],
. . . ,
map4[map4[. . . map4[id] . . .]] }

We abbreviate ArrayCombineCommand with map and ArrayIdentityCommand with
id in the above formula for presentation reasons. Furthermore, we omit base types.

The infinitely large type of arr is a problem. Line 9 of the source code accesses the
result of arr and will trigger CUDA kernel execution. Since arr is a union type, this
will translate to a switch-case statement with one case per type. Our type inference
engine avoids such circular types by changing the source code of the program. The
type T of an expression is circular if T is included as a dependent array command of
T. Not necessarily as a directly dependent array command, but maybe somewhere
nested deep inside T. For example, given the type T = map4[id], another iteration of
the loop yields the type T′ = map4[map4[id]] = map4[T], so arr has a circular type.

Whenever a circular type is detected, we insert two chained method calls to_a()
and to_command(), which execute the CUDA kernel and reset the type (Listing 4.7).

L I S T I N G 4 . 7 : Eliminated circular union type
1 arr = [1, 2, 3].to_command
2

3 for i in 1...100 do
4 arr = arr.pmap do |x|
5 x + 1
6 end .to_a.to_command
7 end
8

9 result = arr.to_a

The elimination of circular types is baked into our type inference engine and
we do not describe it in more detail in this section. There may be multiple ways of
eliminating a circular type. Where exactly we insert the two chained method calls is
an implementation details and not important. What is important is that the type of
arr after the loop of Listing 4.7 is now no longer circular.

type(arr) = { id, map4[id] }

Type Inference by Example To illustrate type inference in a larger example, con-
sider the host section source code of Listing 4.8, which is identical to Listing 4.4, but
in SSA form and with a to_a method call at the end.

In the following paragraphs, we take a look at the inferred types of all arri
variables. arr1 is an identity command for the Ruby array input and arr2 cannot be
fully inferred yet because arr6 is still unknown.

4.1. Kernel Fusion in I K R A - R U B Y 55

L I S T I N G 4 . 8 : Example: Iterative I K R A - R U B Y computation in host section in SSA form
1 result = Ikra.host_section do
2 arr1 = input.to_command(dimensions: [2, 3])
3 for i in 0...10
4 arr2 = φ(arr1, arr6)
5 if arr2.preduce(:+)[0] % 2 == 0
6 arr3 = arr2.pmap do |i| i+1; end # mapA
7 else
8 arr4 = arr2.pmap do |i| i+2; end # mapB
9 end

10 arr5 = φ(arr3, arr4)
11 arr6 = arr5.pmap do |i| i+3; end # mapC
12 end
13 arr7 = φ(arr1, arr6)
14 arr7.to_a
15 end

type(arr1) = id
type(arr2) = { type(arr1), type(arr6) } = { id, type(arr6) }

Next, we infer the types for the first two map operations. Different subscripts of
map operations indicate that the operations are different array commands.

type(arr3) =mapA[type(arr2)] = { mapA[id], mapA[type(arr6)] }
type(arr4) =mapB[type(arr2)] = { mapB[id], mapB[type(arr6)] }
type(arr5) = { type(arr3), type(arr4) }

= { mapA[id], mapA[type(arr6)], mapB[id], mapB[type(arr6)] }

Next, we infer the type of the last map operation.

type(arr6) =mapC[type(arr5)]

= { mapC[mapA[id]], mapC[mapA[type(arr6)]],
mapC[mapB[id]], mapC[mapB[type(arr6)]] }

As can be seen from the definitions above, the type of arr6 is circular. If we try to
fully expand its definition, it will have an infinite number of elements.

I K R A - R U B Y breaks this circular type by inserting a to_a.to_command method
call, which will launch the kernel, return its result as an array and then box it in
another array command. Consequently, this method call will stop the kernel fusion
process. I K R A - R U B Y currently inserts the method call in Line 11, but it could also
be inserted in Lines 4 or 10.

11 arr6 = arr5.to_a.to_command.pmap do |i| i + 3; end # mapC

We can now complete the type inference process and fill in the arr2 placeholders
in the other definitions.

56 Chapter 4. Optimizing Memory Access

type(arr6) =mapC[id]
type(arr2) = { id, mapC[id] }
type(arr5) = { type(arr3), type(arr4) }

= { mapA[id], mapA[mapC[id]], mapB[id], mapB[mapC[id]] }
type(arr7) = { type(arr1), type(arr6) } = { id, mapC[id] }

For code generation, only arr2, arr5 and arr7 are of interest, because their result
is accessed. I K R A - R U B Y generates kernels and invocations for them: The static type
of a variable (or union type class ID field if polymorphic) determines the kernel to
be launched. In total, I K R A - R U B Y generates the following kernels in this example.
Some of them might never be launched at runtime.

(5.1) mapA[id]

(5.2) mapA[mapC[id]]

(5.3) mapB[id]

(5.4) mapB[mapC[id]]

(7.1) id

(7.2) mapC[id]

(r.1) reduce[id]

(r.2) reduce[mapC[id]]

4.1.5 Code Generation

After type inference, I K R A - R U B Y generates C++ source code for the host section.
Expressions of array command type, have a generated array_command_t type in the
C++ code. This struct contains a pointer to the cached result of the array command.
If an expression’s polymorphic type can be one of multiple array commands, then
I K R A - R U B Y uses a union type in the generated C++ code and the class ID indicates
the exact array command at runtime.

In the above example, all variables except for arr1 are polymorphic and will have
type union_t in the generated C++ code. The class ID field is used to determine which
kernel should be launched. For example, either kernel 7.1 or kernel 7.2 should be
launched in Line 14 depending on whether there was at least one loop iteration. This
information is implicitly encoded in the class ID field and I K R A - R U B Y generates
a switch-case statement, similar to polymorphic method calls. In the generated
code, Lines 2, 4, 6, 8, 10 and 13 do not launch a kernel but merely return a new
array_command_t object, possibly wrapped inside a union type struct containing the
class ID for the command.

Whenever an array command access is detected, I K R A - R U B Y generates a CUDA
kernel for the array command and a kernel invocation snippet which checks if a
cached result is available and otherwise transfers data (if necessary) and launches the
kernel. Since array commands may have dependent commands, generated kernels
may consist of multiple fused parallel operations.

4.1.6 Benchmarks

Figure 4.4 shows the runtime performance of a number of microbenchmarks2 (small
parallel operations, only for loops) of the current I K R A - R U B Y implementation in
various configurations. Benchmarks were run on a computer with an Intel Core
i7-6820HQ CPU (2.70 GHz), 32 GB RAM, an NVIDIA GeForce 940MX GPU, Ubuntu

2Source code: https://github.com/prg-titech/ikra-ruby, branch array17

https://github.com/prg-titech/ikra-ruby

4.1. Kernel Fusion in I K R A - R U B Y 57

Ikra-F

Ikra

CUDA

Ikra-M

02468

1
0

1
2

1
4

1
6

N

	
☆ ..

.

	
☆

10x

N

	
☆

500x / 200x / 1000x

N M ..
.

M

5x

100x

N

M

200x

M
M

M

M

Ikra-F

CUDA-F

Ikra

CUDA

Ikra-M

02468

1
0

1
2

1
4

1
6

Ikra-F

CUDA-F

Ikra

CUDA

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

m
ap

Ikra

CUDA

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8st

en
ci

l

Ikra

CUDA

Ikra-M

02468

1
0

1
2

1
4

1
6

m
ap

Ikra

CUDA

0
.0

2
.5

5
.0

7
.5

1
0

.0

1
2

.5

1
5

.0

1
7

.5st
en

ci
l

Ikra

CUDA

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

H
im

en
o

ke
rn

e
l

re
st

 h
o
st

a
llo

c

tr
a
n
sf

e
r

fr
e
e

in
te

rp
re

te
r

(1
)

(2

)

(3
)

(4

)

(5
)

(6

)

(7
)

st
yl

e

k
er

n
el

 o
p
er

at
io

n

#
lo

o
p
 i
te

ra
ti

o
n
s

#
k
er

n
el

s
in

 l
o
o
p

w
it

h
 f

u
si

o
n

w
it

h
 h

o
st

 s
ec

ti
o
n

#
k
er

n
el

s
#

af
te

r
fu

si
o
n

#
ru

n
ti

m
e

k
er

n
el

#

in
vo

ca
ti

o
n
s

n
o
 l
o
o
p

m
ap

n
/a

✓ ✓

1 1

✓

1 1

✓

11

11

st
en

ci
l

n
/a

✓

11

11

n
/a

n
/a

m
ap

5
0
0 1

✓

✓

501

501

11

st
en

ci
l

2
0
0 1

✓

201

201

1
0
0
0

1

✓

1001

1001

si
m

p
le

 l
o
o
p

m
ap

1
0
0

5

✓
✓

✓

✓
✓

1

2

4 101

101

501

501

1

si
m

p
le

 l
o
o
p

co
m

pl
ex

 lo
op

m
ap

2
0
0

5

✓
✓

✓

1 1

201

var.

var.

8

F
IG

U
R

E
4

.4
:

M
ic

ro
be

nc
hm

ar
k

ru
nt

im
e

in
se

co
nd

s.
Ik

ra
-F

is
IK

R
A

-R
U

B
Y

w
it

h
al

lc
od

e
in

a
si

ng
le

ho
st

se
ct

io
n

an
d

ke
rn

el
fu

si
on

.
Ik

ra
is

w
it

ho
u

tk
er

ne
l

fu
si

on
.I

kr
a-

M
is

a
lo

w
er

bo
un

d
w

he
re

al
lc

od
e

is
in

a
si

ng
le

ke
rn

el
(e

ve
n

am
on

g
it

er
at

io
ns

).
C

U
D

A
-F

an
d

C
U

D
A

ar
e

ha
nd

-w
ri

tt
en

ba
se

lin
e

im
pl

em
en

ta
ti

on
s

w
it

h/
w

it
ho

ut
(m

an
ua

l)
ke

rn
el

fu
si

on
.C

om
pi

la
ti

on
ti

m
e

(n
ot

sh
ow

n
he

re
)i

s
ar

ou
nd

2
se

co
nd

s
fo

r
IK

R
A

-R
U

B
Y

-g
en

er
at

ed
co

de
.

58 Chapter 4. Optimizing Memory Access

16.04.1 (kernel version 4.4.0-43-generic), Ruby 2.3.1 and the CUDA Toolkit V8.0.44.
Program 5 is a 3D stencil computation on a matrix of size 129× 65× 65. All other
programs operate on matrices of size 6× 107 (228 MB) with a one-dimensional CUDA
block size of 1024.

The benchmarks show the performance speedup due to kernel fusion and how
generated I K R A - R U B Y code performs in comparison to hand-written CUDA code.
We compare 7 different programs with various compilation strategies. For every
program, we show the structure of parallel operations (control/data flow graph). The
square boxes indicate parallel operations and the arrows indicate data flow. The letter
M indicates a map operation, the letter N a new operation, and the star a can be either
map or stencil.

Programs 1, 6 and 7 show the benefit of kernel fusion. In Program 1, a single
kernel is launched for all 11 parallel operations, giving a 10x speedup compared to the
version without kernel fusion. In Program 6, 101 kernels are launched for 501 parallel
operations. All 5 kernels within the loop are fused together, giving a 5x speedup
compared to the version without kernel fusion. If all 501 map/new operations are
fused together by executing the loop in the Ruby interpreter (no host section; Ikra-M),
another 2x speedup is possible. However, in the general case, the number of loop
iterations is unknown. Moreover, the resulting kernel code becomes large; increasing
the number of iterations too much even results in an nvcc compilation error. As can
be seen from the interpreter time, I K R A - R U B Y also spends a very long time in the
Ruby interpreter if a tree of 501 array commands is analyzed and fused together. This
shows that there is still potential for optimization of the part of I K R A - R U B Y that
runs in the Ruby interpreter.

Program 7 shows the benefit of kernel fusion in a program with more complex
control flow, giving a speedup of 2x. This program generates source code with union
types to keep track of which kernel to launch at the end of an iteration. This leads
to additional runtime overheads. However, this overhead (rest host) is much smaller
than the kernel runtime and could not even be measured with confidence in our
experiments. The reason that Program 7 does not achieve the same speedup from
kernel fusion as Program 6 is that the number of parallel operations inside the loop is
smaller and the number of loop iterations is larger (200 vs. 100).

Programs 3–5 consist of a loop with a single map or stencil operation. In such cases,
I K R A - R U B Y cannot perform kernel fusion inside the loop, which is why we only
report the performance for Ikra. Himeno is a benchmark with a memory-bound stencil
computation. It has a high alloc time because I K R A - R U B Y (and the CUDA baseline)
do currently not reuse memory but allocate a new piece of memory every time an
array is updated within the loop.

All benchmarks have a low transfer time, i.e., time spent for transferring data
between the device and the host. This is because data is transferred to the host only
when the result of a parallel operation is accessed. The loops in all benchmarks are
for loops with a fixed number of iterations. Only after the last iteration, the result is
accessed and transferred back to the host. In a more realistic case, where the control
flow (e.g., number of iterations) depends on the data, more data transfer will occur.

When comparing I K R A - R U B Y’s performance with hand-written CUDA code,
we can see that the kernel running times are almost identical for map operations. The
generated code of stencil operations is not yet fully optimized (or fused). In addition,
I K R A - R U B Y spends some time in the Ruby interpreter for performing type inference
and generating Ruby code. Overall, it spends very little time in the remaining host
section code (allocating/comparing union types/array commands, loop overhead).

4.1. Kernel Fusion in I K R A - R U B Y 59

Number of Generated Kernels Due to the kernel fusion process described in Sec-
tion 4.1.3, I K R A - R U B Y generates one kernel per data flow path (excluding loops).
This can lead to a combinatorial explosion of the number of generated kernels. Based
on an analysis of the kernel structure of a large number of parallel programs by
Shen et al. [168], we believe that the number of kernels remains manageable in real
applications. Their work showed that the kernel structure of all analyzed programs
is similar to the ones in our benchmarks3 and never more complex than the structure
in Program 7.

4.1.7 Future Work

Besides improving the overall efficiency of our implementation, we plan extend
I K R A - R U B Y with kernel fusion of stencil operations and with better memory man-
agement in future. Furthermore, there are cases when kernel fusion can lead to a
slowdown of programs, e.g., if the first kernel contains highly divergent control flow.
We will analyze such programs in the future.

Kernel Fusion of Stencil Operations I K R A - R U B Y can currently only fuse oper-
ations whose input pattern is “same location”. We plan to extend kernel fusion to
certain stencil computations that exhibit a simple neighborhood. Stencil computations
can be fused with shared memory or with redundant computations. Consider, for
example, the following two stencil operations.

A1 = stencil(A0, [−1, 0], f , 10)
A2 = stencil(A1, [−1, 0], g, 10)

The resulting arrays after each iteration are defined as follows.

A1 =

10

f (A0[0], A0[1])
f (A0[1], A0[2])

. . .

A2 =

10

g(10, f (A0[0], A0[1]))
g(f (A0[0], A0[1]), f (A0[1], A0[2]))

. . .

The definition of A2 represents the computation of a fused stencil operation. Many
arguments of function g are computed twice (redundantly). To reduce this over-
head, I K R A - R U B Y could split A0 into multiple subarrays, assign each subarray to a
CUDA block and store intermediate results in shared memory. Inter-block synchro-
nization or redundant computation is then only necessary at the subarray borders
(ghost region [105]). An optimized version of this technique is known as temporal
blocking [133].

3 I K R A - R U B Y’s programming style could increase the number of parallel sections.

60 Chapter 4. Optimizing Memory Access

Reusing Memory Many programs that update a vector or matrix iteratively only
need access to the data of the preceding iteration. To save memory and for perfor-
mance reasons (e.g., caching), CUDA programmers allocate only one (for combine
operations) or two (for stencil operations) arrays in hand-written code and keep writ-
ing to these arrays. However, all parallel operations in I K R A - R U B Y (except peach)
are functional and return a new array instead of modifying the existing array in-place.
Furthermore, I K R A - R U B Y does not have a garbage collector, so the memory is re-
leased only after the execution of the host section or if the programmer frees memory
explicitly in the Ruby code.

To decide whether it is safe to reuse a previously allocated array, I K R A - R U B Y

must perform an escape analysis. This is to ensure that data from a previous iteration
is not accessed at a later point of time. Such advanced memory management issues
are subject to future work.

4.1.8 Related Work

Kernel fusion is an optimization that is supported in many other GPGPU frameworks
and languages, but their focus is on different aspects. For example, Harlan [84] sup-
ports nested kernels, Futhark [82] has support for nested parallelism and a powerful
fusion engine for map/reduce combinations, and Kernel Weaver focuses on database
queries [208]. Furthermore, all of these tools focus on statically-typed programming
languages, making translation within a kernel easier compared to I K R A - R U B Y ,
because no union types are required and making kernel fusion itself easier, because it
is known ahead of execution time which kernels are executed together.

4.2 A Data Layout DSL for I K R A - C P P

Maintaining an SOA layout in C++/CUDA manually is troublesome. SOA code is
less readable and less expressive than AOS code and native C++ language constructs
for object-oriented programming cannot be used in SOA code.

To give programmers the performance benefit of SOA and the expressiveness of
AOS-style object-oriented programming at the same time, we extended I K R A - C P P

with a lightweight, embedded DSL4 (Listing 4.9). This DSL is implemented entirely
in C++ with template metaprogramming, operator overloading, helper classes and
preprocessor macros. It can be used on CPUs and GPUs and should work with every
modern C++14 compiler and the NVIDIA CUDA Toolkit 9.0 or higher (in GPU mode).

Contribution The main contribution of I K R A - C P P is twofold. First, to the best of
our knowledge, I K R A - C P P is the first C++ data/memory layout DSL that supports a
wide range of OOP abstractions, most notably member function calls and constructors.
Second, there exist other solutions that allow for a limited set of OOP abstractions (e.g.,
referencing objects with class pointers instead of IDs) with a custom data/memory
layouts in C++ (Section 4.2.6). However, these solutions rely on external tools such as
custom preprocessors or compiler/language extensions. In contrast, I K R A - C P P is
implemented entirely in C++ and requires only a modern C++ compiler.

4 I K R A - C P P’s data layout DSL is a performance-oriented DSL, aiming to “make the compiler more
productive (producing better code)” [162]. We call it a DSL because it defines a new syntax/notation for
application code.

4.2. A Data Layout DSL for I K R A - C P P 61

L I S T I N G 4 . 9 : N-body simulation in I K R A - C P P: SOA layout but AOS notation
1 class Body : public IkraSoaBase<Body, 50> {
2 public: IKRA_INITIALIZE_CLASS
3 float_ pos_x = 0.0;
4 float_ pos_y = 0.0;
5 float_ vel_x = 1.0;
6 float_ vel_y = 1.0;
7 float_ force_x;
8 float_ force_y;
9 float_ mass;

10

11 Body(float m, float x, float y) : mass(m), pos_x(x), pos_y(y) {}
12

13 void move(float dt) {
14 pos_x = pos_x + vel_x * dt;
15 pos_y = pos_y + vel_y * dt;
16 }
17 };
18

19 // This macro defines SOA arrays and an object (instances) counter.
20 IKRA_HOST_STORAGE (Body);
21

22 void create_and_move() {
23 Body* b = new Body(150, 1.0, 2.0);
24 b->move(0.5);
25 assert(b->pos_x == 1.5);
26 }

4.2.1 Language Overview

In this section, we describe the basic functionality of I K R A - C P P’s data layout DSL,
focusing on host (CPU) code.

Notation and API A class whose objects are stored as SOA is called a SOA class
and its instances are called SOA objects. Recall that classes in I K R A - C P P must
inherit from IkraBase. This class template is for AOS layouts. If we would like
to store objects in SOA layout, classes must inherit from IkraSoaBase. This class
template provides useful helper methods and type aliases. Same as with IkraBase,
the maximum number of instances of an SOA class is a compile-time constant and
template parameter of IkraSoaBase (Listing 4.9, Line 1).

The main programming restriction of IkraSoaBase compared to IkraBase is that
SOA objects can only be created with the new keyword and must be referred to with
pointers or references (Listing 4.10). Stack/static allocation is not allowed, because
the fields of an object are not stored as a consecutive chunk of data as in a traditional
AOS layout. They can only reside within a structure of arrays, i.e., within the storage
buffer generated by IKRA_*_STORAGE.

There is one main change in notation compared to our original I K R A - C P P

implementation from Section 3.2. Regardless of AOS or SOA layout, programmers
must now use special proxy field types for field declarations. These proxy types are
available for all primitive C++ types and end with an underscore, e.g., float_ instead
of float (Listing 4.9, Lines 3–9). While the old notation (plain float) is technically
still supported for AOS layouts, we recommend using proxy types because the layout
of a class can then be switched from AOS to SOA or vice versa with mininal effort by
changing the superclass from IkraBase to IkraSoaBase or vice versa.

62 Chapter 4. Optimizing Memory Access

L I S T I N G 4 . 1 0 : Allocation restrictions of IkraSoaBase
1 class A : public IkraBase<A, 100> { /* ... */ };
2 class B : public IkraSoaBase<B, 100> { /* ... */ };
3

4 IKRA_HOST_STORAGE (A);
5 IKRA_HOST_STORAGE (B);
6

7 int main() {
8 A obj1; // OK, but stored outside of the array of structures.
9 B obj2; // Error

10 A* ptr1 = new A(); // OK. Allocated as AOS within storage buffer.
11 B* ptr2 = new B(); // OK. Allocated as SOA within storage buffer.
12 B& obj3 = *obj2; // OK
13 }
14

15 void function1(B obj); // Error
16 void function2(B* ptr); // OK
17 void function3(B& ptr); // OK

Supported C++ OOP Features In SOA mode, I K R A - C P P supports many but not
all OOP features/abstractions of C++. This paragraph gives an overview of the main
supported features and the main restrictions.

• Same as in AOS mode, classes are defined with standard C++ notation (class
keyword). Classes cannot be templatized and class inheritance is not possible.
Programmers must use the two proprocessor macros IKRA_INITIALIZE_CLASS
and IKRA_*_STORAGE.

• Objects must be referred to with class pointers or object references.

• Member fields must be declared with proxy types. I K R A - C P P provides proxy
types for all primitive types. Furthermore, there is a notation for defining proxy
types for other base types.

• Member functions must be non-virtual but can be templatized.

• Class constructors, including field initializers, are supported.

• Class constructors and member functions can be overloaded.

• Instance creation is supported only with the new keyword. Same as in AOS
mode, existing objects cannot be deleted (allocation only, no deallocation).

• Given an object pointer, members can be accessed with the C++ member of
pointer (arrow) operator. Given an object reference, members can be accessed
with the C++ member of object (dot) operator. This is the main feature that
gives I K R A - C P P code an object-oriented look and feel, even in SOA mode.

We will lift some of these restrictions with D Y N A S O A R, which is an extension
of I K R A - C P P with a dynamic memory allocator (Section 5).

4.2.2 Implementation Details

I K R A - C P P is implemented entirely in C++. It does not need a separate compiler or
preprocessor/code generator. It is based on four ideas:

4.2. A Data Layout DSL for I K R A - C P P 63

• All data is stored in a large, statically-allocated storage buffer (char array,
generated by IKRA_*_STORAGE).

• Upon allocation, all objects are assigned unique integer IDs (starting from 1).

• Objects are referenced with fake pointers that encode their object ID. This
is a form of type punning, i.e., “a programming technique that subverts or
circumvents the type system of a programming language in order to achieve
an effect that would be difficult or impossible to achieve within the bounds of
the formal language” [202]. Type punning can lead to fragile code and a future,
more mature implementation of I K R A - C P P could rely on a more powerful
preprocessor such as ROSE [157].

• Several operators of proxy field types are overridden to decode IDs from fake
pointers and to calculate physical memory addresses within the storage buffer.

In this section, we explain those concepts in more detail, using a more verbose
notation. The code in Listing 4.11 is identical to the one in Listing 4.9 (without
constructor), but with simplified, expanded preprocessor macros. In particular, note
that tokens like float_ are preprocessor macros that expand to different proxy field
type instantiations like float__<...>5, from now on simply called proxy types.

L I S T I N G 4 . 1 1 : Macro-expanded Body class from a Listing 4.9 (simplified)
1 class Body : public IkraSoaBase<Body> {
2 const static int kMaxInst = 50;
3 const static int kObjSize = 7 * 4; 7 floats = 28 bytes
4

5 static char storage[kMaxInst * kObjSize];
6 static int size = 0;
7

8 float__<1, 0> pos_x = 0.0; field index = 1, offset = 0
9 float__<2, 4> pos_y = 0.0; field index = 2, offset = 4

10 float__<3, 8> vel_x = 1.0; field index = 3, offset = 8
11 float__<4, 12> vel_y = 1.0; field index = 4, offset = 12
12 float__<5, 16> force_x; field index = 5, offset = 16
13 float__<6, 20> force_y; field index = 6, offset = 20
14 float__<7, 24> mass; field index = 6, offset = 24
15

16 static Body* get(int id); Calculate Address
17

18 void* operator new() { return get(++size); }
19

20 void move(float dt) {
21 pos_x = pos_x + vel_x * dt;
22 pos_y = pos_y + vel_y * dt;
23 }
24 };

SOA Objects SOA objects can only be referred to with pointers or references. In
particular, they cannot be stack-allocated. This is because the address of an SOA
object is not a physical memory location but encodes an object ID (fake pointer). Based
on an object ID and the memory locations of the SOA arrays within the storage

5Internally, this is implemented with the __COUNTER__ preprocessor macro, which is supported by
most compilers. See https://gcc.gnu.org/onlinedocs/cpp/Common-Predefined-Macros.html.

https://gcc.gnu.org/onlinedocs/cpp/Common-Predefined-Macros.html

64 Chapter 4. Optimizing Memory Access

buffer, the actual, physical memory location of each field value of that object can
be computed. This can be seen as a form of address translation. This translation is
performed transparently and implemented in C++, as part of the data layout DSL.

All objects of an SOA class C have unique IDs between [1; maxInst(C)], where
maxInst(C) is the user-specified maximum number of objects of C. ID 0 is reserved for
null pointers. E.g., running new C() for the first time returns a C* pointer encoding ID
1. This pointer does not point to an actual memory location. Accessing the address of
this fake pointer would most likely result in a memory access violation (Listing 4.12).

L I S T I N G 4 . 1 2 : Dereferencing a fake pointer
1 C* obj = new C();
2 char* ptr = reinterpret_cast<char*>(obj);
3 printf("%c\n", *ptr); // This usually works, but with IkraSoaBase it segfaults!

Proxy Types SOA fields are declared with proxy types (Field_ template instantia-
tions, Listing 4.13). These types behave like normal C++ types (base types) in most
cases, but access data at a different physical location inside the storage buffer. Proxy
type values always appear as lvalues, i.e., as values that have a memory location.
This is because their implementation calculates the actual, physical data location
based on their own lvalue address. Proxy types support the following operations,
implemented via operator overloading.

• Reading a Value: A proxy type lvalue can be converted to its base type value
without an explicit typecast (implicit conversion operator6, Line 17).

• Writing a Value: A base type value and a proxy type lvalue can be assigned to a
proxy type lvalue by overloading the assignment operator (Lines 20, 45).

• Method Call: For proxy type lvalues with a pointer base type, a method call is
forwarded to the object at the physical data location by overloading the member
of pointer “arrow” operator7 (Line 23).

• Address-of: It is possible to take the address of a proxy type lvalue (address-of
operator, Line 26).

• Dereference: It is possible to dereference a proxy type lvalue (pointer dereference
operator, Line 29) if its base type is a pointer type.

• Array acccess: It is possible to access a proxy type lvalue of array base type with
array syntax (array subscript operator, Line 34).

• Initialization: Proxy type lvalues can be initialized with base type values or
proxy type lvalues; e.g., with a field initializer of a class constructor (constructor,
Lines 14, 40).

SOA field types are defined in IkraSoaBase as template instantiations of Field_
(Listing 4.13). This class provides the necessary operator implementations and calcu-
lates the address inside the storage buffer at which the field value of a certain object
can be found (Line 49).

6The auto keyword is not supported. E.g., a proxy type lvalue cannot be assigned to a variable
declared as auto without an explicit type cast, unless the variable is of reference type.

7Note for experienced C++ programmers: This is similar to how std::unique_ptr is implemented.

4.2. A Data Layout DSL for I K R A - C P P 65

L I S T I N G 4 . 1 3 : Implementation of proxy types
1 template<class Self> Template Parameter “Self”: CRTP [33]
2 class IkraSoaBase {
3 template<int Index, int Offset>
4 using float__ = Field_<float, Index, Offset, Self>;
5

6 template<int Index, int Offset>
7 using int__ = Field_<int, Index, Offset, Self>;
8 };
9

10 template<typename T, int Index, int Offset, class Owner>
11 class Field_ {
12 // Constructor
13 Field_() {}
14 Field_(const T& value) { *data_ptr() = value; }
15

16 // Implicit conversion (implicit type cast)
17 operator T&() const { return *data_ptr(); }
18

19 // Assignment
20 void operator=(const T& value) { *data_ptr() = value; }
21

22 // Method call
23 T* operator->() const { return data_ptr(); }
24

25 // Address-of
26 T* operator&() { return data_ptr(); }
27

28 // Pointer dereference
29 typename std::remove_pointer<T>::type& operator*() {
30 return **data_ptr();
31 }
32

33 // Array access (subscript operator) to std::array
34 T::value_type& operator[](size_t pos) {
35 return (*data_ptr())[pos];
36 }
37

38 // Support assignment of other proxy types.
39 template<int Index2, int Offset2, class Owner2>
40 Field_(const Field_<T, Index2, Offset2, Owner2>& value) {
41 *data_ptr() = *value.data_ptr();
42 }
43

44 template<int Index2, int Offset2, class Owner2>
45 void operator=(const Field_<T, Index2, Offset2, Owner2>& value) {
46 *data_ptr() = *value.data_ptr();
47 }
48

49 T* data_ptr() const; Calculate Address (details later)
50 };

66 Chapter 4. Optimizing Memory Access

void print_body(Body* b) {
 float x = b->pos_x;
 float y = b->pos_y;
 printf("body(%i, %i)\n", x, y);
}

Implicit type conversion:
Field_<float, 2, 4, Body> ⇨ float

Field_<float, 2, 4, Body>::operator float&() const {
 return *data_ptr();
}

Address translation:
Fake pointer ⇨ Physical memory address of b->pos_y
return reinterpret_cast<float*>(
 storage + 50 * 4 + (id(this) - 1) * 4);

Location of SOA array for Body::pos_y

F I G U R E 4 . 5 : Address translation of a fake pointer

Custom Proxy Types I K R A - C P P provides proxy type macros such as float_ for
all primitive C++ types. Proxy types of other types can be defined with the helper
macro field_ (Listing 4.14). This macro takes as argument the desired base type.

L I S T I N G 4 . 1 4 : Field proxy type notation
class DummyClass : IkraSoaBase<DummyClass, 50> {
public: IKRA_INITIALIZE_CLASS
float_ field_0; // Base type: float
field_(void*) field_1; // Base type: void*
field_(std::array<float, 10>) field_2; // Base type: std:array<float, 10>
int_ field_3; // Base type: int
/* ... */

}; IKRA_HOST_STORAGE (DummyClass);

Address Computation – Simplified Proxy types perform a form of address transla-
tion: They translate a fake pointer into a physical memory address (Figure 4.5). Proxy
objects always appear as lvalues, i.e., values that have an address. This address does
not point to allocated memory but is based on a fake pointer.

In the most basic case, given the address of a field proxy object this (i.e., an object
of type Field_<...>), the address of a field value C::f can be computed with the
formula below. id is a function that decodes the object ID from a proxy object address.
Note that we always translate addresses from the perspective of a field proxy object
and not from the perspective of an SOA object, because we overloaded the operators
of Field_ and not the operators of the SOA class.

addr(this, C::f) = storage
+ maxInst(C) · offset(C::f)
+ (id(this)− 1) · sizeof (C::f)

The first two lines in the equation compute the beginning of the SOA array storing
all values of C::f. The third line computes the offset into that array. How exactly
object IDs are encoded in fake pointers is determined by the addressing mode and
described in the next few paragraphs. I K R A - C P P supports three different addressing
modes, one of which must be chosen at compile time: Zero Addressing and two variants
of Valid Addressing. The former one is more space-efficient but relies on non-standard
C++ constructs, so it might not work with some compilers8.

8We verified that it works with g++ 5.4.0, clang 3.8.0 and CUDA 9.0.

4.2. A Data Layout DSL for I K R A - C P P 67

F I G U R E 4 . 6 : Storage buffer layout in zero addressing

4.2.3 Addressing Modes

This section describes of three addressing modes. Zero addressing and storage-
relative zero addressing are implemented in I K R A - C P P. In accordance with the C++
zero overhead principle [177], zero addressing is the default mode.

Zero Addressing In zero addressing mode (Figure 4.6, Listing 4.15), an object of
an SOA class C with ID i is referenced with a C* fake pointer pointing to address i
(Listing 4.16).

Values are grouped by field within the storage buffer (SOA layout). No field
values are stored for object 0 (null pointer). Given a C* fake pointer obj, the physical
memory location within the storage buffer of the field value C::f, i.e., &obj->f, is
calculated as follows. Compile-time constants are in blue.

L I S T I N G 4 . 1 5 : Address computation in zero addressing
1 Body* Body::get(int id) {
2 return reinterpret_cast<Body*>(id)
3 }
4

5 template<typename T, int Index, int Offset, class Owner>
6 T* Field_<T, Index, Offset, Owner>::data_ptr() {
7 Owner* obj = reinterpret_cast<Owner*>(this);
8 return reinterpret_cast<T*>(Owner::storage
9 + Offset * Owner::kMaxInst - sizeof(T)

10 + sizeof(T) * reinterpret_cast<uintptr_t>(obj));
11 }

L I S T I N G 4 . 1 6 : Fake pointers in zero addressing mode
1 C* a = new C(); // First object. ID 1
2 C* b = new C(); // Second object. ID 2
3 printf("%p, %p\n", a, b); // Prints: 0x00000001, 0x00000002

addrzero(obj, C::f) = storage
constant + maxInst(C) · offset(C::f)
variable − sizeof (C::f)

+ obj · sizeof (C::f)

Intuitively, the address is computed as follows: Start with the address of the
storage buffer. Add the offset at which the SOA array for C::f begins. Finally, add
the offset at which the (obj - 1)th value begins. We have to subtract 1 to account for the
fact that object IDs start at 1 but C++ arrays start indexing with 0.

68 Chapter 4. Optimizing Memory Access

Since the storage buffer is statically allocated, the first three lines of the address
calculation are compile-time constants and the fourth line is a strided memory access.
After constant folding, this is identical to a hand-written SOA layout with statically
allocated SOA field arrays. In a hand-written SOA layout, the address of the field
value C::f of an object with ID i, i.e., &C_f[i], is computed as follows.

addrmanual(i, C::f) = &C_f[0]

+ i · sizeof (C::f)

Modern compilers are good at peephole optimizations. We compared the com-
piled assembly code of a single field access for both a hand-written SOA layout and
for the equivalent I K R A - C P P code in C++ and CUDA. The resulting assembly code
was identical (Section 4.2.4).

One crucial assumption of zero addressing is that the C++ object size of SOA
classes and Field_ instantiations is zero bytes (e.g., sizeof(Body) = 0). In that case,
the fake address of an SOA object is equal to the addresses of all its proxy field objects9.
Listing 4.15 shows the implementation of the function data_ptr, which calculates
the physical memory address of an SOA field value within the storage buffer. If
Field_ instantiations had a byte size larger than zero, Line 7, which calculates the
fake pointer of the SOA object, would have to be changed.

Zero addressing has one main advantage: It allows us to use the C++ constructor
syntax without wasting memory. If Field_ instantiations and SOA objects have a
C++ object size of zero bytes10, we can use the new keyword for instance creation. In
host code (not GPU code), all memory is zero-initialized before running a constructor.
Zero-initializing a memory segment of zero bytes is a no operation, even if the segment
starts at a bogus memory address (fake pointer). On the contrary, zero-initializing
at least one byte at a bogus memory address will likely result in a memory access
violation and crash the program.

According to the C++ standard, the size of a class or struct should be greater than
zero (even if it has no members) [92], but many compilers can be instructed to use
a size of zero. If this is not supported by a compiler, either valid addressing or a
different mechanism for instance creation must be used.

Valid Addressing Mode Since zero addressing does not conform to the C++ stan-
dard, I K R A - C P P provides an alternative addressing mode. In valid addressing, the
C++ object size of every proxy field object is one byte (e.g., sizeof(double_) = 1).
Consequently the C++ object size of every SOA object is numFields bytes. Note that in
either addressing mode, the C++ sizeof keyword reports a number that is different
from the actual memory consumption an SOA object within the storage buffer.

In order to support the new keyword, the address of an SOA object must then
point to valid (allocated) memory; thus the name valid addressing. Otherwise, zero-
initialization would cause a memory access violation. The challenge of valid address-
ing is to add an as small as possible amount of padding (wasted memory) such that
no data is overwritten by zero initialization.

Programmers should use zero addressing if supported by their compiler, since it
does not waste any padding memory. We expect the same runtime performance as in

9E.g., for a Body* b: b = &b->pos_x = &b->pos_y = ...
10This break pointer arithmetics with SOA object pointers. However, we provide a custom iterator

type that programmers can use instead.

4.2. A Data Layout DSL for I K R A - C P P 69

object ptr. address

nullptr &obj1

...

&objmaxInst

field padding

...

data segmentstorage

obj1.field1 obj2.field1

...

objmaxInst.field1 obj2.field1

...

objmaxInst.fieldnumFields

F I G U R E 4 . 7 : Storage buffer layout in storage-relative zero addressing

zero addressing, because address computation is in both cases reduced to a strided
memory access after constant folding.

Storage-relative Zero Addressing This addressing mode is one of two variants
of valid addressing. In this addressing mode, an object of SOA class C with ID i
is referred to with a fake C* pointer pointing to the ith byte of the storage buffer
(Figure 4.7). E.g., if the storage buffer is allocated at address 0x4000, then the address
of obj3 is 0x4003.

The data segment, where field values are stored, is identical to the one in zero
addressing. However, it starts at byte offset padding, i.e., padding many bytes are
wasted in this addressing mode.

padding = maxInst(C) + 1 + numFields(C)

Since all fake object pointers point to one of the first maxInst(C) bytes of the storage
buffer (object ptr. address part in Figure 4.7), not a single byte of the data segment is
overwritten by zero-initialization, which zeros out numFields(C) many bytes. Note
that, similar to zero addressing, we have to add 1 in the above formula because object
IDs start with 1 (0 is reserved for null pointers).

In general, the physical memory location of a field value C::f of an object with
fake pointer obj is calculated as follows. This formula is identical to the one in zero
addressing, except for the offset into the data segment and the object ID computa-
tion/decoding part.

addrvalid(obj, C::f) = storage

data segment offset +maxInst(C) + 1 + numFields(C)

+ maxInst(C) · offset(C::f)
− sizeof (C::f)

ID computation + (obj− storage) ·sizeof (C::f)

Since address computation is done inside field proxy types (i.e., Field_ instan-
tiantions, not IkraSoaBase), we have to express the above formula in terms of the
address (this pointer) of the field proxy object instead of the fake object address obj.
The fake object address obj of an SOA object can be computed based on the address
of a field proxy object of C::f as follows, where index(C::f) is the field index of C::f
(start counting from 1).

70 Chapter 4. Optimizing Memory Access

F I G U R E 4 . 8 : Storage buffer layout in first field addressing

obj = this− index(C::f) + 1

Since every Field_ instantiation is 1 byte in size, we can retrieve the base address
(fake pointer) obj of an object from the address this of the ith field proxy object of
obj by subtracting i− 1 from it. For example, let 0x4003 be the address of the third
field proxy object (vel_x) of a Body object. Then, obj = 0x4003− 3 + 1 = 0x4001.
This fake object pointer can be plugged into addrvalid(obj, Body::vel_x). Putting both
definitions together, the physical memory location of a field value C::f with respect
to its proxy object’s address this is then calculated as follows.

addrvalid(this, C::f) = storage
+ maxInst(C) + 1 + numFields(C)
+ maxInst(C) · offset(C::f)
− sizeof (C::f) · (index(C::f) + storage)
+ this · sizeof (C::f)

The formula above was rearranged to keep the number of terms small. After con-
stant folding, the address of a field value can be calculated with the same instructions
as in zero addressing mode.

First Field Addressing This addressing mode is the second variant of valid ad-
dressing and not currently implemented in I K R A - C P P . Its purpose is to reduce
the amount of waste due to the padding area. It could potentially also be useful for
virtual function support in the future.

An object of SOA class C with ID i is referred to with a fake C* pointer pointing to
the physical memory location of the value of the first field of object i (Figure 4.8). If the
SOA class has at least one virtual function, then the first field is the vtable pointer11. If
the number of fields of the SOA class is larger than the size of the first field, then the
memory of the first field must be padded with sizeof (C::first)− numFields(C) bytes
to avoid overwriting values of the first field of other objects (with larger object IDs)
due to zero initialization. Since object deallocation is not yet supported in I K R A -
C P P , this would currently not be problem because object slots with greater IDs are
guaranteed to be empty. However, we will extend I K R A - C P P with dynamic object
deallocation in the next chapter. Given a fake C* pointer obj, the memory location of a
field C::f is calculated as follows.

11Most C++ compilers store the vtable pointer in the first 8 bytes of an object.

4.2. A Data Layout DSL for I K R A - C P P 71

addrfirst(obj, C::f) = storage

+ maxInst(C) · offset∗(C::f)

+

(
obj− storage

sizeof ∗(C::first)
− 1
)
· sizeof ∗(C::f)

sizeof (C::f) and offset(C::f) denote the C++ size of a field type and the offset
of a field within the class (Listing 4.9). In addition, sizeof ∗(C::f) and offset∗(C::f)
also take into account padding that may be added to the first field. The physical
memory location of a field value C::f with respect to its proxy object’s address this is
calculated as follows. We get this formula by plugging in the definition of obj from
storage-relative zero addressing.

addrfirst(this, C::f) = storage− sizeof (C::f)

+ maxInst(C) · offset∗(C::f)
− (index(C::f) + storage− 1) · R
+ this · R

where R =
sizeof ∗(C::f)

sizeof ∗(C::first)

Even though the definition of addrfirst contains a fraction, its value is always an
integer. However, its calculation is not straightforward. Similar to the previous
addressing modes, we rearranged the terms in the above formula such that it can be
computed with one addition and one multiplication after constant folding (strided
memory access). While the formula always gives us integer values, single parts
such as this · R may be fractions. Floating point operations as part of the address
computation are highly inefficient and must be avoided.

Therefore, there are two options for implementing first field addressing in I K R A -
C P P . Either we compute the formula differently (with more arithmetic operations)
or we enforce R to be an integer, i.e., the size of every field must be a multiple of the
size of the first field.

This addressing mode is superior to storage-relative zero addressing only if the
field padding size is zero or one byte. Otherwise, there would be no space savings,
because field padding is incurred for every object, i.e., maxInst many times.

4.2.4 Code Generation Experiment

I K R A - C P P’s data layout DSL is embedded into C++/CUDA and does not rely on
an external preprocessor or code generator. It is relies heavily on template metapro-
gramming, operator overloading and type punning. Therefore, the code that the
C++ compiler is seeing is quite complex. In this section, we analyze how well C++
compilers can optimize such code.

Listing 4.17 shows the setup of our experiment. We would like to analyze the
assembly code that a C++ compiler generates for writing an integer value to a field of
a given object. We consider three cases.

1. An ordinary C++ class, where the object is referred to with an object pointer
(AOS style).

72 Chapter 4. Optimizing Memory Access

L I S T I N G 4 . 1 7 : Example: Writing a field of an object in AOS/SOA/I K R A - C P P

// Case 1: AOS style
class DummyClassAos {
public:
int field0;
int field1;

};

// Case 2: Handwritten SOA
int soa_field0[100];
int soa_field1[100];

// Case 3: Ikra-Cpp (SOA)
class DummyClassIkraCpp : public IkraSoaBase<DummyClassIkraCpp, 100> {
public: IKRA_INITIALIZE_CLASS
int_ field0;
int_ field1;

}; IKRA_HOST_STORAGE (DummyClassIkraCpp)

void write_field0(DummyClassIkraCpp* obj) { obj->field0 = 0x7777; }
void write_field0_handwritten_soa(uintptr_t id) { soa_field0[id] = 0x7777; }
void write_field0_aos(DymmyClassAos* obj) { obj->field0 = 0x7777; }

L I S T I N G 4 . 1 8 : Generated assembly code for functions in Listing 4.17
00000000004005 e0 <_Z12write_field0P9DummyClassIkraCpp >:

4005e0: c7 04 bd b0 a3 60 00 movl $0x7777 ,0 x60a3b0(,%rdi ,4)
4005e7: 77 77 00 00
4005eb: c3 retq
4005ec: 0f 1f 40 00 nopl 0x0(%rax)

0000000000400620 <_Z21write_field0_handwritten_soam >:
400620: c7 04 bd 60 10 60 00 movl $0x7777 ,0 x601060(,%rdi ,4)
400627: 77 77 00 00
40062b: c3 retq
40062c: 0f 1f 40 00 nopl 0x0(%rax)

0000000000400640 <_Z25write_field0_aosP16DummyClassAos >:
400640: c7 07 77 77 00 00 movl $0x7777 ,(%rdi)
400646: c3 retq
400647: 66 0f 1f 84 00 00 00 nopw 0x0(%rax ,%rax ,1)
40064e: 00 00

4.2. A Data Layout DSL for I K R A - C P P 73

2. A hand-written SOA layout, where the object is referred to with an integer
index into SOA arrays.

3. An I K R A - C P P class in SOA layout, where the object is referred to with a fake
pointer in zero addressing mode.

Listing 4.18 shows the generated assembly code of gcc 5.4.0 with -O3 optimiza-
tion. Lower optimization levels result in considerably less efficient code because the
overloaded operators and the data_ptr function (Listing 4.13) are not inlined.

We can see that the generated assembly code of the I K R A - C P P version is nearly
identical to the hand-written SOA version. The assembly code of both functions
differs only in the address of the (conceptual) SOA array. This shows that, at least
in this small experiment, a modern compiler is able to optimize I K R A - C P P code
through peephole optimizations such as constant folding.

Automatic Vectorization Unfortunately, this is not always the case for other com-
piler optimizations. One example is automatic loop vectorization. We analyzed
the generated assembly code of a benchmark that runs Body::move (Listing 4.9) on
the host (CPU) in a loop with many iterations. In the hand-written SOA code, gcc
and clang vectorize the method call Body::move of multiple loop iterations with SSE
(Streaming SIMD Extensions) processor instructions. However, only gcc performs the
equivalent loop vectorization with I K R A - C P P code. Clang is able to apply opti-
mizations like loop unrolling but considers the memory reads/writes12 as potentially
dependent memory operations and thus unsafe for vectorization.

There are three approaches to solve this problem. First, we can try rewriting
the address computation part of I K R A - C P P , in an attempt to give the compiler
additional hints that trigger optimizations. Due to our type punning-based imple-
mentation, this approach is fragile and could break at any time. Second, code can be
vectorized manually, either with C++ SSE intrinsics or with a vectorization framework
like Sierra [114, 115]. Considering that real applications, which exhibit code that is
more complex than our example here, cannot be automatically vectorized (yet) with
today’s compilers, even if written in SOA style, this approach seems feasible to us.
Third, I K R A - C P P could be implemented as a compiler extension or with a custom
preprocessor/code generator, which is the cleanest and most stable solution.

Note that automatic vectorization is a minor issue for GPU code. CUDA follows
the SIMT (Single-Instruction Multiple-Threads) model. Since SIMD parallelism is ex-
posed to programmers as threads, programmers effectively vectorize their code man-
ually. Similarly, programs written for the Intel SPMD Prgram Compiler (ispc) [152]
code are implicitly vectorized.

4.2.5 Preliminary Performance Evaluation

We evaluated I K R A - C P P on a computer with an Intel Core i7-5960X CPU (4x 3.00
GHz), 32 GB RAM and an NVIDIA GeForce GTX 980 GPU, a 64-bit Ubuntu 16.04.1,
gcc 5.4.0 and the NVIDIA CUDA Toolkit 9.0.176 in zero addressing mode.

We benchmarked an iterative application of Body::move (Listing 4.9) in a parallel
do-all operation. This benchmark is quite simple, but it clearly isolates the overheads
of I K R A - C P P, specifically address computation. Since the generated assembly code

12The fundamental problem is pointer casting. In the simplest case, an expression like
array[reinterpret_cast<uintptr_t>(id)], where id is a pointer encoding an integer array offset is
already considered unsafe. This could potentially be solved with the C/C++ restrict keyword.

74 Chapter 4. Optimizing Memory Access

102 103 104 105 106

10 8

10 7

10 6

10 5

10 4

10 3

10 2

T
o
ta

l
R

u
n
n
in

g
 T

im
e
 /

 I
te

ra
ti

o
n
 (

se
c.

)

Intel Core i7-5960X

Ikra-Cpp

Hand-written SOA

AOS-32

AOS

102 103 104 105 106

0.0

0.2

0.4

0.6

0.8

1.0

1.2

A
v
g
.
R

u
n
n
in

g
 T

im
e
 /

 B
o
d
y
 (

se
co

n
d
s)

1e 8

Intel Core i7-5960X

Ikra-Cpp

Hand-written SOA

AOS

AOS-32

L1 Cache

L2 Cache

L3 Cache

F I G U R E 4 . 9 : Host mode running time

105 106

10 5

10 4

10 3

T
o
ta

l
R

u
n
n
in

g
 T

im
e
 /

 I
te

ra
ti

o
n
 (

se
c.

)

Nvidia GeForce GTX 980 (4GB)

Ikra-Cpp

Hand-written SOA

AOS

105 106

1

2

3

4

5

A
v
g
.
R

u
n
n
in

g
 T

im
e
 /

 B
o
d
y
 (

se
co

n
d
s)

1e 10

Nvidia GeForce GTX 980 (4GB)

Ikra-Cpp

Hand-written SOA

AOS

1e 10

Kernel invocation overhead
dominates running time

F I G U R E 4 . 1 0 : Device mode running time

for I K R A - C P P is nearly identical to a hand-written SOA layout, we expect minimal
overheads. The number of iterations was chosen such that every program ran for at
least 5 seconds. We calculated the average running time per iteration and report the
minimum time out of 12 program runs.

Figures 4.9 and 4.10 show the running time on CPU and GPU. The x-axis denotes
the number of objects and the y-axis denotes the running time in seconds. The
left subfigure shows the average running time of one entire iteration and the right
subfigure shows the average running time for a single Body object.

In host mode, I K R A - C P P’s performance is almost identical to the hand-written
SOA code. AOS-32 is a variant of AOS where 16 supplemental double fields were
added to the Body class, similarly to the SoAx benchmark section [85]. We can think
of such fields as additional properties of a body (e.g., mass or radius) that are not
utilized in this particular computation. The AOS-32 line of the right subfigure clearly
shows the effect of the L1, L2, L3 caches (32 KB, 256 KB, 20 MB) in host mode.

The performance difference between I K R A - C P P and the hand-written SOA
layout in device mode is due to a higher kernel invocation overhead of I K R A - C P P .
More than 10,000 iterations (kernel invocations) are performed for small problem
sizes. With a larger number of bodies, we get closer to hand-written SOA code,
because each kernels performs more work.

4.2.6 Related Work

The AOS-SOA tradeoff is a well-known problem and has been studied in previous
work in the context of C structs. To the best of our knowledge, there is no system that
provides an AOS-like programming style for object-oriented programming with SOA
performance characteristics.

SoAx [85] is a C++ library for AOS-style C/C++ programming with an implicit
SOA layout. It is based on preprocessor macros and template metaprogramming.

4.2. A Data Layout DSL for I K R A - C P P 75

SoAx does not support OOP concepts like classes or methods. SOA struct types are
defined with std::tuple instantiations and a helper macro that defines every SOA
array separately. Object field values can only be accessed through a getter method
of an SOA container object, which takes an object ID as argument, and not through
SOA pointers. While such code is less expressive, it has two benefits: First, such
code is easier to optimize for compilers than I K R A - C P P code because it does not
require decoding an object ID from a pointer. Second, it allows programmers to create
multiple containers (structures of arrays), each of which has its own object ID range.

Array of Structures eXtended (ASX) [179] is a library similar to SoAx. Objects in
ASX can be allocated in ASX containers as well as on the stack (as single objects). ASX
containers support both SOA and AOS data layouts, one of which must be chosen
as a template parameter. ASX allows fields to be accessed with C++ member syntax
(dot/arrow operators), but there are certain restrictions with respect to the size of
field types.

Columnar Objects [135] is a Python extension (implemented in PyPy) that stores
objects as SOA. Columnar Objects can deliver significant speedups of object-oriented
analytical applications. In contrast to I K R A - C P P and other libraries, subclassing is
possible. However, newly introduced SOA arrays of subclasses store null values for
objects of superclasses, which can waste memory. Similar to I K R A - C P P, objects are
accessed through proxy objects which delegate field accesses to the actual, physical
memory locations.

The Intel SPMD Program Compiler (ispc) [152, 25] is an experimental C compiler
with language features for better SIMD support. Among other features, it can store
an array of C structs in a hybrid SOA layout (also called Array of Structures of Arrays
(AoSoA) [180, 198] or Tiled AOS [106]). If a struct type is annotated with the soa<N>
keyword and used to declare an array (where N should be the SIMD width), then
the array is stored as hybrid SOA with an SOA length of N. Array elements can be
accessed with the usual C syntax. Furthermore, it is possible to take the address of
an SOA object and fields can be accessed using an SOA object pointer. From that
perspective, ispc’s functionality is very similar to I K R A - C P P. It would interesting to
see how easily ispc can be extended to support OOP concepts like methods.

Shapes is a high-level programming language that allows programmers to specify
custom data layouts for better memory cache performance [65]. Objects are stored
in pools and every pool can have a different object layout, e.g., AOS, SOA or a
mixed layout. The developers of Shapes are recently working on compiling Shapes
applications for SIMD architectures [182].

I K R A - C P P could be implemented as a compiler extension. To the best of our
knowledge, no such extension exists for a widely used language. We believe that this
is due to the high engineering effort of writing a new compiler or such an invasive
compiler extension [137].

4.2.7 Summary

We presented a first implementation of I K R A - C P P’s data layout DSL for object-
oriented programming with SOA performance characteristics. I K R A - C P P allows
programmers to write object-oriented code in AOS notation, while data is stored as
SOA for better performance. SOA object members are always accessed through fake
pointers or object references. How exactly an object ID is encoded in a pointer is
determined by the addressing mode. Our main insights are that (a) object ID decoding
and field address computations can be done efficiently after constant folding and
that (b) an AOS-style notation can be achieved transparently in C++ with operator

76 Chapter 4. Optimizing Memory Access

overloading, template metaprogramming, and preprocessor macros. Preliminary
benchmarks show that simple examples written with I K R A - C P P and compiled with
gcc are on par with hand-written SOA code.

I K R A - C P P is the basis of D Y N A S O A R (Chapter 5). The data layout DSL of
D Y N A S O A R is heavily based on I K R A - C P P’s DSL.

4.3 Inner Arrays in a Structure of Arrays

SOA works well with simple data structures, but cannot be easily applied to structs
that contain inner arrays (i.e., fields of array type), potentially of non-constant size.
Such structures appear frequently in graph-based applications and in object-oriented
designs with associations of high multiplicity.

Such arrays are typically allocated separately on the heap, requiring an additional
pointer indirection. In this section, we analyze different data layout techniques
for inner arrays. We extended I K R A - C P P with additional proxy field types that
implement those layouts.

Applications that iterate over arrays one-by-one or in a fashion that is uniform
among all objects are particularly interesting, because their memory access can be
optimized. While a standard SOA layout does not affect the layout of inner arrays, a
different, more SIMD-friendly layout can group elements by array index and increase
memory coalescing on GPUs for such applications.

Examples To experiment with various inner array layouts, we implemented two
important real-world SMMO applications in I K R A - C P P : Breadth-first search (BFS)
and an agent-based, object-oriented traffic flow simulation. In graphs, vertices often
have a varying number of neighbors and adjacency lists (arrays) are the preferred
representation for BFS on GPUs [77]. The traffic flow simulation exhibits graph-based
features for representing street networks and utilizes array-based data structures
within the simulation logic.

4.3.1 Data Layout Strategies for Inner Arrays

This section gives an overview of seven inner array layout strategies. We focus on
C++-style arrays with fixed size after allocation. Figures 4.11–4.14 illustrate these
strategies visually, using the Vertex class for a breath-first algorithm as an example
(Listing 4.19). This class has two fields: A distance field storing the computed distance
of the vertex from the source vertex and an array of Vertex pointers (adjacency list).
Note that the adjacency lists of different vertices may have different lengths. Therefore,
we also have to store the size of each list/array (num_neighbors).

In the following paragraphs, we describe multiple layout strategies of the adja-
cency list array. We implemented these strategies in I K R A - C P P with additional
proxy field types.

We consider three categories of layout strategies: AOS, SOA and SOA with Array
as Object (i.e., SOA without handling inner arrays specially). In every category, inner
arrays can either be fully inlined, partially inlined or not inlined at all (without inlining).
Whether objects of a class are stored in AOS or SOA depends on the chosen superclass
(IkraBase or IkraSoaBase).

AOS without Inlining (Figure 4.11 (left), Listing 4.20) This is the default data lay-
out that many programmers choose intuitively. Objects are stored as AOS (IkraBase),

4.3. Inner Arrays in a Structure of Arrays 77

L I S T I N G 4 . 1 9 : Data structure of frontier-based BFS in I K R A - C P P

1 class Vertex : public IkraBase<Vertex, 100> { // or: IkraSoaBase<Vertex, 100>
2 public: IKRA_INITIALIZE_CLASS
3 int_ distance = std::numeric_limits<int>::max();
4 ??? /* (some array type) */ neighbors;
5

6 // Constructor can run on host and device.
7 __device__ ___host__ Vertex(int num_neighbors) : neighbors(num_neighbors) {}
8

9 __device__ int num_neighbors() { return neighbors.size(); }
10

11 __device__ void visit(int frontier); // Implementation later...
12 };
13

14 IKRA_DEVICE_STORAGE (Vertex)

v1.distance
v1.num_neighbors
v1.neighbors

v0.distance
v0.num_neighbors
v0.neighbors

Vertex[100]
Vertex*[5]

Vertex*[2]

v0.neighbors[0]
v0.neighbors[1]
v0.neighbors[2]
v0.neighbors[3]
v0.neighbors[4]

v1.neighbors[0]
v1.neighbors[1]

v0.distance
v1.distance

v0.neighbors
v1.neighbors

v0.num_neighbors
v1.num_neighbors

int[100]

int[100]

Vertex**[100]

F I G U R E 4 . 1 1 : No inlining: AOS (left side)
and SOA (right side)

v0.distance
v0.num_neighbors
v0.neighbors[0]

Vertex[100]

v0.distance
v1.distance

v0.num_neighbors
v1.num_neighbors

int[100]

int[100]

v0.neighbors[0]
v1.neighbors[0]

Vertex*[100]

v0.neighbors[1]
v0.neighbors[2]
v0.neighbors[3]
v0.neighbors[4]
v1.distance
v1.num_neighbors
v1.neighbors[0]
v1.neighbors[1]

v0.neighbors[1]
v1.neighbors[1]

Vertex*[100]

v0.neighbors[2]
Vertex*[100]

v0.neighbors[3]
Vertex*[100]

v0.neighbors[4]
Vertex*[100]

Allocated, but unused
(memory waste)

F I G U R E 4 . 1 2 : Full inlining: AOS (left side)
and SOA (middle, right side)

v0.distance
v0.num_neighbors
v0.neighbors[0]

Vertex[100]

v0.distance
v1.distance

v0.num_neighbors
v1.num_neighbors

int[100]

int[100]

v0.neighbors[0]
v1.neighbors[0]

Vertex*[100]

v0.neighbors[1]
v0.neighbors (ext)

v0.neighbors[1]
v1.neighbors[1]

Vertex*[100]

v1.distance
v1.num_neighbors
v1.neighbors[0]
v1.neighbors[1]
v1.neighbors (ext)

v0.neighbors (ext)
v1.neighbors (ext)

Vertex**[100]

v0.neighbors[2]
v0.neighbors[3]
v0.neighbors[4]

nullptr

Vertex*[100]

F I G U R E 4 . 1 3 : Partial inlining: AOS (left
side) and SOA (middle, right side)

v0.distance
v1.distance

v0.num_neighbors
v1.num_neighbors

int[100]

int[100]

v0.neighbors[0]
v0.neighbors[1]

Vertex*[5][100]

v0.neighbors[2]
v0.neighbors[3]
v0.neighbors[4]
v1.neighbors[0]
v1.neighbors[1]

F I G U R E 4 . 1 4 : SOA, array as object

78 Chapter 4. Optimizing Memory Access

L I S T I N G 4 . 2 0 : Notation: AOS without inlining

// Preferred notation:
inlined_array_(Vertex*, 0)

neighbors;

// Alternative 1:
int_ num_neighbors;
field_(Vertex**) neighbors;

// Alternative 2:
field_(std::vector<

Vertex*>) neighbors;

L I S T I N G 4 . 2 1 : Notation: AOS with full inlining

// Preferred notation:
fully_inlined_array_(Vertex*, N)

neighbors;

// Alternative:
int_ num_neighbors;
field_(std::array<Vertex*, N>) neighbors;

i.e., all field values of an object are stored together. Inner arrays are heap-allocated.
This layout is useful if inner arrays have different sizes, because then no memory is
wasted by array inlining. In standard C++, inner arrays can be allocated manually
(using malloc/new) or with a helper class like std::vector<T>.

I K R A - C P P provides a proxy field type inlined_array_(T, 0) which internally
stores a memory pointer to a heap-allocated array and the size of the array. Fields of
this type must be initialized in the constructor with the desired array size (Listing 4.19,
Line 7). I K R A - C P P will then allocate the array with the system/CUDA-wide dy-
namic memory allocator (malloc). Note that the CUDA allocator is slow, so this
implementation is not suitable if the constructor is part of performance-critical code.

Depending on the class structure, compilers may have to add padding to ensure
that all fields are properly aligned. E.g., the location that stores the 64-bit memory
pointer to the inner array must be aligned to a multiple of 64-bit. This is a general
disadvantage of AOS (Section 2.3.3). Note that this layout is identical to “AOS with
Partial Inlining” with an inlining size of zero, but the conditional branch of that layout
strategy is optimized away by the compiler.

AOS with Full Inlining (Figure 4.12 (left), Listing 4.21) This layout strategy still
stores objects as AOS (IkraBase), but inlines inner arrays fully into objects, such
that they can be accessed more efficiently without a pointer indirection. Very small
inner arrays may be able to share cache lines with other fields, and thus benefit cache
utilization.

The downside of this layout is that it potentially wastes memory; all inner arrays
must have the same size, i.e., the largest size among all inner arrays, to be able to
hold all elements. The amount of wasted memory depends on the variance among
inner array sizes.

In standard C++, fully-inlined inner arrays of size N can be declared with
std::array<T, N>. I K R A - C P P provides a proxy field type fully_inlined_array_.

AOS with Partial Inlining (Figure 4.13 (left), Listing 4.22) This layout is a mixture
of the previous two strategies. Up to N inner array elements are inlined into objects,
where N is a compile-time constant. Elements with an index≥ N are stored externally
on the heap. The benefit of this approach is efficient access to the first N elements.
Access to elements on the external storage is as expensive as with “Without Inlining”,
i.e., it requires a pointer indirection. This strategy requires an additional conditional
branch to determine whether an element is stored in the inline storage or on the
external storage. This imposes little overhead on GPUs, which do generally not
execute instructions speculatively.

4.3. Inner Arrays in a Structure of Arrays 79

L I S T I N G 4 . 2 2 : Notation: AOS with partial inlining

inlined_array_(Vertex*, N) neighbors; // Preferred notation
field_(absl::InlinedVector<Vertex*, N>) neighbors; // Alternative

// Data layout is equivalent to, however, much harder to use:
int_ num_neighbors;
field_(std::array<Vertex*, N>) neighbors;
field_(Vertex**) neighbors_other;

L I S T I N G 4 . 2 3 : Notation: SOA without inlining

// Preferred notation:
inlined_array_(Vertex*, 0)

neighbors;

// Alternative 1:
int_ num_neighbors;
field_(Vertex**) neighbors;

// Alternative 2:
field_(std::vector<

Vertex*>) neighbors;

In ordinary C++, inner arrays can be partially inlined with a helper class such as
absl::InlinedVector<T, N>13. I K R A - C P P supports this layout with the previously
mentioned proxy field type inlined_array_(T, N). The second argument N is the
number of inlined array slots. The total array size must be specified during field
initialization.

SOA without Inlining (Figure 4.11 (right), Listing 4.23) This layout is identical to
“AOS without Inlining”, but stores objects as SOA (IkraSoaBase). It has the usual
benefits of SOA-style allocation: First, if not all fields are used all the time, it can
improve cache utilization because those fields will not occupy cache lines. Second, it
allows for efficient loads/stores from/into vector registers if objects with consecutive
IDs are simultaneously accessed (memory coalescing). Third, less memory is wasted
for object padding compared to AOS, because only the SOA arrays themselves must
be aligned to certain byte sizes, but not each object.

With respect to inner arrays, the same advantages and disadvantages as in the
first strategy apply. I K R A - C P P provides a proxy field type inlined_array_(T, 0)
which implements this layout.

SOA with Full Inlining (Figure 4.12 (right), Listing 4.24) This layout is identical
to “AOS with Full Inlining”, but stores objects as SOA (IkraSoaBase). In particular,
inner arrays are also stored in SOA, as if every array slot were a separate field of the
class. There is a separate SOA array for each inner array index.

This layout provides opportunities for vectorized operations and memory coa-
lescing not only for primitive fields but also when accessing inner array elements.
This is possible if objects with consecutive IDs are processed in the same warp and
inner array elements with the same indices are accessed.

Unfortunately, many parallel graph algorithms [132] on GPUs do not benefit
much from additional memory coalescing in this layout. Even though reading the
pointers of an adjacency list can be coalesced, data reads/writes on neighboring
vertices are still uncoalesced, because vertex IDs of neighbors are usually random and
not consecutive (Section 4.3.2).

Similar to “AOS with Full Inlining”, this layout provides more efficient array
access without a pointer redirection but can waste memory. It is supported by I K R A -
C P P as fully_inlined_array_(T, N).

13InlinedVector is part of the Abseil library. See https://github.com/abseil/abseil-cpp

https://github.com/abseil/abseil-cpp

80 Chapter 4. Optimizing Memory Access

L I S T I N G 4 . 2 4 : Notation: SOA with full inlining

// Preferred notation:
fully_inlined_array_(Vertex*, N) neighbors;

// Data layout is equivalent to, however, much harder to use:
int_ num_neighbors;
field_(Vertex*) neighbors_1;
field_(Vertex*) neighbors_2;
/* ... */
field_(Vertex*) neighbors_N;

L I S T I N G 4 . 2 5 : Notation: SOA with partial inlining

// Preferred notation:
inlined_array_(Vertex*, N) neighbors;

// Data layout is equivalent to, however, much harder to use:
int_ num_neighbors;
field_(Vertex*) neighbors_1;
field_(Vertex*) neighbors_2;
/* ... */
field_(Vertex*) neighbors_N;
field_(Vertex**) neighbors_other;

fully_ininlined_array_ is used in both this layout and “AOS with Full Inlining”.
Whether this proxy type stores the inner array as AOS or as SOA depends on the
layout of the class (IkraBase or IkraSoaBase).

SOA with Partial Inlining (Figure 4.13 (right), Figure 4.25) This strategy is identi-
cal to “AOS with Partial Inlining”, but stores objects as SOA (IkraSoaBase). The first
N inner array elements are inlined and stored as SOA, as in the previous strategy.
This layout is supported by I K R A - C P P as inlined_array_(T, N).

ininlined_array_ is used in both this layout and “AOS with Partial Inlining”.
Whether this proxy type stores the inlined inner array slots as AOS or as SOA depends
on the layout of the class (IkraBase or IkraSoaBase).

SOA with Array as Object (Figure 4.14, Listing 4.26) This layout treats inner arrays
as normal C++ objects and does not perform any data layout transformations on
them. There is one SOA array for every field, including inner arrays. This layout
is useful for GPU applications with nested parallelism. If threads with consecutive
IDs simultaneously access consecutive inner array slots, then those accesses can
be coalesced. E.g., this is the case when optimizing BFS with virtual warp-centric
programming [86]. This layout is supported by I K R A - C P P as field_(std::array<T,
N>).

From an inlining perspective, this layout inlines the inner array fully. It could eas-
ily be adapted to partial inlining (field_(absl::InlinedVector<T, N>)) or without
inlining (field_(std::vector<T>)), but we do not analyze such layouts any further
in this work.

L I S T I N G 4 . 2 6 : Notation: SOA with array as object

field_(std::array<Vertex*, N>) neighbors;

4.3. Inner Arrays in a Structure of Arrays 81

Choosing a Layout Strategy Programmers have a variety of layout strategies to
choose from. Which strategy is best depends on the hardware architecture, the data
access patterns of the application and the characteristics of the dataset. Even for
experienced programmers this process can to some degree be a trial and error.

With I K R A - C P P , programmers still have to take all these factors into account,
but switching between strategies is now much easier. As a rule of thumb, we suggest
to start experimenting with a partial inlining size that ensures that 80% of all inner
array elements are inlined.

4.3.2 Performance Evaluation

We evaluated the previously described data layouts with three benchmarks: A syn-
thetic benchmark, a frontier-based BFS implementation and a traffic flow simulation.

We ran all experiments on a machine with an Intel i7-5960X CPU (8x 3.00 GHz),
32 GB main memory, an NVIDIA GeForce GTX 980 GPU (4 GB memory), Ubuntu 16.04
and the nvcc compiler from the NVIDIA CUDA Toolkit version 9.1. This work focuses
on GPU execution, but similar performance effects can be observed on CPUs with a
compiler with good auto-vectorization.

Synthetic Benchmark To isolate the performance effects of array inlining, we cre-
ated a synthetic benchmark (Listing 4.27) with a dummy class containing an int data
field and an int array. The array has between 32 and 64 elements (chosen randomly).
The benchmark adds the data field value to all array elements in a loop, i.e., all inner
array elements are read and written.

Figure 4.15 shows the running time for 262,144 dummy objects. The “Array as
Object” SOA version is more than 30% faster than the AOS version. The fully inlined
SOA version is an order of magnitude faster than the AOS version.

The “SOA (partial)” line shows the running time with various partial inner array
inlining sizes N (x-axis) in SOA layout. For N = 0 (no inlining), the performance
is worse than “Array as Object”. In both cases, the entire inner array is stored in
one block of memory. However, in the former case, the array is located on the heap
and can only be accessed with a pointer indirection, causing a slowdown. Note that,
while “Array as Object” is faster, it wastes a considerable amount of memory.

The performance of partial inlining (SOA) increases with partial inlining sizes,
because inner array accesses can be coalesced. Partial array inlining sizes larger
than 32 do not improve the SOA-mode performance anymore, because, due to warp
divergence caused by differing inner array sizes, those additional inner array accesses
are unlikely to be coalesced.

The performance of partial inlining (AOS) decreases with partial inlining sizes
after 32 because more and more cache entries are blocked by non-existing array slots.

Breadth-first Search BFS is an important and fundamental algorithm in graph
processing. A variety of implementation strategies have been proposed for GPUs,
some based on advanced techniques such as hierarchical queues [128] or virtual
warp-centric programming [86]. The frontier-based BFS algorithm [139] is among the
simplest ones and provides a reasonable speedup compared to CPU execution.

Frontier-based BFS (Listing 4.28) computes the distance of every vertex from
a designated start vertex. At first, the start vertex has distance zero and all other
vertices have distance infinity. The algorithm now proceeds iteratively. In iteration
i, all vertices with distance i (i.e., the frontier) are processed in parallel: For every
vertex in the frontier, all of its neighbors are updated with distance i + 1, unless they

82 Chapter 4. Optimizing Memory Access

AOS (full) SOA (object) SOA (full) SOA (partial) AOS (partial)

0

50

100

0 12 25 38 51 64

ms

F I G U R E 4 . 1 5 : Synthetic benchmark (ms)

0

5

10

15

20

0 1 2 3 4 5 6 7 8 9 10

F I G U R E 4 . 1 6 : Frontier-based BFS (sec.)

L I S T I N G 4 . 2 7 : Source code of synthetic benchmark
__device__ int rand_int(int min, int max) { /* return random int */ }

class DummyClass : public ??? <DummyClass, 262144> {
public: IKRA_INITIALIZE_CLASS
int_ data;
??? (int, ?) arr;

__device__ DummyClass() : data(rand_int(0, 100)), arr(rand_int(32, 65)) {}

__device__ void benchmark() {
// Can the accesses of arr[i] be coalesced?
for (int i = 0; i < arr.size(); ++i) { arr[i] += data; }

}
}; IKRA_DEVICE_STORAGE (DummyClass);

void init_benchmark() { parallel_new<DummyClass>(262144); }
void run_benchmark() { parallel_do<DummyClass, &DummyClass::benchmark>(); }

L I S T I N G 4 . 2 8 : Source code of frontier-based BFS
1 __device__ still_running = false;
2

3 __device__ void Vertex::visit(int frontier) {
4 if (distance == frontier) {
5 for (int i = 0; i < num_neighbors(); ++i) {
6 if (neighbors[i]->distance > frontier + 1) {
7 still_running = true;
8 neighbors[i]->distance = frontier + 1;
9 } // else: Vertex was already visited.

10 }
11 }
12 }
13

14 void run_bfs(Vertex* start_vertex) {
15 // Ikra-Cpp objects can be accessed from host and device.
16 start_vertex->distance = 0;
17

18 // Read/write still_running with cudaMemcpyTo/FromSymbol.
19 for (int iteration = 0; still_running; iteration++, still_running = false) {
20 // Notation: Parameter types (int) must be specified before function pointer.
21 parallel_do<Vertex, int, &Vertex::visit>(iteration);
22 }
23 }

4.3. Inner Arrays in a Structure of Arrays 83

6

8

10

0 1 2 3 4 5 6 7 8

1.4

1.3

1.1

1.0

0.8

GB

Car Ctrl

(A) Cell::incoming

6

8

10

0 5 10 15 20 25

45.9

32.8

19.7

6.6

 MB

(B) Car::path

AOS (partial), Cars

AOS (partial), Controllers

SOA (partial), Cars

SOA (partial), Controllers

AOS (full),
Cars

SOA (object),
Cars

SOA (full),
Cars

AOS (full),
Controllers

SOA (object),
Controllers

SOA (full),
Controllers

Arena
Allocation

Standard
Allocation

F I G U R E 4 . 1 7 : Running time and memory requirement of traffic simulation

already have a smaller/equal distance value. The algorithm terminates if no updates
are performed anymore. BFS is an interesting example for I K R A - C P P because the
adjacency lists are arrays of different sizes.

Figure 4.16 shows the running time of the frontier-based BFS algorithm with differ-
ent layout strategies on the Pennsylvania road network (1,088,092 vertices, 3,083,796
directed edges, avg. degree 2.83) [117]. The graph clearly shows the benefit of SOA
over AOS. The performance of AOS degrades with a growing inlining size, because
more cache entries for non-existing neighbors array slots are wasted. BFS does not
benefit from any additional memory coalescing when inlining inner arrays in SOA
mode (compare “SOA (object)” and “SOA (full)”), because the neighbors accessed in
the inner for loop (Listing 4.28, Line 5) have random (as opposed to consecutive) IDs.
While array reads neighbors[i] can be coalesced, accesses to fields of neighbors[i]
cannot be coalesced. Different optimization techniques can be applied to speed up
such algorithms, most notably virtual warp-centric programming [86], which is a
form of nested parallelism. That optimization would see a speedup from an Array as
Object layout.

Traffic Flow Simulation In Section 7.5, we are developing a complex traffic flow
simulation that implements the Nagel-Schreckenberg model [145]. This implementa-
tion has six array fields in five different classes. These arrays are accessed in most
parallel do-all operations of traffic and we can improve the overall runtime perfor-
mance by optimizing their access14. We consider two inner arrays in this paragraph.

• Cell::outgoing: Read sequentially in a parallel do-all operation of a method
of class Car.

• Car::path: Cleared at the beginning of a Nagel-Schreckenberg iteration, then
filled sequentially and read sequentially in parallel do-all operations of methods
of class Car.

The benefit of an SOA layout over an AOS layout is clearly visible in this bench-
mark (Figure 4.17). Regardless of which inner array inlining strategy is chosen, the
running time spent on processing cars is always significantly lower in SOA (e.g., first
bar vs. second bar). We can observe a similar behavior for traffic controllers.

The benefit of array inlining can be observed best in Subfigure (B) when comparing
the running time of a fully inlined Car::path (third bar) with the one that is stored

14Refer to Section 7.5 for application implementation details.

84 Chapter 4. Optimizing Memory Access

“as object” (second bar). The fully inlined version is 15% faster. This is because our
implementation of the Nagel-Schreckenberg algorithm iterates over the path array in
every thread. Because all cars are processed in order (i.e., thread i processes car with
ID i), memory accesses are coalesced. Furthermore, a slightly better speedup can be
achieved with partial array inlining (orange line), starting from an inlining size of 6.
Accesses to Car::path at indices higher than 6 are unlikely to be coalesced because
very few threads actually access these array slots. We believe that the additional
speedup is due to better cache utilization and prefetching: With partial inlining,
a cache line can contain multiple elements of the same inner array from different
objects.

The lower part of every subgraph shows the memory usage of inner arrays. The
gray part represents inlined allocation (regular fields and inlined slots of inner arrays).
The white part represents external storage (heap allocation). Too much inlining wastes
memory because not all inner arrays are equally large. Recall that the number of
inlined slots of an inner array is the same for every object. On the contrary, inner
arrays of different objects may have different sizes on the external storage.

4.3.3 Conclusion and Related Work

In this section, we presented an overview of various data layout strategies for inner
arrays in a Structure of Arrays layout. Depending on the data access pattern, such
arrays can be split and regrouped by array index to take advantage of memory
coalescing when accessing inner array elements. Since writing and maintaining such
low-level code is tedious, we extended I K R A - C P P with additional proxy types that
store inner arrays in the discussed layouts.

Object inlining has been proposed for Java-like object-oriented languages for
better cache performance and reducing overheads due to allocation and pointer
indirections [51]. Later work applied the idea of data inlining to arrays, which can
simplify address arithmetics of array accesses and eliminate load instructions in the
assembly code [203]. I K R A - C P P applies the same idea to arrays in an SOA layout
and we are seeing similar speedups. However, we inline arrays under simplified
assumptions: Arrays are of fixed size and inlining is controlled manually by the
programmer. Future work could attempt to automate this process.

4.4 Summary

We discussed two global memory access optimizations in this chapter: (a) Kernel
fusion (I K R A - R U B Y) and (b) the Structure of Arrays (SOA) data layout (I K R A -
C P P). These two optimizations improve memory access by (a) reducing the amount
of memory transfer between global memory and GPU registers and (b) improving
memory coalescing and cache performance.

In the remainder of this thesis, our focus will be on I K R A - C P P . In the next
two chapters, we will extend I K R A - C P P with a dynamic memory allocator and a
memory defragmentation system.

85

Chapter 5

Dynamic Memory Allocation with
SOA Performance Characteristics

Dynamic memory management and the ability/flexibility of creating/deleting objects
at any time is one of the corner stones of object-oriented programming. We believe
that poor support for dynamic memory allocation is one of the reasons why many
GPU programmers avoid object-oriented programming entirely.

In this chapter, we present D Y N A S O A R, a CUDA framework for SMMO appli-
cations. D Y N A S O A R is a parallel, lock-free, dynamic memory allocator, combined
with an efficient parallel do-all operation and an embedded C++/CUDA DSL to
enable object-oriented abstractions in an SOA layout. The DSL built on top of I K R A -
C P P and D Y N A S O A R can be seen as I K R A - C P P extended with a dynamic memory
allocator, although with a slightly different notation and syntax.

Contents
5.1 Design Goals . 87

5.1.1 Programming Interface . 88
5.1.2 Memory Access Performance 90
5.1.3 High Density Memory Allocation 91
5.1.4 Parallel Object Enumeration Strategy 91
5.1.5 Scalability . 91

5.2 Architecture Overview . 92
5.2.1 Block Structure . 92
5.2.2 Block Capacity . 93
5.2.3 C++ Data Layout DSL and Object Pointers 94
5.2.4 Block Bitmaps . 95
5.2.5 Object Slot Allocation . 96
5.2.6 Object Deallocation . 97
5.2.7 Parallel Object Enumeration: parallel_do 98

5.3 Optimizations . 99
5.3.1 Hierarchical Bitmaps . 100
5.3.2 Reducing Thread Contention 103
5.3.3 Efficient Bit Operations . 105

5.4 Concurrency and Correctness . 106
5.4.1 Object Slot Reservation/Freeing 106
5.4.2 Safe Memory Reclamation with Block Invalidation 107
5.4.3 Object Allocation . 109
5.4.4 Object Deallocation . 109
5.4.5 Correctness of Hierarchical Bitmap Operations 111

86 Chapter 5. Dynamic Mem. Allocation with SOA Performance Characteristics

5.5 Related Work . 113
5.6 Benchmarks . 115

5.6.1 Performance Overview . 117
5.6.2 Space Efficiency . 117
5.6.3 Detailed Analysis of wa-tor 119
5.6.4 Raw Allocation Performance 120
5.6.5 Parallel Object Enumeration 120

5.7 Conclusion . 121

Outline This chapter is organized as follows. Section 5.1 describes D Y N A S O A R’s
design goals and its programming interface, an extension of SMMO. Section 5.2
presents D Y N A S O A R’s high-level design and architecture. Section 5.3 describes
optimizations that improve the runtime performance of (de)allocate operations. Sec-
tion 5.4 describes how D Y N A S O A R handles concurrency and argues for its cor-
rectness. Section 5.5 compares D Y N A S O A R with other dynamic GPU memory
allocators. Section 5.6 presents a performance evaluation with synthetic benchmarks
and a variety of SMMO applications, which are described in more detail in Chapter 7.
Finally, Section 5.7 concludes this chapter.

Overview Dynamic memory management on GPUs is a hard problem. Due to the
massive parallelism and data-parallel execution of GPUs, the number of simultaneous
(de)allocations is significantly higher than on other parallel hardware architectures.
Massively parallel SIMD allocations also follow patterns different from CPU/MIMD
allocations: Most memory requests are small in size1 and due to mostly regular
control flow, many allocations have the same byte size. In recent years, fast, dynamic
memory allocators have been developed for GPUs [175, 88, 201, 191, 12, 174, 55, 71]
and demanded by application developers [216, 176, 122, 155, 166, 120, 121], showing
a growing interest in better programming models and abstractions that have long
been available on other platforms. However, while these allocators often provide
good (de)allocation performance, they miss key optimizations for structured data
(such as SOA), leading to poor data locality and memory bandwidth utilization when
accessing allocated memory.

In contrast to state-of-the-art allocators, D Y N A S O A R does not only control the
data placement/layout through its memory allocator, but also data access through
its do-all operation. In SMMO applications, D Y N A S O A R achieves superior perfor-
mance compared to state-of-the-art allocators due to three main optimizations.

• Objects are stored in a Structure of Arrays (SOA) data layout, a best practice
for structured data in SIMD programs, making usage of allocated memory more
efficient when used in conjunction with D Y N A S O A R’s do-all operation.

• Memory fragmentation caused by dynamic object allocation/deallocation is
minimized with hierarchical bitmaps. This is important because fragmentation
diminishes the benefit of the SOA layout (Section 6) and adversely affects cache
performance [75].

1If thousands of threads were to request large memory allocations, a GPU would run out of memory
immediately.

5.1. Design Goals 87

• Object allocation and deallocation performance is optimized with a number
of low-level techniques. For example, D Y N A S O A R combines allocation re-
quests within SIMD thread groups (warps) to reduce the number of memory
accesses during allocations [88] and takes advantage of efficient bitwise opera-
tions/integer intrinsics.

Contributions This chapter makes the following contributions.

• The design and implementation of D Y N A S O A R , a dynamic object allocator
for CUDA; with fast (de)allocation and a parallel do-all operation. To the best of
our knowledge, D Y N A S O A R is the first dynamic allocator that stores objects
in an SOA data layout.

• An extension of the SOA data layout to dynamic object sets and subclassing.
While in I K R A - C P P , the maximum number of objects of each class had to be
specified as a compile-time constant, objects can be freely allocated in D Y N A -
S O A R without such restrictions.

• A concurrent, lock-free, hierarchical bitmap data structure, based on atomic
operations and retry loops.

• A comparison and evaluation of existing state-of-the-art GPU memory alloca-
tors on SMMO applications.

Publications This chapter is in part based on the following papers.

• Matthias Springer, Hidehiko Masuhara. “DynaSOAr: A Parallel Memory Al-
locator for Object-oriented Programming on GPUs with Efficient Memory
Access.” In: Proceedings of the 33rd European Conference on Object-oriented Pro-
gramming. ECOOP 2019. Leibniz-Zentrum für Informatik, Dagstuhl Publishing,
2019, LIPIcs, Vol. 134, pp. 17:1–17:37. doi:10.4230/LIPIcs.ECOOP.2019.17.

5.1 Design Goals

D Y N A S O A R is a CUDA framework for SMMO applications and consists of three
parts.

Memory Allocator We developed a dynamic memory allocator that provides new/
delete operations in GPU code and stores objects in an SOA data layout. The
main task of the allocator is to decide where to store each field value of each
object on the heap.

Data Layout DSL We developed an embedded C++ DSL to support OOP abstrac-
tions while storing objects in a custom layout. We could alternatively implement
D Y N A S O A R in a language that allows programmers to specify custom data
layouts (e.g., Shapes [65] or ispc [152]), but such languages have limited GPU
support.

Parallel Do-All We developed an object enumeration strategy for SMMO applica-
tions that achieves efficient access of allocated memory on SIMD architectures.
By controlling memory allocation and memory access, applications can achive
better performance with D Y N A S O A R than with other state-of-the-art alloca-
tors, which are only concerned with memory allocation.

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.17

88 Chapter 5. Dynamic Mem. Allocation with SOA Performance Characteristics

D Y N A S O A R’s DSL builds on top of I K R A - C P P’s embedded C++ DSL for
object-oriented programming with SOA layout (Section 4.2). Its purpose is to make
D Y N A S O A R easier to use for programmers. This chapter is mainly about the
memory allocator and the parallel do-all operation.

5.1.1 Programming Interface

In contrast to general memory allocators, D Y N A S O A R is an object allocator. The
types (classes/structs) that can be allocated must be specified at compile time. D Y N A -
S O A R provides five basic operations. The operations for object enumeration follow
the I K R A - C P P API (Section 3.2.2), but are implemented differently and do not sup-
port host-side execution. All operations except for parallel_do and parallel_new
are device functions that can only be called from GPU code.

• new(d_allocator) T(args...): Allocates a new object of type T and returns a
pointer to the object. The placement new notation [18] is a common C++ pattern
for arena allocation and d_allocator is the allocator/arena in which the object
is allocated.

• destroy(d_allocator, ptr): Deletes an object with pointer ptr, assuming
that the object was allocated with d_allocator2.

• HAllocatorHandle::parallel_do<S, &T::func>(args...): Launches a GPU
kernel that runs a member function T::func for all objects of type S and sub-
types3 existing at launch time (parallel do-all), where S <: T. T::func may allo-
cate new objects, but they are not enumerated by this parallel do-all. T::func
may deallocate any object of different type U 6= S, but this is the only object of
type S it may deallocate (delete itself). This is to avoid race conditions.

• HAllocatorHandle::parallel_new<T>(n, args...): Launches a GPU kernel
that instantiates n objects of type T. This operation calls the constructor of T in
parallel with an object index (between 0 and n) as first argument, followed by
args.... T must have a suitable constructor.

• DAllocatorHandle::device_do<S, &T::func>(args...): Runs a member func-
tion T::func for all objects of type S in the current GPU thread, where S <: T.
Can only be used inside of a parallel_do or a manually launched GPU kernel.
This is a sequential for-each loop. It is typically used for processing all pairs of
objects (e.g., in n-body simulations).

Listing 5.1 shows parts of an implementation of an n-body simulation with colli-
sions to illustrate D Y N A S O A R’s API and DSL (full example in Section 7.2).

Data Layout DSL Similar to I K R A - C P P , programmers must define their classes
with our data layout DSL. Through this DSL, D Y N A S O A R can programmatically
reflect on the classes/fields that are defined in an application, somewhat similar to
the Java Reflection API or metaobject protocols [31].

Before the actual application code begins, programmers must pre-declare all
classes (Line 3) and define an allocator type (Line 4). Every allocator type is a template
instantiation of SoaAllocator. The first template argument is the maximum number

2There is no placement delete syntax, so it is a common pattern to use a separate destroy function [178].
3To avoid branch divergence, we launch a separate kernel for every type.

5.1. Design Goals 89

L I S T I N G 5 . 1 : D Y N A S O A R API Example: n-body
1 #include "dynasoar.h"
2

3 class Body; // Pre-declare all classes. This simple example has only one class.
4 using AllocatorT = SoaAllocator</*max_num_obj=*/ 16777216, /*T...=*/ Body>;
5 __device__ DAllocatorHandle<AllocatorT> d_allocator;
6

7 class Body : public AllocatorT::Base { // Can subclass other user-defined class.
8 public:
9 // Pre-declare all field types. DynaSOAr uses these to compute the size of blocks.

10 declare_field_types(Body, float /*pos_x_*/, float /*pos_y_*/,
11 /* ... */, bool /*was_merged_*/)
12 private:
13 // Declare fields with proxy types but use like normal C++ fields (as in Ikra-Cpp).
14 Field<Body, 0> pos_x_; // Position X
15 Field<Body, 1> pos_y_; // Position Y
16 /* other fields omitted... */
17 Field<Body, 9> was_merged_; // Was this body merged into another one?
18

19 public:
20 __device__ Body(float pos_x, float pos_y, float vel_x, float vel_y, float mass)
21 : pos_x_(pos_x), pos_y_(pos_y), vel_x_(vel_x), vel_y_(vel_y), mass_(mass) {}
22

23 // This constructor is invoked by parallel_new.
24 __device__ Body(int id) : Body(/*pos_x=*/ random_float(0, 1), /*...*/) {}
25

26 __device__ void apply_force(Body* other) {
27 if (other != this) {
28 float dx = pos_x_ - other->pos_x_; float dy = pos_y_ - other->pos_y_;
29 float dist = sqrt(dx*dx + dy*dy);
30 float F = kGravityConstant * mass_ * other->mass_ / (dist * dist);
31 other->force_x_ += F * dx / dist; other->force_y_ += F * dy / dist;
32 }
33 }
34

35 __device__ void step_1_compute_force() {
36 force_x_ = force_y_ = 0.0f;
37 d_allocator->device_do<Body, &Body::apply_force>(this);
38 }
39

40 __device__ void step_2_move(float dt) {
41 vel_x_ += force_x_ * dt / mass_; vel_y_ += force_y_ * dt / mass_;
42 pos_x_ += dt * vel_x_; pos_y_ += dt * vel_y_;
43 }
44

45 __device__ void step_6_delete_merged() {
46 if (was_merged_) { destroy(d_allocator, this); }
47 }
48 };
49

50 int main() {
51 // Create new allocator. This will allocate a large buffer ("heap") on the GPU.
52 auto* h_allocator = new HAllocatorHandle<AllocatorT>();
53 // Allocate 65536 new bodies, randomly initialized.
54 h_allocator->parallel_new<Body>(65536);
55 for (int i = 0; i < kIterations; ++i) {
56 h_allocator->parallel_do<Body, &Body::step_1_compute_force>();
57 h_allocator->parallel_do<Body, &Body::step_2_move>(/*dt=*/ 0.5);
58 /* some steps omitted... */
59 h_allocator->parallel_do<Body, &Body::step_6_delete_merged>();
60 }
61 delete h_allocator; // Deallocate buffer and all allocations within.
62 }

90 Chapter 5. Dynamic Mem. Allocation with SOA Performance Characteristics

of objects of the smallest type, which indirectly defines the heap size, as described in
detail later. The other template arguments list all types that are under control of the
allocator (variadic template). This design imposes some restrictions with respect to
separate compilation: While different compilation units can be developed/compiled
separately and then linked together in C++, the compilation unit containing the
D Y N A S O A R memory allocator requires definitions of all classes/structs that should
be dynamically allocated with D Y N A S O A R . However, this is a minor issue at the
moment, since GPU applications rarely use separate compilation.

All user-defined classes/structs must in some way inherit from a special class
AllocatorT::Base; either as a direct subclass or by inheriting from a class that already
inherits from that class. Fields types must be pre-declared (Line 10) and then declared
with proxy types (Lines 14–17).

Class Inheritance In contrast to I K R A - C P P , a user-defined class can inherit from
another user-defined class that is managed by the allocator. Multiple inheritance is
not supported at the moment. A class can be marked as abstract by defining a static
field static const bool kIsAbstract = true; after the field pre-declarations.

Programmers can downcast object pointers with the cast<T>() member function
defined by AllocatorT::Base. This function is similar to C++ dynamic_cast<T*>
(ptr); it performs a dynamic type check and returns nullptr if the object is not of
runtime type T.

The n-body simulation example in this chapter does not utilize class inheritance,
but Chapter 7 contains a number of source code examples with class inheritance.

5.1.2 Memory Access Performance

The main insight of our work is that optimizing only for fast (de)allocations is not
enough. Optimizing the access of allocated memory can result in much higher
speedups, because device (global) memory access is the biggest bottleneck of memory-
bound GPU applications:

Latency Global memory access instructions have a very high latency at around 400–
800 clock cycles, compared to arithmetic instructions at around 6–24 cycles.
Programmers can hide latency with high occupancy [193] (i.e., running many
threads).

Memory Bandwidth The global memory bandwidth is a limiting factor. Peak mem-
ory transfer rates can be achieved only with memory coalescing: When the threads
in a GPU application simultaneously access different memory addresses, the
GPU coalesces accesses from the same SIMD thread group (warp in CUDA, ev-
ery 32 consecutive threads) into one physical transaction if the addresses are on
the same 128-byte cache line [94]. However, if threads access data on multiple
cache lines (e.g., non-contiguous, spread-out addresses), more transactions are
needed4, which reduces transfer rates significantly. The CUDA Best Practices
Guide puts a high priority note on coalesced memory accesses [36].

Caches Hits in the L1/L2 cache are served much faster (less latency, memory band-
width pressure) than global memory loads. Field reordering and structure
splitting are common techniques for increasing the number of hot fields in
cache [32].

4This is similar to vectorized loads, but coalescing is performed at runtime by the hardware.

5.1. Design Goals 91

po
s_

x 1
po

s_
x 2

po
s_

x 3

0x001000 0x008000

po
s_

x 4
po

s_
x 5

po
s_

x 6
po

s_
x 7

po
s_

x 8

...

po
s_

x 1
3

po
s_

x 1
4

po
s_

x 1
5

po
s_

x 1
6

...
For illustration purposes, we assume:
• Warp size: 4 threads (instead of 32 threads)
• Vector length: 32 bytes (instead of 128 bytes)

(b) Clustered Layout with Structure Split: 6 memory transactions required

po
s_

x 1
7

po
s_

x 1
8

po
s_

x 1
9

po
s_

x 2
0

po
s_

x 2
1

po
s_

x 2
2

po
s_

x 2
3

po
s_

x 2
4

...

po
s_

x 1
po

s_
x 2

po
s_

x 3
po

s_
x 4

po
s_

x 5
po

s_
x 6

po
s_

x 7
po

s_
x 8

po
s_

x 9
po

s_
x 1

0

po
s_

x 1
1

po
s_

x 1
2

po
s_

x 1
3

po
s_

x 1
4

po
s_

x 1
5

po
s_

x 1
6

...

(a) SOA Layout (Static Structure Split): 6 memory transactions required

po
s_

x 1
7

po
s_

x 1
8

po
s_

x 1
9

po
s_

x 2
0

po
s_

x 2
1

po
s_

x 2
2

po
s_

x 2
3

po
s_

x 2
4

...

0x001000

po
s_

x 9
po

s_
x 1

0

po
s_

x 1
1

po
s_

x 1
2

... ...

0x00A400 0x0FD800

means coalesced (vector) access:

Requires only 1 transaction if simultaneously accessed
by threads from the same warp, i.e.:
threads { ti, ti+1, ti+2, ti+3 | i mod 4 = 0 }

F I G U R E 5 . 1 : Data layouts: SOA layout and D Y N A S O A R’s SOA-style layout

D Y N A S O A R achieves good memory access performance with an SOA-style
data layout: First, SOA increases memory coalescing because values of the same field,
which are accessed simultaneously in SIMD, are stored together. Second, SOA is an
extreme form of structure splitting and can improve cache utilization because fields
that are not accessed do not occupy cache lines.

5.1.3 High Density Memory Allocation

An SOA data layout (Figure 5.1a) achieves good memory performance but is not
suitable for dynamic allocation: The size of SOA arrays is fixed and new allocations
cannot be accommodated once all array slots are occupied.

D Y N A S O A R’s design is based on the insight that a clustered layout with SOA-
style structure splitting (Figure 5.1b) has the same cache/vector performance char-
acteristics as an SOA layout, if scalar values are stored in dense clusters of at least
128 bytes (vector and cache line size) and clusters are aligned to 128 bytes, regardless
of where the clusters themselves are located in memory.

Figure 5.1 illustrates the number of required memory transactions for reading
24 floats simultaneously. For illustration purposes, we assume a warp size (vector
length) of 4 instead of 32. Both layouts require the same number memory transactions
because accesses can be equally well coalesced/vectorized in both layouts. This
shows that a perfect SOA layout is not required for perfect memory coalescing. This
insight is exploited by D Y N A S O A R’s allocation policy and gives D Y N A S O A R

more freedom in the placement of allocations.

5.1.4 Parallel Object Enumeration Strategy

Current GPUs follow the Single-Instruction Multiple-Threads (SIMT) execution
model. Intuitively, every SIMD lane corresponds to a thread and every group of
consecutive 32 threads forms a warp which executes an instruction on a vector register.

To benefit from memory coalescing, the threads of a warp must access addresses
on the same 128-byte L1 cache line. In an SOA data layout, this is achieved when the
threads of a warp read/write the same fields of objects with contiguous indices at the
same time. Intuitively, threads in a warp should process neighboring objects.

In D Y N A S O A R , programmers invoke GPU kernels with parallel do-all opera-
tions. These operations must (a) spawn enough GPU threads to hide latency, but not
too many to avoid inefficiencies, and (b) assign objects to threads in such a way that
memory access is coalesced.

5.1.5 Scalability

Memory allocations require some sort of synchronization between threads to prevent
collisions, i.e., two threads allocating the same memory location. To avoid collisions,
some allocators such as Cilk [22] and Hoard [19] utilize private heaps, but such

92 Chapter 5. Dynamic Mem. Allocation with SOA Performance Characteristics

designs can lead to high memory consumption (blowup) [19] and are infeasible on
massively parallel architectures with thousands of threads.

State-of-the-art GPU allocators such as ScatterAlloc [175] and Halloc [7] reduce
collisions with hashing, which scatters allocations almost randomly in the heap.
This would render an SOA layout useless and defeat one of D Y N A S O A R’s main
optimizations.

With such design restrictions, D Y N A S O A R is bound to have less efficient allo-
cations than other allocators. However, as we show throughout this chapter, D Y-
N A S O A R can more than make up for slow allocations with more efficient access of
allocated memory.

False Sharing Previous CPU memory allocator designs emphasize mechanisms for
reducing false sharing, which can degrade performance [19]. A memory segment A is
falsely shared if it is brought into a processor cache because it happens to be located
on the same cache line as another memory segment B that is actually accessed. If
caches are coherent, the entire cache line is invalidated if another processor modifies
A, even though A is never read or written by the original processor.

False sharing is not an issue on GPUs, because L1 caches are not coherent. Pro-
grammers must use the volatile keyword or atomic operations to enfore a read or
write to the shared L2 cache or global memory.

5.2 Architecture Overview

D Y N A S O A R manages a single, large heap in global memory on device. The heap
is divided into M blocks and every block has the same number of bytes. M and the
size of each block are compile-time constants that are calculated based on the set of
classes that are under control of the allocator (template arguments to SoaAllocator),
as described below.

A block contains only objects of the same type (class/struct), stored in SOA data
layout (Figure 5.2). Once a block is initialized (allocated) for a certain type, only objects
of that type can be stored in that block until the block is deallocated.

The maximum number of objects in a block (block capacity) depends on its type,
because structs/classes may have different sizes. To improve clustering, D Y N A -
S O A R allocates new objects in already existing, non-full blocks (fast path). We call
such blocks active, because they participate in allocations (Figure 5.3). If no active
block could be found, a new block is allocated and becomes active (slow path).

5.2.1 Block Structure

Every block has two 64-bit object bitmaps: An object allocation bitmap and an object
iteration bitmap. The allocation bitmap tracks allocated slots in the block. The iteration
bitmap is used for object enumeration and overwritten with the allocation bitmap
before every parallel do-all operation. Its purpose is to ensure that objects that were
created during a parallel do-all operation are not enumerated by the same parallel
do-all operation; that would a race condition.

The type identifier is a unique ID for the type T of a block. The remainder of the
block is occupied by padding and the data segment, storing 1 ≤ NT ≤ 64 objects in
SOA layout. The data segment begins with SOA arrays for inherited fields and ends
with SOA arrays of newly introduced fields.

5.2. Architecture Overview 93

Spring Node PullNode (free) (free) Node...

heap: array of M blocks

...

NodeBase*[64] Spring::n1
NodeBase*[64] Spring::n2
float[64] Spring::initial_length
float[64] Spring::stiffness
float[64] Spring::max_force
int[64] Spring::bfs_distance

object allocation bitmap

0x01 type id + padding

data segment
(SOA arrays)
incl. inherited fields

all blocks have same size (bytes)

bit for object slot

0x03

Node (free)

Spring*[3][46] NodeBase::springs
float[46] NodeBase::pos_x
float[46] NodeBase::pos_y
float[46] Node::vel_x
float[46] Node::vel_y
float[46] Node::mass

always 64-bit bitmaps ...

... but smaller arrays

...
free

...
allocated[Node]

...
active[Node]

...
allocated[PullNode]

...
active[PullNode]

...
allocated[Spring]

...
active[Spring]

block (multi)state bitmaps:
(2 per type + 1 global, M bits per bitmap)

(no bitmaps for abstract class NodeBase)

...

...

...object iteration bitmap

slot just allocated

This block is active
(i.e., not entirely full)

This block is inactive
(i.e., entirely full)

F I G U R E 5 . 2 : Example: Heap layout for an FEM simulation (Section 7.4) of a crack in a
composite material. The heap is divided into M blocks of equal size. Every block has the
same structure: an allocation bitmap, an iteration bitmap, and a type identifier, followed by a

data segment storing objects in SOA layout.

free
(uniniti-
alized)

allocated[T]
+ active[T] free

(invali-
dated)

allocated[T]

init block

dealloc,now empty

init block

dealloc

alloc,
now full

dealloc
alloc

F I G U R E 5 . 3 : Block state transitions. At first, blocks
are in an uninitialized state. As part of allocation,
new active blocks may be initialized (allocated). Ac-
tive blocks become inactive when they are full. In-
active blocks become active again an object is deal-
located. Active blocks are invalidated when their
last object is deallocated. Invalidated blocks can be
reinitialized (to any type) and are handled similar to

uninitialized blocks.

Slots are marked as (de)allocated with atomic AND/OR operations that change a
single bit of the object allocation bitmap. Based on their return value5, we know ...

• ... if an allocation was successful or another thread was faster allocating the
same slot.

• ... if a particular allocation filled up a block (i.e., allocated the last slot).

• ... if a particular deallocation emptied a block (i.e., deallocated the last slot).

If a thread filled up a block or emptied a block, it is that thread’s responsibility
to update the other internal data structures. This is a common pattern in lock-free
designs [143]. Note that every block has the same byte size and structure; e.g.,
the bitmaps are always at the same offset. This is an important property for the
correctness of our (de)allocation algorithms.

5.2.2 Block Capacity

The capacity of a block (maximum number of objects) depends on the size (bytes) of
the type of objects in the block. If D Y N A S O A R manages objects of types T1, T2, ...,
Tn and s = argmini∈1...n size(Ti) is the index of the smallest type, then the capacity NT
of a block of type T is determined as follows.

5An atomic operation returns the value in memory before modification.

94 Chapter 5. Dynamic Mem. Allocation with SOA Performance Characteristics

...

Spring*[3][?] NodeBase::springs
float[?] NodeBase::pos_x
float[?] NodeBase::pos_y

?

offsetNodeBase::pos_y = sizeof(Spring*[3]) + sizeof(float) = 28

(maybe additional SOA arrays of subclasses)

...

...

float dist(NodeBase* p1, NodeBase* p2) {
 float dx = p1->pos_x - p2->pos_x;
 float dy = p1->pos_y - p2->pos_y;
 return sqrt(dx*dx + dy*dy);
}

Object slot ID (bits 0-5): 8
Block address (bits 6-49): 0xb01fc0000
Block capacity (bits 50-55): 46
Type ID (bits 56-63): 3

Block capacity

Physical address?

...

heap

...?

sizeof(Block)

NodeBase
or subclass

Field<NodeBase, 2>0x03b8000b01fc0008

F I G U R E 5 . 4 : Object pointer ex-
ample. The static type of p2 is
NodeBase*. The corresponding block
has SOA arrays for NodeBase fields
and for the additional fields of the
runtime type of p2. The size of those
arrays is not statically known and de-

pends on the runtime type of p2.

NT =

⌊
64 · size(Ts)

size(T)

⌋
(block capacity)

According to this formula, a block of the smallest type Ts has capacity 64. This is
why the bitmaps within a block have 64 bits. Given a fixed heap size, the size of Ts
determines the block size in bytes and thus the number of blocks M.

M =
heap size (bytes)

size of block of type Ts (bytes)
(block capacity)

In our current implementation, programmers specify the size of the heap not in
bytes but in terms of the number of objects of the smallest type Ts (first template
argument of SoaAllocator). This number must be a multiple of 64. This is merely an
implementation detail and will change in future versions of D Y N A S O A R.

Very Small/Large Object Sizes As soon as a type T is more than twice as big as
Ts, the benefit of the SOA layout is starting to fade away for T, because the number
of objects in such a block NT will be smaller than 32. However, assuming 32-bit
scalar types, the maximum amount of memory coalescing can only be achieved with
vector loads (cluster sizes) of 32 values (Section 2.1.5). Moreover, D Y N A S O A R

cannot handle cases in which a type is more than 64 times bigger than the smallest
type. In reality, these limitations proved to be insignificant. None of our benchmarks
experienced a slowdown due to unfavorable block sizes.

5.2.3 C++ Data Layout DSL and Object Pointers

Field access is simple in most object-oriented systems: Given an object pointer, which
is a memory location, a field value is stored at a fixed offset from the memory location.

In D Y N A S O A R, an object pointer is not a memory location, but a combination
of various components (fake pointer), similar to global references in Shapes [65]. Upon
field access, the D Y N A S O A R DSL transparently converts object pointers to memory
locations, without breaking C++’s OOP abstractions. We follow the implementation
strategy of I K R A - C P P , where fields are declared with proxy types Field<B, N>,
which can be implicitly converted to T& values [81], where T is the N-th predeclared
field type of B. This conversion is defined by our DSL and computes the actual,
physical memory location within a data segment.

Fake pointers in D Y N A S O A R are different from fake pointers in I K R A - C P P .
They do not just encode an object ID, but four different components. A D Y N A S O A R

object pointer (Figure 5.4) is based on the address of the block in which the object

5.2. Architecture Overview 95

is located. All blocks are aligned to 64 bytes, so we can store the object slot ID in
the 6 least significant bits6. Since recent GPU architectures have at most 24 GB of
memory and no virtual memory, only the 35 least significant bits are used in memory
addresses and the remaining 29 bits are always zero7. We store additional information
in these bits: The 8 most significant bits store the type identifier of the class type for
fast instance-of checks. The next 6 bits store the capacity of the block. The remaining
15 bits are effectively not utilized at the moment. Note that, while C++ stores runtime
types with a vtable pointer at the beginning of an object, we store runtime type
information in unused pointer bits.

Field Access While in most object-oriented systems, runtime type information is
only required for virtual function calls, D Y N A S O A R requires the block capacity
(a property of the runtime type!) also for field accesses, because SOA array offsets
within the data segment depend on it.

For example, p2 in Figure 5.4 is statically known to be of type NodeBase*, but the
block capacity (size of SOA arrays) depends on the runtime type, which can be any
subclass of NodeBase. Those subclasses can have different block capacities. The size
of SOA arrays and the object slot ID are required to compute the physical location of
p2->pos_y based on the block address, so we store both inside object pointers.

L I S T I N G 5 . 2 : Field address computation
1 // Impl. conv. operator: E.g., convert Field<NodeBase, 2> to float& in Figure 5.4.
2 // BaseType : N-th predeclared type in B (within declare_field_types).
3 template<typename B, int N>
4 Field<B, N>::operator BaseType &() {
5 int offset = ...; // Computed with templ. metaprog. offsetB::fieldname in Figure 5.4.
6 auto obj_ptr = reinterpret_cast<uint64_t>(this) - N;
7 // Bits 0-49 and clear 6 least significant bits.
8 auto* block_address = reinterpret_cast<char*>(obj_ptr & 0x3FFFFFFFFFFC0);
9 int obj_slot_id = obj_ptr & 0x3F; // Bits 0-5

10 int block_capacity = (obj_ptr & 0xFC000000000000) >> 50; // Bits 50-55
11 auto* soa_array = reinterpret_cast<BaseType *>(
12 block_address + field_offset * block_capacity);
13 return soa_array[obj_slot_id];
14 }

This computation (Listing 5.2), along with bit-shifting and bit-AND operations
for extracting all components from a fake object pointer, is performed on every field
read/write. Compilers may eliminate redundant computations of multiple accesses
with peephole optimizations, but field accesses still require more complex arithmetics
compared to an AOS layout. This overhead may seem large, but arithmetic operations
are much faster than memory access, even in case of an L2 cache hit. Overall, the
performance benefit of SOA is much larger than the address computation overhead.

5.2.4 Block Bitmaps

To find blocks or free memory quickly during object enumeration or object allocation,
D Y N A S O A R maintains three bitmaps of size M, where M is the number of blocks
on the heap.

6Recall that blocks never have more than 64 objects, so 6 bits are enough.
7We experimentally verified this on NVIDIA Maxwell and NVIDIA Pascal.

96 Chapter 5. Dynamic Mem. Allocation with SOA Performance Characteristics

• The free block bitmap indexes block locations that are not yet allocated. This
bitmap is used to determine where new blocks are allocated. Bit i is 1 iff block i
is free (uninitialized or invalidated). Initially, every bit is 1.

• There is one block allocation bitmap for every type T. That bitmap indexes blocks
of type T and is used for enumeration of all objects. Blocks of subclasses are not
included in bitmaps of the superclass. Initially, every bit is 0.

• There is one active block bitmap for every type T, indexing allocated, non-full
blocks. If a bit is 1, then the same bit in the block allocation bitmap must also be
1. This bitmap is used to find a block in which a new object can be allocated.
Initially, every bit is 0.

Due to concurrent (de)allocations, block bitmaps cannot be kept consistent with
the actual block states all the time, as indicated by object allocation bitmaps and type
identifiers of blocks. However, we designed our algorithms in such a way that they
can handle such inconsistencies and keep block states and block bitmaps eventually
consistent (Section 5.4).

5.2.5 Object Slot Allocation

When a new object is created, D Y N A S O A R allocates memory and runs the con-
structor on the object pointer. Algorithm 1 shows how memory is allocated. This
algorithm runs entirely on the GPU and is completely lock-free.

D Y N A S O A R tries to allocate memory in an already existing, active block. If no
block could be found, it first initializes a new block at a location that is known to be
free (slow path). The state of the new block is allocated and active, so that the new block
can also be found by other threads.

Once a block was selected, an object slot is reserved by atomically finding and
flipping a bit from 0 to 1 in the object allocation bitmap (details in Algorithm 7). Based
on the return value of the atomic operation, we know if this operation just allocated
the last slot. In that case, the block is marked as inactive (Line 12).

Since the allocator is used concurrently by many threads, we may select a block
(Line 2) that is full or no longer exists when attempting to reserve an object slot
(Line 8). If the block is full, object reservation fails and we retry by selecting a new
active block. If the block no longer exists, we have to consider three cases8.

1. There is currently no block at this location. In this case, object reserveration
fails, because all slots are marked as allocated in the object allocation bitmap
when a block is deleted. We call this process block invalidation (Section 5.4.2).

2. The block was deleted and a new block of the same type was allocated at the
same location. Such ABA problems are harmless and allocation will succeed.

3. The block was deleted and there is now a block of different type at the same
location. At this point, the constructor has not run yet, so no data in the data
segment was corrupted. This is because all blocks have the same structure,
i.e., the object allocation bitmap is always at the same location. We can safely
rollback the allocation by running the deallocation routine.

8We give a more systematic correctness argument in Section 5.4.

5.2. Architecture Overview 97

Algorithm 1: DAllocatorHandle::allocate<T>() : T* GPU

1 repeat . Infinite loop if OOM
2 bid← active[T].try_find_set(); . Find and return the position of any set bit.
3 if bid = FAIL then . Slow path
4 bid← free.clear(); . Find and clear a set bit atomically, return position.
5 initialize_block<T>(bid); . Set type ID, init. obj. alloc. bitmap. See Alg. 10.
6 allocated[T].set(bid);
7 active[T].set(bid);

8 alloc← heap[bid].reserve(); . Reserve an object slot. See Alg. 7.
9 if alloc 6= FAIL then

10 ptr← make_pointer(bid, alloc.slot);
11 t← heap[bid].type; . Volatile read
12 if alloc.state = FULL then active[t].clear(bid) ;
13 if t = T then return ptr ;
14 deallocate<t>(ptr); . Type of block has changed. Rollback.

15 until false;

Algorithm 2: DAllocatorHandle::deallocate<T>(T* ptr) : void GPU

1 bid← extract_block(ptr);
2 slot← extract_slot(ptr);
3 state← heap[bid].deallocate(slot); . Opposite of slot reservation. See Alg. 8.
4 if state = FIRST then . Deallocated first object of full block.
5 active[T].set(bid);
6 else if state = EMPTY then . Deallocated last object of block.
7 if invalidate(bid) then . Try to invalidate block. See Alg. 11.
8 t← heap[bid].type;
9 active[t].clear(bid);

10 allocated[t].clear(bid);
11 free.set(bid);

5.2.6 Object Deallocation

When an object is deallocated, D Y N A S O A R first determines its runtime type T from
the fake object pointer. Then, D Y N A S O A R runs the C++ destructor and deallocates
the memory as shown in Algorithm 2.

We first determine block and object slot IDs from the object pointer and deallocate
the object slot by atomically flipping its bit in the object allocation bitmap from 1 to 0.
Based on the return value of the atomic operation we know the fill level of the block
right before the deallocation.

If this deallocation freed the first object slot (block previously full), we mark the
block as active (Line 5), so that other threads can find it and allocate objects in it.

If this deallocation freed the last object slot (block now empty), we attempt to
delete the block (Lines 7–11). Safe memory reclamation is known to be difficult in
lock-free algorithms [141]. The main problem is that one or more contending threads,
in the course of their lock-free operations, may have selected the block that we are
about to delete for new allocations.

To avoid the block from being modified by other threads, we invalidate it (Sec-
tion 5.4.2). Block invalidation attempts to atomically flip all bits in the object allocation
bitmap from 0 to 1. If this atomic operation failed to flip at least one bit from 0 to 1
(because it was already 1), another thread must have reserved an object slot in the

98 Chapter 5. Dynamic Mem. Allocation with SOA Performance Characteristics

......

NodeBase*[64] Spring::n1
NodeBase*[64] Spring::n2
float[64] Spring::initial_length
float[64] Spring::stiffness
float[64] Spring::max_force
int[64] Spring::bfs_distance

0x01
...

...
object iteration
bitmap

NSpring = 64

t64 t65 t66 t67 t68 t69 t70 t71 t127

...

0.
10

7
0.

72
8

 0.
32

5
0.

92
7

1.
18

4
0.

96
4

1.
31

9
3.

79
1

2.
15

5

...

__device__ void Spring::compute_force() {
 float disp = max(0, dist(n1, n2) - initial_length);
 float force = stiffness * disp;
 if (force > max_force) destroy(d_allocator, this); }

thread
mask

coalesced access

d_allocator->parallel_do<
 Spring, &Spring::compute_force>()

F I G U R E 5 . 5 : Thread assignment ex-
ample. 64 threads with consecutive IDs
are assigned to every allocated block of
type Spring. Since not all object slots
are in use, as indicated by the block it-
eration bitmap, some threads have no
work to do. All other threads can bene-
fit from memory coalescing when read-
ing/writing fields of the object that they

are assigned to.

meantime. In this case, we rollback the changes to the object allocation bitmap and
abort block invalidation and deletion.

If invalidation was successful, the block is guaranteed to be empty and cannot be
modified by other threads anymore because all bits in the object allocation bitmap
are 1. The type of the block may have changed in the meantime (Line 8), but it is now
safe to mark this block location as free, so that a new block can be initialized at this
location.

5.2.7 Parallel Object Enumeration: parallel_do

Parallel do-all is the foundation of SMMO applications. It launches a GPU kernel that
runs a method T::func on all objects of a type T (and subtypes). To avoid branch
divergence, we run a separate kernel for each subtype. T::func may read and write
fields of the object that it is bound to (this). The goal of parallel do-all is to assign
objects to GPU threads in such a way that memory coalescing is maximized for those
field accesses.

Memory coalescing is maximized when all threads of a warp access consecutive
memory addresses at the same time (and addresses are properly aligned). In this
case, all those memory accesses can be serviced by vector loads/writes. In CUDA,
threads are identified by thread IDs. Each warp consists of a consecutive range of
threads. E.g., warp 0 consists of threads t0, t1, . . . t31. Assuming a block capacity of NT,
D Y N A S O A R assigns NT consecutive threads to the objects in a block (Figure 5.5).
This leads to good memory coalescing on average. Perfect memory coalescing can be
achieved if the following two conditions apply.

• NT is a multiple of the warp size 32. If this is not the case, then there are warps
whose threads process elements in two or more different blocks.

• Objects have good clustering, i.e., every block except for at most one is entirely
full. Due to the way objects are allocated (only in active blocks), we expect a
high fill level on average.

D Y N A S O A R uses the block allocation bitmap to find blocks to which threads
should be assigned. Assigning only one object to a thread is too inefficient if the
number of objects is large. Therefore, a thread ttid may have to process an object slot
in multiple blocks. numB(tid) is the number of blocks that are assigned to a thread
ttid. Our scheduling strategy always assigns the same object slot position idO(tid) to
a thread, but in multiple blocks idB(tid). In the following formulas, R is an array of
indices of all allocated blocks of type T, i.e., all blocks containing objects of type T.

5.3. Optimizations 99

...

...0 n/
a

n/
a

n/
a 4 5 n/
a 7 n/
a

n/
a

n/
a

n/
a 12 n/
a 14 n/
a

n/
a

n/
a

block allocation bitmap : uint64_t[M/64]

indices : int[M]
0 4 5 7 12 14

t0
...

R : int[r]

t63

...

t192

t255

...

t0
t63

...

t64

t127

... thread assignment:
strided by #threads "n"

consecutive
threads

per block

...1 0 0 0 1 1 0 1 0 0 0 0 1 0 1 0 0 0

bitmap_as_int : int[M]

...0 1 1 1 1 2 3 3 3 3 3 3 3 4 4 5 5 5

prefix_sum : int[M]

co
nv

er
t t

o
in

t a
rr.

ex
cl

us
ive

pr
ef

xi
x

su
m

for i = 0 to M - 1 in parallel do
 if bitmap[i] then
 R[prefix_sum[i]] = i
 end
end

stream
compaction

result

(concept. same as compacting this arr.) F I G U R E 5 . 6 : Example: Compacting block
allocation bitmap indices and assigning n =
256 threads to 6 allocated blocks with NT = 64.
The prefix sum retains the order of indices (i.e.,
R is sorted), but this is not required for the

correctness of our algorithms.

The total number of threads n can be hand-tuned by the programmer. With those
formulas, every thread can by itself determine the objects that it should process.

idO(tid) = tid % NT (assigned object slot index)

idB(tid) =
(

R
[

tid + k · n
NT

]
| k ∈ [0; numB(tid))

)
(assigned block indices)

numB(tid) =
⌈

r · NT − tid
n

⌉
(number of assigned blocks)

The formulas idO and idB effectively implement a grid-stride loop (Section 2.1.3).
The array R is required because every thread should by itself find the tid

NT
-th, tid+n

NT
-th,

etc. allocated block of type T quickly, without scanning the entire block allocation
bitmap or communicating with other threads, which would be very slow.

D Y N A S O A R precomputes R before every parallel do-all operation (Figure 5.6).
Conceptually, this is an application of stream compaction [14]: Given a bitmap of size
M (size of heap in number of blocks), generate an indices array of size M containing i
at position i if the i-th bit is set. Otherwise, store an invalid marker. Now filter/compact
the array to retain only valid values, resulting in an array R of size r. Note that we do
not care if the original ordering of indices is retained. This stream compaction could
be implemented as follows.

1. Convert the bitmap into an integer array.

2. Compute the exclusive prefix sum [167, 21] of the integer array.

3. Compute the final result R: If a bit is set in the bitmap, store its index at the
position that was computed by the exclusive prefix sum.

Every step of this stream compaction implementation can run in parallel. Sec-
tion 5.3.1 describes how this algorithm is further optimized with hierarchical bitmaps
to avoid scanning empty bitmap parts.

5.3 Optimizations

This section describes performance optimizations that D Y N A S O A R applies in
addition to the SOA data layout to achieve good (de)allocation performance and to
reduce memory fragmentation.

100 Chapter 5. Dynamic Mem. Allocation with SOA Performance Characteristics

(1) clear

(2) clear

(3) clear

L0

L1

L2

b0
0

b1
3

Notation:

b0
1 ... b0

31C0
2 C0

3
(containers)(bits)

levelb index bit
Clevel

index container

... ...

F I G U R E 5 . 7 : Example: Hierarchical bitmap
of size 32 with container size 4 (instead of 64).
This example illustrates how (1) a clear(18) op-
eration triggers (2) a clear(4) operation in the
nested bitmap, which triggers (3) a clear(1) op-

eration in the next nested bitmap.

5.3.1 Hierarchical Bitmaps

D Y N A S O A R uses bitmaps for finding blocks or free space for blocks. Since, with
growing heap sizes, bitmaps can reach several megabytes in size, we use a hierarchy
of bitmaps, such that set bits (ones) can be found with a logarithmic order of memory
accesses.

L I S T I N G 5 . 3 : Structurally recursive C++ bitmap implementation (simplified)
template<int N, bool HasNested>
struct Bitmap;

template<int N>
struct Bitmap<N, /*HasNested=*/ false> {
static const int kNumContainers = (N + 64 - 1) / 64; // ceil(N / 64)
uint64_t containers[kNumContainers];

};

template<int N>
struct Bitmap<N, /*HasNested=*/ true> {
static const int kNumContainers = (N + 64 - 1) / 64; // ceil(N / 64)
static const bool kContinueHierarchy = kNumContainers > 1;

uint64_t containers[kNumContainers];
Bitmap<kNumContainers, kContinueHierarchy> nested;

};

Our hierarchical bitmaps are structurally recursive (nested bitmaps; Listing 5.3)
and hide their hierarchy as an implementation detail from their interface. Such
bitmaps are used in database systems [144] and garbage collectors [185], but we do
not know of any hierarchical bitmaps that support concurrent modifications.

Data Structure A hierarchical bitmap of size N bits consists of two parts: an array
of size dN/64e of 64-bit containers (uint64_t), and a nested bitmap of size dN/64e if
N > 64. A container Cl

i consists of bits bl
64·i, ..., bl

64·i+63 and is represented by one bit
bl+1

i in the nested (higher-level) bitmap (Figure 5.7). That bit is set if at least one bit is
set in the container.

bl+1
i =

63∨
k=0

bl
64·i+k (container consistency)

We chose a container size of 64 bits because C++ has a 64-bit integer type and
CUDA (and most other architectures) provide atomic operations for modifying 64-
bit values. Bits in a container are changed with atomic operations. Higher-level
bits (and thus bitmaps) are eventually consistent with their containers. Keeping both
consistent all the time is impossible without locking, because two different memory

5.3. Optimizations 101

Algorithm 3: Bitmap::try_clear(pos) : void GPU

1 cid← pos / 64; . Container ID
2 offset← pos % 64; . Index of bit within the container
3 mask← 1 << offset;
4 prev← atomicAnd(&container[cid], ∼mask);
5 success← (prev & mask) 6= 0;
6 if success ∧ has_nested ∧ popc(prev) = 1 then
7 nested.clear(cid);

8
population count:
number of set bitsreturn success; . Was the bit switched from 1 to 0?

locations cannot be changed together atomically. However, due to the design of
the bitmap operations, the bitmap is guaranteed to be in a consistent state when
all bitmap operations (of all threads) are completed, at the end of a GPU kernel.
Bitmap operations retry or give up (FAIL) to handle temporary inconsistencies. This
is a key difference compared to other lock-free hierarchical data structures such as
SNZI [56], which have stronger runtime consistency guarantees and require more
complex algorithms.

Operations All bitmap operations except for indices() are device functions that run
entirely on the GPU. All operations that modify memory are thread-safe and their
semantics are atomic. Internally, they are all implemented with atomic memory
operations.

• try_clear(pos) atomically sets the bit at position pos to 0. Returns true if the
bit was 1 before and false otherwise.

• clear(pos) switches the bit at position pos from 1 to 0. Retries until the bit was
actually changed by the current thread. This is identical to the following code
snippet: while (!try_clear(pos)) {}

• try_set(pos) atomically sets the bit at position pos to 1. Returns true if the bit
was 0 before and false otherwise.

• set(pos) switches the bit at position pos from 0 to 1. Retries until the bit was
actually changed by the current thread. This is identical to the following code
snippet: while (!try_set(pos)) {}

• try_find_set() returns the position of an arbitrary bit that is set to 1 or FAIL
if none was found. This operation must be used with caution, because the
returned bit position might already have changed when using the result.

• clear() atomically clears and returns the position of an arbitrary set bit. This
is a combination of try_find_set and try_clear and identical to the follow-
ing code snippet: while ((i = try_find_set()) != FAIL && try_clear(i))
{}; return i;

• get(pos) and operator[](pos) return the value of the bit at position pos.

• indices() returns an array of indices of all set bits. This is a host function and
cannot be used in a GPU kernel.

102 Chapter 5. Dynamic Mem. Allocation with SOA Performance Characteristics

Algorithm 4: Bitmap::try_find_set() : int GPU

1 if has_nested then
2 cid← nested.try_find_set(); . Select container based on L+1 bitmap.
3 if cid = FAIL then return FAIL ;
4 else
5 cid← 0; . This is the top-most bitmap level. Only 1 container.

6 offset← ffs (container[cid]);
7 if offset = NONE then
8 return FAIL;
9 else

10

find first set: index
of 1st set bit9

return 64*cid + offset;

Algorithm 5: Bitmap::indices() : int[N] CPU

1 if has_nested then
2 selected← nested.indices(); . Select containers based on L+1 bitmap.
3 else
4 selected← [0]; . This is the top-most bitmap level. Only 1 container.

5 R← array(N);
6 r← 0;
7 for cid ∈ selected in parallel do . GPU (CUDA kernel)
8 c← container[cid];
9 s← atomicAdd(&r, popc(c));

10 for i← 0 to popc(c)) do
11 R[s + i]← 64*cid + nth_set_bit (c, i);

12 idx. of ith set bit in creturn R.subarray(0, r);

Set and Clear with Atomic Operations As many other lock-free algorithms, our
hierarchical bitmaps are based on a combination of atomic operations and retries [44].
The return value of an atomic operation indicates if a bit was actually changed and if
it is this thread’s responsibility to update the higher-level bitmap (Figure 5.7).

As an example, Algorithm 3 shows how to clear the bit at position pos. In Line 4,
the respective container is bit-ANDed with a mask containing ones everywhere
except for that position. This will clear the bit at position pos but leave all other bits
unchanged. The current thread actually changed the bit if it is set in prev (Line 5).
If this operation cleared the last bit (Line 6), then the bit in the higher-level bitmap
must be cleared.

Note that higher-level bits are always changed with clear(pos)/set(pos) and not
with their respective try_ versions, because other concurrently running bitmap opera-
tions may not have updated all higher-level bitmaps yet, leaving the data structure in
a temporarily inconsistent state. If we were to use try_ versions, a mandatory update
of the higher-level bitmap could be accidentally dropped due to a bitmap inconsis-
tency. However, clear(pos)/set(pos) ensure that the update is performed eventually by
retrying (and spin-blocking the thread) until the update was successful.

Finding an Arbitrary Set Bit Instead of scanning the entire L0 bitmap, set bits
can be found faster with a top-down traversal of the bitmap hierarchy, as shown in

9This is slightly different from CUDA, where__ffs(b) returns the position of the 1st set bit plus 1, or
0 if none exists. In this work, ffs(b) returns the position of the 1st set bit, or NONE if none exists.

5.3. Optimizations 103

Algorithm 4. A request is first delegated to the higher-level bitmap (Line 2) to select a
container. When that call returns, a set bit is chosen in the selected container (Line 6).

This operation fails if there is no set bit in the entire bitmap data structure. How-
ever, even if the bitmap has set bits, this operation can fail if it reads an inconsistent
combination of container values from different hierarchy levels. For example, con-
sider the case where a container with exactly one set bit is chosen by the recursive call.
However, before reaching Line 6, another thread clears that bit as part of a concurrent
bitmap operation. In that case, try_find_set fails even though there may be set bits in
other containers.

D Y N A S O A R is affected by such bitmap inconsistencies when searching for
active blocks (Algorithm 1, Line 2) or free block positions (Line 4). While bitmap
inconsistencies do not affect correctness, they can lead to higher fragmentation if
D Y N A S O A R fails to find active blocks and instead initializes additional blocks,
even though objects could have been accommodated in already existing blocks. We
analyze the effect of bitmap inconsistencies in the benchmark section (Section 5.6.3).

Enumerating Set Bit Indices Before launching a parallel do-all kernel, D Y N A -
S O A R uses the indices operation to generate a compact array of allocated block
indices (R in Figure 5.6). No GPU code is running at this time, so the bitmap is guar-
anteed to be in a consistent state. To ensure good scaling with increasing heap sizes,
and thus increasing block bitmap sizes, D Y N A S O A R utilizes the bitmap hierarchy
to quickly skip containers without any set bits (Algorithm 5).

First, an index array is generated for the higher-level bitmap (Line 2). This array
is then processed in parallel; the for loop in Line 7 is a GPU kernel and every thread
processes one or multiple containers selected by the recursive call. If a container
Cl

i does not have any set bits, then its corresponding bit bl+1
i is in a cleared state

in the higher-level bitmap and not included in selected. Every thread reserves
space in the result array R by increasing an atomic counter and fills its portion of
the array with bit indices. This algorithm proved to be faster and requires less
memory than a prefix sum algorithm, which needs multiple array copies/buffers
per bitmap. Interestingly, related work has recently made the same observation
with BFS algorithms on GPUs [69]. Note that, in contrast to the prefix sum-based
implementation of Section 5.2.7, this algorithm does not necessarily retain the order
of indices, i.e., the result array R is not sorted.

5.3.2 Reducing Thread Contention

In Algorithms 4 and 7, threads are competing with each other for bits: Only one
thread can reserve any given object slot and only a limited number of threads can
succeed with allocations in a block. To guarantee correctness, our design is heavily
based on atomic operations. These operations became considerably faster with recent
GPU architectures [47, 6], but performance can still suffer when too many threads
choose the same bit, because threads have to retry if allocation fails. D Y N A S O A R

employs two techniques to reduce such thread contention.

Allocation Request Coalescing Originally proposed by XMalloc [88], D Y N A S O A R

combines memory allocation requests of the same type within a warp. One leader
thread reserves all object slots in a single block on behalf of all participating threads.
If the selected active block does not have enough free object slots, D Y N A S O A R

reserves as many slots as possible and then chooses another active block for the

104 Chapter 5. Dynamic Mem. Allocation with SOA Performance Characteristics

Algorithm 6: DAllocatorHandle::allocate<T>() : T* GPU

1 repeat . Infinite loop if OOM
2 active← __activemask(); . Bitmap of active threads in warp
3 leader← ffs(active); . Leader = active thread with lowest ID
4 rank← __lane_id(); . Rank of this thread
5 if leader = rank then . This thread is the leader.
6 bid← active[T].try_find_set();
7 if bid = FAIL then . Slow path
8 bid← free.clear();
9 initialize_block<T>(bid);

10 allocated[T].set(bid);
11 active[T].set(bid);

12 alloc_bitmap← heap[bid].reserve_multiple(popc(active));
13 if popc(alloc_bitmap) > 0 then
14 t← heap[bid].type;
15 if alloc.state = FULL then active[t].clear(bid) ;
16 if t 6= T then deallocate_multiple<t>(bid, alloc_bitmap) ;

17 alloc_bitmap← __shfl_sync(active, alloc_bitmap, leader);
18 bid← __shfl_sync(active, bid, leader);
19 id_in_active← popc(__lanemask_lt() & active);
20 slot← nth_set_bit(alloc_bitmap, id_in_active);
21 if slot 6= FAIL then . else: Not enough slots reserved
22 return make_pointer(bid, slot);

23 until false;

remaining allocation requests. This reduces the number of atomic memory opera-
tions, because multiple bits in an object allocation bitmap are set in one operation.
Furthermore, the constructor for newly allocated objects can run more efficiently,
because field accesses are more likely coalesced.

Algorithm 6 shows how allocation request coalescing is implemented in D Y-
N A S O A R . This algorithm is an improved version of Algorithm 1. The following
paragraph is intended for experienced CUDA programmers, as the algorithm takes
advantage of CUDA warp-level primitives for intra-warp synchronization [123].

Out of all threads that are allocating an object of type T, the algorithm first select
a leader thread. The leader attempts to reserve an object slot for every participating
thread, similar to Algorithm 1. The slot reservation algorithm was extended such
that it can allocate multiple slots in one go: n=popc(active) is the number of requested
allocations and the algorithm attempts to reserve up to n slots. The result is an
allocation bitmap with up to n set bits, which were reserved in the object allocation
bitmap of the block. Block ID and allocation bitmap are lane-shuffled to the other
participating threads in the warp. Every thread locates the position of the i-th set
bit in the allocation bitmap, where i is the index of the thread in the warp among
all participating threads (Line 20). If not enough bits were reserved for all threads
(e.g., because the selected block was almost full), then these threads retry from the
beginning, potentially with a new leader thread.

Bitmap Rotation Instead of a plain find first set (ffs) in Algorithms 4 and 7, bitmaps
are first rotating-shifted by a value depending on the warp ID and a seed that is
changed with every retry. This increases the probability of threads choosing different
active blocks for allocation and reduces the probability of threads trying to reserve

5.3. Optimizations 105

Algorithm 7: Block::reserve() : (int, state) . Assuming block size 64. GPU

1 repeat
2 pos← ffs(∼bitmap);
3 if pos = NONE then return FAIL ;
4 mask← 1 << pos;
5 before← atomicOr(&bitmap, mask);
6 success← (before & mask)) = 0;
7 block_full← before = 0xFF...F;
8 until success ∨ block_full;
9 if success then

10 if popc(before) = 63 then
11 return (pos, FULL)
12 else
13 return (pos, REGULAR)

14 return FAIL;

Algorithm 8: Block::deallocate(pos) : state . Assuming block size 64. GPU

1 mask← 1 << pos;
2 before← atomicAnd(&bitmap, ∼mask);
3 success← (before & mask)) 6= 0;
4 assert(success); . Precondition.
5 if popc(before) = 1 then
6 return EMPTY;
7 else if popc(before) = 64 then
8 return FIRST;
9 else

10 return REGULAR;

the same object slots in a block. This is a key optimization technique that improved
performance by an order of magnitude.

Lookup Retry While bitmap traversals are relatively cheap, block initializations are
expensive because in addition to initializing object bitmaps, bits in three different
bitmaps (plus hierarachy) must be changed (slow path of Algorithm 1). To avoid
unnecessary block initializations, it proved beneficial to retry the search for active
blocks (Line 2) a constant number of times before entering the slow path. This
optimization resulted in lower fragmentation and improved performance.

5.3.3 Efficient Bit Operations

D Y N A S O A R is taking advantage of efficient bitwise operations such as ffs (“find
first set”) and popc (“population count”). Modern CPU and GPU architectures have
dedicated instructions for such operations. As an example, Algorithm 7 shows how
a single object slot is reserved10. Instead of checking all bits in a loop, ffs in Line 2
is used to find a free slot (index of a cleared bit) in the object allocation bitmap and
popc in Line 10 counts the number of previously allocated slots (number of set bits) to
decide if this request filled up the block. Similarly, to decide if a deallocation freed the

10This algorithm was extended for allocation request coalescing (not shown here).

106 Chapter 5. Dynamic Mem. Allocation with SOA Performance Characteristics

Algorithm 9: nth_set_bit(bitmap, n) : int GPU

1 for i← 0 to n− 1 do . Clear first n− 1 bits.
2 bitmap← bitmap & (bitmap - 1);

3 return ffs(bitmap);

Algorithm 10: DAllocatorHandle::initialize_block<T>(int bid) : void GPU

1 heap[bid].type← T; . Volatile write.
2 __threadfence();
3 heap[bid].bitmap← 0; . Volatile write, assuming block capacity 64.

first or last slot, popc counts the number of bits before modifying the object allocation
bitmap (Algorithm 8).

As another example, due to allocation request coalescing, every thread must now
extract its reserved object slot from a set of allocations performed by a leader thread
on behalf of the entire warp. This boils down to finding the i-th set bit in a 64-bit
bitmap b of newly reserved object slots, where i is the rank of a thread among all
allocating threads in the warp (Algorithm 6, Line 20). Instead of checking every bit
in b one-by-one (loop with 64 iterations in the worst case) and keeping track of the
number of set bits seen so far, we clear the first i− 1 bits with bitwise AND and then
calculate ffs(b) (Algorithm 9).

5.4 Concurrency and Correctness

CUDA has a weak consistency model for global memory access (Section 2.1.3). Writes
to memory performed by one thread are not guaranteed to become visible to other
threads in the same order. However, atomic writes have that property (sequential
consistency). Furthermore, thread fences can be used between two memory writes to
enforce sequential consistency, if necessary.

Moreover, global memory reads/writes may be buffered in registers/caches,
without a global memory load/store. Thus, memory writes by one thread may not
become visible to other threads until the next GPU kernel, unless reads/writes are
volatile or performed with atomic operations.

All bitmap operations are sequentially consistent and do not suffer from load/
store buffering because they are based on atomic memory operations.

5.4.1 Object Slot Reservation/Freeing

Inside a block, object allocations are tracked with an object allocation bitmap. Every
object allocation bitmap has 64 bits, regardless of the block capacity. If a block’s capac-
ity is smaller than 64, then the last 64− N bits are set to 1 during block initialization
to prevent threads from reserving these slots during object allocation.

Object slots are reserved/freed with atomic operations. These bypass the inco-
herent L1 caches and are thread-safe: E.g., based on their return value, we know if
the current thread reserved a selected slot or if another contending thread was faster
(Algorithm 7, Line 5). Based on their return value, we also know if the current thread
reserved the last slot (Line 10), in which case the block should be marked as inactive
by the allocation algorithm.

5.4. Concurrency and Correctness 107

Slot Reservation Block::reserve() (Algorithm 7) reserves a single object slot in
the block. Our actual implementation (Block::reserve_multiple(n); not discussed
here) may reserve multiple slots at once due to allocation request coalescing.

1. Preconditions: Block was initialized at least once. (Calling this method on
invalidated blocks or full blocks is OK. This function will simply return FAIL.)

2. Postconditions: If the result is different from FAIL, then the resulting slot
position is reserved for this thread (and no other thread).

3. Return Value: Success indicator, atomically reserved slot position, block state.

4. Linearization Point: Atomic OR operation (Line 5).

Slot Freeing Block::deallocate(pos) (Algorithm 8) frees a single object slot in
the block. To support allocation request coalescing, we have a modified version of
this algorithm that can rollback multiple slots at once (not discussed here).

1. Preconditions: Bit pos is set to 1 in the object allocation bitmap. (Deleting an
object multiple times or trying to delete an arbitrary pointer is illegal.)

2. Postconditions: Bit pos is set to 0 in the object allocation bitmap.

3. Return Value: Block state.

4. Linearization Point: Atomic AND operation (Line 2).

5.4.2 Safe Memory Reclamation with Block Invalidation

Safe memory reclamation (SMR) in lock-free algorithms is notoriously difficult. An
SMR problem arises in D Y N A S O A R when deleting blocks. A block should be
deleted as soon as its last object has been deleted. This by itself is easy to detect
with atomic operations (Algorithm 8, Line 6). However, a contending thread may
already have selected the now empty block in the course of its own concurrent allocate
operation, before the block is actually deleted. Now it is no longer safe to delete the
block, but the deleting thread is not aware of that.

Elaborate techniques for SMR such as hazard pointers [142] and epoch-based
reclamation [66] have been proposed in previous work [27, 141]. D Y N A S O A R is
able to exploit a key characteristic of its data structure to solve this SMR problem
in a simple way: Since all blocks have the same size and structure, object allocation
bitmaps are always located at the same position. Therefore, we can optimistically
proceed with bitmap modifications and rollback changes if necessary.

Our solution to SMR is block invalidation. Before deleting a block, a thread tries to
invalidate (atomically set to 1) all bits in the object allocation bitmap. Bits that were
already 1 are not considered invalidated because those object slots are in use. After
successful invaldation, bits remain invalidated until a new block is initialized at the
same location. Other threads may still be able to find the block in the active block
bitmap for a while, but slot reservations can no longer succeed.

Allocating threads can detect changes in the block type. Before a previously
invalidated block becomes available for allocations again (by initializing its object
allocation bitmap), we update the block type. We put a thread fence between both
writes to ensure that threads see the new block type before they see free slots in the
bitmap (Algorithm 10). Threads allocate objects optimistically and rollback changes
should they detect a different block type (Algorithm 1, Line 14; also see Section 5.4.3).

108 Chapter 5. Dynamic Mem. Allocation with SOA Performance Characteristics

Algorithm 11: DAllocatorHandle::invalidate(int bid) : bool GPU

1 bitmap_ptr← &heap[bid].bitmap;
2 before← atomicOr(bitmap_ptr, 0xFF...F); . Invalidate (set) all obj. alloc. bitmap bits.
3 if before 6= 0xFF...F then . ≥ 1 bit was invalidated.
4 t← heap[bid].type;
5 if before = 0 then . All 64 bits invalidated by this atomicOr.
6 return true;
7 else . Not all bits invalidated. Rollback.
8 before_rollback← atomicAnd(bitmap_ptr, before);
9 if before_rollback 6= 0xFF...F then . Other thread cleared a bit.

10 active[t].clear(bid); . Other thread expects an inactive block.

11 if (before_rollback & before) = 0 then . Empty again. Retry invalidation.
12 return invalidate(bid);

13 return false;

Details Block invalidation11 (Algorithm 11) fails if a thread is unable to invalidate
at least one bit. In that case, if at least one bit was changed through invalidation, this
change must be rolled back (Line 8): In before exactly those bits are zero that were
invalidated by the thread.

While a thread is running an invalidation operation, other threads may continue
to concurrently reserve/free object slots in the same block, unaware of the fact that a
thread is trying to invalidate the block. Those threads will update block state bitmaps
based on the object allocation bitmap state that they are seeing. Therefore, block
invalidation must update block bitmaps, as every invalidated bit appears to be an
allocated object slot to other threads.

Since block invalidation fills up a block, the block’s active[t] state should be
removed after Line 7, because, if we enter this else branch, the thread just filled up the
block by reserving the remaining object slots (however, not all 64 slots, otherwise, we
would be in the then branch of Line 5). However, we defer this step, as an invalidation
rollback would likely have to mark the same block as active[t] again. Unless, another
thread concurrently freed an object slot in-between invalidation and invalidation
rollback. For such a thread it will seem as if its deallocation just freed the first slot,
causing it to activate the block (Algorithm 2, Line 5). However, since we deferred
block deactivation, this set(bid) operation will spin until we deactivate the block
(Algorithm 11, Line 10). If invalidation rollback empties the block again, we try to
invalidate the block one more time12.

Note that block invalidation is independent of the type of a block. After inval-
idating at least one bit, the block type is fixed until invalidation rollback or block
initialization, since other threads do not change invalidated bits. As such, the block
cannot be deleted or reinitialized to another type by another thread. Other threads
can, however, delete and initialize a block with different type after invalidation roll-
back. It is, nevertheless, safe to assume a block type of t in Line 10, since this is merely
an execution of a deferred operation that should have happened earlier when the
block type was known to be t.

11For presentation reasons, we assume a block capacity of 64 in this and other algorithms.
12Our actual implementation is iterative instead of recursive.

5.4. Concurrency and Correctness 109

5.4.3 Object Allocation

The critical parts during allocations (Algorithm 1) are block selection (Line 2) and object
slot reservation (Line 8). Both operations by themselves are atomic, but not together.
Block selection returns the index of an active block of type T, so we expect that after
Line 8, we reserved an object slot in a block of type T. However, due to concurrent
operations of other threads, some of these assumptions may be violated.

Block Full An active block was selected by try_find_set but the block filled up
before making an allocation (i.e., the block is no longer active). In this case,
object slot reservation will fail. Whenever allocation fails, it will restart from
the beginning.

Block Deallocated A block was selected by try_find_set but deallocated before
reserving a slot. In this case, slot reservation will fail because the block is now
in an invalidated state.

Block Replaced (ABA) A block was selected by try_find_set but deallocated and
reinitialized to a block of same type T. This is harmless: We do not care about
block identity.

Block Replaced (Different Type) A block was selected by try_find_set but deal-
located and reinitialized to another type13 t 6= T. In this case, the allocation
must be rolled back (Line 14). All blocks have the same basic structure, so no
object data can be overwritten accidentally during bitmap updates. Note that
the rollback may trigger additional block bitmap updates.

Active Block Not Selected A block becomes active shortly after try_find_set fails.
Or, due to bitmap hierarchy inconsistencies, try_find_set fails to find an
active block even though active blocks exist. This is harmless: No assumption is
violated. A new block will be initialized, which merely increases fragmentation.

Note that a block cannot be deallocated after an object slot was already reserved,
because block invalidation would fail. Thus, the type of a block can also no longer
change.

5.4.4 Object Deallocation

The critical part during deallocations (Algorithm 2) is consistency between object
slot deallocation (Line 3) and block state updates. If the current thread deallocated the
first object (i.e., the block was full), then the block’s bit in the active block bitmap
must be set. If the current thread deallocated the last object (i.e., the block is empty),
then the block must be deleted. The problem is that object slot deallocation and the
corresponding block state update together are not atomic.

Allocate After Delete-First A thread t1 deleted the first object of a block. However,
before marking the block as active (Line 6), another thread t2 allocated this slot
again; the block should be inactive. In this case, t2 reserved the last slot, so it
will mark the block as inactive (Algorithm 1, Line 12). This operation expects
the bit to be in a set state and it will retry until t1 sets the bit.

13Block initialization (Algorithm 10) has a thread fence between setting the block type and resetting
the object allocation bitmap, so threads are guaranteed to read the correct type t after an allocation
succeeded.

110 Chapter 5. Dynamic Mem. Allocation with SOA Performance Characteristics

Block Deleted after Delete-First A thread t1 deleted the first object of a block. How-
ever, before marking the block as active, other threads deallocated all other
objects and a thread t2 deleted the block. This is not possible because t2 expects
the block to be active (Line 9), i.e., bit set to 1, and blocks until then.

Block Replaced after Delete-First A thread t1 deleted the first object of a block.
However, before marking the block as active, the block was reinitialized to
another type. This is not possible because only deleted blocks can be reinitial-
ized (see previous point).

Allocate after Delete-Last A thread t1 deleted the last object of a block. However,
before deleting the block, another thread t2 allocated an object again, so it is
unsafe to delete the block now. This case in handled by block invalidation.

Block Deleted after Delete-Last A thread t1 deleted the last object of a block. How-
ever, before deleting the block, another thread t2 allocated an object and yet
another thread t3 deleted that object, rendering the block empty again and
deleting it. Now the block is already deleted when t1 is trying to delete the
block. In this case, block invalidation of t1 will fail because the block is still in
an invalidated state and t1 fails to invalidate all object slot bits.

Block Replaced after Delete-Last Same as before, but yet another thread t4 reinini-
tializes the block to a different type. Now t1 will invalidate and delete a new
block whose type is different. This is OK. Block invalidation will succeed only if
the block is empty. Both block invalidation and block deletion are independent
of and do not assume a certain block type.

Divergent Branch Scheduling The ordering of if statement branches in Algo-
rithm 2 is crucial. Let us assume that a thread t1 deletes the first object of a full
block (Line 4) and another thread t2 of the same warp deletes the last object of the
same block and succeeds with block invalidation (Line 7). The clear operation in
Line 9 will block until the respective bit was actually changed to 0. Therefore, to
avoid a deadlock, it is crucial that the set operation of Line 5 is scheduled to execute
before the clear operation. Since both t1 and t2 belong to the same warp, both if
branches are executed sequentially (thread divergence). Only if the CUDA compiler
schedules the branch of Line 4 before the branch of Line 6 in the compiled PTX, is
this implementation free of deadlocks. While CUDA leaves the order of execution of
divergent branches undefined (Section 2.1.3), to the best of our knowledge, all recent
CUDA versions schedule branches in the order in which they appear in the source
code.

Algorithm 12 is an alternative implementation of Algorithm 2 that does not
depend on the ordering of if branches. Block bitmaps are not changed immediately.
Instead, we maintain helper variables that indicate if and how a bit should be changed:
-1 indicates clear, 0 indicates no change, 1 indicates set. At first, all participating threads
in a warp determine the necessary changes, potentially causing thread divergence
between Line 5 and Line 13. However, after Line 13, all threads converge again and
modify their respective bits with try_ bitmap operations. These operations return
immediately, regardless of their success. Only if a thread performed all necessary
bitmap changes can a thread exit the loop.

Note that block invalidation (Line 9) also modifies block bitmaps. Therefore, block
invalidation must be incorporated into Algorithm 12 and changed in a similar way.
Only for presentation reasons, we keep block invalidation in a separate algorithm.

5.4. Concurrency and Correctness 111

Algorithm 12: DAllocatorHandle::deallocate<T>(T* ptr) : void GPU

1 bid← extract_block(ptr);
2 slot← extract_slot(ptr);
3 state← heap[bid].deallocate(slot);
4 active_op← allocated_op← free_op← 0;
5 if state = FIRST then
6 t← T;
7 active_op← 1;
8 else if state = EMPTY then
9 if invalidate(bid) then . invalidate() must be inlined and changed similarly.

10 t← heap[bid].type;
11 active_op← -1;
12 allocated_op← -1;
13 free_op← 1;

14 while active_op + allocated_op + free_op 6= 0 do
15 if active_op = 1 then
16 if active[t].try_set(bid) then active_op← 0 ;

17 if active_op = -1 then
18 if active[t].try_clear(bid) then active_op← 0 ;

19 if allocated_op = 1 then
20 if allocated[t].try_set(bid) then allocated_op← 0 ;

21 if allocated_op = -1 then
22 if allocated[t].try_clear(bid) then allocated_op← 0 ;

23 if free_op = 1 then
24 if free[t].try_set(bid) then free_op← 0 ;

25 if free_op = -1 then
26 if free[t].try_clear(bid) then free_op← 0 ;

5.4.5 Correctness of Hierarchical Bitmap Operations

A container Cl
i consists of bits bl

64·i, ..., bl
64·i+63 and is represented by one bit bl+1

i in the
nested (higher-level) bitmap. That bit is set if and only if at least one bit is set in the
container.

Definition 1 (Consistency). A bit in level bl+1
i is consistent with its corresponding con-

tainer Cl
i in the lower-level bitmap if and only if:

bl+1
i =

63∨
k=0

bl
64·i+k = 1

(
∑ Cl

bi/64c > 0
)

In Definition 1, 1 is the indicator function and ∑ Cl
i is the number of set bits in Cl

i ,
as computed by popc (population count) in the algorithms.

We say that the Ll+1 bitmap is in a consistent state with the Ll bitmap if all bits
bl+1

i in the Ll+1 bitmap satisfy the consistency criterion. The bitmap data structure as
a whole is in a consistent state if all bitmap levels Li satisfy the consistency criterion.

We do not make any consistency guarantees during the execution of a GPU
program. Instead, we guarantee eventual consistency: If the bitmap data structure is
in a consistent state before a GPU kernel launch, it is guaranteed to be in a consistent
state after the GPU kernel finished running.

112 Chapter 5. Dynamic Mem. Allocation with SOA Performance Characteristics

Definition 2 (Semantics of Bitmap Operations). Every bitmap Ll provides operations for
setting and clearing bits (Section 5.3.1). These operations may update bits in the higher-level
bitmap Ll+1 if they set the first bit (SFl

bi/64c) or clear the last bit (CLl
bi/64c) of a container Cl

i ,
respectively:

set(bl
i) and 1

(
∑ Cl

bi/64c = 0
)

︸ ︷︷ ︸
set-first: SFl

bi/64c

then set(bl+1
bi/64c) ∀i ∈ [0; num_bits)

clear(bl
i) and 1

(
∑ Cl

bi/64c = 1
)

︸ ︷︷ ︸
clear-last: CLl

bi/64c

then clear(bl+1
bi/64c) ∀i ∈ [0; num_bits)

We would like to show that, assuming that a bitmap data structure is initially in a
consistent state and given a multiset of bitmap operations O0 on the L0 bitmap, the
entire bitmap data structure is in a consistent state after executing all operations. In
contrast to other concurrent data structures [56], we do not guarantee consistency
during runtime.

Definition 3 (Legal Bitmap Operations). Let #set(bl
i) and #clear(bl

i) be the number
of set and clear operations of bl

i in a multiset of bitmap operations Ol . We call S(bl
i) =

#set(bl
i)− #clear(bl

i) the set-surplus of bl
i . Ol is legal if it satifies the following conditions

for every bit bl
i in Ll .

1. Overall bit operation is clear, remain or set: S(bl
i) ∈ {−1, 0, 1}.

2. Bit is in a cleared or set state afterwards: bl
i + S(b

l
i) ∈ {0, 1} (denoted by b′li).

Intuitively, an already cleared bit cannot be cleared again and an already set bit
cannot be set again14. For example:

• Cl
0 = 01001..., Ol = {set(bl

2), set(b
l
2), clear(b

l
2)}. S(bl

2) = 2− 1 = 1. b′li =
0 + 1 = 1. Therefore, Ol is legal.

• Cl
0 = 01001..., Ol = {set(bl

2), set(b
l
2), clear(b

l
2), set(b

l
2)}. Ol is illegal because

S(bl
2) = 3− 1 = 2.

Note that illegal bitmap operations deadlock in our implementation because set
and clear spin-block and retry until they acutally changed the bit. If a legal bitmap
operations multiset is executed fully concurrent (i.e., one thread per operation), then
there is always a thread/operation that can make progress.

Induction Hypothesis 1. Let us assume that a multiset of bitmap operations Ol on the Ll
bitmap is legal according to Definition 3 for an arbitrary l and that Ll is initially consistent
with Ll+1.

Lemma 1. Under the induction hypothesis, the bitmap operations multiset Ol+1 that is
generated by the operations in Ol according to Definition 2 is also legal. Furthermore, after
executing Ol , Ll is still consistent with Ll+1.

Proof. Let us first consider the bitmap operations of a single container Cl
i . Let #SFl

i
be the number of times a first bit is set in the container and #CLl

i be the number of

14try_clear and try_set allow clearing/setting already cleared/set bits.

5.5. Related Work 113

times a last bit is cleared in the container. Then, according to Definition 2, bl+1
bi/64c

is set #SFl
i times and cleared #CLl

i times. We have to prove that the set-surplus
S(bl+1
bi/64c) = #SFl

i − #CLl
i satisfies the legality criteria of Definition 3.

Without loss of generality, let us assume that all set-first and clear-last operate on
the same bit bl

k. Then, S(bl+1
bi/64c) = S(bl

k) ∈ {−1, 0, 1}. Hence, the generated bitmap
operations Ol+1 for any bit on the Ll+1 bitmap satisfy the first legality condition of
Definition 3.

Now we have to show that also the second legality condition holds and that bl+1
bi/64c

is consistent with Cl
i after executing Ol . We consider two cases.

1. The higher-level bit is initially in a cleared state: bl+1
bi/64c = 0. Therefore, due to

initial consistency, ∑ Cl
bi/64c = 0. Therefore, #SFl

i − #CLl
i ∈ {0, 1}, otherwise, Ol

would not be legal. Therefore, bl+1
bi/64c + S(b

l+1
bi/64c) ∈ {0, 1}.

(a) If #SFl
i − #CLl

i = 0, then ∨63
k=0bl

64·i+k = 0 after Ol . At the same time,
S(bl+1
bi/64c) = 0, so bl+1

bi/64c = 0 after Ol , which is consistent with the state of

Cl
i after Ol .

(b) If #SFl
i − #CLl

i = 1, then ∨63
k=0bl

64·i+k = 1 after Ol . At the same time,
S(bl+1
bi/64c) = 1, so bl+1

bi/64c = 1 after Ol , which is consistent with the state of

Cl
i after Ol .

2. The higher-level bit is initially in a set state: bl+1
bi/64c = 1. Therefore, due to initial

consistency, ∑ Cl
bi/64c > 0. Therefore, #SFl

i − #CLl
i ∈ {−1, 0}, otherwise, Ol

would not be legal. Therefore, bl+1
bi/64c + S(b

l+1
bi/64c) ∈ {0, 1}.

(a) If #SFl
i − #CLl

i = −1, then ∨63
k=0bl

64·i+k = 0 after Ol . At the same time,
S(bl+1
bi/64c) = −1, so bl+1

bi/64c = 0 after Ol , which is consistent with the state

of Cl
i after Ol .

(b) If #SFl
i − #CLl

i = 0, then ∨63
k=0bl

64·i+k = 1 after Ol . At the same time,
S(bl+1
bi/64c) = 0, so bl+1

bi/64c = 1 after Ol , which is consistent with the state of

Cl
i after Ol .

If all containers in Ll are consistent with their respective bits in Ll+1, then the
entire Ll bitmap is consistent with the Ll+1 bitmap. Futhermore, all generated bitmap
operations Ol+1 are legal because they satisfy both legality criteria.

Base Case 1. The bitmap data structure is initially in a consistent state. Furthermore, O0 is
legal. Otherwise, programmers use the bitmap data structure incorrectly.

5.5 Related Work

CUDA provides an on-device dynamic memory allocator, but it is unoptimized and
slow. To solve this issue, multiple custom allocators have been developed in the
last years (Table 5.1). These allocators achieve good performance by exploiting an
allocation pattern that many applications on massively parallel SIMD architectures
exhibit: Most allocations are small in size and due to mostly regular control flow,
many allocations have the same byte size.

114 Chapter 5. Dynamic Mem. Allocation with SOA Performance Characteristics

Halloc [7] is one of these allocators. It is a slab allocator and can allocate only a
few dozen predetermined byte sizes between 16 bytes and 3 KB. This is fast but can
lead to internal fragmentation. DYNASOAR can avoid such internal fragmentation
because allocation sizes are determined from compile-time type information of the
application. A slab in Halloc contains same-size allocations and tracks allocations
with a bitmap. To avoid scanning large bitmaps, a hash function determines which
bits to check during allocations. Only one slab can be active per allocation size and if
the active slab becomes too full, it is replaced with a new one. In contrast, more than
one block per type can be active in DYNASOAR and blocks are filled up entirely.

XMalloc [88] was the first allocator with allocation request coalescing, which was
adopted by many other allocators, including DYNASOAR. Coalesced requests are
served from basicblocks, which are organized in one of multiple lock-free free lists
depending on their size.

FDGMalloc maintains a private heap for every warp [201], similar to Hoard [19].
It does not have a general free operation and can only deallocate entire heaps, so it is
not suitable for SMMO applications.

CircularMalloc (CMalloc) [191] allocates memory in a ring buffer. Every allocation
has a pointer to the next allocation or free chunk, wrapping around at the end of
the buffer. CMalloc traverses the linked list for free chunks during allocations. To
reduce allocation contention, every multiprocessor starts its traversal at a different
location. This is similar to DYNASOAR’s bitmap rotation technique for reducing thread
contention.

ScatterAlloc [175] hashes allocation requests to memory pages depending on their
allocation size and the multiprocessor ID. Pages hold allocations of the same size, but
slightly smaller requests can be accommodated, leading to internal fragmentation.
While DYNASOAR uses hierarchical bitmaps, ScatterAlloc uses hashing with linear
probing for finding pages during allocations. For benchmarks, we use mallocMC [54],
a reimplementation of ScatterAlloc that is still maintained.

Both Halloc and ScatterAlloc maintain fill levels to quickly skip congested mem-
ory areas that are above a certain threshold, because the performance of any hashing
technique degrades with an increasing number of collisions. In DYNASOAR, tempo-
rary inconsistencies in bitmap hierarchies increase with the number of concurrent
allocations, but DYNASOAR can dynamically adapt to such cases by initializing
additional blocks.

TA B L E 5 . 1 : Comparison of allocators. Coal. means allocation request coalescing.

Allocator Coal. SOA Container Finding Free Memory

DYNASOAR 3 3 Block Hierarchical Bitmap

DYNASOAR-NoCoal 7 3 Block Hierarchical Bitmap

BitmapAlloc 7 7 7 Hierarchical Bitmap

CircularMalloc 7 7 7 Linked List, Ring Buffer

Default CUDA Allocator 7 7 (Unknown) (Unknown)

FDGMalloc 3 7 Priv. Heap, Superblock Linked List

Halloc 7 7 Slab Bitmap, Hashing

mallocMC (ScatterAlloc) 3 7 Superblock, Region, Page Hashing

XMalloc 3 7 (4 block hierarchies) Lock-free Free Lists

5.6. Benchmarks 115

5.6 Benchmarks

We evaluated DYNASOAR with multiple real-world SMMO applications that exhibit
different memory allocation patterns (Table 5.2). We describe the SMMO structure of
these applications in detail in Chapter 7. All benchmarks were run on a computer with
an Intel Core i7-5960X CPU, 32 GB main memory and an NVIDIA TITAN Xp GPU
(12 GB device memory), and compiled with nvcc (-O3) from the CUDA Toolkit 9.1 on
Ubuntu 16.04.4.

We compare the running time with different allocators. If possible, we also
measured the running time of baseline implementations that do not use any dynamic
memory management.

Benchmark Applications Our benchmarks are from different domains and fall into
four categories.

1. Objects allocated up front, no deallocation: nbody

2. Objects allocated up front, then only deallocation: collision, structure

3. Cellular automaton (CA) with static cells network: sugarscape, traffic, wa-tor

4. Other: barnes-hut, game-of-life

Baselines (SOA/AOS) are application variants without any dynamic memory
allocation. Baselines of category (1) are trivial to implement with static allocation. In
category (2) applications, every object has a boolean active flag to prevent deleted
objects from being enumerated in the future. In category (3) applications, classes are
merged with the underlying static cell data structure, which wastes memory in case
of empty cells (Section 5.6.2). Category (4) applications cannot be implemented with
only static allocation, unless the application is changed fundamentally.

Parallel Do-All in Custom Allocators Other allocators do not provide do-all opera-
tions, which are required for SMMO applications. To compare DYNASOAR with other
allocators, we developed standalone parallel_do and device_do implementations
that can be used with any allocator.

These implementations maintain arrays for allocated and deleted object pointers
of each type. Pointers are added to these arrays with atomic operations. At the end of
a parallel do-all operation, deleted pointers are removed from the array of allocated
pointers. This process is non-trivial because the same memory location/pointer could
be allocated and deleted multiple times throughout a parallel do-all operation. After
all deleted pointers were removed, the array of allocated pointers is compacted with
a prefix sum operation (same as Figure 5.6).

Depending on the number of (de)allocations, this mechanism may take a long
time. A better allocator-specific mechanism could likely be developed with some
reverse engineering. For that reason, we break down running times into enumeration
time and remaining time. Enumeration time should not be taken into account when
comparing the performance of different allocators.

BitmapAlloc To analyze the performance of pure bitmap-based object allocation
without SOA layout, blocks and fake object pointers, we developed a second allocator
BitmapAlloc. This allocator treats the entire heap as one large object array, whose slots
are managed by hierarchical bitmaps, similarly to DYNASOAR: one allocation bitmap

116 Chapter 5. Dynamic Mem. Allocation with SOA Performance Characteristics

TABLE 5.2: Description of SMMO benchmark applications

Benchmark Description #p
ar

.d
o-

al
l

#c
la

ss
es

al
lo

c./
de

al
lo

c.

sm
al

le
st

cl
as

s

la
rg

es
tc

la
ss

Game of Life: A CA due to J. H. Conway. This version
has a time complexity of O(#alive cells) instead of the
standard O(#cells) algorithm. Cells can be dead, alive
or alive-candidates. Alive-candidates are dead cells
that may become alive in the next iteration. Only alive-
candidates and alive cells are processed.

4
/

it
er

at
io

n

4
(2

dy
n.

)

3
/

3

5B
,2

fie
ld

s

8B
,1

fie
ld

N-Body: Simulates the movement of particles accord-
ing to gravitational forces. A device_do operation
is required to calculate (and then sum up) the grav-
itational force between every pair of particles. This
benchmark has no dynamic object (de)allocation. 2

/
it

er
at

io
n

1
(0

dy
n.

)

7
/

7

28
B,

7
fie

ld
s

(s
am

e)

Barnes-Hut: An extension of N-Body in which bodies
are stored in a quad tree [28], to evaluate DYNASOAR
with dynamic tree data structures. The running time is
dominated by the construction and maintenance (i.e.,
frequent node inserts and removals) of the quad tree.
Tree nodes are dynamically (de)allocated. 10

/
it

er
at

io
n

3
(1

dy
n.

)

3
/

3

68
B,

9
fie

ld
s

10
2B

,1
2

fie
ld

s

+

=

merge Particle Collisions: Similar to N-Body, but particles
are merged according to perfectly inelastic collision
when they are getting too close. The number of parti-
cles decreases gradually. This benchmark has dynamic
object deallocation but no dynamic object allocation. 6

/
it

er
at

io
n

1
(1

dy
n.

)

7
/

3

38
B,

10
fie

ld
s

(s
am

e)
pull

Structure: Simulates a fracture in a composite mate-
rial, modeled as an FEM. Intuitively, the mesh is a
graph and edges between nodes are springs. When
pulling the mesh on one side, the material starts to
break eventually. Isolated nodes are detected with a
BFS [78] and removed. Literature describes extensions
that would benefit from dynamic allocation [125].

3
/

it
er

at
io

n

5
(4

dy
n.

)

7
/

3

32
B,

6
fie

ld
s

46
B,

7
fie

ld
s

Sugarscape: An agent-based social simulation [59].
Agents inhabit a 2D grid and can move to neighbor-
ing cells. Cells contain sugar which is consumed by
agents. Sugarscape can simulate a variety social dy-
namics (e.g., trade, war, environmental pollution). We
simulate resource consumption, ageing and mating. 12

/
it

er
at

io
n

4
(2

dy
n.

)

3
/

3

52
B,

7
fie

ld
s

74
B,

11
fie

ld
s

Wa-Tor: An agent-based predator-prey simula-
tion [49]. Fish/sharks occupy a 2D grid of cells and
can move to neighboring cells. Fish and sharks re-
produce after some iterations. Fish die when they are
eaten and sharks die when they run out of food. 8

/
it

er
at

io
n

4
(2

dy
n.

)

3
/

3

60
B,

4
fie

ld
s

64
B,

5
fie

ld
s

max_vel = 3
max_vel = 5

max_vel = 3

Nagel-Schreckenberg: A traffic flow simulation on a
street network [145] that can reproduce traffic jams
and other phenomena. Streets are modeled as a net-
work of cells, with at most one vehicle per cell. New
vehicles are continuously added to the simulation and
existing vehicles are removed at their final destination.

3
/

it
er

at
io

n

4
(1

dy
n.

)

3
/

3

97
B,

10
fie

ld
s

12
4B

,6
fie

ld
s

Linux Scalability: Not an SMMO application. This
microbenchmark allocates, then deallocates a fixed
number of same-size objects in each thread, without
accessing the memory [118].

n/
a

1
(1

dy
n.

)

3
/

3

4B
,1

fie
ld

(s
am

e)

5.6. Benchmarks 117

per type and one free slot bitmap. Allocation bitmaps are also used in parallel_do
and device_do implementations.

The main downside of BitmapAlloc is its inefficient memory usage. It supports
only a single allocation size, potentially leading to high internal fragmentation.

5.6.1 Performance Overview

Figure 5.8 shows the running time of all benchmarked SMMO applications. We
gave each allocator some extra memory to avoid memory scarcity slowdowns: The
heap size is 8 GiB, at least 4 times bigger than the maximum amount of all allocated
memory at any point throughout the program execution. DYNASOAR achieves
superior performance over other allocators due to the SOA layout, a dense object
allocation policy and an efficient parallel do-all operation.

All applications except for structure see a speedup by switching from AOS to SOA
(compare baselines). In structure, most fields are used together, so SOA does not pay
off for this benchmark.

Despite having no dynamic (de)allocation during the benchmark, nbody can see a
slight speedup with dynamic memory allocation. This is likely due to fewer cache
associativity collisions compared to a denser allocation within an array [116].

In collision, DYNASOAR/BitmapAlloc enumerate objects with a bitmap scan
(device_do; 1 bit/object). This is more efficent than in other allocators, which must
read object pointers from an array (8 bytes/object). The baseline versions must read
an active flag (1 byte/object) from every object, including deleted ones.

game-of-life and wa-tor are applications that (de)allocate a large number of objects,
so enumeration time dominates the running time with custom allocators. DYNASOAR

and BitmapAlloc have much more efficient parallel do-all operations than other
allocators.

sugarscape and wa-tor have a 2D grid structure of cells. Baseline versions take
advantage of this geometric structure, leading to more coalesced memory accesses. In
contrast, programmers have no control over where dynamic allocators place objects
in memory. For this reason, the baseline versions are faster than the versions with
dynamic memory management.

In general, in applications with dynamic memory management, objects are always
referred to with 64-bit object identifiers/pointers, while all baseline versions use 32-
bit integer indices. This especially penalizes benchmarks with small objects; they
grow considerably just by switching from 32-bit integers indices to 64-bit pointers.

5.6.2 Space Efficiency

To evaluate how efficiently allocators manage memory, we gave them the same heap
size and experimentally determined the maximum problem size before running out
of memory (Figure 5.9).

For category (1) and category (2) applications that allocate all memory during
startup (collision, nbody, structure), the baseline versions are more space-efficient. The
exact number of objects per type is known ahead of time, so placing objects in memory
is trivial. However, even though category (2) applications delete objects throughout
their runtime, the memory consumption of the baseline versions does not decrease
over time. This is a problem even for DYNASOAR because blocks can only be deleted
when they are entirely empty, which can take some time. This problem can be solved
with memory defragmentation (Chapter 6).

118 Chapter 5. Dynamic Mem. Allocation with SOA Performance Characteristics

FIGURE 5.8: Running time of SMMO application benchmarks

FIGURE 5.9: Space efficiency of SMMO application benchmarks (without object enumeration
arrays, relative to DYNASOAR

iterations

(A) Comparison with other allocators

problem size

(B) Fixed heap size, increasing problem size

iterations

(C) Isolating single DYNASOAR optimizations

iterations

(D) Number of (de)allocations and fragmentation

FIGURE 5.10: Detailed analysis of wa-tor (without enumeration time, unless indicated)

5.6. Benchmarks 119

Category (3) applications (sugarscape, traffic, wa-tor) exhibit a fixed grid/network
structure of cells, upon which a dynamic set of agents is moving. The baseline
versions allocate the fields of agents directly inside cells. Classes for agents are
combined with the respective cell class and some fields have null values (or garbage)
if they are not used. This wastes memory because not all cells are occupied by agents
all the time. In those applications, DYNASOAR is not as fast as optimized SOA
baseline implementations, but it can handle significantly larger problem sizes.

Out of all dynamic memory allocators, DYNASOAR is most space-efficient. Mal-
locMC and Halloc are based on a hashing approach. With rising heap fill levels, it
becomes increasingly difficult to find free memory for allocations, so they fail to use
the entire heap memory. DYNASOAR and BitmapAlloc can avoid this problem with
bitmaps, which act as an index for free memory.

Albeit negligible in these benchmarks, DYNASOAR and Baseline (SOA) also
benefit from slightly smaller object sizes: Only SOA arrays must be aligned/padded
and not every single object.

5.6.3 Detailed Analysis of wa-tor

wa-tor (Section 7.6) is a particularly interesting benchmark. It exhibits a massive
number of (de)allocations in waves, until an equilibrium between fish and sharks
is reached. This allows us to measure the performance at a massive and at a lower
number of concurrent (de)allocations. For a fair comparison of allocators, we do not
include the time spent on enumeration in this section, unless indicated.

Figure 5.10A shows that DYNASOAR always provides superior performance com-
pared to other allocators; during (de)allocation spikes (around iteration 50), as well
as if fewer concurrent (de)allocations take place. The performance of mallocMC de-
grades after a few iterations and does not recover, possibly due to a highly fragmented
heap.

In Figure 5.10B, all allocators were given a heap size of 1 GB and the problem size
increases gradually on the x-axis. mallocMC performs well at first, but its performance
drops rapidly as soon as the heap starts filling up. DYNASOAR can handle much
larger problem sizes, given the same amount of heap memory. The running time
grows linearly with the problem size, showing that recent GPU architectures can
handle atomic operations quite well.

Fragmentation in DYNASOAR is different from other allocators: DYNASOAR does
not have internal or external fragmentation by design, but memory within allocated
blocks is only available for a certain type. This sort of fragmentation decreases with
better clustering. In DYNASOAR, fragmentation F is the relative number of unused
objects slots among all allocated blocks Blocks (gray area in Figure 5.10B, D).

F =
∑b∈Blocks(Ntype(b) − used(b))

∑b∈Blocks Ntype(b)
≈ 1

#blocks ∑
b∈Blocks

#free slots(b)
#slots(b)

(fragmentation)

At iterations 60–80 in Figure 5.10D, DYNASOAR has high fragmentation because
many fish objects were deallocated. However, a block can only be deallocated when all
of its objects were deallocated. The fragmentation level decreases gradually because
more fish/shark objects are deallocated over time and new allocations are performed
in existing (active) blocks. Therefore, new blocks are rarely allocated and there is a
chance that an active block will eventually run empty. As can be seen in Figure 5.10B,

120 Chapter 5. Dynamic Mem. Allocation with SOA Performance Characteristics

iterations

FIGURE 5.11: Memory fragmentation of wa-
tor by the number of active block lookup
attemps r (Algorithm 1, Line 2). The x-axis
denotes iterations and the y-axis denotes the
fragmentation rate. With only 1 retry (r = 2),

fragmentation is reduced by 50%.

fragmentation is independent of the problem size and constant at around 18% (gray
area) after 500 Wa-Tor iterations.

We implemented multiple DYNASOAR variants to pinpoint the source of DY-
NASOAR’s speedup over other allocators (Figure 5.10C). The most important op-
timization is the rotation-shifting of bitmaps. Without shifting (*-NoShift variants),
performance degrades severely due to high thread contention, because (1) all threads
are trying to allocate objects in the same few active blocks and (2) all threads com-
pete for the same few free block locations instead of choosing free block locations
in different parts of the heap. Allocation request coalescing is another optimization
that reduces thread contention significantly (compare DynaSOAr-NoCoal-NoShift and
DynaSOAr-NoShift), but it cannot improve performance much further if we are already
rotation-shifting bitmaps (compare DynaSOAr and DynaSOAr-NoCoal).

In Figure 5.11, we experiment with the number of active block lookup attempts
before entering the slow path, which strongly affects fragmentation. By default,
DYNASOAR attempts to locate an active block five times (r = 5) before initializing
a new active block. This is close to the lowest achievable fragmentation level (i.e.,
without any thread contention). Due to unfortunate allocate-deallocate patterns,
a fragmentation rate of 0% is not achievable without manually relocating objects
through memory defragmentation or predicting future (de)allocations.

5.6.4 Raw Allocation Performance

The Linux Scalability microbenchmark [118] measures the raw (de)allocation time of
memory allocators. We set the heap size to 1 GiB and one CUDA kernel allocates n
64-byte objects in each of the 16,384 threads. A second CUDA kernel deallocates all
objects. In Figure 5.12A, the x-axis denotes the number of allocations n per thread
and the y-axis shows the total benchmark running time divided by n.

We chose the size of the heap such that it can hold exactly 16384× n objects with
n = 1024 (100% heap utilization). No allocator can reach perfect utilization because
some memory is used for internal data structures such as bitmaps.

Halloc is the fastest allocator. Both Halloc and mallocMC fail to allocate more than
510 objects (49.8% utilization). This is better than in some other benchmarks, proba-
bly because only objects of one size are allocated. DYNASOAR (96.9% utilization),
BitmapAlloc (98.4% utilization) and Halloc scale almost perfectly with the number of
allocations.

5.6.5 Parallel Object Enumeration

The overhead of object enumeration in DYNASOAR is negible in most benchmarks
(Figure 5.8, Figure 5.10B). In Figure 5.12B, the problem size is fixed but the heap size
increases on the x-axis. DYNASOAR’s performance (and that of object enumeration) is
independent of the size of the heap, if enough memory is available for the application.
This shows that our hierarchical bitmaps work well with various heap sizes.

5.7. Conclusion 121

#alloc. per thread0
%

 h
ea

p
 u

til
iz

at
io

n

1
0

0
%

 h
ea

p
 u

til
iz

at
io

n

(A) Linux Scalability: Increasing #allocations

heap size (GB)

(B) Scaling study: Heap size (wa-tor)

FIGURE 5.12: Scaling study: Number of allocations and heap size

5.7 Conclusion

We presented DYNASOAR, a new dynamic object allocator for SIMD architectures.
The main insight of our work is that memory allocators should not only aim for good
raw (de)allocation performance, but also optimize the usage of allocated memory.
DYNASOAR was designed for GPUs, but its basic ideas are applicable to other
architectures and systems with good or guaranteed vectorization such as the Intel
SPMD compiler (ispc) [152].

DYNASOAR achieves good memory access performance by controlling (a) mem-
ory allocation and (b) memory access with a parallel do-all operation. DYNASOAR’s
main speedup over other allocators is due to an SOA-style object layout, which can
benefit memory bandwidth utilization (through coalesced memory access) and cache
utilization. To allow for dynamic (de)allocation of objects, DYNASOAR allocates
objects in blocks instead of a plain SOA layout. DYNASOAR utilizes hierarchical
bitmaps for fast and compact allocations with low fragmentation.

Our benchmarks show that DYNASOAR can achieve significant speedups over
state-of-the-art allocators of more than 3x in SMMO application code due to better
memory access performance. DYNASOAR also has a significantly lower memory
footprint than other allocators, mainly because by design DYNASOAR has no internal
fragmentation and is not based on hashing. Our work also shows how an SOA layout
can support class inheritance without wasting memory: by allocating objects in blocks
and encoding block sizes in object pointers.

123

Chapter 6

GPU Memory Defragmentation

Memory fragmentation is a challenging problem of dynamic memory allocators
and has been widely studied on single-core and multi-core CPU systems (MIMD
architectures). On such systems, dynamic memory allocators can achieve low memory
fragmentation with good allocation policies [96] and compacting garbage collectors.

However, memory fragmentation has not been studied thoroughly on SIMD archi-
tectures, including GPUs. In this chapter, we present the design and implementation
of COMPACTGPU, a memory defragmentation system for the DYNASOAR dynamic
GPU memory allocator.

Contents
6.1 Why GPU Memory Defragmentation? 125
6.2 Heap Layout and Data Structures 126

6.2.1 Running Example . 126
6.2.2 Overview of the DYNASOAR Allocator 127

6.3 Defragmentation with COMPACTGPU 129
6.3.1 Defragmentation Candidate Bitmaps 130
6.3.2 Defragmentation Pass . 131
6.3.3 Copying Objects . 131
6.3.4 Storing Forwarding Pointers 134
6.3.5 Rewriting Pointers . 134
6.3.6 Updating Block State Bitmaps 136
6.3.7 Multiple Defragmentation Passes 136
6.3.8 Defragmentation Frequency 137

6.4 Pointer Rewriting Alternatives . 137
6.4.1 RECOMPUTE-GLOBAL . 137
6.4.2 RECOMPUTE-SHARED . 140

6.5 Evaluation . 140
6.5.1 Defragmentation Quality . 140
6.5.2 Number of Defragmentation Passes 141
6.5.3 Benchmark Applications . 142
6.5.4 Runtime Overhead . 144

6.6 Related Work . 146
6.7 Conclusion . 147

124 Chapter 6. GPU Memory Defragmentation

Outline This chapter is organized as follows. Section 6.1 describes the effect of
memory fragmentation on GPUs. Section 6.2 gives a high-level overview of the DYNA-
SOAR memory allocator (see Chapter 5 for details). Section 6.3 describes the design
and implementation of COMPACTGPU. Section 6.4 discusses alternative designs that
utilize CUDA shared memory. Section 6.5 evaluates the defragmentation quality and
performance impact of COMPACTGPU with real and synthetic benchmarks. Finally,
Sections 6.6 and 6.7 explore related work and conclude this chapter.

Overview Despite the recent popularity of massively parallel single-instruction
multiple-data (SIMD) architectures, the memory fragmentation problem has not been
studied thoroughly on such architectures. This is because dynamic memory allocators
for SIMD architectures such as GPUs have just been developed recently [88, 175, 71]
and not been around long enough yet.

We need to study memory (de)fragmentation on massively parallel SIMD archi-
tectures because allocations follow different patterns on such architectures. Most
allocations are small in size1 and due to mostly regular control flow, many allocations
have the same byte size. Such patterns are reflected in the design of state-of-the-art
GPU allocators. For example, Halloc [7], one of the fastest GPU allocators can allo-
cate only a few dozen predetermined byte sizes between 16 bytes and 3 KB. Such
specialties must be exploited by memory defragmentation systems to achieve good
performance.

In this chapter, we present COMPACTGPU, an incremental, fully parallel, in-
place memory defragmentation system for GPUs. COMPACTGPU is implemented
as an extension to DYNASOAR, but it could also be implemented in other systems.
GPUs/SIMD architectures are predominantly programmed in a C++ dialect (e.g.,
CUDA, OpenCL, ispc [152], Sierra [115]) and memory management in C++ is manual,
so we cannot rely on a garbage collector to collect metainformation for us.

COMPACTGPU is an efficient GPU memory defragmentation system that is op-
timized for GPU-specific allocation patterns. It is fully parallel and in many cases
the performance gain of defragmentation is much larger than the defragmentation
overhead. This is due to careful design and engineering efforts: COMPACTGPU is
based on parallel block merging, utilizes bitmaps to speed up pointer rewriting,
exhibits mostly uniform control flow and requires no synchronization between GPU
threads.

We evaluated COMPACTGPU with synthetic and real benchmarks. COMPACTGPU

can improve application performance by up to 16% and reduce the overall memory
consumption of an application, while incurring minimal runtime overheads.

Publications This chapter is in part based on the following papers.

• Matthias Springer, Hidehiko Masuhara. “Massively Parallel GPU Memory
Compaction.” In: Proceedings of the ACM SIGPLAN International Symposium on
Memory Management. ISMM 2019. ACM, 2019, pp. 14–26.
doi:10.1145/3315573.3329979

• Matthias Springer. “CompactGpu: Massively Parallel Memory Defragmenta-
tion on GPUs.” Extended Abstract. In: ACM Student Research Competition at
PLDI 2019. 3 pages. (reviewed, no formal proceedings)

1If thousands of threads were to request large allocations, a GPU would run out of memory immedi-
ately.

http://dx.doi.org/10.1145/3315573.3329979

6.1. Why GPU Memory Defragmentation? 125

6.1 Why GPU Memory Defragmentation?

Before introducing the design of our system, we review important performance
characteristics of SIMD architectures.

Effects of Fragmentation Fragmentation measures the degree of scattering of al-
locations across the heap and is caused by unfortunate allocate-deallocate patterns.
High fragmentation leads to three main disadvantages.

• Premature Out-of-Memory: Large allocations cannot be accommodated even
if there is enough free memory overall (external fragmentation).

• Low Cache Hit Rate: Poor data locality causes poor cache performance [75],
because fragmented data occupies more cache lines.

• Low Vector Load/Store Efficiency: SIMD vector load/store instructions are less
efficient, because accessing fragmented data requires more vector transactions
than accessing compact data.

While the first two points are well-established and apply to most architectures,
the specific effects on SIMD architectures have received little attention.

Effect of Fragmentation on Vectorized Access SIMD architectures achieve paral-
lelism by executing instructions on a vector register. However, vector load/store
operations are less efficient with higher fragmentation. When threads in a GPU appli-
cation simultaneously access different memory addresses, the GPU coalesces accesses
from the same SIMD work group (warp in CUDA, every 32 consecutive threads) into
one physical memory transaction if the addresses are on the same 128-byte cache
line (Section 2.1.4). More fragmentation leads to more scattered memory addresses,
resulting in poorer performance due to a higher number of memory transactions.

Memory fragmentation can greatly affect vectorized access, even if data is stored
in a Structure of Arrays (SOA) data layout. Recent NVIDIA architectures coalesce
simultaneous accesses of consecutive memory addresses into 128-byte vector transac-
tions. Accessing fragmented data requires more vector transactions than accessing the
same amount of dense data. This reduces the overall performance of memory-bound
applications because memory bandwidth is limited [126].

Memory Defragmentation To optimize the memory access of global memory, we
are developing a memory defragmentation system for GPUs in this chapter. In
essence, every memory defragmentation system has to solve four basic problems.

1. Determine which parts of the heap are fragmented.

2. Based on that information, decide which objects2 to move (relocate) and where
to move them.

3. Physically relocate objects in memory.

4. Find and rewrite pointers to relocated objects. (Alternative: Ensure that objects
can still be accessed through their old pointers.)

2We use the term object instead of allocation throughout this chapter because we are focusing on
object-oriented systems.

126 Chapter 6. GPU Memory Defragmentation

Most memory defragmentation systems are part of a garbage collector. Since garbage
collectors have to scan large parts of the heap anyway, they can gather additional
metainformation almost for free. This information can be used to select memory areas
for compaction [149, 101] or to determine which parts of the heap contains pointers
that must be rewritten [187].

6.2 Heap Layout and Data Structures

A variety of dynamic memory allocators for GPUs have been developed in recent
years. COMPACTGPU is implemented in DYNASOAR, but its basic ideas can be
adapted to other dynamic memory allocators as long as they follow a few basic
design requirements.

• The heap is divided into fixed-size memory blocks, in which objects are allo-
cated. Every DYNASOAR block has a constant block capacity (based on its
type), regardless of the number of allocated objects.

• A block contains only objects of the same size. This requirement is crucial.
Same-size objects can be compacted much more easily than objects of different
size. Every DYNASOAR block contains objects of only one type, so all objects
of a block have the same size.

• Blocks of the same object size have the same capacity. All DYNASOAR blocks
have the same size in bytes, so all blocks of the same type/object size have
the same capacity. Section 5.2.2 describes how exactly block capacities are
determined in DYNASOAR.

• The allocator maintains fill levels for each block. The fill level of every DYNA-
SOAR block can be determined by counting the number of set bits in the object
allocation bitmap.

DYNASOAR, Halloc [7] and UAlloc [71] are three examples of allocators that
satisfy these requirements. DYNASOAR is the only memory allocator with an SOA
data layout, which allows for efficient vectorized memory access of allocated memory.
While all allocators would benefit from better cache performance and more space-
efficient memory usage, memory defragmentation in DYNASOAR additionally leads
to more efficient vectorized memory accesses and thus better memory bandwidth
utilization.

6.2.1 Running Example

We use a simple fish-and-sharks simulation (wa-tor) as a running example to describe
the data structures of COMPACTGPU. Fish and sharks inhabit a 2D grid of cells in a
predator-prey relationship. This application has four classes: Cell, Agent, Fish and
Shark. The last two classes are subclasses of the abstract class Agent. We describe
wa-tor in more detail in Section 7.6.

wa-tor exhibits a large number of allocations and deallocations in GPU code, which
leads to memory fragmentation. By reducing memory fragmentation, COMPACTGPU

can reduce the overall memory consumption of wa-tor.

6.2. Heap Layout and Data Structures 127

Fish Shark Cell (free) (free) Shark...

heap: array of M blocks

...

Cell* Agent::position[64]
Cell* Agent::new_position[64]
int Agent::random_state[64]
int Agent::age[64]
float Fish::spawn_probability[64]

obj. alloc. bitmap

data segment
(SOA arrays)
+ inherited fields

all blocks have same size (bytes)

bit for object slot

Shark (free)

Cell* Agent::position[56]
Cell* Agent::new_position[56]
int Agent::random_state[56]
int Agent::age[56]
int Shark::egg_timer[56]
int Shark::energy[56]

...

...
free

...
allocated [Cell]

...
active [Cell]

...
defrag [Cell]

...
allocated [Fish]

...
active [Fish]

...
defrag [Fish]

...
allocated [Shark]

...
active [Shark]

...
defrag [Shark]

block (multi)state bitmaps:
(10 bitmaps, M bits per bitmap)

(no bitmaps for
abstract classes)

defragmentation candidate bitmap

This block is active (and
may be a defrag. candidate).

This block is full, i.e.,
• not active
• not a defrag.
 candidate

same type
⇒ same capacity (56)

FIGURE 6.1: Example: Heap layout for wa-tor. The heap consists of equally sized blocks. Up
to 64 objects can be stored in a block, as indicated by the object allocation bitmap. A block can
be in one or multiple of 10 possible (multi)states, as indicated by the state bits shown for
every block. There are allocated, active and defrag states for the three classes Fish, Shark and

Cell, but not for class Agent because it is an abstract class.

allocated [T]
∧ active [T]
∧ defrag [T]

free

allocated [T]

dealloc,
now empty

init block

dealloc
alloc,

now full

allocated [T]
∧ active [T]

alloc, now
> n/(n+1) full

dealloc, now
≤ n/(n+1) full

deallocalloc

deallocalloc

in
cr

ea
si

ng
 fi

ll
le

ve
l

(initial state)

0%

1% - 50%

51% - 99%

100%

fill levels (n = 1)

0%

1% - 66%

67% - 99%

100%

fill levels (n = 2)

T: C++ class/
struct type

FIGURE 6.2: Block states. Initially, every block is free. New objects are allocated in active blocks
of the corresponding type. We introduced a new state defrag to indicate defragmentation

candidates. Only objects from such blocks are relocated during defragmentation.

6.2.2 Overview of the DYNASOAR Allocator

Chapter 5 described the DYNASOAR memory allocator in detail. In the following
paragraphs, we give a simplified summary of DYNASOAR and describe which parts
of the allocator had to be modified to implement COMPACTGPU.

DYNASOAR is a slab allocator [23]. It divides the heap into M blocks of equal byte
size, each of which can contain up to 64 objects (capacity) of the same C++ class/struct
type, depending on the size of the type (Figure 6.1). A position where an object can be
stored is called an object slot. A 64-bit object allocation bitmap keeps track of allocations.
Objects are stored in the data segment in an SOA data layout: one SOA array per field.

Block States A block can be in one or more multistates. There are 3× #types + 1
possible states: one global free state and three states for each type T in the system
(Figure 6.2).

• free: The block is empty and does not contain any objects. No type is specified
for this block.

• allocated[T]: The block may contain objects only of type T. No other objects
can be stored in the block.

128 Chapter 6. GPU Memory Defragmentation

• active[T]: The block contains objects of type T. It is not full yet, i.e., it has space
for at least one more object. active[T]⇒ allocated[T].

• defrag[T]: The block is considered for defragmentation. We call such a block a
defragmentation candidate. We introduced this state to support defragmentation
in DYNASOAR and will describe its purpose in the next section.
defrag[T]⇒ allocated[T] ∧ active[T].

Allocation, deallocation and defragmentation routines frequently lookup blocks
by state. For that reason, block states are indexed by hierarchical bitmaps of size M, as
described in Section 5.2.4: one bitmap per state. The bitmap hierarchy is currently not
utilized by COMPACTGPU, so defrag[T] does not necessarily have to be hierarchical.

Fragmentation Our definition of fragmentation F differs from other systems. We
define it as the fraction of allocated but unused memory. If a block is in an allocated
state, we consider all of its object slots as allocated. However, only object slots that
actually contain an object, as indicated by the object allocation bitmap, are used.
Fragmentation is defined as the average free level among all allocated blocks.

F =
1

#blocks ∑
b∈Blocks

#free slots(b)
#slots(b)

(fragmentation)

Our goal is to reduce F as much as possible. Zero fragmentation means that all
allocated blocks are 100% full and the other blocks are empty (free). In that case,
vectorized memory access is most efficient. Conversely, a vector load on a block
that is 60% full will on average read 40% garbage. Moreover, unused memory in an
allocated block is not available for objects of other types. This leads to less space-
efficient memory usage.

The blocks themselves may be widely scattered in the heap. For example, in
Figure 6.1, three allocated blocks are stored at the beginning of the heap and two are
stored towards the end. This does not affect cache utilization or vector load/store
efficiency, because with up to 64 objects per blocks, most SOA arrays are much larger
than a cache line or the size of a vector load/store (128 bytes on NVIDIA GPUs).
Neither can it lead to external fragmentation and premature out-of-memory errors,
because all blocks have the same byte size.

Object Allocation To reduce fragmentation, even without active memory defrag-
mentation, DYNASOAR allocates new objects of type T always in active[T] blocks.
These are blocks that have space for at least one more object. Only if no active block
could be found, DYNASOAR locates a free block and turns it into an allocated[T] and
active[T] block (slow path).

DYNASOAR then reserves an object slot inside the block by atomically flipping a
bit in the object allocation bitmap from 0 to 1. If this operation was successful, the
block state may have changed, so we may have to update the respective bits in the
block state bitmaps.

If the number of objects of a type drops, fragmentation can increase, because a
block is deallocated only if all of its objects are deallocated. This kind of fragmentation
can be eliminated with COMPACTGPU.

Programming Interface DYNASOAR provides an embedded C++ DSL for defining
classes/fields. Through this DSL, COMPACTGPU can programmatically reflect on

6.3. Defragmentation with COMPACTGPU 129

the classes/fields that are defined in an application, somewhat similar to the Java
Reflection API or metaobject protocols [31]. This functionality is used in the pointer
rewriting step to restrict heap scans to a smaller part of the heap (Section 6.3.5) by
excluding parts of the heap that are guaranteed to be free of pointers that must be
rewritten.

6.3 Defragmentation with COMPACTGPU

COMPACTGPU is a memory defragmentation system for GPUs, implemented as a
DYNASOAR extension. COMPACTGPU is:

• Configurable: The desired target fragmentation rate can be tuned with parame-
ters. Better defragmentation can lead to more space savings and better memory
access performance, but also has a higher defragmentation overhead.

• Incremental: A single defragmentation pass is very fast and compacts only a
fraction of the heap. Compacting the entire heap requires multiple passes.

• In-place: No auxiliary storage is necessary and the entire heap remains usable.

• A stop-the-world approach: A defragmentation pass can run only when no
other GPU code is running. This is because, in current GPU architectures,
there is no efficient way of interrupting a kernel to run a defragmentation
pass, should the allocator run out of memory during the kernel. Many GPU
programs (including all SMMO examples in Section 7) are a sequence of GPU
kernel invocations [168], so there are usually plenty of opportunities to run a
defragmentation pass in-between.

• Fully parallel: Every step is implemented as a perfectly parallel CUDA kernel.
No synchronization among threads is necessary for defragmentation.

• Not order preserving: After defragmentation, objects are likely arranged in a
different order on the heap.

Programmers initiate defragmentation manually, typically after a parallel do-all
operation, and specify the C++ type that should be defragmented. COMPACTGPU

extends DYNASOAR with an additional host allocator handle function for initiating
defragmentation.

• HAllocatorHandle::parallel_defrag<T, k1, k2>(): Initiate memory defrag-
mentation for objects of type T. Internally, this function may run multiple
defragmentation passes. k1 and k2 are parameters that control the number of
defragmentation passes and are described later.

COMPACTGPU is based on three fundamental ideas.

• Block Merging: The heap is defragmented by moving/relocating objects from
source blocks to target blocks.

• Forwarding Pointers: After relocating objects, pointers to the new object loca-
tions are stored in source blocks.

• Bitmaps: To speed up pointer rewriting, bitmaps are utilized to quickly decide
whether a pointer must be rewritten.

We considered various alternative designs (Section 6.4), but the combination of
forwarding pointers with bitmaps proved to be most performant on GPUs.

130 Chapter 6. GPU Memory Defragmentation

Block Merging COMPACTGPU compacts the heap by merging blocks of the same
type. Blocks of the same type have the same capacity, so a source block can be merged
into a target block of the same type if both blocks are no more than 50% full. This is to ensure
that all objects of the source block fit into the target block. While it would be sufficient
to require that both fill levels together are no more than 100%, this techique is easier
to implement and more space-efficient, because the fill level of a block can then be
encoded in a single bit (i.e., 1 means ≤ 50% and 0 means > 50%).

We can extend this idea to higher fill levels: A source block can be merged into
two target blocks if none of the three blocks is more than 66% full. Or in general: A
source block can be merged into n target blocks if none of the n + 1 blocks is more
than n

n+1 full. In each case, the source block is eliminated and the number of allocated
blocks is reduced by one.

Defragmentation Factor We call n the defragmentation factor. This value is problem-
specific and must be chosen by the programmer at compile time. Blocks that are no
more than n

n+1 full are defragmentation candidates. Only those blocks are considered
during defragmentation. Higher defragmentation factors increase the overhead of
memory defragmentation but can lead to a lower final fragmentation rate. Whether a
higher defragmentation factor pays off depends on the application.

During defragmentation, all objects from a source block are moved to one or
multiple target blocks. The source block is deleted. Target blocks lose their defrag-
mentation candidate state defrag[T] if they are now more than n

n+1 full. They also lose
their active state active[T] if they are now entirely full.

Given a defragmentation factor of n, COMPACTGPU is guaranteed to bring down
fragmentation to 1− n

n+1 = 1
n+1 , if all defragmentation candidates are eliminated.

This may require multiple defragmentation passes, as will be described later. For
example, for n = 2, all blocks with ≤ 66% fill level are eliminated during defrag-
mentation3. Only blocks with a higher fill level are left over. Consequently, the final
fragmentation level is guaranteed to be less than 1− 66% = 33%.

6.3.1 Defragmentation Candidate Bitmaps

A defragmentation pass must be able to quickly find all defragmentation candidates
in order to choose source and target blocks efficiently. COMPACTGPU extends object
allocation and deallocation routines of DYNASOAR to keep track of defragmentation
candidates. COMPACTGPU maintains defrag[T] bitmaps (one per type) in which a bit is
set if the corresponding block is a defragmentation candidate. Every defragmentation
candidate is by definition also an active block, because it is not entirely full. Similar
to other block state bitmaps, defragmentation candidate bitmaps may have to be
updated whenever block fill levels change. An alternative implementation could scan
the object allocation bitmaps of every block and generate defrag[T] on demand.

Algorithms 13, 14 and 15 are extended versions of Algorithms 1, 7 and 2. They
show which parts of object (de)allocation4 we changed to keep track of defragmenta-
tion candidates. Recall that the ordering of if branches is crucial to avoid deadlocks in
Algorithm 15 (Section 5.4.4). Assuming that CUDA schedules branches in the order
in which they appear in the source code, the if branches must be ordered from high
fill level to low fill level.

3Since every source block must be matched with n = 2 target blocks, up to two defragmentation
candidates may be left over.

4We are not taking into account allocation request coalescing or block invalidation here.

6.3. Defragmentation with COMPACTGPU 131

Algorithm 13: DAllocatorHandle::allocate<T>() : T* GPU

1 repeat . Infinite loop if OOM
2 bid← active[T].try_find_set(); . Find and return the position of any set bit.
3 if bid = FAIL then . Slow path
4 bid← free.clear(); . Find and clear a set bit atomically, return position.
5 initialize_block<T>(bid);
6 allocated[T].set(bid);

7 defrag[T].set(bid);

8 active[T].set(bid);

9 alloc← heap[bid].reserve(); . Reserve an object slot. See Alg. 14.
10 if alloc 6= FAIL then
11 ptr← make_pointer(bid, alloc.slot);
12 t← heap[bid].type;

13 if alloc.state = LEQ then defrag[t].clear(bid) ;

14 if alloc.state = FULL then active[t].clear(bid) ;
15 if t = T then return ptr ;
16 deallocate<t>(ptr); . Type of block has changed. Rollback.

17 until false;

Algorithm 14: Block::reserve() : (int, state) . Assuming block size 64. GPU

(same as Algorithm 7, Lines 1–8)
9 if success then

10 if popc(before) = 63 then
11 return (pos, FULL)

12 else if popc(before) = 64 · n
n+1 + 1 then . E.g., popc(before) = 33 for n = 2

13 return (pos, LEQ)

14 else
15 return (pos, REGULAR)

16 return FAIL

6.3.2 Defragmentation Pass

A single defragmentation pass consists of four main steps. Every step is implemented
as a CUDA kernel and runs in parallel.

1. Copy objects from source to target locations.

2. Store forwarding pointers in source blocks.

3. Scan the heap and rewrite pointers to source locations.

4. Update block state bitmaps.

In the following sections, we describe each of these steps.

6.3.3 Copying Objects

COMPACTGPU copies objects from source to target blocks. Those blocks must be
defragmentation candidates, to ensure that all objects of a source block fit into the
corresponding target blocks.

132 Chapter 6. GPU Memory Defragmentation

Algorithm 15: DAllocatorHandle::deallocate<T>(T* ptr) : void GPU

1 bid← extract_block(ptr);
2 slot← extract_slot(ptr);
3 state← heap[bid].deallocate(slot);
4 if state = FIRST then . Deallocated first object of full block.
5 active[T].set(bid)
6 if state = LEQ then . Now ≤ n

n+1 full

7 defrag[T].set(bid);

8 else if state = EMPTY then . Deallocated last object of block.
9 if invalidate(bid) then

10 t← heap[bid].type;
11 active[t].clear(bid);

12 defrag[t].clear(bid);

13 allocated[t].clear(bid);
14 free.set(bid);

...0 n/
a

n/
a

n/
a 4 5 n/
a 7 n/
a

n/
a

n/
a

n/
a 12 n/
a 14 n/
a

n/
a

n/
a

defragmentation candidate bitmap : uint64_t[M/64]

indices : int [M]

0 4 5 7 12 14

order-preserving
stream compaction

...

17 18 19 20

17 18 19 20

R : int [r]

FIGURE 6.3: Example: Compacting a
bitmap of defragmentation candidates (de-
frag[T]). There is such a bitmap for every
type. See Figure 5.6 for full details. Must

preserve order of indices.

Choosing Source/Target Blocks We utilize the defragmentation candidate bitmap
to quickly find and assign target blocks to source blocks (Figure 6.3). We first generate
an indices array of size M that contains i at position i if the i-th bit is set. Otherwise,
we store an invalid marker. Now we filter/compact the array to retain only valid
values, resulting in array R of size r. This stream compaction [14] is implemented with
a parallel prefix sum operation (CUB library [138]).

Based on array R, each GPU thread can later by itself (without synchronization)
efficiently determine its assigned source block and corresponding target blocks (Fig-
ure 6.4). Given a defragmentation factor n, the B =

⌊ r
n+1

⌋
blocks with indices R[0]

through R[B− 1] are source blocks. Given a source block R[s_rid], its corresponding
target blocks are:

{
R[s_rid + i · B]

∣∣ i ∈ 1...n
}

(target block IDs)

Note that the first B blocks in R are source blocks. This fact will be used later to
optimize pointer rewriting.

Copying Objects Objects are copied in parallel. We assign 64 consecutive threads
to every source block (Figure 6.4) and every thread copies at most one object. Some

0 4 5 7 1
2

1
4R : int [10] 1
7

1
8

1
9

2
0

source
blocks

target (1)
blocks

target (2)
blocks

t0
t63

...

t64

t127

...

t128

t191

...

thread assignment:

leftover block
(if #blocks is not

divisible by n)

#source blocks B =
10
3 = 3

FIGURE 6.4: Example: Assigning source
and target blocks (n = 2). E.g., objects from
source block 5 are moved into blocks 14 and

19. One block is left over.

6.3. Defragmentation with COMPACTGPU 133

t_bitmap (i = 1)

24 / 32
(75%)

s_bitmap

18 / 32
(56%)

fill level

t_bitmap (i = 2): loop breaks before i = 2

20 / 32
(63%)

t_bitmap (i = 0)

source object
allocation bitmap

target (1) object
allocation bitmap

target (2) object
allocation bitmap

defrag

t 0 ...ex. thr. assignment t 1 t 2 t 3 t 4 t 5

(a) before relocation

t_bitmap (i = 0)

32 / 32
(100%)

t_bitmap (i = 1)

30 / 32
(94%)

0 / 32
(0%)

fill level

t_bitmap (i = 2): loop breaks before i = 2

s_bitmap

(b) after relocation

FIGURE 6.5: Example: Relocating objects (n = 3). Assuming block size 32 instead of 64. All
18 objects fit into the first two selected target blocks, so no third block is needed. The first 12

objects fit into the first target block. The remaining 6 objects fit into the second one.

threads will have no work to do, because the capacity of the block may be less than
64 and because not all slots in a source block are occupied. However, by assigning 64
threads, we are assigning exactly two full warps, which is reduces thread divergence.

Algorithm 16 shows how objects are copied (Figure 6.5). There are 64 threads for
every source block. A thread ttid copies the (s_loc = tid % 64)-th object of the source
block (ID s_bid). Let s_oid be the slot ID of this object. The target slot is the s_loc-th
free slot among all target blocks. Let t_oid and t_bid be the slot ID and block ID of
that slot. To determine the target slot, we may have to examine the object allocation
bitmap of multiple or all n target blocks (Line 7). This causes some thread divergence
because the number of for loop iterations differs among threads, but n is usually small.
Furthermore, note that no synchronization is required among threads.

On GPUs, memory accesses have a much higher latency than arithmetic instruc-
tions [193]. Therefore, we have to keep the number of extra accesses in addition
to the field copies low. Object copies cannot be avoided without changing the de-
fragmentation strategy and these extra accesses represent the overhead of our copy
phase implementation. Since all threads in a warp copy from/to the same blocks, we
require at most 1 + n read transactions from the array R and the same number read
transactions of object allocation bitmaps per warp. Since all threads in a warp have
the same source/target blocks, they access the same array slot of R and the same
object allocation bitmaps, so these accesses can be coalesced.

Better Source/Target Choices? The number of object copies (and pointer rewritings)
could be reduced by selecting less full defragmentation candidates as source blocks.
Such an optimization does not pay off for three reasons.

First, selecting source blocks becomes much more difficult. How would a GPU
thread know which block is less full? We would either have to sort the array R with a
comparator function that counts the set bits in each block’s object allocation bitmap (a
random memory access!). Or we would have to maintain additional defrag[T] bitmaps
for various fill levels. Both variants would greatly reduce performance.

Second, since memory is accessed in 128-byte vector transactions, reading/writing
a slightly lower number of scalar values (that are likely scattered within an SOA
array) is unlikely to reduce the number of memory transactions.

And third, there would be more threads without work, but since all threads in a
warp must execute the same instructions, these threads nevertheless have to wait for
the copying threads in the warp (warp divergence).

134 Chapter 6. GPU Memory Defragmentation

Algorithm 16: move_objects<T>() : void CPU

1 for tid← 0 to 64 · B in parallel do . GPU CUDA kernel
2 s_rid← tid / 64; s_bid← R[s_rid]; . Source block ID
3 s_loc← tid % 64; . This thread copies s_locth obj.
4 s_bitmap← heap[s_bid].bitmap;
5 if s_loc < popc(s_bitmap) then
6 t_loc← s_loc; . This thread copies to t_locth free slot.
7 for i← 0 to n do . Thr. divergence increases with n.
8 t_rid← s_rid + i · B;
9 t_bid← R[t_rid]; . Target block ID

10 t_bitmap←∼heap[t_bid].bitmap;
11 t_slots← popc(t_bitmap);
12 if t_loc < t_slots then
13 break; . Target block t_bid determined.
14 else
15 t_loc← t_loc − t_slots;

16 s_oid← nth_set_bit(s_bitmap, s_loc);
17 t_oid← nth_set_bit(t_bitmap, t_loc);
18 s_ptr← make_pointer(s_bid, s_oid);
19 t_ptr← make_pointer(t_bid, t_oid);
20 *t_ptr← *s_ptr; . Copy all fields.
21 end . else: No work for this thread.

Algorithm 17: place_forwarding_ptrs<T>() : void CPU

1 for tid← 0 to 64 · B in parallel do . GPU CUDA kernel
(same as in move_objects<T>(), lines 2–19)

20 | heap[s_bid].data.forwarding_ptr[s_oid]← t_ptr;
21 end . else: No work for this thread.

6.3.4 Storing Forwarding Pointers

After copying objects, pointers to the old memory location must be updated (rewritten).
Most memory defragmentation systems do this with forwarding pointers: A pointer to
the object’s new memory location is stored at its old location.

We extended DYNASOAR to store forwarding pointers inside blocks. Every block
may contain either a data segment or forwarding pointers. Listing 6.1 shows the data
structure of a block of type Fish (also see lower left part of Figure 6.1).

Algorithm 17 shows how the forwarding pointers array is populated. This algo-
rithm is identical to Algorithm 16, except for Line 20. These two algorithms cannot
be merged into a single kernel because a forwarding pointer would then overwrite
parts of the data segment5.

6.3.5 Rewriting Pointers

The heap is now scanned for pointers that must be rewritten. If a pointer points to a
location with a forwarding pointer, it is replaced with the forwarding pointer. We

5If the size of the first field is 8 bytes (same as a pointer), as in the example here, this is harmless.
Otherwise, a thread would store a forwarding pointer into a memory location that is copied by another
thread (race condition).

6.3. Defragmentation with COMPACTGPU 135

Algorithm 18: rewrite_pointer<T>(T* ptr) : T* GPU

1 s_bid← extract_block_id(ptr);
2 if s_bid < R[B] ∧ defrag[T][s_bid] then
3 s_oid← extract_object_id(ptr);
4 return heap[s_bid].data.forwarding_ptr[s_oid];
5 else
6 return n/a;

LISTING 6.1: Example: Block structure for class Fish
1 template<> struct Block<Fish> {
2 uint64_t bitmap;
3

4 union {
5 struct {
6 Cell* position[64];
7 Cell* new_position[64];
8 int random_state[64];
9 int age[64];

10 float spawn_probability[64];
11 } data_segment; /* SOA arrays */
12

13 Fish* forwarding_ptr[64];
14 } data;
15 };

utilize the defragmentation candidate bitmap to quickly decide if a pointer must be
rewritten, without reading the memory at the pointer location. We read that location
only if we are sure that it contains a forwarding pointer. This is a key difference compared
to other defragmentation systems.

Given a pointer ptr, Algorithm 18 returns the corresponding forwarding pointer
or n/a if no forwarding pointer exists for ptr. We first extract the block ID s_bid of
the object that ptr points to. This block is a source block if it is a defragmentation
candidate (i.e., bit set in the defragmentation candidate bitmap) and if the block ID
is smaller than R[B] (Line 2). Recall that the blocks with IDs R[i] with i ∈ [0; B− 1]
are source blocks and R is sorted (Figure 6.4). Large parts of the defrag[T] bitmap will
likely be cached by the L1/L2 caches, so we expect these bitmap lookups to be fast.

If the block is a source block, we extract the object ID s_oid from ptr and return the
corresponding forwarding pointer. It is crucial that Algorithm 18 is efficient because
it is executed for every pointer that is found during a heap scan.

Limiting Heap Scans Recent GPUs have up to 32 GB of memory, so scanning all
allocated memory for pointers to rewrite is expensive. However, since classes and
fields of application code are defined with DYNASOAR’s DSL, COMPACTGPU can
reflect on application classes and determine which parts of the heap may contain
pointers that must be rewritten. As such, only a small part of the heap is scanned.

For example, when defragmenting Fish objects, we can avoid looking into blocks
of type Fish or Shark, because those classes do not have fields of type pointer to Fish
or pointer to a superclass of Fish. Only class Cell has a field of type Agent*, so we only
scan the corresponding SOA arrays in the data segment of allocated blocks of type
Cell. These are the pointers that are rewritten according to Algorithm 18.

136 Chapter 6. GPU Memory Defragmentation

In general, when defragmenting objects of type T, we first determine all classes
U that have at least one field of type pointer to S, where S :> T is a supertype of
T or equal to T6. For every such type U, we scan allocated blocks of type U. For
every allocated block, we scan the SOA arrays of fields of type pointer to S. Only these
pointers are scanned and rewritten. This can exclude more than 95% of the heap.
Moreover, reading the values from an SOA array is fast because those field reads are
coalesced by the GPU.

Most other allocators have limited information about the structure of their allo-
cations. If we were to implement COMPACTGPU’s technique in such allocators, we
cannot restrict the search space as described here. Previous work describes alternative
techniques for limiting the search space based on intermediate results from a garbage
collector [187].

6.3.6 Updating Block State Bitmaps

Finally, the state of source and target blocks must be updated in the corresponding
block state bitmaps. Source blocks lose their active, allocated and defrag states and
become free. Target blocks may lose their active and/or defrag states depending on
their new fill level.

Moreover, the object allocation bitmaps of all target blocks must be updated. If m
objects were relocated to a given target block, one thread flips the m first cleared bits
to 1, using an algorithm that is similar to Algorithm 9.

6.3.7 Multiple Defragmentation Passes

A single defragmentation pass is guaranteed to delete all source blocks, i.e., 1
n+1

of all defragmentation candidates. In addition, some target blocks may lose their
defragmentation candidate state. However, a fragmentation level of 1

n+1 can be
achieved only if all candidates were eliminated (Section 6.3). This may require
multiple defragmentation passes.

The efficiency of defragmentation passes decreases with a decreasing number of
defragmentation candidates. For example, for n = 1, a single pass is guaranteed to
eliminate 500 out of 1,000 total candidates. However, the next pass is only guaranteed
to eliminate 250 out of 500 remaining candidates. Moreover, too much defragmenta-
tion can make allocations more expensive because DYNASOAR has to (re)initialize
new blocks if there are not enough active blocks. To reduce runtime overheads,
defragmentation should stop before eliminating all defragmentation candidates.

COMPACTGPU runs multiple defragmentation passes until all but k1 defrag-
mentation candidates were eliminated. The value of k1 can be configured. Since
defragmentation passes are very fast, the value of k1 matters only in cases with a
large number defragmentation passes or a massive number of (de)allocations.

Worst-case Analysis Let d be the number of defragmentation candidates. A single
defragmentation pass reduces d at least by a fraction of 1

n+1 , so no more than n
n+1 of

defragmentation candidates are left over. We can bound the number of defragmen-
tation passes that are necessary in the worst case to eliminate all defragmentation
candidates by:

6We also consider fields of type array of pointer to S etc. For simplicity, we mention only simple
pointer types here.

6.4. Pointer Rewriting Alternatives 137

log n+1
n

d (worst-case number of defrag. passes)

If all but k1 ≥ 1 defragmentation candidates should be eliminated, we can bound
the number of defragmentation passes by:

log n+1
n

d− log n+1
n

k1 = log n+1
n

d
k1

(keep k1 defrag. candidates)

In reality, the number of required defragmentation passes is usually much lower.
We experimentally analyze the actual number of defragmentation passes in Sec-
tion 6.5.2.

6.3.8 Defragmentation Frequency

Memory defragmentation must be initiated by the programmer explicitly. Once
initiated, COMPACTGPU may run multiple defragmentation passes depending on
n, k1 and the number of defragmentation candidates. We suggest one of the two
following defragmentation policies for initiating defragmentation.

Every m Iterations Many GPU programs run a number of CUDA kernels iteratively
in a loop. This policy initiates defragmentation every m iterations.

After Massive Deallocations Initiate defragmentation if there are at least k2 many
defragmentation candidates7, where k2 should be a large enough value. COM-
PACTGPU provides a helper function that lets programmers specify this thresh-
old as an absolute number or as a percentage of the heap size and then initiates
defragmentation if necessary. Internally, COMPACTGPU scales k2 by n

n+1 to ac-
count for the fact that a larger value of n usually leads to more defragmentation
candidates.

As a rule of thumb, we use the first policy for applications that experience a
speedup from defragmentation, because even small compactions can lead to a per-
formance gain. The second policy is useful for applications that mainly benefit from
better space efficiency or see a slowdown from defragmentation. Future work will
investigate how to automate defragmentation (choosing policies, parameters, etc.).

6.4 Pointer Rewriting Alternatives

Pointer rewriting is the most time-consuming step in applications with a large object
set. In Algorithm 18, reading the forwarding pointer in Line 4 is a random mem-
ory access that cannot be coalesced and thus the most expensive operation of the
algorithm. To get rid of this memory access, we implemented two alternatives that
recompute forwarding pointers on-the-fly.

6.4.1 RECOMPUTE-GLOBAL: Recompute Forwarding Pointers

Instead of storing forwarding pointers in objects, we maintain defragmentation records
(Figure 6.6). A defragmentation record is a tuple of source block ID, source object

7There is no global object counter. The number of defragmentation candidates approximates the
number of allocated but unused object slots.

138 Chapter 6. GPU Memory Defragmentation

src. obj. bitmap target obj. bitmapsrc. block ID target block ID

n times (n block IDs and n bitmaps)

5681110592

1224577

977612

...

...

...

...

...

...

...

...12761135171

index

0

1

2

3

r_s_bid : int [r] r_s_bitmap : uint64_t [r] r_t_bitmap : uint64_t [n][r]r_t_bid : int [n][r]

...

r - 1

src. block ID
% r = index
e.g.: 24577
% r = 1

defragmentation
record

...

(array name)

FIGURE 6.6: Example: Defragmentation records. Stored in SOA layout.

bitmap (i.e., object allocation bitmap), target block IDs and target object bitmaps.
Based on a defragmentation record, all forwarding pointers for objects from the
respective source block can be recomputed. Defragmentation records are stored in
SOA layout (4 arrays for n = 1).

Source block IDs are stored in shared memory8 and the remaining 3 arrays are
stored in global memory. Current NVIDIA GPUs have 48 KB of shared memory, so
we can have at most r = 48 KB / sizeof(int) = 12288 defragmentation records per
defragmentation pass.

r =
48 · 1024 bytes

4 bytes
= 12288 (number of defrag. record slots)

Choosing Source/Target Blocks During source/target block selection, we hash as
many defragmentation records to defragmentation record array slots as possible and
proceed with object copying. The defragmentation records data structure is effectively
a hash table with the source block ID as key.

h(s_bid) = s_bid % r (hash function)

The main challenge of selecting source/target blocks is to avoid hash collisions.
Only a few defragmentation candidates have a suitable block ID s_bid, such that
the block can be a source block stored in a given defragmentation record slot rid:
Namely, those blocks whose hash code h(s_bid) is rid. If all of those blocks are
assigned as target blocks, then this defragmentation record slot remains unused.
Too many unused defragmentation record slots increase the number of required
defragmentation passes.

To utilize as many defragmentation record slots as possible and to make best
use of the limited amount of shared memory, we first assign source blocks and later
target blocks. Algorithm 19 shows how source blocks are assigned. We run a CUDA
kernel with one GPU thread for each defragmentation record array slot tid (thread
ID). Each thread iteratively checks in the defragmentation candidate bitmap the bits
of all blocks whose hash code equal the thread’s assigned array slot. The algorithm
chooses the first suitable block (Line 6). We should ensure that no more than d

n+1
are selected, where d is the number of defragmentation candidates; otherwise, there
would not be enough target blocks for some source blocks. To that end, we maintain
an atomic counter (Line 9). Finally, after storing the source block ID and bitmap in

8Shared memory is an explicitly programmable part of the L1 cache.

6.4. Pointer Rewriting Alternatives 139

Algorithm 19: choose_source_blocks<T>() : void CPU

1 max_blocks←
⌊

d
n+1

⌋
; . Leave enough blocks for target blocks.

2 for tid← 0 to r in parallel do . GPU CUDA kernel
3 s_bid← n/a;
4 for bid← tid to m by r do . Invariant: bid % r = tid
5 if defrag[T][bid] then
6 s_bid← bid; . Choose this block as source.
7 break;

8 if s_bid 6= n/a then
9 if atomicSub(&max_blocks, 1) > 0 then

10 r_s_bid[tid]← s_bid;
11 r_s_bitmap[tid]← heap[s_bid].bitmap;
12 defrag[T].clear(s_bid); . Block cannot be a target.
13 else
14 r_s_bid[tid]← n/a;

15 else
16 r_s_bid[tid]← n/a;

Algorithm 20: choose_target_blocks<T>() : void CPU

1 for tid← 0 to r in parallel do . GPU CUDA kernel
2 if r_s_bid[tid] 6= n/a then . else: Slot not in use.
3 for i← 0 to n do . Choose n target blocks.
4 r_t_bid[i][tid]← defrag[T].clear();
5 r_t_bitmap[tid]← heap[r_t_bid[i][tid]].bitmap;

the defragmentation records data structure, we clear the block’s defragmentation
candiate bit9.

Finally, we assign target blocks (Algorithm 20). We assign n blocks to each source
block by atomically finding and clearing a set bit in the defragmentation candidate
bitmap. If this block is still a defragmentation candidate after this defragmentation
pass, the bit must be set again.

Rewriting Pointers We place no forwarding pointers in blocks. During pointer
rewriting (Algorithm 21), we check in shared memory if there is a defragmentation
record for the block of ptr instead of checking the bit in the defragmentation candidate
bitmap: We traded a global memory access for a much faster shared memory access.
However, this approach limits the number of source blocks per defragmentation pass
and, therefore, may increase the number of required defragmentation passes. Further-
more, we now have to recompute the forwarding pointer, which requires additional
global memory accesses for reading the remaining defragmentation record values in
case ptr must be rewritten. The computation of target pointers in Algorithm 21 is
similar to Algorithm 16 and follows the same notation and variable names.

9In contrast to our original forwarding pointer technique, we clear this bit during source block
selection instead of in a separate step (Section 6.3.6).

140 Chapter 6. GPU Memory Defragmentation

Algorithm 21: rewrite_pointer<T>(T* ptr) : T* GPU

1 s_bid← extract_block_id(ptr);
2 if r_s_bid[h(s_bid)] = s_bid then . Matching defrag. record in shared memory.
3 s_oid← extract_object_id(ptr);
4 s_bitmap← r_s_bitmap[h(s_bid)];
5 s_loc← popc(((1 << s_oid) - 1) & s_bitmap); . Bit s_oid is the s_loc-th set bit.
6 t_loc← s_loc;
7 for i← 0 to n do
8 t_bid← r_t_bid[i][h(s_bid)];
9 t_bitmap←∼r_t_bitmap[i][h(s_bid)];

10 t_slots← popc(t_bitmap);
11 if t_loc < t_slots then
12 break; . Target block t_bid determined.
13 else
14 t_loc← t_loc − t_slots;

15 t_oid← nth_set_bit(t_bitmap, t_loc);
16 t_ptr← make_pointer(t_bid, t_oid);
17 return t_ptr;
18 else
19 return n/a;

6.4.2 RECOMPUTE-SHARED: Defrag. Records in Shared Memory

To further reduce the number of global memory accesses, we modified RECOMPUTE-
GLOBAL to store the entire defragmentation records data structure in shared memory.
The size of a defragmentation record is then 12 · (n + 1) bytes (4-byte block IDs and
8-byte bitmaps), so the shared memory can hold only 2048 defragmentation records
in shared memory for n = 1 (and even less for larger n). This further increases the
number of required defragmentation passes, but also reduces the number of global
memory accesses during pointer rewriting.

r =
48 · 1024 bytes

(n + 1) · 12 bytes
(number of defrag. record slots)

6.5 Evaluation

We evaluated COMPACTGPU with an NVIDIA TITAN Xp GPU (12 GB device mem-
ory). We compiled the programs with nvcc (-O3) from the CUDA Toolkit 10.1 on
Ubuntu 16.04.4.

6.5.1 Defragmentation Quality

We first investigate how much fragmentation COMPACTGPU can eliminate. As
described in Section 6.3, given a defragmentation factor n, the fragmentation level
is guaranteed to be less than 1

n+1 after defragmentation. However, in reality the
fragmentation level is even lower.

We ran a synthetic benchmark that first allocates a very large number of objects
and then randomly deallocates some objects. COMPACTGPU then defragments the
heap with k1 = 0. We measured the fragmentation level after defragmentation for
different values of n. In Figure 6.7A, the x-axis denotes the initial heap fragmentation

6.5. Evaluation 141

worst case vs. actual
achieved fragmentation level

fra
g.

 lv
l.

af
te

r d
ef

ra
g.

initial frag. level

(A) Defrag. quality by initial fragmentation

n

30
%

 ov
er

he
ad

(B) Number of object relocations

FIGURE 6.7: Achieved fragmentation level and number of object relocations

fragment.
level

n = 1 n = 2 n = 3 n = 4 n = 5

2
 p

as
se

s

1
1

 p
as

se
s

1
8

 p
as

se
s

2
4

 p
as

se
s 31 passes

defragmentation passes

FIGURE 6.8: Number of defragmentation candidates by number of defragmentation passes

level (i.e., the percentage of deallocated objects) and the y-axis denotes the fragmenta-
tion level after defragmentation. Lower is better. The dotted lines indicate guaranteed
fragmentation levels after defragmentation (fragmentation level 1

n+1).
COMPACTGPU achieves its worst defragmentation quality at an initial fragmen-

tation level that is slightly smaller than n
n+1 (e.g, 45% for n = 1). In this case, many

blocks are at the boundary of becoming defragmentation candidates. There are a
few more points with bad defragmentation quality. For example, around 70% for
n = 1. In this case, a number of defragmentation candidates were eliminated in the
first defragmentation pass, but the resulting blocks have unfortunate fill levels at the
boundary of becoming a defragmentation candidate.

6.5.2 Number of Defragmentation Passes

We now investigate the number of defragmentation passes that are necessary to reach
good fragmentation levels. The number of defragmentation passes is bounded by
log n+1

n
d, but in reality fewer passes are needed because some target blocks lose their

state as defragmentation candidates.
We ran the same synthetic benchmark, but fixed the initial fragmentation level at

60%. Figure 6.8 shows the number of defragmentation candidates and the fragmen-
tation level after every defragmentation pass. The length of the x-axis indicates the
number of defragmentation passes required to eliminate all defragmentation candi-
dates. The y-axis shows the number of remaining defragmentation candidates and
the fragmentation level (gray area). Only a few passes bring down fragmentation to
very low levels. Moreover, the number of required passes to eliminate all candidates
is significantly lower than the theoretical upper bound.

Figure 6.7B shows the total number of object relocations for the synthetic bench-
mark (60% initial fragmentation level) at various defragmentation factors (x-axis).
COMPACTGPU runs multiple defragmentation passes, so some objects may be relo-
cated multiple times. The stacked bars classify relocations by the number of times
an object is relocated (e.g., 0 = object not relocated, 1 = object relocated for the first
time, etc.). All bars above “1” indicate an overhead of COMPACTGPU and could
potentially be avoided by choosing different source/target blocks or with a different
defragmentation strategy.

142 Chapter 6. GPU Memory Defragmentation

iterations

#o
bj

ec
ts

se
co

nd
s

defragmentation factor (n)

FIGURE 6.9: collision: N-body simulation with collisions

E.g., for n = 5, in 30.0% of all object relocations, an object was copied already
for the second time or even more often. Even though 31 defragmentation passes are
required for n = 5, no object was relocated more than 5 times.

6.5.3 Benchmark Applications

We evaluated COMPACTGPU with four SMMO applications (with k1 = 16). Since
dynamic memory allocation is not widely used on GPUs yet, there are no suitable stan-
dard benchmark suites. Our benchmarks are a subset of the DYNASOAR benchmarks
and exhibit varying allocation patterns.

We measured the defragmentation quality and running time with different de-
fragmentation factors. The defragmentation factor must be smaller than the capacity
of a block, so every problem has a different maximum defragmentation factor. The
dashed red lines in the running time graphs are baseline running times without
defragmentation.

For every application, we also show a memory profile. The shaded area indicates
the number of allocated objects (used object slots). Different colors indicate different
C++ classes in the application. The lines indicate the actual memory usage (allocated
object slots). The gap between the shaded area and a line is memory that is wasted
due to fragmentation.

All applications except for wa-tor experience a speedup with memory defragmen-
tation. wa-tor experiences a slowdown, but space savings.

collision This is an n-body simulation with collisions (Figure 6.9). A large number of
body objects is allocated at the beginning. No other objects are allocated. When two
body objects collide, they are merged and one object is deallocated. The fragmentation
level increases gradually with every deallocated body. The worst fragmentation is
reached around iteration 5,000, when most objects were already deallocated but most
blocks are still allocated due to a few remaining objects in each block.

We initiated defragmentation every 50 iterations. Defragmentation had a very
small overhead and led to a performance improvement of 12.2% for n = 36. This is
because of more efficient vector load/store instructions (more coalescing) and due
to better cache utilization. The initial dataset size is 5.7 MB. Towards the end of the
simulation, only few objects remain, and if they are stored in a dense way, they fit
into GPU caches.

structure This is a simulation of a fracture in a composite material (Figure 6.10),
modeled as a mesh of finite elements. The simulation exerts a force on some elements
and connections between two elements break if the force between them exceeds a
certain threshold. A BFS pass identifies elements that are disconnected from the
remaining simulation and deallocates them.

6.5. Evaluation 143

iterations
(app. runs for 5000 it.)

#o
bj

ec
ts

defragmentation factor (n)

se
co

nd
s

FIGURE 6.10: structure: Simulation of a fracture in a composite material (FEM)

defrag new
alloc.

iterations
(app. runs for 25000 it.)

#o
bj

ec
ts

defragmentation factor (n)

se
co

nd
s

FIGURE 6.11: generation: Generational cellular automaton

Similar to collision, this simulation exhibits only deallocations. However, this
simulation has four classes. Even though many objects are already deallocated at the
end of the simulation, most blocks are still allocated and overall memory consumption
has barely decreased.

We initiated defragmentation every 50 iterations. Defragmentation achieved a
peak speedup of 16.3% for n = 18.

generation This is an adaptation of Game of Life (rule 0235678/3468/255, similar to
“Burst” [204]; Figure 6.11). After a cell dies, it stays around for a few more iterations
and blocks the cell. This implementation simulates only alive cells by allocating
objects for alive cells and cells that may become alive in the next iteration.

This simulation contains both allocation and deallocation of objects. After iteration
2,000, most cells are dead and the simulation converges into a mostly static pattern.

We initiated defragmentation every 50 iterations for a speedup of 6.3% (n = 2).
Higher defragmentation factors led to overfitting: E.g., the line for n = 5 follows the
number of allocated objects very closely, even into small local minima. This does not
give any additional performance benefit.

We chose k1 = 16, i.e., 16 defragmentation candidates are excluded from de-
fragmentation. It is important to retain a few fragmented (non-full) blocks because
DYNASOAR first looks for active (non-full) blocks during allocations (fast path) and
has to initialize a new block if none were found (slow path). Too small values of k1 led
to overcompaction: Consider the enlarged part of the memory profile in Figure 6.11.
At first, defragmentation lowers the overall memory usage. However, allocations in
the next few iterations immediately increase the fragmentation level again due to
new block initializations, bringing it almost back to the initial fragmentation level. A
higher value of k1 would likely speed up allocations and increase the performance of
the overall application a little bit.

wa-tor This is the fish-and-sharks running example. Fish and sharks appear in
waves until an equilibrium is reached [49].

This simulation experiences a slowdown from defragmentation (Figure 6.13).
At n = 10, the slowdown is 8.1%. This slowdown is not due to defragmentation

144 Chapter 6. GPU Memory Defragmentation

iterations
(runs for 500 it.)

iterations
(runs for 500 it.)

iterations
(runs for 500 it.)

FIGURE 6.12: wa-tor: An agent-based fish-and-sharks simulation

defragmentation factor (n)

se
co

nd
s

defragmentation factor (n)

de

fra
g.

 p
as

se
s

FIGURE 6.13: Running time and number of defragmentation passes for wa-tor

runtime overhead. The main reason is that COMPACTGPU is not order-preserving:
Objects from a source block are scattered into multiple target blocks. This leads to less
coalesced memory accesses when certain fields are accessed. Similar slowdowns have
been reported on certain benchmarks in CPU systems [5]. We will further investigate
this effect in future work.

The benefit of defragmentation in wa-tor is a lower memory footprint. In Fig-
ure 6.12, the dotted lines indicate the maximum memory usage throughout the
simulation. Circles indicate defragmentation runs. For n = 10, the overall memory
consumption is reduced by 14%, so that programmers can run larger problem sizes
on the same hardware.

We use the After Massive Deallocations heuristic to initiate defragmentation. Ini-
tiating defragmentation every few iterations would incur a higher slowdown. To
save memory, defragmentation is most important around iteration 50. At that time,
many fish objects (red area) are deallocated and a large number of shark objects are
allocated. New shark objects can reuse deallocated memory locations of fish objects
as soon as the corresponding blocks are deallocated. Defragmentation eliminates
many non-full fish blocks by compaction.

Pointer Rewriting Alternatives COMPACTGPU is faster than RECOMPUTE variants
in most cases. The high number of bitwise operations for recomputing a memory
pointer (Algorithm 21), combined with divergent execution (some pointer are rewrit-
ten, some are not) led to a high slowdown compared to our forwarding pointer
method.

Furthermore, with increasing n, RECOMPUTE-SHARED requires a larger number
of defragmentation passes (Figure 6.13) because the shared memory is very small,
limiting the number of defragmentation candidates per pass.

For collision and structure, this slowdown is negible because very little time is
spent on defragmentation overall, but we can see clear difference for generation and
wa-tor.

6.5.4 Runtime Overhead

To evaluate the efficiency of our implementation, we measured the runtime overhead
of COMPACTGPU. There are two kind of overheads.

6.5. Evaluation 145

Benchmark Alloc.
Size

#Rewr.
Fields n #Defrag #Passes Total

Runtime Defrag Scan Copy Rewrite

Synthetic (60% frag.) 2,097.2 MB 1 3 1 18 n/a 44.4 4.0 6.7 33.3
collision 5.7 MB 1 10 200 186 3,698,945 36 17 7 8
generation 57.4 MB 1 2 500 537 56,830 191 80 17 85
structure 58.9 MB 3 10 100 368 305,846 140 54 16 65
wa-tor 1,107.6 MB 1 9 38 43 7,729 49 7 14 20

TABLE 6.1: Benchmark characteristics and running time (right side; milliseconds) for selected
defragmentation factors

First, COMPACTGPU extends (de)allocation procedures of DYNASOAR to main-
tain defrag[T] bitmaps (Section 6.3.1). To measure this overhead, we compare the
running time without defragmentation (red dashed line) and no defrag values in the
running time graphs. In no defrag, we maintain a defragmentation candidate bitmap
but never initiate defragmentation. There is almost no measurable overhead for
maintaining these bitmaps.

Second, COMPACTGPU has three potentially expensive steps: (a) Generating/
compacting an indices array R from a defragmentation candidate bitmap (scan), (b)
copying objects and placing forwarding pointers (copy) and (c) scanning the heap
and rewriting pointers (rewrite). In Table 6.1, we show the time spent in each step, as
well as the overall time spent on defragmentation (defrag), which includes additional
overheads such as block state updates. If #Passes < #Defrag, the programmer initiated
defragmentation but there were not enough defragmentation candidates to start a
defragmentation pass.

In every benchmark, defragmentation takes only a very small fraction of the
overall application running time. wa-tor has the largest overhead: The application
spends 0.6% of its running time in defragmentation.

Synthetic Benchmark The synthetic benchmark isolates the runtime overhead for
one defragmentation. We added a second class to the benchmark and made objects
of both classes point to each other randomly. There are initially 32,768,000 objects
of each class (object size 32 bytes). The benchmark deletes 60% of the objects of one
class and then initiates defragmentation.

The performance of the scan phases mainly depends on the efficiency of the prefix
sum operations (CUB library) and can thus not be further optimized.

The copy phases copy (read+write) 282.1 MB of object data and write 70.5 MB
of forwarding pointers in 6.7 milliseconds (94.7 GB/s). This is 17.3% of the global
memory bandwidth of our TITAN Xp GPU.

The rewrite step is most time consuming: COMPACTGPU has to check 32,768,000
pointers (262.1 MB) per pass (18 × 262.1 MB = 4,717.2 MB in total). Out of these
pointers, COMPACTGPU rewrites only a small part (read+write 70.3 MB of forwarding
pointers) because many objects were deleted. COMPACTGPU finishes the rewrite step
in 33.3 milliseconds, resulting in a memory transfer rate of 145.9 GB/s (not taking
into account other memory accesses). This is 26.6% of the global memory bandwidth
of our TITAN Xp GPU. The Nvidia Profiler shows that 32% of all global memory
accesses in this step hit the L1 cache (64 KB) and 63% hit the L2 cache (3,072 KB),
indicating that defragmentation candidate bitmaps are largely cached.

COMPACTGPU achieves a high performance because most memory reads/writes
have good coalescing. Overall, our benchmark results show that COMPACTGPU is
highly optimized with little room for improvement.

146 Chapter 6. GPU Memory Defragmentation

6.6 Related Work

A vast number of memory defragmentation systems have been developed for CPU
systems in the past. A main difference on GPU architectures is that it is easier to
decide where to relocate objects to, because there are only a small number of object
sizes. This pattern is reflected in the design of many GPU dynamic memory allocators:
Many allocators maintain containers for objects of the same size [7, 71]. On CPU
systems, there are typically many different allocation sizes.

The only existing GPU memory defragmentation system was developed by
Veldema and Philippsen [187]. Their work consists of an allocator and a defrag-
mentation system10. To compact the memory, their defragmentation system selects
10% of all memory regions that are less than 75% full as source regions. They use their
memory allocator to allocate a target location in another region. This is problematic
because allocation is expensive and requires some sort of synchronization between
threads. Runtime overheads of their defragmentation system range from 0.5% to 33%,
higher than the overhead of COMPACTGPU.

Veldema and Philippsen also propose a technique for limiting the search space
during pointer rewriting based on additional data collected by a garbage collector.
This technique could be used in COMPACTGPU instead of relying on class structure
metainformation of DYNASOAR.

To the best of our knowledge, there are no other defragmentation systems for
GPUs. We believe that this is because of limited support for dynamic memory
allocation. The default CUDA dynamic memory allocator is known to be slow and
unreliable [175], so most programmers avoid dynamic memory management entirely.
It is still a common practice to allocate a large chunk of memory statically and
manage it manually. Out of the few custom memory allocators that exist, many (e.g.,
ScatterAlloc [175], Halloc [7]) use a hashing approach to scatter allocations in the
heap almost randomly, in order to avoid collisions among allocating threads. Not
only do they miss important opportunities for vectorization (e.g., SOA layout), but
they are also known to incur the negative effects of high fragmentation [7].

Many efficient CPU memory defragmentation systems divide the heap into two
areas: Objects are copied from a from-space to a to-space [101, 111]. Both spaces are
swapped before every defragmentation pass. In such an approach, only half of
the memory space is usable by the allocator. This is acceptable on virtual memory
architectures because the virtual memory space is much larger than the physical
memory space. Current GPU architectures do not have virtual memory and even
the amount of physical memory is much smaller than on CPU systems. Cutting the
available memory by half would be unacceptable on GPUs.

Pointer Rewriting without Forwarding Pointers Some memory defragmentation
systems use data structures other than forwarding pointers [5, 101]. For example, the
Compressor uses a markbit vector to recompute forwarding pointers on-the-fly during
pointer rewriting [101]. A markbit vector is a bit vector where bits for the first and
last heap word of an allocated object are set. Since forwarding pointers are not read
from memory, only two accesses (read pointer, replace with new pointer) are required
to rewrite a pointer, assuming the markbit vector is cached. We experimented with
similar techniques (RECOMPUTE-GLOBAL, RECOMPUTE-SHARED; Section 6.4), but
they did not lead to a performance improvement.

10The source code of this system is not available, so we could not compare it with COMPACTGPU.

6.7. Conclusion 147

6.7 Conclusion

We presented COMPACTGPU, a memory defragmentation system for GPUs. COM-
PACTGPU is able to (a) speed up applications through better cache utilization and
vector load/store efficiency on allocated memory and (b) lower the overall memory
consumption of an application.

COMPACTGPU achieves low runtime overheads through careful SIMD-friendly
design considerations and implementation efforts: COMPACTGPU utilizes bitmaps
to select source/ target blocks and to quickly decide if a pointer must be rewritten.
Furthermore, COMPACTGPU exhibits mostly regular control flow, accesses memory
in coalescing-friendly patterns and requires no synchronization between threads.

Our main takeaways are that (a) memory defragmentation on GPUs is feasible
and able to deliver speedups, (b) too much defragmentation does not pay off (due to
overfitting and overcompaction) and can even be detrimental to performance due
to less efficient allocations, and (c) careful design considerations are necessary to
achieve good performance on GPUs; many good CPU designs, such as recomputing
forwarding pointers on-the-fly, are not efficient on GPUs.

149

Chapter 7

SMMO Examples

In this chapter, we present examples of Single-Method Multiple-Objects (SMMO)
applications. We used these applications to evaluate DYNASOAR and COMPACTGPU.
We show the data structure of each application and highlight their SMMO structure,
i.e., which parallel do-all operations they consist of.

Contents
7.1 nbody: N-body Simulation . 151
7.2 collision: N-Body Simulation with Collisions 154
7.3 barnes-hut: Approximating N-Body with a Quad Tree 160
7.4 structure: Finite Element Method 169
7.5 traffic: Traffic Flow Simulation . 171
7.6 wa-tor: Fish and Sharks Simulation 177
7.7 sugarscape: Simulation of Population Dynamics 180
7.8 gol: Game of Life . 183
7.9 Conclusion . 186

Benefits of Object-oriented Programming To analyze the performance of DYNA-
SOAR, we implemented most SMMO applications with and without dynamic mem-
ory allocation (baseline versions; Section 5.6). SOA baselines store objects in a hand-
written SOA data layout (Listing 2.5). We no longer consider such a layout as object-
oriented because C++ abstractions for object-oriented programming cannot be used.
We noticed that missing OOP abstractions made the development of the SOA baseline
versions more tedious than their counterpart versions that utilize the DYNASOAR

data layout DSL and dynamic memory management, in particular:

No Type Safety With respect to typing, the implementation of SOA baselines felt like
programming in an untyped/dynamically-typed language because all object
references are of type integer. This has two disadvantages. First, many program-
ming errors are not caught by the type checker at compile time, which slowed
down the development process. To make matters worse, some programming
errors do not even cause the program to crash at runtime, but simply produce a
wrong result (Listing 7.1 and 7.2). Second, types are also a form of code docu-
mentation and their absence makes code harder to read and understand [58].

No Dynamic Memory Allocation Many applications are more difficult to imple-
ment without dynamic allocation. Category 2 applications require an additional
boolean field to keep track of active/allocated objects (Section 5.6). Category 3
applications required changes to the data structures within the application,
which breaks abstractions.

150 Chapter 7. SMMO Examples

-field_1 : float
+foo()

A
-field_1 : int
+foo()
+bar()

B

FIGURE 7.1: Example: Dummy classes

LISTING 7.1: Example: Dummy classes with hand-written SOA layout (no OOP)
float A_field_1[10000];
int B_field_1[10000];

void A_foo(int id) { printf("A: %f\n", A_field_1[id]); }
void B_foo(int id) { printf("B: %d\n", B_field_1[id]); }
void B_bar(int id) { printf("B_bar: %d\n", B_field_1[id]); }

int get_A() { /* Return ID of an object of type A */ }

int main() {
A_foo(get_A()); // OK
B_foo(get_A()); // Typo: B_foo instead of A_foo. But code compiles and runs.
B_bar(get_A()); // Calling opeation of B on A. But code compiles and runs.

}

LISTING 7.2: Example: Dummy classes in AOS layout (with OOP)
class A {
public:
float field_1;
void foo() { printf("A: %f\n", field_1); }

};
A objects_A[10000];

class B {
public:
int field_1;
void foo() { printf("A: %d\n", field_1); }
void bar() { printf("B_bar: %d\n", field_1[id]); }

};
B objects_B[10000];

A* get_A() { /* Return pointer to an object of type A */ }

int main() {
get_A()->foo(); // OK
get_A()->foo(); // It is impossible to make the same mistake as in Listing 7.1.
get_A()->bar(); // Compile error

}

7.1. nbody: N-body Simulation 151

Notation of Chained Field Accesses Some applications exhibit a pattern of chained
field accesses in their source code, e.g.: obj->f1->f2. The order in which field
name tokens appear in hand-written SOA code is inversed and counter-intuitive:
B_f2[A_f1[obj]]. Moreover, this notation requires programmers to repeat the
type/class of objects/entities (A and B in this example).

In this chapter, we present the design and implementation of various SMMO
applications with DYNASOAR. These implementations are object-oriented and do
not suffer from the above mentioned shortcomings. To further highlight the benefits
of object-oriented programming, we discuss interesting design and implementation
choices of SOA baseline versions for certain SMMO applications.

Publications This chapter is in part based on the following papers.

• Matthias Springer, Hidehiko Masuhara. “DynaSOAr: A Parallel Memory Al-
locator for Object-oriented Programming on GPUs with Efficient Memory
Access (Artifact).” In: Dagstuhl Artifacts Series. Vol. 5, Iss. 2, Art. 2. Leibniz-
Zentrum für Informatik, Dagstuhl Publishing, 2019. doi:10.4230/DARTS.5.2.2.

7.1 nbody: N-body Simulation

nbody is a 2D particle system simulation. Such simulations are used by astronomers
to simulate the collision of galaxies or the formation of planets [9]. This example is a
very simple SMMO application with only one class. The entire application consists of
only around 100 lines of code.

nbody simulates a large number of bodies. Each body has a position, velocity and
mass. According to Newton’s theory of gravity, two bodies with a masses m1 and m2
and a distance of r pull each other closer with a gravitational force F.

F = G
m1m2

r2 (gravitational force)

The goal of nbody is to calculate the future position and velocity of all bodies.
nbody is an iterative algorithm: Each iteration advances the simulation by a small
time step ∆t. We assume that the gravitational forces remain constant during an
iteration, so we can compute each body’s new velocity and position as follows.

v← v +
F
m
· ∆t (simulation time step)

x ← x + v · ∆t

7.1.1 Data Structure

Every body is an object of class Body (Figure 7.2, Listing 7.3). This class has fields for
position, velocity, mass, as well as helper variables for accumulating the force that
acts on the body.

http://dx.doi.org/10.4230/DARTS.5.2.2

152 Chapter 7. SMMO Examples

-pos_x : float
-pos_y : float
-vel_x : float
-vel_y : float
-force_x : float
-force_y : float
-mass : float
+apply_force(other)
+compute_force()
+update()

Body

(A) Data structure (B) Screenshot

FIGURE 7.2: Data structure and screenshot of nbody. Bodies pull each other closer with
graviational force. Apart from the gravitational force, there is no interaction between bodies,

making this example the simplest one in this chapter.

LISTING 7.3: Data structure of nbody
1 #include "dynasoar.h"
2

3 class Body;
4 using AllocatorT = SoaAllocator<kNumObjects, Body>;
5

6 class Body : public AllocatorT::Base {
7 public:
8 declare_field_types(
9 Body,

10 float, // pos_x_
11 float, // pos_y_
12 float, // vel_x_
13 float, // vel_y_
14 float, // force_x_
15 float, // force_y_
16 float) // mass_
17

18 private:
19 Field<Body, 0> pos_x_;
20 Field<Body, 1> pos_y_;
21 Field<Body, 2> vel_x_;
22 Field<Body, 3> vel_y_;
23 Field<Body, 4> force_x_;
24 Field<Body, 5> force_y_;
25 Field<Body, 6> mass_;
26

27 public:
28 __device__ Body(float pos_x, float pos_y, float vel_x, float vel_y, float mass);
29

30 // Constructor for parallel_new.
31 __device__ Body(int index);
32

33 __device__ void apply_force(Body* other);
34

35 __device__ void compute_force();
36

37 __device__ void update();
38 };

7.1. nbody: N-body Simulation 153

7.1.2 Application Implementation

This application consists of two parallel do-all operations and one parallel new
operation (Listing 7.5). All member functions of Body are device functions (annotated
with CUDA keyword __device__) because they are executed on the GPU.

1. Initialization: Create a few random Body objects. Parallel new: Body.

2. Iterative Algorithm: Each iteration consists of the following steps.

(a) Computing Forces: Compute forces between all pairs of bodies with a
nested (sequential) do-all iteration. Parallel do-all: Body::compute_force.

(b) Acceleration and Movement: Compute a new velocity and position for
each body. Parallel do-all: Body::update.

In the following paragraphs, we describe each step of this simulation in more
detail.

Allocator Initialization Before the actual application code begins, we have to create
an allocator. We first create a new allocator handle which can be used from host
(CPU) code. This internally allocates a large chunk of global GPU memory which
contains the heap of our allocator. We then store a device allocator pointer in variable
device_allocator. This variable is a device variable, so it is only visible from GPU
code. We use this pointer to interact with DYNASOAR from GPU code. Every
DYNASOAR program initializes the memory allocator in this way, so we will skip
over this part in the remaining examples.

Step 1: Simulation Initialization At the beginning, we initialize the simulation
with 65,536 random Body objects. The parallel new operation invokes the second
constructor of Body in parallel, passing an index value between 0 and 65,535 as
argument. This constructor initializes the position, velocity and mass of the Body
object with random values using the cuRAND library.

Step 2: Iterative Algorithm The simulation invokes two parallel do-all operations
iteratively. The first method compute_force() computes the total force that is acting
on a body and stores it in the fields force_x_ and force_y_. This requires a nested
for loop because we have to compute and sum the forces between all pairs of bodies.
In DYNASOAR, we express such a nested for loop with device_do, which is similar
to parallel_do but runs sequentially.

Listing 7.4 illustrates this nested loop structure. The outer loop is a CUDA kernel
and runs in parallel. The inner loop runs sequential. While the implementation
of b2->apply_force(b1) could conceptually sum the force in either b1 or b2 (the
same force acts in both directions), it has to modify b1 to avoid race conditions. If
apply_force were to modify b2, then there would be multiple GPU threads modify-
ing b2 concurrently, because the outer loop runs in parallel. To avoid race conditions,
this would require an atomic add operation. Instead, apply_force modifies the force
of b1, which is now only accessed by one GPU thread.

The second method update() computes a new velocity and position based on the
force value that was computed by the first method. If a body goes out of bounds of
the simulation space, we invert its velocity. This only for visualization reasons; a real
n-body simulation would not do this.

154 Chapter 7. SMMO Examples

LISTING 7.4: Nested loop structure (conceptually)
1 for (Body* b1 : AllocatorT::all_objects<Body>) { // parallel_do
2 for (Body* b2 : AllocatorT::all_objects<Body>) { // device_do
3 // Compute gravitational force between b1 and b2. Accumulate the total
4 // gravitational force (of all bodies) in force_x_ and force_y_ values.
5 // But should apply_force modify b1 or b2?
6 b2->apply_force(b1); // Or: b1->apply_force(b2)
7 }
8 }

Both methods run in separate parallel do-all operations (and thus separate CUDA
kernels) to ensure that the simulation is free of race conditions and to ensure that the
application produces the same result on every run, assuming the random number
generator is initialized with the same seed. If both methods were to run in one CUDA
kernel, the implemention of apply_force may read an updated or not-yet updated
position of another body, depending on the scheduling of threads.

7.1.3 Further Optimizations

Related work describes three additional techniques to further optimize this n-body
simulation [146]. To keep this benchmark simple, these optimizations are not imple-
mented in our n-body simulation.

• Shared Memory: Since we compute forces between all pairs of bodies, every
CUDA thread reads the position and mass fields of all bodies. To reduce the
amount of data read from global memory, we can read those fields only once
per CUDA block and store the values in shared memory.

• Nested Parallelism: Instead of parallelizing only the outer for loop, also partly
parallelize the inner for loop. This technique is particular useful for improving
occupancy if the number of bodies is small.

• Loop Unrolling: Especially on older GPU architectures, unrolling the inner for
loop can improve instruction-level parallelism (ILP) and thus better utilize the
GPU’s resources (e.g., through dual-issue, Section 2.1.1).

To be able to implement these optimizations, we have to extend DYNASOAR’s
API in future work. In particular, there is currently no way of unrolling device_do
iterations. This could be simplified if range-based for loops could be used in lieu of
device_do iterations (Section 7.2.1). Moreover, the current API makes it difficult to
partly parallelize object enumeration. In essence, what we require is a mixture of
parallel_do and device_do. Such an API and its implementation could be inspired
by virtual warp-centric programming [86].

7.2 collision: N-Body Simulation with Collisions

We now extend the n-body simulation of Section 7.1 with collisions. Two bodies
are merged into one large body if their distance is below a certain threshold. This
example is interesting because it exhibits more complex object interactions and stores
a pointer to another object in a field, as opposed to only primitively-typed values in
the n-body simulation of Section 7.1.

7.2. collision: N-Body Simulation with Collisions 155

LISTING 7.5: Application logic of nbody
1 // Allocator handles.
2 AllocatorHandle<AllocatorT>* allocator_handle;
3 __device__ AllocatorT* device_allocator;
4

5 __device__ Body::Body(float pos_x, float pos_y,
6 float vel_x, float vel_y, float mass)
7 : pos_x_(pos_x), pos_y_(pos_y), vel_x_(vel_x), vel_y_(vel_y), mass_(mass) {}
8

9 __device__ Body::Body(int index) {
10 curandState rand_state;
11 curand_init(kSeed, index, 0, &rand_state);
12 // Initialize with random float between -1 and 1.
13 pos_x_ = 2 * curand_uniform(&rand_state) - 1;
14 /* Similarly for the pos_y_, vel_x_, vel_y_, mass_... */
15 }
16

17 __device__ void Body::apply_force(Body* other) {
18 if (other != this) {
19 // To avoid race conditions: Update other instead of this.
20 float dx = pos_x_ - other->pos_x_;
21 float dy = pos_y_ - other->pos_y_;
22 float dist = sqrt(dx*dx + dy*dy);
23 float F = kGravityConstant * mass_ * other->mass_ / (dist * dist);
24 other->force_x_ += F*dx / dist;
25 other->force_y_ += F*dy / dist;
26 }
27 }
28

29 __device__ void Body::compute_force() {
30 force_x_ = force_y_ = 0.0f;
31 device_allocator->device_do<Body>(&Body::apply_force, this);
32 }
33

34 __device__ void Body::update() {
35 vel_x_ += force_x_ * kDt / mass_;
36 vel_y_ += force_y_ * kDt / mass_;
37 pos_x_ += vel_x_ * kDt;
38 pos_y_ += vel_y_ * kDt;
39

40 // Bounce off the walls.
41 if (pos_x_ < -1 || pos_x_ > 1) { vel_x_ = -vel_x_; }
42 if (pos_y_ < -1 || pos_y_ > 1) { vel_y_ = -vel_y_; }
43 }
44

45 int main() {
46 // Create new allocator.
47 allocator_handle = new AllocatorHandle<AllocatorT>();
48 AllocatorT* dev_ptr = allocator_handle->device_pointer();
49 cudaMemcpyToSymbol(device_allocator, &dev_ptr, sizeof(AllocatorT*), 0,
50 cudaMemcpyHostToDevice);
51

52 // Create 65536 new Body objects.
53 allocator_handle->parallel_new<Body>(65536);
54

55 // Simulation loop.
56 for (int i = 0; i < kNumIterations; ++i) {
57 allocator_handle->parallel_do<Body, &Body::compute_force>();
58 allocator_handle->parallel_do<Body, &Body::update>
59 }
60 }

156 Chapter 7. SMMO Examples

-pos_x : float
-pos_y : float
-vel_x : float
-vel_y : float
-force_x : float
-force_y : float
-mass : float
-merge_target : Body*
-successful_merge : bool
-break_loop : bool
+apply_force(other)
+check_merge(other)
+step_1_compute_force()
+step_2_update()
+step_3_initialize_merge()
+step_4_prepare_merge()
+step_5_perform_merge()
+step_6_delete_merged()

Body

(A) Data structure (B) Screenshot

FIGURE 7.3: Data structure and screenshot of collision, an extension of nbody. In the screenshot,
the darkness of a body indicates its mass. When bodies are getting close, we connect them

with lines. A red line indicates that two bodies are almost within merging distance.

This simulation is an extension of the previous n-body simulation. It computes
forces between bodies and accelerates/moves bodies in the same way. However, two
bodies are merged according to the physical law of perfectly inelastic collision if they
become too close. In that case, the lighter body b2 is merged into the heavier one b1
(m1 > m2). According to the law of perfectly inelastic collision, the new velocity of
the heavier body b1 is the weighted sum of the velocities of both bodies.

v1 ←
v1 ·m1 + v2 ·m2

m1 + m2

x1 ←
x1 + x2

2
(perfectly inelastic collision)

m1 ← m1 + m2

7.2.1 Data Structure

We added three fields to class Body to implement body merging semantics (Figure 7.3,
red color). merge_target points to the Body object into which a given body should
be merged. successful_merge is set to true if a body was successfully merged and
can be deleted. break_loop is another boolean flag for breaking out of a device_do
iteration. This flag is necessary because the C++ break keyword, which is used to
break out of loops, cannot be used with device_do iterations.

We will provide a C++ iterator for enumerating allocated objects in future versions
of DYNASOAR. Programmers can than use range-based for loops (Listing 7.7) instead
of device_do. In that case, the field break_loop will no longer be necessary.

7.2.2 Application Implementation

The initialization of the simulation is identical to the previous n-body simulation and
omitted in this section. The actual simulation invokes six parallel do-all operations
iteratively. The first two parallel do-all operations are identical to the previous n-body
simulation.

1. Compute Forces: Compute and accumulate the force exerted by all other bodies
on a given body. Parallel do-all: Body::step_1_compute_force.

7.2. collision: N-Body Simulation with Collisions 157

1

2

3

4

5
6

7
8

9

merge_target = (5)

break_loop = true

(A) b5 selects b4 to merge.

1

2

3

4

5
6

7
8

9

merge_target = (2)

break_loop = true

break_loop = true

(B) Afterwards, b2 also selects b4.

FIGURE 7.4: Preparing a body merge operation

21 3merge_target = (2) merge_target = (3)

FIGURE 7.5: Merge target being merged itself

2. Acceleration and Movement: Accelerate and move a body. Parallel do-all:
Body::step_2_update.

3. Reset Merge Fields: Initialize the three new fields that will be used during
merging. Parallel do-all: Body::step_3_initialize_merge.

(a) merge_target← nullptr: No merge target was selected yet for this body.

(b) successful_merge← false: This body was not merged yet.

(c) break_loop← false

4. Prepare Merge: For a given body, check if and which other body can be merged
into it. This step implements a pull semantics: Instead of looking for body
into which a given body can be merged, we are looking for a body that can be
merged into a given body. Parallel do-all: Body::step_4_prepare_merge.

5. Perform Merge: If a merge target was selected for a given body in the previous
step, perform the perfectly inelastic collision. This step implements a push
semantics. Parallel do-all: Body::step_5_update_merge.

6. Delete Body: If a given body was merged in the previous step, delete it. Parallel
do-all: Body::step_6_delete_merged.

Steps 4 and 5 (Listing 7.6) are the interesting ones and we will describe them in
more detail in the following paragraphs.

Step 4: Prepare Merge This method determines if another body should be merged
into a given body. A body by can be merged into bx if the distance between by and bx is
below a certain threshold and if mx > my. This method operates from the perspective
of a receiving body bx (pull semantics) and iterates over all other bodies (device_do) to
find a body that satisfies these requirements. If such a body by was found, the merge
target of by is set to bx. Furthermore, the break_loop flag of bx is set. This does not
really stop the loop, but future iterations of check_merge will immediately return.

Consider the example in Figure 7.4a. We observe the process from the perspective
of the red body b5, i.e., step_4_prepare_merge is bound to b5. The green bodies are
within merging range. b5 checks b4 and decides to merge it into itself. The device_do
loop breaks at this point and b5 does not even consider b6, which is also in range.

Since step_4_prepare_merge runs as a parallel do-all operation, multiple bodies
are concurrently looking for merge partners. In Figure 7.4b, b2 selects the same body

158 Chapter 7. SMMO Examples

LISTING 7.6: Additional application logic of collision
1 __device__ void Body::check_merge(Body* other) {
2 // Only merge into larger body.
3 if (!other->break_loop_ && mass_ < other->mass_) {
4 float dx = pos_x_ - other->pos_x_;
5 float dy = pos_y_ - other->pos_y_;
6 float dist_square = dx * dx + dy * dy;
7

8 if (dist_square < kMergeThreshold * kMergeThreshold) {
9 // Try to merge this into other. There is a race condition here:

10 // Multiple threads may try to merge this body. Only one can win.
11 this->merge_target_ = other;
12 other->break_loop_ = true;
13 }
14 }
15 }
16

17 __device__ void Body::step_4_prepare_merge() {
18 device_allocator->device_do<Body>(&Body::check_merge, this);
19 }
20

21 __device__ void Body::step_5_update_merge() {
22 Body* m = merge_target_;
23 if (m != nullptr) {
24 if (m->merge_target_ == nullptr) {
25 // Perform merge.
26 float new_mass = mass_ + m->mass_;
27 float new_vel_x = (vel_x_ * mass_ + m->vel_x_ * m->mass_) / new_mass;
28 float new_vel_y = (vel_y_ * mass_ + m->vel_y_ * m->mass_) / new_mass;
29 m->mass_ = new_mass;
30 m->vel_x_ = new_vel_x;
31 m->vel_y_ = new_vel_y;
32 m->pos_x_ = (pos_x_ + m->pos_x_) / 2;
33 m->pos_y_ = (pos_y_ + m->pos_y_) / 2;
34

35 successful_merge_ = true;
36 }
37 }
38 }
39

40 __device__ void Body::step_6_delete_merged() {
41 if (successful_merge_) { destroy(device_allocator, this); }
42 }

LISTING 7.7: Alternative: C++ range-based for loop instead of device_do
1 __device__ void Body::step_4_prepare_merge() {
2 for (Body& other : device_allocator->iterator<Body>()) {
3 if (other.mass_ < mass_) {
4 float dx = other.pos_x_ - pos_x_;
5 float dy = other.pos_y_ - pos_y_;
6 float dist_square = dx * dx + dy * dy;
7

8 if (dist_square < kMergeThreshold * kMergeThreshold) {
9 other.merge_target_ = this;

10 break;
11 }
12 }
13 }
14 }

7.2. collision: N-Body Simulation with Collisions 159

b4 as b5 and writes a pointer to itself into merge_target. This is a race condition:
Which body b4 will be merged into depends on thread scheduling. In this example,
b2 wins. Note that b5 cannot select a new body now because it already decided to
break from the loop. It would be difficult to let b5 select a new body in such cases.
First, b5 may already be done executing the device_do, so this would potentially
require another device_do iteration. Second, b5 is not even guaranteed to notice
that merge_target was overwritten by another thread because GPU caches are not
coherent.

We accept the race condition in this step. If the merging threshold is sufficiently
small, then such race conditions are less likely to appear. Furthermore, even if a
body is not merged due to such a race condition, it is likely getting merged in one of
the next iterations, because a body will likely spend multiple iterations within the
merging threshold.

Step 5: Perform Merge This method performs a merge of a given body in case a
merge target was selected in the previous step. It operates from the perspective of a
giving body (push semantics).

There is another potential race condition in this method. Consider the example
in Figure 7.5. b1 should be merged into b2 and b2 should be merged into b3. Since
step_5_perform_merge runs as a parallel do-all operation, both bodies are merged
concurrently. This is problematic because the thread of b1 writes fields of b2 and the
thread of t2 reads those fields concurrently. Depending on the thread scheduling,
the thread of t2 may read the original or updated values. This race condition is
more problematic than the one in the previous step because a body could effectively
disappear from the simulation.

To avoid this race condition, we merge b1 into b2 only if b2 does not have a merge
target itself. After the merge, the successful_merge flag of b1 is set to true, so that it
will be deleted from the simulation in step_6_delete_merged.

7.2.3 Benefits of Object-oriented Implementation

We would like to highlight two benefits of object-oriented programming in this
implementation.

• Field Access Notation: C++’s object field access notation is more readable
compared to a hand-written SOA layout. For example, Listing 7.8 shows Line 27
of Listing 7.6 in a hand-written SOA layout. There are two problems with this
notation: First, we cannot use C++’s member access (arrow) operator. Second,
we have to specify an index for each SOA array access, whereas methods are
bound to an object and field accesses without an explictly specified object refer
to the bound object (this/id).

• Active Flag: Objects that were deleted (Listing 7.6, Line 41) are no longer
enumerated by subsequent parallel do-all operations. To implement the same
semantics without dynamic memory allocation (baselines AOS/SOA), we had
to add an extra field active to class Body, which is initially true but later set to
false if the Body object was merged. CUDA kernels process only active objects.

7.2.4 Further Optimizations

The most time-consuming steps of this n-body simulation are computing forces (Step 1)
and finding merge partners (Step 4). Both steps are implemented with a device_do

160 Chapter 7. SMMO Examples

LISTING 7.8: Field access notation in hand-written SOA layout
float new_vel_x = (Body_vel_x[id] * Body_mass[id] + Body_vel_x[m] * Body_vel_x[m]) ←↩

/ new_mass;

T T B
(I) (II)

(III)(IV)
T T B B B B

B B B B BB

(I) (II) (III) (IV)

(A) Quad tree structure (B) Screenshot

FIGURE 7.6: Barnes-Hut quad tree

iteration, resulting in N2 body-body computations, where N is the number of bodies.
Step 1 can be approximated with the Barnes-Hut algorithm (Section 7.3). Step 4 is
a common problem in physical simulations and could be optimized with spatial
subdivision [112].

7.3 barnes-hut: Approximating N-Body with a Quad Tree

Barnes-Hut [17] is an approximation of the n-body simulation in Section 7.1. N-
body is computationally expensive because it computes gravitational forces between
all pairs of Body objects. Barnes-Hut recursively divides the simulation space into
quadrants by building a quad tree (Figure 7.6). If a body is far enough away from a
quadrant, the force of the quadrant on the body can be approximated by treating the
entire quadrant as a single larger body instead of computing exact forces with every
body inside the quadrant. The device_do iteration of the original n-body simulation
is then replaced with a quad tree traversal. We are designing a 2D n-body simulation
in this section. A 3D n-body simulation would utilize an octree instead of a quad tree.

7.3.1 Data Structure

This application has three classes. An abstract class NodeBase and two subclasses
BodyNode and TreeNode.

The tree is made up of TreeNodes. Every TreeNode stores up to four children in
the children array field. This array has one slot per quadrant (e.g., quadrant 1 =
index 0). A child can be either another TreeNode or a BodyNode. Furthermore, every
node stores a pointer to its parent TreeNode. child_idx is the position of the node
within its parent’s children array. The root of the tree has no parent (nullptr).

Every node has a position and a mass. In case of a BodyNode, this is the position
and mass of the body. In case of a TreeNode, this is the center of gravity and accumu-
lated mass of all bodies in the subtree (summary). As the position of bodies changes
throughout the simulation, their position within the tree also changes. Therefore, tree
summaries must be recomputed from time to time.

TreeNodes store two additional coordinates: p1 is the left upper corner and p2
is the lower right corner of the node. Moreover, TreeNodes have two boolean flags

7.3. barnes-hut: Approximating N-Body with a Quad Tree 161

-parent : TreeNode*
-pos_x : double
-pos_y : double
-mass : double
-child_idx : int
+apply_force(other)
+distance_to(other) : double

NodeBase

-vel_x : double
-vel_y : double
-force_x : double
-force_y : double
+apply_force(other)
+add_to_tree()
+remove_from_tree()
+compute_force()
+update()

BodyNode
-children : TreeNode*[4]
-p1_x : double
-p2_x : double
-p1_y : double
-p2_y : double
-bfs_frontier : bool
-bfs_done : bool
+apply_force(other)
+child_idx(body) : int
+contains(body) : bool
+initialize_frontier()
+update_frontier()
+compute_summary()
+collapse_tree()

TreeNode

0..4

parent

children

FIGURE 7.7: Data structure of barnes-hut

bfs_frontier and bfs_done that are used to implement bottom-up tree traversals,
as described later. These field names start with bfs_ because the tree traversal is
conceptually similar to the parallel frontier-based breadth-first search algorithm.

7.3.2 Application Implementation

This simulation consists of a larger number of parallel do-all operations. We first give
a high-level overview of the simulation and then discuss selected do-all operations in
more detail in the following paragraphs.

1. Tree Initialization: Create the root of the tree (TreeNode object) and store it in
a top-level variable tree. The tree has no children yet at this point.

2. Body Initialization: Create a few random BodyNode objects with a parallel new
operation, similar to the previous simulations. These bodies are not yet part of
the tree, as indicated by parent = nullptr.

3. Inserting Bodies: Insert those bodies into the tree that are not yet part of the
tree (all bodies at this point). Parallel do-all: BodyNode::add_to_tree.

4. Iterative Algorithm: Each iteration consists of the following steps.

(a) Computing Summaries: Compute TreeNode summaries with a bottom-up
tree traversal. Multiple parallel do-all operations.

(b) Computing Forces: Compute forces between bodies with top-down tree
traversal. Parallel do-all: BodyNode::compute_force.

(c) Acceleration and Movement: Compute a new velocity and position for
each body. This step is identical to the second step of the original n-body
simulation. Parallel do-all: BodyNode::update.

(d) Removing Bodies: Remove bodies from the tree if they moved into a
different quadrant. Parallel do-all: BodyNode::remove_from_tree.

(e) Reinserting Bodies: Insert those bodies back into the tree that were just
removed. Parallel do-all: BodyNode::add_to_tree.

162 Chapter 7. SMMO Examples

(f) Collapsing Tree: Remove empty TreeNodes and collapse TreeNodes with
only one BodyNode child. This is another bottom-up tree traversal and
implemented with multiple parallel do-all operations.

In the remainder of this section, we describe the design and implementation of all
steps that require tree traversals or tree modifications. The latter ones are difficult to
implement because multiple threads may be concurrently modifying the tree.

Step 4a: Computing Tree Summaries Before gravitational forces can be computed,
we have to ensure that tree summaries are up to date. Step 4a and Step 4f are both
implemented with a bottom-up tree traversal. Listing 7.9 shows the structure of such
traversals.

Many parallel tree/graph traversals (e.g., BFS) are iterative, frontier-based algo-
rithms. In such a traversal, each node has a boolean frontier flag which indicates if a
node is part of the frontier. Only frontier nodes are processed in an iteration. When
all frontier nodes finished processing, the frontier is advanced, usually based on the
results of the processing step. Alternatively, instead of a boolean flag, the frontier is
sometimes defined as all nodes that have a certain property; e.g., all nodes with a
certain distance (Section 4.3.2).

In our bottom-up tree traversal, every node has two flags: A boolean frontier flag
bfs_frontier and a boolean done flag bfs_done which is set to true after processing
to ensure that a node is not processed multiple times. Our traversal algorithm visits
only TreeNodes. All TreeNodes without TreeNode children (tree leaves) are part of
the initial frontier. A processing step computes tree summaries for all frontier nodes
and sets their done flag to true. If a TreeNode has not been processed yet but all of its
children are done processing, it will become part of the next frontier. As a side note,
this is a common pattern of parallel graph processing and fits well with the vertex-
based bulk-synchronous model [186], which is the foundation of graph processing
frameworks such as Gunrock [197].

Figure 7.8 illustrates this algorithm with an example. The circles indicate the state
of the bfs_done flag (red = false, green = true). Initially, only nodes without TreeNode
children are part of the frontier (Subfigure A), as indicated by the shaded area. The
first processing step computes tree node summaries of those nodes and sets their
done flag (Subfigure B). Then, the frontier is advanced: Only the left middle node
becomes part of the next frontier because it is the only unprocessed node whose
children are all processed (Subfigure C). The algorithm proceeds in this pattern until
the tree root was processed (Subfigure F).

Step 4b: Computing Forces Barnes-Hut is faster than a regular n-body simulation
because the computation of gravitational forces has a lower computational complexity.
In n-body, the total force of all other bodies acting on a given body is computed with
a device_do operation (complexity θ(n), where n is the number of bodies). In Barnes-
Hut, this force is computed with a top-down tree traversal, which has the same
worst-case complexity but a lower expected complexity. Our implementation uses a
preorder depth-first traversal, but other traversals would also work.

Listing 7.10 shows how gravitational forces are computed with a quad tree traver-
sal. We assume that all TreeNode summaries (i.e., fields pos_x, pos_y, mass) are up to
date. Instead of a device_do, we start the tree traversal at the root of the tree (Line 21).

NodeBase::apply_force is a pure virtual function. Let this be the object that
the function is bound to. If this is a BodyNode, the function adds the gravitational

7.3. barnes-hut: Approximating N-Body with a Quad Tree 163

T T B

T T B B B B

B B B B BB

(A) TreeNode::initialize_frontier()

T T B

T T B B B B

B B B B BB

pos_x = -0.897
pos_y = -0.962
mass = 3012.122

pos_x = -0.108
pos_y = -0.201
mass = 122.418

pos_x = 0.543
pos_y = 0.656
mass = 4112.120

(B) TreeNode::compute_summary()

T T B

T T B B B B

B B B B BB

pos_x = -0.897
pos_y = -0.962
mass = 3012.122

pos_x = -0.108
pos_y = -0.201
mass = 122.418

pos_x = 0.543
pos_y = 0.656
mass = 4112.120

(C) TreeNode::advance_frontier()

T T B

T T B B B B

B B B B BB

pos_x = -0.897
pos_y = -0.962
mass = 3012.122

pos_x = -0.108
pos_y = -0.201
mass = 122.418

pos_x = 0.543
pos_y = 0.656
mass = 4112.120

pos_x = -0.866
pos_y = -0.932
mass = 3134.540

(D) TreeNode::compute_summary()

T T B

T T B B B B

B B B B BB

pos_x = -0.897
pos_y = -0.962
mass = 3012.122

pos_x = -0.108
pos_y = -0.201
mass = 122.418

pos_x = 0.543
pos_y = 0.656
mass = 4112.120

pos_x = -0.866
pos_y = -0.932
mass = 3134.540

(E) TreeNode::advance_frontier()

T T B

T T B B B B

B B B B BB

pos_x = -0.897
pos_y = -0.962
mass = 3012.122

pos_x = -0.108
pos_y = -0.201
mass = 122.418

pos_x = 0.543
pos_y = 0.656
mass = 4112.120

pos_x = -0.866
pos_y = -0.932
mass = 3134.540

pos_x = -0.066
pos_y = -0.031
mass = 7246.660

(F) TreeNode::compute_summary()

FIGURE 7.8: Compute summaries of quad tree

LISTING 7.9: Bottom-up quad tree traversal pattern
__device__ void TreeNode::initialize_frontier() {
bfs_frontier_ = true; bfs_done_ = false;
for (int i = 0; i < 4; ++i) {
if (children_[i]->cast<TreeNode>() != nullptr) { bfs_frontier_ = false; break; }

}
}

__device__ void TreeNode::advance_frontier() {
if (!bfs_done_) {
for (int i = 0; i < 4; ++i) {
TreeNode* child = children_[i]->cast<TreeNode>();
if (child != nullptr && !child->bfs_done_) return; // Unprocessed child found

}
bfs_frontier_ = true;

} else { bfs_frontier_ = false; }
}

void bottom_up_traversal() {
allocator_handle->parallel_do<TreeNode, &TreeNode::initialize_frontier>();
do {
// Do something: e.g., compute TreeNode summary or collape TreeNode
allocator_handle->parallel_do<TreeNode, &TreeNode::advance_frontier>();

} while (!host_tree->bfs_done_);
}

164 Chapter 7. SMMO Examples

LISTING 7.10: Force computation via quad tree traversal
1 __device__ TreeNode* tree; // Pointer to tree root
2 TreeNode* host_tree; // Pointer to tree root in host memory
3

4 __device__ void BodyNode::apply_force(BodyNode* other) {
5 // Same as Body::apply_force in n-body.
6 }
7

8 __device__ void TreeNode::apply_force(BodyNode* other) {
9 if (contains(other) || distance_to(other) <= kDistThreshold) {

10 // Too close or inside. Recurse.
11 for (int i = 0; i < 4; ++i) {
12 if (children_[i] != nullptr) { children_[i]->apply_force(other); }
13 }
14 } else {
15 // Far enough away to use approximation. Same as BodyNode::apply_force.
16 }
17 }
18

19 __device__ void BodyNode::compute_force() {
20 force_x_ = force_y_ = 0.0f;
21 tree->apply_force(this);
22 }

force induced by the body to the force_ fields of other, similar to the original n-body
simulation. If this is a TreeNode, there are two possibilites:

1. If other is contained in this or if other is close to the this’s center of gravity,
we have to recurse and do a more accurate computation with every child of
this. Using a Barnes-Hut approximation would result in a too large error.

2. If other is not within the bounds of this and far enough away from its center
of gravity, we can approximate the gravitational force induced by the entire
TreeNode using the this’s summary.

Since DYNASOAR does not support virtual function calls yet, we had to imple-
ment this function with a hand-written switch-case statement (Section 7.3.3). We plan
to auto-generate such code in future versions of DYNASOAR.

Step 4d: Removing Bodies We are now removing BodyNodes from the tree if they
moved into a different quadrant of their parent TreeNode or if they moved into a
different TreeNode. This is easy to detect based on the position of the body and corner
points p1, p2 of the TreeNode. Such bodies are removed from the children array and
their parent pointer is reset to nullptr.

Figure 7.9 shows the quad tree of Figure 7.6A after bodies were moved (Step 4c).
The red bodies moved into a different quadrant or parent and are removed from the
tree. This may leave some TreeNodes empty.

Step 3 / Step 4e: Inserting Bodies We are now (re)inserting BodyNodes into the
quad tree which have no parent. In Step 3, these are all newly created bodies. In
Step 4e, these are all bodies that were removed in the previous step. This step is the
most challenging part of barnes-hut, because the structure of the quad tree is modified
concurrently by multiple threads.

7.3. barnes-hut: Approximating N-Body with a Quad Tree 165

T T B
(I) (II)

(III)(IV)
T T B B B B

B

(I) (II) (III) (IV)

red cells: BodyNode removed from tree

FIGURE 7.9: Removing BodyNodes from the quad tree

Listing 7.11 shows the insertion algorithm. Only BodyNodes without a parent are
processed. The algorithm maintains a current pointer to the TreeNode into which the
body should be inserted. This pointer is initialized to the root of the tree. The while
loop of Line 4 traverses the tree structure by determining the children array slot
into which the body should be inserted (Line 5) and updating the current pointer if
necessary. At this point, we have to consider three cases.

1. The selected array slot is empty (Line 7, Figure 7.10). In this case, we can
directly insert the body into the array. However, since multiple threads may
be attempting to insert into the same slot, we insert the body with an atomic
compare-and-swap operation, such that only one thread can succeed. After-
wards, we set the parent pointer with an atomic exchange operation. This is to
ensure that the modification to the parent pointer is guaranteed to become visi-
ble to other threads in the CUDA kernel (volatile write). If a thread fails to insert
a body because another thread succeeded with a contending compare-and-swap
operation, the thread retries with another while loop iteration.

2. The selected array slot contains a TreeNode (Line 12). In this case, we try to
insert the body into that TreeNode in the next while loop iteration.

3. The selected array slot contains a BodyNode, denoted by other (Line 14, Fig-
ure 7.11). In this case, we have to insert a new TreeNode into the tree. The
method make_child_ tree_node creates a new TreeNode with the correct p1,
p2 and parent values, but does not insert it into current yet. We first insert
other into the newly created (empty) TreeNode1. Now we swap in the new
TreeNode with an atomic compare-and-swap operation. Similar to Case 1, only
one thread can succeed in modifying the respective children array slot. If
successful, we update the parent pointer of other. However, this body may
still be in the process of insertion (Case 1 or other in Case 3) and its parent
pointer may not have been set yet. Therefore, we require another while loop to
retry until parent was updated. Now we can insert the original body into the
new TreeNode by running another iteration of the outer while loop.

Note that the outer while loop of Listing 7.11 maintains a boolean flag is_true
instead of an infinite loop with a break or return statement. This is to avoid dead-
locks, since the structure of this loop is similar to the one of the critical section
implementation of Section 2.1.3.

1The thread fence in Line 21 ensures that other threads see other’s slot in the children array of the
new TreeNode as occupied before the new TreeNode becomes visible through the CAS in Line 23.

166 Chapter 7. SMMO Examples

T T B
(I) (II)

(III)(IV)
T T B B B B

B

(I) (II) (III) (IV)

Race Cond.: Multiple threads may
be trying to insert a node here.

FIGURE 7.10: Inserting a BodyNode into an empty slot

T T B
(I) (II)

(III)(IV)
T T B B B B

B

(I) (II) (III) (IV)

1. Create new TreeNode

B

2. Install node

3. Insert body (retry)

T

B

FIGURE 7.11: Inserting a BodyNode into a slot with another BodyNode

LISTING 7.11: Inserting a body into the quad tree
1 __device__ void BodyNode::add_to_tree() {
2 if (parent_ == nullptr) {
3 TreeNode* current = tree; bool is_done = false;
4 while (!is_done) { // Check where to insert in this node.
5 int c_idx = current->child_idx(this);
6 auto*& child_ptr = current->children_[c_idx];
7 if (child == nullptr) { // Slot not in use.
8 if (atomicCAS<NodeBase>(&child, nullptr, this) == nullptr) {
9 atomicExch(&parent_, current);

10 child_index_ = c_idx; is_done = true; // Done inserting.
11 }
12 } else if (child->cast<TreeNode>() != nullptr) { // There is a subtree here.
13 current = static_cast<TreeNode*>(child);
14 } else { // There is a body "other" here.
15 BodyNode* other = static_cast<BodyNode*>(child);
16 // Replace BodyNode with TreeNode.
17 auto* new_node = current->make_child_tree_node(c_idx);
18 // Insert other into new node.
19 int other_c_idx = new_node->child_idx(other);
20 new_node->children_[other_c_idx] = other;
21 __threadfence();
22 // Try to install the new TreeNode. (Retry.)
23 if (atomicCAS<NodeBase>(&child, other, new_node) == other) {
24 // It may take a while until we see the correct parent, because
25 // another may not be done inserting this node yet.
26 TreeNode* parent_before = nullptr;
27 do {
28 parent_before = atomicCAS<TreeNode>(&other->parent_, current, new_node);
29 } while (parent_before != current);
30 other->child_index_ = other_c_idx;
31 current = new_node; // Now insert body into new_node.
32 } else { destroy(device_allocator, new_node); } // Rollback.
33 }
34 }
35 }
36 }

7.3. barnes-hut: Approximating N-Body with a Quad Tree 167

Step 4f: Collapsing Tree As the final step of a barnes-hut iteration, we clean up the
quad tree. Empty TreeNodes are removed and TreeNodes with only one child, which
is a BodyNode, are collapsed with the parent node. This step is implemented as a
bottom-up tree traversal, similar to Step 4a. Listing 7.12 shows the processing step of
the tree traversal. Only frontier TreeNodes f are processed. We now have to consider
four cases.

1. The node f has zero children (Line 16). In this case, we unregister f from its
parent and delete it.

2. The node f has one child c which is a BodyNode (Line 24). In this case, we store
the c in the children array slot of the parent where f is currently stored. We
then delete f .

3. The node f has one child c which is a TreeNode. We cannot collapse this
node. The subtree c must contain more than one BodyNode; otherwise, it would
have been collapsed already by the previous bottom-up iteration. Since every
TreeNode level divides the space into four equally-sized quadrants, collapsing
f would require changes to the TreeNodes within c. Moreover, at least two
BodyNodes would end up as direct children in the same quadrant of some
TreeNode within c, which is forbidden.

4. The node f has more than one child. We cannot collapse this node.

Note that removing nodes from a tree is much simpler than adding nodes. No
atomic operations or other synchronization primitives are necessary.

7.3.3 Virtual Function Calls

Unfortunately, DYNASOAR does not yet support C++ abstractions for virtual func-
tions. Therefore, we have to implement the dispatch logic of the virtual function
NodeBase::apply_force in Step 4b by hand. Our implementation consists of an
explicit runtime type check (cast<T>) and an if-then-else statement that dispatches to
the correct method implementation (Listing 7.13). cast<T> is a method provided by
DYNASOAR’s data layout DSL. Its semantics are similar to C++’s dynamic_cast<T*>,
but it determines the runtime type of an object from its address (fake pointer; Sec-
tion 5.2.3). This implementation is more efficient than C++’s dynamic_cast<T*>
because it does not have to read a vtable pointer from memory.

A switch-case statement-based implementation of a virtual function call is compiled
to code that is more efficient than a vtable-based implementation, because it allows
compilers to inline virtual method calls. This results in more efficient GPU binary
code.

GPU programs usually consist of a single compilation unit. Therefore, it is possible
to enumerate and inline all possible runtime types (subtypes of the static receiver type)
in the source code. We plan to automate this process in the future by auto-generating
switch-case statements as part of the compilation process.

7.3.4 Benefits of Object-oriented Programming

Implementing barnes-hut without object-oriented programming is tedious. One par-
ticular problem is the dynamic allocation of new TreeNodes in Line 17 of Listing 7.11.
Our implementation optimistically alloates a new TreeNode and tries to insert it with
an atomic compare-and-swap operation. If this operation fails, we delete the object

168 Chapter 7. SMMO Examples

LISTING 7.12: Collapsing a TreeNode

1 __device__ void TreeNode::collapse_tree() {
2 if (bfs_frontier_) {
3 bfs_frontier_ = false;
4

5 // Count children.
6 int num_children = 0;
7 NodeBase* single_child = nullptr;
8

9 for (int i = 0; i < 4; ++i) {
10 if (children_[i] != nullptr) {
11 ++num_children;
12 single_child = children_[i];
13 }
14 }
15

16 if (num_children == 0) { // Remove node without children.
17 if (parent_ != nullptr) { // Do not remove the root.
18 parent_->children_[child_idx_] = nullptr;
19 destroy(device_allocator, this);
20 return;
21 }
22 } else if (num_children == 1) { // Collapse TreeNodes with 1 child...
23 if (parent_ != nullptr) {
24 if (single_child->cast<BodyNode>() != nullptr) {
25 // ... but only if the node is a body.
26 single_child->parent_ = parent_;
27 single_child->child_index_ = child_index_;
28 parent_->children_[child_index_] = single_child;
29

30 destroy(device_allocator, this);
31 return;
32 } // else: TreeNode child cannot be collapsed.
33 }
34 }
35

36 // Done processing this node.
37 bfs_done_ = true;
38 }
39 }

LISTING 7.13: Handwritten virtual method call
__device__ void NodeBase::apply_force(BodyNode* other) {
if (cast<BodyNode>() != nullptr) {
static_cast<BodyNode*>(this)->apply_force(other);

} else {
assert(cast<TreeNode>() != nullptr);
static_cast<TreeNode*>(this)->apply_force(other);

}
}

7.4. structure: Finite Element Method 169

again. Related work describes an alternative implementation without dynamic mem-
ory allocation but with a lightweight lock that prevents two threads from inserting a
node into the same location [28]. While such an implementation may be a bit faster
than our implementation, locking is problematic on GPUs and such locks must be
carefully designed and implemented to avoid deadlocks (Section 2.1.3).

Implicit type information is another benefit of object-oriented programming in
this application. A non-OOP implementation would have to store an explicit type
identifier in addition to an object ID for each child in TreeNode::children. This is
necessary because a child could be a BodyNode or another TreeNode. We do not have
native support for virtual functions in DYNASOAR yet, but virtual function calls
would be another benefit of an OOP-based implementation.

Finally, consider the field access in Line 28 of Listing 7.12. Listing 7.14 shows the
same functionality in a hand-written SOA layout. Without OOP abstractions, such
code is much harder to write/maintain, especially due to the nested array accesses.

LISTING 7.14: barnes-hut: Field access notation in hand-written SOA layout
TreeNode_children[TreeNode_child_idx[id]][TreeNode_parent[id]] = single_child;

7.3.5 Further Optimizations

Related work describes an optimization to speed up Step 4b, which computes forces
with a quad tree traversal. The performance of this step can be improved by assigning
spatially local bodies to the same warp [28]. This could be achieved by physically
rearranging/sorting Body objects. Bodies which are spatially local traverse similar
parts of the quad tree, which improves memory accesses (threads of a warp access
similar addresses) and reduces warp divergence (similar tree traversals result in
similar control flow). Apart from COMPACTGPU’s memory defragmentation, DYNA-
SOAR does currently not allow programmers to rearrange allocations in memory.
Future work could extend DYNASOAR in that direction.

Another problem of our barnes-hut implementation is the recursive nature of
Step 4b. If the mass and position of a TreeNode cannot be approximated, we have
to recursively visit up to 4 child nodes (Listing 7.10, Line 12). Unfortunately, this
pattern is not tail recursive. Therefore, the compiler has to allocate stack frames
for the recursive method calls in local memory, which resides in the (slow) global
memory. However, the only state that we conceptually have to maintain is a pointer
to the current TreeNode and an array index into the children array. This information
is sufficient for implementing a preorder tree traversal, so it should be possible to
transform this recursion into an iterative implementation that does not allocate new
stack frames.

7.4 structure: Finite Element Method

structure is a finite element method (FEM), inspired by a problem in material science:
Simulating the formation of a crack in a composite material [125]. structure simulates
a mesh of elements, which can be seen as an undirected graph. Every graph node is
connected by springs with up to three other nodes.

The simulation has three types of nodes: Ordinary nodes, anchor nodes and pull
nodes. Pull nodes move into a certain direction with a constant velocity and anchor

170 Chapter 7. SMMO Examples

-springs : Spring*[3]
-num_springs : int
-bfs_distance : int
-pos_x : float
-pos_y : float
+initialize_frontier()
+visit()
+delete_node()
+remove_spring()

NodeBase

AnchorNode

-vel_x : float
-vel_y : float
+pull()

AnchorPullNode

-vel_x : float
-vel_y : float
-mass : float
+update()

Node

-p1 : NodeBase*
-p2 : NodeBase*
-stiffness : float
-initial_len : float
-force : float
-max_force : float
-delete_flag : bool
+compute_force()
+delete_spring()

Springsprings

0..3

p1

p2

FIGURE 7.12: Data structure of structure

nodes are fixed at a certain position. Ordinary nodes can move freely. Springs have
an initial length and a stiffness k. If a spring is stretched beyond its initial length, it
exerts a pulling force F on both node endpoints according to Hooke’s law.

F = k · ∆x (Hooke’s law)

Pull nodes stretch the entire mesh in a certain direction. As soon as the force F
between two nodes exceeds a certain threshold, the spring breaks, forming a crack in
the material.

7.4.1 Data Structure

This application consists of five classes (Figure 7.12): An abstract class NodeBase with
three subclasses AnchorNode, AnchorPullNode and Node, and a class Spring.

Every node is connected with up to three springs. These are the edges of the
graph and stored in an array springs (adjacency list), along with the actual number
of springs num_springs. Every node has a 2D position. In addition, AnchorPullNodes
and Nodes have a velocity. In the former case, this velocity is constant. In the latter
case, the velocity changes based on the forces induced by the springs.

Springs store pointers to their node endpoints. If at any point the spring is
stretched so far that force > max_force, the spring breaks.

7.4.2 Application Implementation

Before running the main simulation loop, we have to load or generate a mesh net-
work. Our current implementation generates a random graph with a configurable
percentage of each node type. structure is an iterative algorithm and consists of the
following steps.

1. Pull Nodes: Update the position of pull nodes based on their velocity. Parallel
do-all: AnchorPullNode::pull.

7.5. traffic: Traffic Flow Simulation 171

2. Compute Steps: Repeat 40 times.

(a) Compute Forces: Compute the force of each spring based on Hooke’s
law. If this force exceeds a spring’s threshold, delete the spring from the
simulation. Parallel do-all: Spring::compute_force.

(b) Update Velocity/Position: Sum computed forces exerted by springs for
each node. Accelerate and move nodes based on this force. Parallel do-all:
Node::update.

3. Remove Disconnected Nodes: Find disconnected nodes with a BFS and re-
move them from the simulation. Implemented with multiple parallel do-all
operations.

Step 2 is somewhat similar to an n-body simulation. We are computing forces be-
tween elements, however, according to Hooke’s law instead of Newton’s gravitational
law. Furthermore, we only consider direct neighbors in the graph structure.

Step 3: Removing Disconnected Nodes This step is the most challenging part.
Nodes and AnchorPullNodes are removed from the simulation if they are no longer
connected to an AnchorNode. Springs whose endpoint(s) were deleted are also re-
moved from the simulation.

This step is based on a parallel breadth-first graph traversal. The traversal starts at
AnchorNodes (excl. AnchorPullNodes) and marks every visited node. Unvisited nodes
are removed after the traversal. We use the standard frontier-based BFS algorithm,
which is known to work well on GPUs (Section 4.3.2).

Listing 7.15 shows how disconnected nodes are detected and removed. Nodes
do not have a boolean frontier flag in our implementation. Instead, every node has a
distance field, which is initialized to infinity (kMaxDistance). In BFS iteration i, the
frontier consists of the nodes with distance i.

In the beginning, all AnchorNodes are initialized to a distance of 0. A BFS iteration
(NodeBase::visit) iterates over the neighboring nodes of frontier nodes and updates
their distance if they are still unvisited (Line 16). We keep iterating until no vertices
were visited in an iteration, as indicated by the continue_bfs flag.

Finally, we process all unvisited nodes with NodeBase::delete_node. This method
does not delete those nodes yet, but sets a flag on springs that are connected to them.
Springs are deleted in Spring::delete_spring. Before a spring deletes itself, it unreg-
isters itself from its endpoints (remove_spring). As part of this process, we atomically
decrement the spring counter of the node. Once the counter reaches zero, the node is
deleted. This process requires an atomic operation, because multiple GPU threads
may be concurrently unregistering springs from a node.

7.5 traffic: Traffic Flow Simulation

Traffic flow simulations are important tools in transportation planning [130]. They
can guide the design and construction of city street networks. traffic is an agent-
based microsimulation that simulates single vehicles (agents) which move on a street
network. It is based on the Nagel-Schreckenberg model [145], a simple model based
on cellular automata which can reproduce real-world traffic phenomena [195, 196]
such as traffic jams. Compared to other SMMO applications, traffic is quite complex:
It does not only model agents, but also more advanced street features such as traffic

172 Chapter 7. SMMO Examples

LISTING 7.15: Removing disconnected nodes with BFS
1 __device__ bool continue_bfs;
2

3 __device__ void NodeBase::initialize_frontier() {
4 distance_ = this->cast<AnchorNode>() == nullptr ? kMaxDistance : 0;
5 }
6

7 __device__ void NodeBase::visit(int distance) {
8 if (distance == distance_) {
9 continue_bfs = true;

10 for (int i = 0; i < kMaxDegree; ++i) {
11 auto* spring = springs_[i];
12 if (spring != nullptr) {
13 // Neighboring vertex.
14 auto* n = spring->p1() == this ? spring->p2() : spring->p1();
15 // Set distance on neighboring vertex if unvisited.
16 if (n->distance_ == kMaxDistance) { n->distance_ = distance + 1; }
17 }
18 }
19 }
20 }
21

22 __device__ void NodeBase::delete_node() {
23 if (distance_ == kMaxDistance) {
24 for (int i = 0; i < 3; ++i) {
25 if (springs_[i] != nullptr) { springs_[i]->delete_flag_ = true; }
26 }
27 }
28 }
29

30 __device__ void Spring::delete_spring() {
31 if (delete_flag_) {
32 p1_->remove_spring(this);
33 p2_->remove_spring(this);
34 destroy(device_allocator, this);
35 }
36 }
37

38 __device__ void NodeBase::remove_spring(Spring* s) {
39 for (int i = 0; i < 3; ++i) {
40 if (springs_[i] == s) {
41 springs_[i] = nullptr;
42 if (atomicSub(&num_springs_, 1) == 1) { destroy(device_allocator, this); }
43 return;
44 }
45 }
46 }
47

48 void delete_disconnected_nodes() {
49 allocator_handle->parallel_do<NodeBase, &NodeBase::initialize_frontier>();
50

51 for (int dist = 0; continue_bfs /*read with cudaMemcpyFromSymbol*/; ++dist) {
52 continue_bfs = false; // write with cudaMemcpyToSymbol
53 allocator_handle->parallel_do<NodeBase, int, &NodeBase::visit>(dist);
54 }
55

56 allocator_handle->parallel_do<NodeBase, &NodeBase::delete_node>();
57 allocator_handle->parallel_do<Spring, &Spring::delete_spring>();
58 }

7.5. traffic: Traffic Flow Simulation 173

lights or yield signs. We describe this application only on a high level. Related work
describes many variantions and how to implement them [214].

By default, this application generates a random street network upon startup.
Alternatively, real-world street networks can be imported from OpenStreetMap (OSM)
dumps in GraphML file format. Such dumps include street properties such as position,
shape, connections to other streets, speed limits and OSM street type.

7.5.1 Data Structure

In the Nagel-Schreckenberg model, a street (link) is divided into equally-sized Cells,
each of which can contain up to one agent (Figure 7.13). An agent (class Car; Fig-
ure 7.14) can move onto a neighboring cell only if it is free. Every agent has a velocity,
measured in cells per iteration. Both agents and cells have a maximum velocity; the
latter one can be used to model speed limits on streets.

Agents precompute their path of movement per iteration. The path array contains
the next velocity many cells onto which the agent is about to move. All of these
cells must be empty. This is to ensure that the agent does not crash into other agents.

Intersections and Traffic Lights Every cell has zero, one, or multiple outgoing cells,
forming a directed graph. In the first case, the cell is a sink, i.e., a street leaves the
simulation area. Agents entering a sink will be randomly redistributed. The second
case is most common and represents a regular street cell. The third case appears at
intersections, where a cell is connected to the first cell of every outgoing2 street.

It is important to ensure that only one car enters an outgoing street (i.e., first cell
of the street) at an intersection in one iteration, even if multiple cars from different
incoming streets are waiting. To that end, a traffic controller can impose temporary
speed limits on cells, e.g., a speed limit of zero, corresponding to a red light [60].
Traffic controllers set and remove speed limits for the last cells of all incoming streets
such that only one incoming street has a green light at a time. We implemented three
kinds of controllers.

• A traffic light imposes a temporary speed limit of zero on all incoming streets,
except for one street which has a green phase for a certain number of iterations
(phase length). Green phases are scheduled round-robin among all incoming
streets.

• A smart traffic light works like a normal traffic light but assigns a green phase to
an incoming street immediately if this street is the only incoming street with a
waiting car. Real traffic lights have sensors/cameras to provide such behavior.
All traffic lights in the benchmark section are smart.

• A yield controller corresponds to a yield traffic sign, which is often found at the
end of merge lanes of highway entrances. Given n incoming streets, it assigns
a temporary speed limit of zero to all streets i > s if street s has a car, i.e.,
incoming streets/cells in the controller should be ordered by priority.

The last two traffic controllers should ensure that traffic does not have to stop or slow
down in front of an intersection. Thus, controllers must check all cells from which a
car could cross an intersection in one iteration (not only the closest incoming cell), as
indicated by the maximum allowed speed limit on a street (lookahead). This is done

2Streets in this simulation are one-way streets. Two-way streets consists of one incoming and one
outgoing street.

174 Chapter 7. SMMO Examples

...
max_vel = 3

max_vel = 5max_vel = 5
max_vel = 5

distance: 2 cells

Avoid collision:
Max. velocity: 2 cells/iteration

Temp. speed limit controlled
by traffic light. Only one cell
can have velocity > 0.

max_vel = 3lookahead for smarttraffic light: 3 cells

(A) Example: Cells and intersections (B) Screenshot: Imported OpenStreetMap data

FIGURE 7.13: Representation of street networks in traffic

-incoming : Cell*[4]
-num_incoming : int
-outgoing : Cell*[4]
-num_outgoing : int
-car : Car*
-max_velocity : int
-current_max_velocity : int
-is_target : bool

Cell

-random_state : curandState_t
+create_car()

ProducerCell

-path : Cell *[kMaxVelocity]
-position : Cell*
-velocity : int
-max_velocity : int
-random_state : curandState_t
+step_1_increase_velocity()
+step_2_calculate_path()
+step_3_constraint_velocity()
+step_4_randomize()
+step_5_move()

Car

-cells : Cell*[4]
-num_cells : int
+signal_stop()
+signal_go()

SharedSignalGroup

-groups : SharedSignalGroup*[4]
-num_groups : int
-phase : int
-phase_len : int
-timer : int
+step()

TrafficLight

+step()
SmartTrafficLight

-groups : SharedSignalGroup*[4]
-num_groups : int
+step()

YieldController

incoming/outgoing

0..1

1

1..4

FIGURE 7.14: Data structure of traffic

7.5. traffic: Traffic Flow Simulation 175

with a graph traversal on back edges (incoming cells), which terminates when a car
was found within lookahead range.

Turn Lanes To allow the traffic to flow more smoothly, we generate turn lanes from
each incoming street to each outgoing street at intersections. To implement a red
traffic light signal for an incoming street, we now have to impose a speed limit on the
last cell of each turn lane. Those cells are grouped in a SharedSignalGroup because
they should all have the same traffic light signal3.

7.5.2 Application Implementation

This application consists of the following parallel do-all operations.

1. Advance Traffic Light State: Increment a timer. Once it reaches the phase
length, propagate a red signal to the currently green shared signal group, as
indicated by phase (index into groups). Now, the next shared signal group
receives a green light phase and we reset the counter. Smart traffic lights
function similar but can change their phase even before the timer reaches the
phase length, in case a car is waiting at only one shared signal group with a red
signal. Parallel do-all: TrafficLight::step

2. Advance Yield Controller State: Among all shared signal groups, find the first
one that has a car that can cross within the next iteration. That signal group
receives a green light and all other signal groups receive a red light. Parallel
do-all: YieldController::step

3. Nagel-Schreckenberg Iteration: In the following steps, we denote the agent
that is processed in a parallel do-all operation by a.

(a) Acceleration: Increase the agent’s velocity unless it is already driving at
its maximum velocity: va ← min(va + 1, v_maxa).
Parallel do-all: Car::step_1_increase_velocity

(b) Compute Path: Determine the agent’s path of movement of length va,
i.e., the next va many cells that it will pass through. A navigation strategy
determines the next cell at an intersection with multiple outgoing cells.
Our current implementation uses random walk, biased towards large
streets. Parallel do-all: Car::step_2_calculate_path

(c) Adjust Velocity: Avoid collisions with other agents and enforce speed
limits. To avoid collisions, reduce the speed va to the largest possible value
such that the first va many cells on the calculated path are free. To follow
speed limits, reduce va to the largest possible value, such that va ≤ v_maxc
for each cell c among the first va many cells on the calculated path.
Parallel do-all: Car::step_3_constraint_velocity

(d) Randomization: Reduce the agent’s velocity by one unit with a probability
of 20%. Parallel do-all: Car::step_4_randomize

(e) Update Position: Move the agent from its current location by va many
cells according to the calculated path. Parallel do-all: Car::step_5_move

3Traffic lights could be extended such that more than one street (for certain directions) has a green
light at a time.

176 Chapter 7. SMMO Examples

In our DYNASOAR benchmarks, we, furthermore, distinguish between three
kinds of cells: Regular cells, producer cells and sink cells. Producer cells create new
agents with given probability if the cell is empty. Sink cells remove agents with a
given probability. This is to simulate dynamic (de)allocation.

In a real traffic simulation, we would generate new agents in certain city areas (e.g.,
residential areas). Agents would move to certain waypoints according to a schedule
which can be generated from real-world traffic data. Agents would be removed from
the simulation when they reach their final waypoint.

Step 3c: Adjust Velocity Listing 7.16 illustrates how traffic avoids collisions and
speed limit violations in a Nagel-Schreckenberg iteration. Let us assume that we
decided to move the agent at a certain velocity in Step 3a and precomputed the
same number of cells in path as part of Step 3b. Now, we check every cell on the
precomputed path. The speed limit of an agent has to be reduced in two cases.

1. A cell on the path is occupied by another agent (Line 7). In this case, the speed
limit has to be reduced such that the cell is not entered.

2. A cell on the path has a speed limit of less than the agent’s intended velocity
(Line 13). Depending on which option would make more progress, we either
reduce the speed limit to the cell’s speed limit (Line 15) or decide to stop before
entering the cell (Line 18). We make more progress in the latter case if the cell
has such a low speed limit that we would not even reach the cell in this iteration.
E.g., this is the case when approaching a red traffic light (speed limit zero).

LISTING 7.16: Avoiding collisions and speed limit violations
1 __device__ void Car::step_3_constraint_velocity() {
2 for (int distance = 1; distance <= velocity_; ++distance) {
3 // Invariant: Movement of up to distance - 1 many cells at velocity_ is allowed.
4 Cell* next_cell = path_[distance - 1];
5

6 // Avoid collision.
7 if (next_cell->car_ != nullptr) {
8 // Cannot enter cell.
9 velocity_ = distance - 1;

10 break;
11 } // else: Can enter next cell.
12

13 if (velocity_ > next_cell->current_max_velocity_) {
14 // Car is too fast for this cell.
15 if (next_cell->current_max_velocity_ > distance - 1) {
16 // Even if we slow down, we would still make progress.
17 velocity_ = next_cell->current_max_velocity_;
18 } else {
19 // Do not enter the next cell.
20 velocity_ = distance - 1;
21 break;
22 }
23 }
24 }
25 }

Notice how the Car::path array is accessed. For each car, we access array ele-
ments sequentially, starting from index 0 up to index velocity− 1. We can optimize
this access by storing this inner array in SOA layout.

7.6. wa-tor: Fish and Sharks Simulation 177

-neighbors : Cell*[4]
-neighbor_request : bool[5]
-agent : Agent*
-random_state : curandState_t
+prepare()
+update()
+request_rand_neighbor()
+request_rand_fish_neighbor()

Cell
-position : Cell*
-new_position : Cell*
-random_state : curandState_t

Agent

-spawn_timer : int
+prepare()
+update()

Fish
-spawn_timer : int
-energy : int
+prepare()
+update()

Shark

neighbors

4

FIGURE 7.15: Data structure of wa-tor

7.5.3 Object-oriented Traffic Simulations

Previous work has demonstrated that traffic simulations can be expressed very well
with object-oriented programming, because many real-world entities such as different
kinds of vehicles, streets, intersections, traffic lights, etc. can be directly mapped to
objects/classes [189, 87, 107]. Traffic simulations are even used for teaching object-
oriented software design to students [156].

7.6 wa-tor: Fish and Sharks Simulation

wa-tor is an ecosystem of fish and sharks that occupy a 2D space in a predator-
prey relationship [49]. Such ecosystems can be described with the Lotka-Volterra
equations [74]. In this application, we simulate wa-tor with a cellular automaton
(CA). Cellular automatons are well suited for GPU execution [72]. There are typically
thousands of cells and all cells feature the same or similar computations, based on
the state of neighboring cells.

wa-tor simulates a hypothetical, torus-shaped (2D space, wrapping around at the
borders) planet made up of cells. Each cell can be occupied by up to one agent (fish
or shark). Sharks are predators who are eating the fish (the prey). In each iteration,
an agent can move to a neighboring cell. Fish can only move to empty cells, but
sharks can move to empty cells or cells containing a fish, thereby consuming the fish.
Sharks have an energy level that decreases with each iteration and increases when
consuming a fish. Both fish and sharks reproduce after a certain number of iterations.

7.6.1 Data Structure

Figure 7.15 illustrates the data structure of wa-tor. There is an abstract class Agent
with two subclasses Fish and Shark, and another class Cell.

Agents store a pointer to their current position (position) and have a field
new_position which is used for determining the next cell to move to. Cells have
pointers to all four neighboring cells (neighbors). Furthermore, there is an array
neighbor_request with a boolean flag per neighbor, indicating whether an agent
from a neighboring cell is attemping to enter this cell. This data structure allows us to
implement the movement of agents without expensive synchronization mechanisms
such as atomic operations.

178 Chapter 7. SMMO Examples

S1
S2

S3F1 F2

C0 C1 C2

C12

...

C6 C8

C18

F1::prepare
Candidates: {C6, C12}
Selected: C12

F2::prepare
Candidates: {C8, C12, C18}
Selected: C12

C12::decide
Candidates: {F1, F2}
Selected: F1

F1::update
Move to C12

F2::prepare
Stay on C13

(A) Cell interaction (B) Screenshot

FIGURE 7.16: Cell interaction and screenshot of wa-tor. Green areas indicate fish and red
areas indicate sharks.

7.6.2 Application Implementation

wa-tor is an iterative algorithm. An iteration consists of the following steps.

1. Reset Cells: Initialize the array neighbor_requests to false. This array is used
by agents of neighboring cells to indicate that they wish to enter this cell.
Parallel do-all: Cell::prepare

2. [Fish] Select Outgoing Cell: Among all four neighboring cells, select an empty
cell at random and set the corresponding neighbor_request to true. This is the
cell that the agent is planning to move to. Parallel do-all: Fish::prepare

3. Select Incoming Fish: Among all agents that are trying to move to this cell, as
indicated by the neighbor_request array, select one at random. Parallel do-all:
Cell::decide

4. [Fish] Move to New Cell: Move to the selected cell if approval was granted.
Leave a new Fish at the current location with a certain probability. Parallel
do-all: Fish::update

5. Reset Cells: Same as Step 1. Parallel do-all: Cell::prepare

6. [Shark] Select Outgoing Cell: Same as Step 2, but sharks are also allowed to
and prefer to move onto cells that contain a fish. Parallel do-all: Shark::prepare

7. Select Incoming Shark: Same as Step 3. Parallel do-all: Cell::decide

8. [Shark] Move to New Cell: Same as Step 4, but sharks consume a fish if present
on the target cell. Parallel do-all: Shark::update

Figure 7.16 illustrates the selection of cells by fish. In this figure, red blocks
indicate sharks and green blocks indicate fish. F1 scans its neighborhood for empty
cells to move to4. Possible candidates are C6 and C12. Among those, F1 randomly
selects C12. However, F2 also selects C12 in the same iteration. Only one agent is
allowed to move onto the cell. Among those two, Cell::decide randomly decides
that F1 is allowed to enter the cell. As a consequence, F1 moves to C12 and F2 remains
at its original position.

Listing 7.17A shows how the simulation logic for Fish (Steps 1–4) is implemented.
The simulation logic for Sharks is implemented in a similar way. Requests to move
to a cell are stored in neighbor_request. This array has five slots: One for each

4Fish and sharks cannot move diagonally.

7.6. wa-tor: Fish and Sharks Simulation 179

LISTING 7.17: Simulation logic for Fish
1 __device__ void Cell::prepare() {
2 for (int i = 0; i < 5; ++i) { neighbor_request_[i] = false; }
3 }
4

5 __device__ void Fish::prepare() {
6 ++spawn_timer_;
7 position_->request_random_free_neighbor();
8 }
9

10 __device__ void Cell::request_random_free_neighbor() {
11 int candidates[4]; int num_candidates = 0;
12

13 for (int i = 0; i < 4; ++i) {
14 if (neighbors_[i]->agent_ == nullptr) { candidates[num_candidates++] = i; }
15 }
16

17 if (num_candidates == 0) { // Stay on this cell.
18 neighbor_request_[4] = true;
19 } else {
20 int selected_index = curand(&random_state) % num_candidates; // cuRAND library
21 int selected = candidates[selected_index];
22 int neighbor_index = (selected + 2) % 4;
23 neighbors_[selected]->neighbor_request_[neighbor_index] = true;
24 }
25 }
26

27 __device__ void Cell::decide() {
28 if (neighbor_request_[4]) { // This cell has priority.
29 agent_->new_position_= this;
30 } else { // Select random agent among requesting neighbors.
31 int candidates[4]; int num_candidates = 0;
32

33 for (int i = 0; i < 4; ++i) {
34 if (neighbor_request_[i]) { candidates[num_candidates++] = i; }
35 }
36

37 if (num_candidates > 0) {
38 int selected_index = curand(&random_state_) % num_candidates;
39 neighbors_[candidates[selected_index]]->agent_->new_position_ = this;
40 }
41 }
42 }
43

44 __device__ void Fish::update() {
45 Cell* old_position = position_;
46 if (old_position != new_position_) {
47 position_ = new_position_;
48 position_->agent_ = this;
49

50 if (spawn_timer_ > kSpawnThreshold) { // Spawn offspring.
51 auto* new_fish = new(device_allocator) Fish();
52 new_fish->position_ = old_position;
53 old_position->agent_ = new_fish;
54 spawn_timer_ = 0;
55 } else { old_position->agent_ = nullptr; }
56 }
57 }

180 Chapter 7. SMMO Examples

-neighbors : Cell*[4]
-neighbor_request : bool[5]
-cell_random_state : curandState_t
-agent_random_state : curandState_t
-agent_new_position : Cell*
-agent_spawn_timer : int
-shark_energy : int
-agent_type : int

Cell

FIGURE 7.17: Data structure of wa-tor (merged agents into Cell), without methods

neighbor and one for the cell itself, indicating that an agent wishes to stay on its
current cell. This is the case if all neighboring cells are occupied. After examining all
requests, Cell::decide sets new_position of the agent that is allowed to enter the
cell. Fish::update moves to this cell and leaves a new Fish object at its old location
every kSpawnThreshold iterations.

7.6.3 Benefits of Object-oriented Programming and Dynamic Allocation

Complex ecosystems such as predatory-prey ecosystems or population ecosystems
are often modelled with object-oriented programming [97, 93, 63] because real or
abstract entities can be mapped directly to objects/classes. Previous work describes in
detail why object-oriented programming is suitable and an intuitive way of modelling
such ecosystems [170].

wa-tor is difficult to implement without dynamic object allocation. Fish and Shark
objects are created and deleted all the time. However, every cell contains at most
one Fish or Shark object at a time. To implement wa-tor with only static allocation
(baseline), we merged all classes of wa-tor into a single class Cell (Figure 7.17). The
field agent_type indicates whether a cell contains an agent and if so, what the type
of the agent is (fish or shark).

This example highlights the importance of dynamic object allocation. Our base-
line versions with only static allocation break abstractions of our object-oriented
implementation because class Cell now contains fields that logically describe both
cells and agents.

7.7 sugarscape: Simulation of Population Dynamics

Sugarscape is an agent-based social simulation, originally presented in Epstein and
Axtell’s book Growing Artificial Societies [59]. It is a celluar automaton that simu-
lates the behavior and interaction of agents (male/female) on a 2D grid. Agents
require a certain amount of sugar to survive an iteration (metabolism). Cells grow and
accumulate sugar over time and agents can harvest sugar by moving onto a cell.

Many variants of Sugarscape have been implemented in the past. Those variants
can simulate complex social dynamics [100] such as trade, wars, diseases, etc. Our
sugarscape implementation is rather simple and can simulate ageing and reproduction.

7.7.1 Data Structure

sugarscape consists of a 2D grid of cells with agents moving upon them, so the
data structure (Figure 7.19) is similar to wa-tor. The main difference is that the grid
structure is not encoded with adjacency lists in class Cell. Instead, there is a global
array cells which stores pointers to all cells from left to right, top to bottom. Either
implementation, adjacency list or global array, is feasible.

7.7. sugarscape: Simulation of Population Dynamics 181

FIGURE 7.18: Screenshot of sugarscape. Yellow areas indicate sugar levels. Sugar diffuses to
neighboring cells over time. Male/female agents are colored in blue/red.

-agent : Agent*
-sugar : int
-sugar_capacity : int
-sugar_diffusion : int
-sugar_grow_rate : int
-random_state : curandState_t
+grow_sugar()
+prepare_diffuse()
+update_diffuse()
+decide_permission()

Cell
-cell : Cell*
-cell_request : Cell*
-permission : bool
-vision : int
-age : int
-max_age : int
-sugar : int
-metabolism : int
-endowment : int
-random_state : curandState_t
+age_and_metabolize()
+prepare_move()
+update_move()

Agent

-female_proposal : Female*
-proposal_accepted : bool
+propose()
+propose_offspring_target()
+spawn_offspring()

Male
-num_children : int
-max_children : int
+decide_proposal()

Female

FIGURE 7.19: sugarscape: Data structure

182 Chapter 7. SMMO Examples

Agents have a number of genetic properties, as indicated by the red color in Fig-
ure 7.19. Those properties are passed down to offspring.

7.7.2 Application Implementation

This application consists of a large number of parallel do-all operations. More complex
Sugarscape simulations would require even more do-all operations. The operations
that implement the moving behavior of agents are similar to the respective operations
of wa-tor.

1. Grow Sugar: Increase the amount of sugar of this cell by sugar_grow_rate.
Parallel do-all: Cell::grow_sugar

2. Precompute Sugar Diffusion: Compute the amount of sugar to be diffused to
neighboring cells. Parallel do-all: Cell::prepare_diffuse

3. Diffuse Sugar: Take sugar from neighboring cells and add to this cell. Parallel
do-all: Cell::update_diffuse

4. Age and Metabolize: Increase the age of the agent and reduce the sugar level of
the agent by metabolism_rate. If the age exceeds max_age or if the sugar level
drops below zero, the agent dies. Parallel do-all: Agent::age_and_metabolize

5. Select Outgoing Cell: Among all neighboring cells with distance of up to
vision, select the empty cell with the largest amount of sugar. Store a pointer
to that cell in cell_request. Parallel do-all: Agent::prepare_move

6. Select Incoming Agent: Among all agents that are trying to move to this cell,
as indicated by the surrounding agents’ cell_request, select one at random.
Parallel do-all: Cell::decide_permission

7. Move to New Cell: Move to the selected cell if approval was granted. Consume
all sugar of that cell. Parallel do-all: Agent::update_move

8. Male
Propose−−−−→ Female: If a Male is ready to spawn offspring, i.e., sugar level

> endowment: Among all neighboring Female agents with distance of up
to vision, select the agent with the largest amount of sugar. Parallel do-all:
Male::propose

9. Female
Accept Proposal−−−−−−−−→ Male: Among all neighboring, proposing Male agents

with distance of up to vision, accept the agent with the largest amount of
sugar. A Female cannot accept any more proposals once num_children ≥
max_children. Parallel do-all: Female::decide_proposal

10. Choose Offspring Target: If the proposal was accepted, select a neighboring
cell with distance of up to vision at random. This is similar to Step 5. Parallel
do-all: Male::propose_offspring_target

11. Select Agent: Among all Male agents that are tyring to spawn offspring on
this cell, select one agent at random. This is similar to Step 6. Parallel do-all:
Cell::decide_permission

12. Generate Offspring: Spawn a new agent on the selected cell if approval was
granted. The gender is selected randomly. The genetic properties of the new

7.8. gol: Game of Life 183

-agent : Agent*
+cells : Cell *[SIZE_X *SIZE_Y]

Cell
-cell_id : int
-action : char
+num_alive_neighbors() : int

Agent

-is_new : bool
+create_candidates()
+maybe_create_candidate(x, y)
+prepare()
+update()

Alive
+prepare()
+update()

Candidate

FIGURE 7.20: Data structure of gol

agent (vision, endowment, metabolism, maximum age) are average values of
both parents. The new agent receives an initial sugar level of half the endow-
ment of each parent. Parallel do-all: Male::spawn_offspring

Previous work describes how to implement Sugarscape efficiently on parallel
architectures, in particular on GPUs [53]. These Sugarscape implementations differ
in details, but show that GPUs are well-suited for agent-based modelling [1, 129] and
simulating a massive number of agents.

7.8 gol: Game of Life

Game of Life is a cellular automaton due to John H. Conway. The game follows a
simple set of rules, but can exhibit complex behavior and has even been shown to be
Turing complete [159].

gol consists of a 2D grid of cells. A cell can either be alive or dead. In every
iteration, the new state of a cell is decided as follows: Living cells remain alive only if
they are surrounded by two or three alive neighbors. Dead cells become alive if they
are surrounded by three alive neighbors.

The most straightforward Game of Life implementation calculates the new state
of every cell depending on its neighborhood. gol follows a different approach. We only
simulate cells that are alive or may become alive in the next iteration (alive-candidates).
Candidates are dead neighbors of alive cells. This approach has a lower expected
runtime complexity because most cells are dead most of the time.

7.8.1 Data Structure

This application has four classes (Figure 7.20). An abstract class Agent with two sub-
classes Alive and Candidate, and another class Cell. Cells are created at the begin-
ning of the simulation and stored in a global array (static class variable) Cell::cells.
A cell can contain an agent or be empty. Agents store references to their cell in the
form of an integer index into the global cells array. This requires less memory than an
8-byte pointer and makes it easier to determine all neighboring cells without storing
explicit adjencency lists as in wa-tor.

The main problem of gol is space efficiency. A typical Game of Life implementation
requires only 1 bit to encode the state of a cell. In gol, every cell requires at least 8 bytes
in the form of an Agent pointer. Therefore, even though gol has a lower expected
runtime complexity in terms of the number of processed cells, a naive implementation
that spawns one GPU thread per cell and encodes the cell state with 1 bit/byte is
usually much faster. However, our gol data structure and computation strategy can

184 Chapter 7. SMMO Examples

serve as a blueprint for other cellular automata that have to maintain a more complex
state for each cell [45, 211, 109].

7.8.2 Application Implementation

Before entering the main application loop, gol loads the initial game state from a PBM
(Portable BitMap) file. Such files can be created with common image manipulation
programs such as GIMP. We benchmarked DYNASOAR with Rendell’s universal
turing machine pattern [159]. Every loop iteration of gol consists of four parallel
do-all operations.

1. Prepare Candidate Action: Decide whether a candidate should be deleted,
upgraded to an Alive cell or remain as is. Parallel do-all: Candidate::prepare

2. Prepare Alive Action: Decide whether an alive cell should be deleted (down-
graded to Candidate) or stay as is. Parallel do-all: Alive::prepare

3. Perform Candidate Action: Perform the action determined in Step 1. Parallel
do-all: Candidate::update

4. Perform Alive Action: Perform the action determined in Step 2. If this is
a newly created object (Step 3), create Candidates on all surrounding cells.
Requires special handling to ensure that no two objects create a Candidate on
the same cell. Parallel do-all: Alive::update

Step 4: Perform Alive Action This step is the most challenging part of the appli-
cation (Listing 7.18). Newly created Alive objects must spawn Candidate objects
around them, but we have to ensure that we do not create multiple objects per cell.

Figure 7.21 illustrates this problem with an example. A2 and A3 are newly created
Alive objects. These must create Candidate objects on all empty, surrounding cells.
C12 is a neighbor of both A2 and A3, but only one of them should create a Candidate
at that location.

To that end, we specify an order among Alive objects that determines which
object is creating a Candidate object: top to bottom, left to right. E.g., with respect to
C12, the Alive object on C6 should create the candidate. However, that cell does not
have a newly created Alive object. Therefore, we check C11 next. This cell contains A2,
a newly created Alive object, so it is that object’s responsibility to create a candidate
on C12. Every newly created Alive object can by itself scan the neighborhood of every
surrounding, dead (empty) cell, to determine if it should create a candidate at that
location.

7.8.3 generation: Generational Cellular Automaton

generation is an extension of gol. When an Alive cell dies, it stays around for a constant
number of iterations before it is replaced with a Candidate and can subsequently
become alive again.

This application is based on the rule Burst [204] (0235678/3468/255): An alive cell
remains alive if it has 0, 2, 3, 5, 6, 7 or 8 alive, neighboring cells. Otherwise, the Alive
object dies but blocks the cell for 255 more iterations. A dead cell becomes alive if it
has 3, 4, 6 or 8 alive, neighboring cells.

Figure 7.22 shows a screenshot of generation. The red areas indicate Candidates.
The black areas indicate Alive objects. Alive objects that are already dead but still
block a cell are shown in gray.

7.8. gol: Game of Life 185

*A2

C0 C1 C2

C12

...

C8

C18

A2: maybe_create_candidate at:
{C12, C15, C16}

A3A1

D1 D2 D4

D3

D5*
C15 C16 C19

x

y

A3: maybe_create_candidate at:
{C8, C9, C12, C18, C19}

Which object should create C12?
First new Alive object among on cells:
(C6, C11, C16, C7, C17, C8, C13, C18)
⇒ C11: A2

(A) Cell interaction: Creating new Candidates (B) Screenshot (UTM)

FIGURE 7.21: Cell interaction and screenshot of gol. Green blocks = Alive, red blocks =
Candidate, star = newly created.

LISTING 7.18: Creating Candidate objects on dead cells
__device__ void Alive::update() {
if (is_new_) { create_candidates(); }
else {
if (action_ == kActionDie) { // Replace with Candidate.
Cell::cells[cell_id_]->agent_ = new(device_allocator) Candidate(cell_id_);
destroy(device_allocator, this);

}
}

}

__device__ void Alive::create_candidates() {
for (int dx = -1; dx < 2; ++dx) {
for (int dy = -1; dy < 2; ++dy) {
int nx = cell_id_ % SIZE_X + dx;
int ny = cell_id_ / SIZE_X + dy;
if (nx > -1 && nx < SIZE_X && ny > -1 && ny < SIZE_Y) {
if (Cell::cells[ny*SIZE_X + nx]->agent_ == nullptr) {
maybe_create_candidate(nx, ny);

}
}

}
}

}

__device__ void Alive::maybe_create_candidate(int x, int y) {
// Check neighborhood of cell to determine who should create Candidate.
for (int dx = -1; dx < 2; ++dx) {
for (int dy = -1; dy < 2; ++dy) {
int nx = x + dx;
int ny = y + dy;
if (nx > -1 && nx < SIZE_X && ny > -1 && ny < SIZE_Y) {
Alive* alive = Cell::cells[ny*SIZE_X + nx]->agent_->cast<Alive>();
if (alive != nullptr && alive->is_new_) {
if (alive == this) {
Cell::cells[y*SIZE_X + x]->agent_ =

new(device_allocator) Candidate(y*SIZE_X + x);
} // else: Created by another Alive.
return;

}
}

}
}

}

186 Chapter 7. SMMO Examples

FIGURE 7.22: Screenshot of generation

7.9 Conclusion

In this chapter, we presented the design and implementation of nine applications
from different domains with the object-oriented SMMO programming model. This
chapter speaks to the importance and broadness of the SMMO model.

This chapter also highlights the benefits of object-oriented programming: In most
applications, object-oriented abstractions greatly improve the code readability com-
pared to a hand-written SOA data layout, mostly due to C++’s member-of operators.
An object-oriented programming style also provides stronger type guarantees in C++,
which can improve developer productivity. Some applications are more difficult to
implement without dynamic object allocation, which we consider an essential feature
of object-oriented programming. Finally, all applications exhibit an inherent object
structure of abstract or real-world entities and, needless to say, we would like the
application source code to reflect this structure.

187

Chapter 8

Conclusion

GPU programming is challenging. For best performance, programmers have to write
GPU programs in low-level C/C++ dialects and adopt a SIMD/GPU-specific pro-
gramming style to avoid slowdowns due to inefficient memory access or control flow
divergence. Even though high-level GPU programming languages and libraries exist,
these systems often fail to deliver the performance of hand-tuned CUDA/OpenCL
code.

Our goal is to make GPU programming available to a wider range of developers
by providing better support for object-oriented programming (OOP) in low-level and
high-level programming languages. Object-oriented programming is often seen as
too inefficient for high-performance computing, but as we have shown in this thesis,
object-oriented code can achieve competitive performance if properly optimized.
Inefficient device memory access is often the biggest performance problem of object-
oriented GPU code and we have demonstrated through various prototypes how to
achieve good memory coalescing and cache utilization on GPUs.

• IKRA-RUBY: We developed a Ruby library for array-based GPU computing in a
high-level, object-oriented language. Kernel fusion of functional, parallel array
operations such as map, reduce or stencil allows programmers to compose
complex computations from small building blocks in a modular, object-oriented
way, without losing performance compared to a single monolithic CUDA kernel.
We also showed how to express kernel fusion as part of the static type inference
process.

• Single-Method Multiple-Objects (SMMO): In the object-oriented SMMO program-
ming model, a computation is expressed as running a method on all existing
objects of a type. Such computations are well suited for SIMD parallelism
and they achieve good performance on GPUs, because the expected amount
of branch divergence is low. We demonstrated that a variety of applications
and programming patterns from different domains can be expressed in SMMO,
ranging from social/physical simulations over BFS graph traversals to dynamic
tree updates/constructions.

• IKRA-CPP: We developed a C++/CUDA library for SMMO applications. Most
notably, IKRA-CPP provides an embedded data layout DSL for the Structure of
Arrays (SOA) data layout. The SOA data layout is a well-studied best practice
for GPU programmers and results in a significant speedup of SMMO application
code compared to a traditional AOS data layout. While standard C++/CUDA
does not allow programmers to use object-oriented abstractions with custom
data layouts such as SOA, IKRA-CPP programmers can enjoy the benefits of
object-oriented programming together with the performance improvements of
the SOA data layout.

188 Chapter 8. Conclusion

• DYNASOAR: Dynamic memory allocation is one of the corner stones of object-
oriented programming. However, it is not supported well on GPUs. Most
notably, existing dynamic memory allocators care only about data placement
and miss key optimizations for efficient access of allocations. Building on top of
IKRA-CPP, DYNASOAR is a lock-free, dynamic memory allocator that optimizes
the access of allocated memory with an SOA data layout and an efficient parallel
do-all operation. Compared to other state-of-the-art allocators, DYNASOAR

improves the performance of SMMO applications by a factor of up to 3x.

• COMPACTGPU: Unfortunate allocate-deallocate patterns can lead to increased
memory fragmentation of dynamically allocated objects. On GPUs, fragmen-
tation can have an adverse effect on memory coalescing and cache utilization.
Therefore, we extended DYNASOAR with a memory defragmentation system
COMPACTGPU, which compacts the heap by merging partly occupied memory
blocks. In our benchmarks, COMPACTGPU could lower the memory consump-
tion of SMMO applications by up to 14% and improve the runtime performance
of SMMO applications by up to 16%.

With our three main prototypes IKRA-CPP, DYNASOAR and COMPACTGPU, GPU
programmers can achieve SMMO application performance that is close to, sometimes
even faster than, non-OOP CUDA code. At the same time, they get all the benefits of
object-oriented programming such as good abstraction, expressiveness, modularity
and developer productivity.

We plan to improve IKRA-CPP and IKRA-RUBY in the future. It is our vision that
IKRA-CPP will eventually become a part of IKRA-RUBY, such that programmers can
develop SMMO applications in a high-level programming language.

189

Bibliography

[1] Brandon G. Aaby, Kalyan S. Perumalla, and Sudip K. Seal. Efficient Simulation
of Agent-based Models on Multi-GPU and Multi-core Clusters. In Proceed-
ings of the 3rd International ICST Conference on Simulation Tools and Techniques,
SIMUTools ’10, pages 29:1–29:10, ICST, Brussels, Belgium, Belgium, 2010. ICST
(Institute for Computer Sciences, Social-Informatics and Telecommunications
Engineering). doi:10.4108/ICST.SIMUTOOLS2010.8822.

[2] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G.
Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: A System for Large-scale
Machine Learning. In Proceedings of the 12th USENIX Conference on Operating
Systems Design and Implementation, OSDI ’16, pages 265–283, Berkeley, CA, USA,
2016. USENIX Association.

[3] Martín Abadi, Luca Cardelli, Benjamin Pierce, Benjamin Pierce, and Gordon
Plotkin. Dynamic Typing in a Statically Typed Language. ACM Trans. Program.
Lang. Syst., 13(2):237–268, April 1991. doi:10.1145/103135.103138.

[4] James Abel, Kumar Balasubramanian, Mike Bargeron, Tom Craver, and Mike
Phlipot. Applications Tuning for Streaming SIMD Extensions. Intel Technology
Journal, (Q2), May 1999.

[5] Diab Abuaiadh, Yoav Ossia, Erez Petrank, and Uri Silbershtein. An Efficient
Parallel Heap Compaction Algorithm. In Proceedings of the 19th Annual ACM
SIGPLAN Conference on Object-oriented Programming, Systems, Languages, and
Applications, OOPSLA ’04, pages 224–236, New York, NY, USA, 2004. ACM.
doi:10.1145/1028976.1028995.

[6] Andy Adinets. CUDA Pro Tip: Optimized Filtering with Warp-
Aggregated Atomics, 2017. URL: https://devblogs.nvidia.com/
cuda-pro-tip-optimized-filtering-warp-aggregated-atomics/.

[7] Andrew V. Adinetz and Dirk Pleiter. Halloc: A High-Throughput Dynamic
Memory Allocator for GPGPU Architectures. In GPU Technology Conference,
GTC ’14, 2014. URL: http://fliphtml5.com/wihc/nvsq/basic.

[8] Gerald Aigner and Urs Hölzle. Eliminating virtual function calls in C++
programs. In Pierre Cointe, editor, ECOOP ’96 — Object-Oriented Program-
ming, pages 142–166, Berlin, Heidelberg, 1996. Springer-Verlag. doi:10.1007/
BFb0053060.

[9] Stephen G. Alexander and Craig B. Agnor. N-Body Simulations of Late Stage
Planetary Formation with a Simple Fragmentation Model. Icarus, 132(1):113–
124, 1998. doi:10.1006/icar.1998.5905.

https://doi.org/10.4108/ICST.SIMUTOOLS2010.8822
https://doi.org/10.1145/103135.103138
https://doi.org/10.1145/1028976.1028995
https://devblogs.nvidia.com/cuda-pro-tip-optimized-filtering-warp-aggregated-atomics/
https://devblogs.nvidia.com/cuda-pro-tip-optimized-filtering-warp-aggregated-atomics/
http://fliphtml5.com/wihc/nvsq/basic
https://doi.org/10.1007/BFb0053060
https://doi.org/10.1007/BFb0053060
https://doi.org/10.1006/icar.1998.5905

190 BIBLIOGRAPHY

[10] Jade Alglave, Mark Batty, Alastair F. Donaldson, Ganesh Gopalakrishnan,
Jeroen Ketema, Daniel Poetzl, Tyler Sorensen, and John Wickerson. GPU
Concurrency: Weak Behaviours and Programming Assumptions. In Proceedings
of the Twentieth International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’15, pages 577–591, New York, NY,
USA, 2015. ACM. doi:10.1145/2694344.2694391.

[11] Robert J. Allan. Survey of Agent Based Modelling and Simulation Tools. Tech-
nical Report DL-TR-2010-007, Science and Technology Facilities Council, War-
rington, United Kingdom, Oct 2010. URL: http://purl.org/net/epubs/work/
50398.

[12] Saman Ashkiani, Martin Farach-Colton, and John D. Owens. A Dynamic Hash
Table for the GPU. CoRR, abs/1710.11246, 2017. arXiv:1710.11246.

[13] Undisclosed Authors. Intel® 64 and IA-32 Architectures Software Developer’s
Manual. Volume 1: Basic Architecture. Technical Report 253665-060US, Intel
Corporation, Sept. 2016.

[14] Darius Bakunas-Milanowski, Vernon Rego, Janche Sang, and Chansu Yu. Ef-
ficient Algorithms for Stream Compaction on GPUs. International Journal of
Networking and Computing, 7(2):208–226, 2017. doi:10.15803/ijnc.7.2_208.

[15] Stefania Bandini, Sara Manzoni, and Giuseppe Vizzari. Agent Based Modeling
and Simulation: An Informatics Perspective. Journal of Artificial Societies and
Social Simulation, 12(4), 2009. URL: http://jasss.soc.surrey.ac.uk/12/4/4.
html.

[16] Rajkishore Barik, Rashid Kaleem, Deepak Majeti, Brian T. Lewis, Tatiana Sh-
peisman, Chunling Hu, Yang Ni, and Ali-Reza Adl-Tabatabai. Efficient Map-
ping of Irregular C++ Applications to Integrated GPUs. In Proceedings of
2014 Annual IEEE/ACM International Symposium on Code Generation and Op-
timization, CGO ’14, pages 33:33–33:43, New York, NY, USA, 2014. ACM.
doi:10.1145/2581122.2544165.

[17] Josh Barnes and Piet Hut. A hierarchical O(N log N) force-calculation algorithm.
Nature, 324(6096):446–449, 1986. doi:10.1038/324446a0.

[18] Eli Bendersky. The many faces of operator new in C++,
2011. URL: https://eli.thegreenplace.net/2011/02/17/
the-many-faces-of-operator-new-in-c.

[19] Emery D. Berger, Kathryn S. McKinley, Robert D. Blumofe, and Paul R. Wil-
son. Hoard: A Scalable Memory Allocator for Multithreaded Applications.
In Proceedings of the Ninth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS IX, pages 117–128, New
York, NY, USA, 2000. ACM. doi:10.1145/378993.379232.

[20] Paul Besl. A case study comparing AoS (Arrays of Structures) and SoA (Struc-
tures of Arrays) data layouts for a compute-intensive loop run on Intel Xeon
processors and Intel Xeon Phi product family coprocessors. Technical report,
Intel Corporation, 2013.

[21] Markus Billeter, Ola Olsson, and Ulf Assarsson. Efficient Stream Compaction
on Wide SIMD Many-core Architectures. In Proceedings of the Conference on High

https://doi.org/10.1145/2694344.2694391
http://purl.org/net/epubs/work/50398
http://purl.org/net/epubs/work/50398
http://arxiv.org/abs/1710.11246
https://doi.org/10.15803/ijnc.7.2_208
http://jasss.soc.surrey.ac.uk/12/4/4.html
http://jasss.soc.surrey.ac.uk/12/4/4.html
https://doi.org/10.1145/2581122.2544165
https://doi.org/10.1038/324446a0
https://eli.thegreenplace.net/2011/02/17/the-many-faces-of-operator-new-in-c
https://eli.thegreenplace.net/2011/02/17/the-many-faces-of-operator-new-in-c
https://doi.org/10.1145/378993.379232

BIBLIOGRAPHY 191

Performance Graphics 2009, HPG ’09, pages 159–166, New York, NY, USA, 2009.
ACM. doi:10.1145/1572769.1572795.

[22] Robert D. Blumofe and Charles E. Leiserson. Scheduling Multithreaded
Computations by Work Stealing. J. ACM, 46(5):720–748, September 1999.
doi:10.1145/324133.324234.

[23] Jeff Bonwick. The Slab Allocator: An Object-caching Kernel Memory Alloca-
tor. In Proceedings of the USENIX Summer 1994 Technical Conference, USTC ’94,
Berkeley, CA, USA, 1994. USENIX Association.

[24] Gilad Bracha and William Cook. Mixin-based Inheritance. In Proceedings
of the European Conference on Object-oriented Programming on Object-oriented
Programming Systems, Languages, and Applications, OOPSLA/ECOOP ’90, pages
303–311, New York, NY, USA, 1990. ACM. doi:10.1145/97945.97982.

[25] James Brodman, Dmitry Babokin, Ilia Filippov, and Peng Tu. Writing Scalable
SIMD Programs with ISPC. In Proceedings of the 2014 Workshop on Programming
Models for SIMD/Vector Processing, WPMVP ’14, pages 25–32, New York, NY,
USA, 2014. ACM. doi:10.1145/2568058.2568065.

[26] Trevor Brown. Techniques for Constructing Efficient Lock-free Data Structures. PhD
thesis, University of Toronto, 2017. arXiv:1712.05406.

[27] Trevor Alexander Brown. Reclaiming Memory for Lock-Free Data Structures:
There Has to Be a Better Way. In Proceedings of the 2015 ACM Symposium on
Principles of Distributed Computing, PODC ’15, pages 261–270, New York, NY,
USA, 2015. ACM. doi:10.1145/2767386.2767436.

[28] Martin Burtscher and Keshav Pingali. Chapter 6 – An Efficient CUDA Im-
plementation of the Tree-Based Barnes Hut n-Body Algorithm. In Wen
mei W. Hwu, editor, GPU Computing Gems Emerald Edition, Applications
of GPU Computing Series, pages 75–92. Morgan Kaufmann, Boston, 2011.
doi:10.1016/B978-0-12-384988-5.00006-1.

[29] John R. Cary, Svetlana G. Shasharina, Julian C. Cummings, John V.W. Reynders,
and Paul J. Hinker. Comparison of C++ and Fortran 90 for object-oriented
scientific programming. Computer Physics Communications, 105(1):20–36, 1997.
doi:10.1016/S0010-4655(97)00043-X.

[30] Hassan Chafi, Arvind K. Sujeeth, Kevin J. Brown, HyoukJoong Lee, Anand R.
Atreya, and Kunle Olukotun. A Domain-specific Approach to Heterogeneous
Parallelism. In Proceedings of the 16th ACM Symposium on Principles and Practice
of Parallel Programming, PPoPP ’11, pages 35–46, New York, NY, USA, 2011.
ACM. doi:10.1145/1941553.1941561.

[31] Shigeru Chiba. A Metaobject Protocol for C++. In Proceedings of the Tenth Annual
Conference on Object-oriented Programming Systems, Languages, and Applications,
OOPSLA ’95, pages 285–299, New York, NY, USA, 1995. ACM. doi:10.1145/
217838.217868.

[32] Trishul M. Chilimbi, Bob Davidson, and James R. Larus. Cache-conscious
Structure Definition. In Proceedings of the ACM SIGPLAN 1999 Conference on
Programming Language Design and Implementation, PLDI ’99, pages 13–24, New
York, NY, USA, 1999. ACM. doi:10.1145/301618.301635.

https://doi.org/10.1145/1572769.1572795
https://doi.org/10.1145/324133.324234
https://doi.org/10.1145/97945.97982
https://doi.org/10.1145/2568058.2568065
http://arxiv.org/abs/1712.05406
https://doi.org/10.1145/2767386.2767436
https://doi.org/10.1016/B978-0-12-384988-5.00006-1
https://doi.org/10.1016/S0010-4655(97)00043-X
https://doi.org/10.1145/1941553.1941561
https://doi.org/10.1145/217838.217868
https://doi.org/10.1145/217838.217868
https://doi.org/10.1145/301618.301635

192 BIBLIOGRAPHY

[33] James O. Coplien. Curiously Recurring Template Patterns. C++ Report, 7(2):24–
27, February 1995.

[34] NVIDIA Corporation. NVIDIA GameWorks Documentation: Memory
Statistics - Global, 2015. URL: https://docs.nvidia.com/gameworks/
content/developertools/desktop/analysis/report/cudaexperiments/
kernellevel/memorystatisticsglobal.htm.

[35] NVIDIA Corporation. NVIDIA Tesla P100 Whitepaper, 2016.
URL: https://images.nvidia.com/content/pdf/tesla/whitepaper/
pascal-architecture-whitepaper.pdf.

[36] NVIDIA Corporation. CUDA C Best Practices Guide: Coa-
lesced Access to Global Memory, 2018. URL: https://docs.
nvidia.com/cuda/cuda-c-best-practices-guide/index.html#
coalesced-access-to-global-memory.

[37] NVIDIA Corporation. CUDA ZONE Forum: Constant Cache,
2018. URL: https://devtalk.nvidia.com/default/topic/1035182/
cuda-programming-and-performance/constant-cache/.

[38] NVIDIA Corporation. Press Release: NVIDIA-
Accelerated Supercomputers Hit New Highs on TOP500
List, 2018. URL: https://nvidianews.nvidia.com/news/
nvidia-accelerated-supercomputers-hit-new-highs-on-top500-list.

[39] NVIDIA Corporation. CUDA C Programming Guide: Compute Capa-
bility 6.x: Global Memory, 2019. URL: https://docs.nvidia.com/cuda/
cuda-c-programming-guide/index.html#global-memory-6-x.

[40] NVIDIA Corporation. CUDA C Programming Guide: Device Memory Access,
2019. URL: https://docs.nvidia.com/cuda/cuda-c-programming-guide/
index.html#device-memory-accesses.

[41] NVIDIA Corporation. CUDA Toolkit Documentation: PTX Writer’s
Guide to Interoperability, 2019. URL: https://docs.nvidia.com/cuda/
ptx-writers-guide-to-interoperability.

[42] NVIDIA Corporation. Pascal Tuning Guide: Instruction Scheduling,
2019. URL: https://docs.nvidia.com/cuda/pascal-tuning-guide/index.
html#sm-scheduling.

[43] NVIDIA Corporation. Pascal Tuning Guide: Unified L1/Texture Cache,
2019. URL: https://docs.nvidia.com/cuda/pascal-tuning-guide/index.
html#l1-cache.

[44] Cederman Daniel, Gidenstam Anders, Ha Phuong, Sundell Hkan, Papatri-
antafilou Marina, and Tsigas Philippas. Lock-Free Concurrent Data Structures,
chapter 3, pages 59–79. Wiley-Blackwell, 2017. doi:10.1002/9781119332015.
ch3.

[45] Debasis Das. A Survey on Cellular Automata and Its Applications. In P. Venkata
Krishna, M. Rajasekhara Babu, and Ezendu Ariwa, editors, Global Trends in
Computing and Communication Systems, pages 753–762, Berlin, Heidelberg, 2012.
Springer-Verlag. doi:10.1007/978-3-642-29219-4_84.

https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/memorystatisticsglobal.htm
https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/memorystatisticsglobal.htm
https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/memorystatisticsglobal.htm
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#coalesced-access-to-global-memory
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#coalesced-access-to-global-memory
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#coalesced-access-to-global-memory
https://devtalk.nvidia.com/default/topic/1035182/cuda-programming-and-performance/constant-cache/
https://devtalk.nvidia.com/default/topic/1035182/cuda-programming-and-performance/constant-cache/
https://nvidianews.nvidia.com/news/nvidia-accelerated-supercomputers-hit-new-highs-on-top500-list
https://nvidianews.nvidia.com/news/nvidia-accelerated-supercomputers-hit-new-highs-on-top500-list
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#global-memory-6-x
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#global-memory-6-x
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#device-memory-accesses
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#device-memory-accesses
https://docs.nvidia.com/cuda/ptx-writers-guide-to-interoperability
https://docs.nvidia.com/cuda/ptx-writers-guide-to-interoperability
https://docs.nvidia.com/cuda/pascal-tuning-guide/index.html#sm-scheduling
https://docs.nvidia.com/cuda/pascal-tuning-guide/index.html#sm-scheduling
https://docs.nvidia.com/cuda/pascal-tuning-guide/index.html#l1-cache
https://docs.nvidia.com/cuda/pascal-tuning-guide/index.html#l1-cache
https://doi.org/10.1002/9781119332015.ch3
https://doi.org/10.1002/9781119332015.ch3
https://doi.org/10.1007/978-3-642-29219-4_84

BIBLIOGRAPHY 193

[46] Kei Davis and Jörg Striegnitz. Parallel Object-Oriented Scientific Computing
Today. In Frank Buschmann, Alejandro P. Buchmann, and Mariano A. Cilia,
editors, Object-Oriented Technology. ECOOP 2003 Workshop Reader, pages 11–16,
Berlin, Heidelberg, 2004. Springer-Verlag. doi:10.1007/978-3-540-25934-3_
2.

[47] Simon Garcia De Gonzalo, Sitao Huang, Juan Gómez-Luna, Simon Hammond,
Onur Mutlu, and Wen-mei Hwu. Automatic Generation of Warp-level Primi-
tives and Atomic Instructions for Fast and Portable Parallel Reduction on GPUs.
In Proceedings of the 2019 IEEE/ACM International Symposium on Code Generation
and Optimization, CGO 2019, pages 73–84, Piscataway, NJ, USA, Feb 2019. IEEE
Press. doi:10.1109/CGO.2019.8661187.

[48] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing
on Large Clusters. Commun. ACM, 51(1):107–113, January 2008. doi:10.1145/
1327452.1327492.

[49] Alexander K. Dewdney. Computer Creations: Sharks and fish wage an eco-
logical war on the toroidal planet Wa-Tor. Scientific American, 251(6):14–26, 12
1984.

[50] Jose J. Dolado, Mark Harman, Mari C. Otero, and Lin Hu. An Empirical
Investigation of the Influence of a Type of Side Effects on Program Compre-
hension. IEEE Transactions on Software Engineering, 29(7):665–670, July 2003.
doi:10.1109/TSE.2003.1214329.

[51] Julian Dolby and Andrew Chien. An Automatic Object Inlining Optimization
and Its Evaluation. In Proceedings of the 2000 ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’00, pages 345–357, New
York, NY, USA, 2000. ACM. doi:10.1145/349299.349344.

[52] Christophe Dubach, Perry Cheng, Rodric Rabbah, David F. Bacon, and
Stephen J. Fink. Compiling a High-level Language for GPUs: (via Language
Support for Architectures and Compilers). In Proceedings of the 33rd ACM SIG-
PLAN Conference on Programming Language Design and Implementation, PLDI ’12,
pages 1–12, New York, NY, USA, 2012. ACM. doi:10.1145/2254064.2254066.

[53] Roshan M D’Souza, Mikola Lysenko, and Keyvan Rahmani. SugarScape on
Steroids: Simulating Over a Million Agents at Interactive Rates. In Proceedings
of the Agent 2007 Conference on Complex Interaction and Social Emergence, number
ANL/DIS-07-2, 2007.

[54] Carlchristian H. J. Eckert. Enhancements of the massively parallel memory
allocator ScatterAlloc and its adaption to the general interface mallocMC. Junior
thesis. Technische Universität Dresden, October 2014. doi:10.5281/zenodo.
34461.

[55] Harold C. Edwards and Daniel A. Ibanez. Kokkos’ Task DAG Capabilities. Tech-
nical Report SAND2017-10464, Sandia National Laboratories, Albuquerque,
New Mexico, USA, 9 2017. doi:10.2172/1398234.

[56] Faith Ellen, Yossi Lev, Victor Luchangco, and Mark Moir. SNZI: Scalable
NonZero Indicators. In Proceedings of the Twenty-sixth Annual ACM Symposium
on Principles of Distributed Computing, PODC ’07, pages 13–22, New York, NY,
USA, 2007. ACM. doi:10.1145/1281100.1281106.

https://doi.org/10.1007/978-3-540-25934-3_2
https://doi.org/10.1007/978-3-540-25934-3_2
https://doi.org/10.1109/CGO.2019.8661187
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1109/TSE.2003.1214329
https://doi.org/10.1145/349299.349344
https://doi.org/10.1145/2254064.2254066
https://doi.org/10.5281/zenodo.34461
https://doi.org/10.5281/zenodo.34461
https://doi.org/10.2172/1398234
https://doi.org/10.1145/1281100.1281106

194 BIBLIOGRAPHY

[57] Ahmed ElTantawy and Tor M. Aamodt. MIMD Synchronization on SIMT Ar-
chitectures. In Proceedings of the 49th Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO-49, pages 11:1–11:14, Piscataway, NJ, USA, 2016.
IEEE Press. doi:10.1109/MICRO.2016.7783714.

[58] Stefan Endrikat, Stefan Hanenberg, Romain Robbes, and Andreas Stefik. How
Do API Documentation and Static Typing Affect API Usability? In Proceedings of
the 36th International Conference on Software Engineering, ICSE ’14, pages 632–642,
New York, NY, USA, 2014. ACM. doi:10.1145/2568225.2568299.

[59] Joshua M. Epstein and Robert Axtell. Growing Artificial Societies: Social Science
from the Bottom Up. The MIT Press, 1 edition, 1996.

[60] Jörg Esser and Michael Schreckenberg. Microscopic Simulation of Urban Traf-
fic Based on Cellular Automata. International Journal of Modern Physics C,
08(05):1025–1036, 1997. doi:10.1142/S0129183197000904.

[61] Jianbin Fang, Ana Lucia Varbanescu, and Henk Sips. A Comprehensive Per-
formance Comparison of CUDA and OpenCL. In Proceedings of the 2011 Inter-
national Conference on Parallel Processing, ICPP ’11, pages 216–225, Washington,
DC, USA, 2011. IEEE Computer Society. doi:10.1109/ICPP.2011.45.

[62] Matthias Felleisen. Functional Objects. In Martin Odersky, editor, ECOOP
2004 – Object-Oriented Programming, pages 269–269, Berlin, Heidelberg, 2004.
Springer-Verlag. doi:10.1007/978-3-540-24851-4_12.

[63] J. Gomes Ferreira. ECOWIN – an object-oriented ecological model for
aquatic ecosystems. Ecological Modelling, 79(1):21–34, 1995. doi:10.1016/
0304-3800(94)00033-E.

[64] Jiří Filipovič, Matúš Madzin, Jan Fousek, and Luděk Matyska. Optimizing
CUDA code by kernel fusion: application on BLAS. The Journal of Supercomput-
ing, 71(10):3934–3957, 2015. doi:10.1007/s11227-015-1483-z.

[65] Juliana Franco, Martin Hagelin, Tobias Wrigstad, Sophia Drossopoulou, and
Susan Eisenbach. You Can Have It All: Abstraction and Good Cache Per-
formance. In Proceedings of the 2017 ACM SIGPLAN International Sympo-
sium on New Ideas, New Paradigms, and Reflections on Programming and Soft-
ware, Onward! 2017, pages 148–167, New York, NY, USA, 2017. ACM.
doi:10.1145/3133850.3133861.

[66] Keir Fraser. Practical lock-freedom. PhD thesis, February 2004. URL: https:
//www.cl.cam.ac.uk/techreports/UCAM-CL-TR-579.pdf.

[67] Juan Fumero, Michel Steuwer, Lukas Stadler, and Christophe Dubach. Just-In-
Time GPU Compilation for Interpreted Languages with Partial Evaluation. In
Proceedings of the 13th ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments, VEE ’17, pages 60–73, New York, NY, USA, 2017. ACM.
doi:10.1145/3050748.3050761.

[68] Juan José Fumero, Michel Steuwer, and Christophe Dubach. A Composable
Array Function Interface for Heterogeneous Computing in Java. In Proceedings
of the 2014 ACM SIGPLAN International Workshop on Libraries, Languages, and
Compilers for Array Programming, ARRAY ’14, pages 44:44–44:49, New York, NY,
USA, 2014. ACM. doi:10.1145/2627373.2627381.

https://doi.org/10.1109/MICRO.2016.7783714
https://doi.org/10.1145/2568225.2568299
https://doi.org/10.1142/S0129183197000904
https://doi.org/10.1109/ICPP.2011.45
https://doi.org/10.1007/978-3-540-24851-4_12
https://doi.org/10.1016/0304-3800(94)00033-E
https://doi.org/10.1016/0304-3800(94)00033-E
https://doi.org/10.1007/s11227-015-1483-z
https://doi.org/10.1145/3133850.3133861
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-579.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-579.pdf
https://doi.org/10.1145/3050748.3050761
https://doi.org/10.1145/2627373.2627381

BIBLIOGRAPHY 195

[69] Anil Gaihre, Zhenlin Wu, Fan Yao, and Hang Liu. XBFS: EXploring Runtime
Optimizations for Breadth-First Search on GPUs. In Proceedings of the 28th
International Symposium on High-Performance Parallel and Distributed Computing,
HPDC ’19, pages 121–131, New York, NY, USA, 2019. ACM. doi:10.1145/
3307681.3326606.

[70] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-oriented Software. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1995.

[71] Isaac Gelado and Michael Garland. Throughput-oriented GPU Memory Al-
location. In Proceedings of the 24th Symposium on Principles and Practice of Par-
allel Programming, PPoPP ’19, pages 27–37, New York, NY, USA, 2019. ACM.
doi:10.1145/3293883.3295727.

[72] Michael J. Gibson, Edward C. Keedwell, and Dragan A. Savić. An investigation
of the efficient implementation of cellular automata on multi-core CPU and
GPU hardware. Journal of Parallel and Distributed Computing, 77:11–25, 2015.
doi:10.1016/j.jpdc.2014.10.011.

[73] Paul D. Gilbert. Creating Stand-Alone Smalltalk Applications. Master’s thesis,
University of Illinois, 1988. URL: https://apps.dtic.mil/docs/citations/
ADA197217.

[74] Narendra S. Goel, Samaresh C. Maitra, and Elliott W. Montroll. On the Volterra
and Other Nonlinear Models of Interacting Populations. Rev. Mod. Phys., 43:231–
276, Apr 1971. doi:10.1103/RevModPhys.43.231.

[75] Dirk Grunwald, Benjamin Zorn, and Robert Henderson. Improving the Cache
Locality of Memory Allocation. In Proceedings of the ACM SIGPLAN 1993
Conference on Programming Language Design and Implementation, PLDI ’93, pages
177–186, New York, NY, USA, 1993. ACM. doi:10.1145/155090.155107.

[76] Christopher Haine. Kernel optimization by layout restructuring. PhD thesis, 2017.
URL: http://www.theses.fr/2017BORD0639.

[77] Pawan Harish and P. J. Narayanan. Accelerating Large Graph Algorithms
on the GPU Using CUDA. In Srinivas Aluru, Manish Parashar, Ramamurthy
Badrinath, and Viktor K. Prasanna, editors, High Performance Computing – HiPC
2007, pages 197–208, Berlin, Heidelberg, 2007. Springer-Verlag. doi:10.1007/
978-3-540-77220-0_21.

[78] Pawan Harish and P. J. Narayanan. Accelerating Large Graph Algorithms on
the GPU Using CUDA. In Proceedings of the 14th International Conference on
High Performance Computing, HiPC ’07, pages 197–208, Berlin, Heidelberg, 2007.
Springer-Verlag. doi:10.1007/978-3-540-77220-0_21.

[79] Mark Harris. Optimizing Parallel Reduction in CUDA. URL: https://
developer.download.nvidia.com/assets/cuda/files/reduction.pdf.

[80] Mark Harris. CUDA Pro Tip: Write Flexible Kernels with
Grid-Stride Loops, 2013. URL: https://devblogs.nvidia.com/
cuda-pro-tip-write-flexible-kernels-grid-stride-loops/.

[81] Kevlin Henney. Valued Conversions. C++ Report, 12:37–40, July 2000.

https://doi.org/10.1145/3307681.3326606
https://doi.org/10.1145/3307681.3326606
https://doi.org/10.1145/3293883.3295727
https://doi.org/10.1016/j.jpdc.2014.10.011
https://apps.dtic.mil/docs/citations/ADA197217
https://apps.dtic.mil/docs/citations/ADA197217
https://doi.org/10.1103/RevModPhys.43.231
https://doi.org/10.1145/155090.155107
http://www.theses.fr/2017BORD0639
https://doi.org/10.1007/978-3-540-77220-0_21
https://doi.org/10.1007/978-3-540-77220-0_21
https://doi.org/10.1007/978-3-540-77220-0_21
https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
https://devblogs.nvidia.com/cuda-pro-tip-write-flexible-kernels-grid-stride-loops/
https://devblogs.nvidia.com/cuda-pro-tip-write-flexible-kernels-grid-stride-loops/

196 BIBLIOGRAPHY

[82] Troels Henriksen, Ken Friis Larsen, and Cosmin E. Oancea. Design and GPGPU
Performance of Futhark’s Redomap Construct. In Proceedings of the 3rd ACM
SIGPLAN International Workshop on Libraries, Languages, and Compilers for Array
Programming, ARRAY ’16, pages 17–24, New York, NY, USA, 2016. ACM. doi:
10.1145/2935323.2935326.

[83] Johannes Hofmann, Jan Treibig, Georg Hager, and Gerhard Wellein. Comparing
the Performance of Different x86 SIMD Instruction Sets for a Medical Imaging
Application on Modern Multi- and Manycore Chips. In Proceedings of the 2014
Workshop on Programming Models for SIMD/Vector Processing, WPMVP ’14, pages
57–64, New York, NY, USA, 2014. ACM. doi:10.1145/2568058.2568068.

[84] Eric Holk, Ryan Newton, Jeremy Siek, and Andrew Lumsdaine. Region-based
Memory Management for GPU Programming Languages: Enabling Rich Data
Structures on a Spartan Host. In Proceedings of the 2014 ACM International
Conference on Object Oriented Programming Systems Languages & Applications,
OOPSLA ’14, pages 141–155, New York, NY, USA, 2014. ACM. doi:10.1145/
2660193.2660244.

[85] Holger Homann and Francois Laenen. SoAx: A generic C++ Structure of
Arrays for handling particles in HPC codes. Computer Physics Communications,
224:325–332, 2018. doi:10.1016/j.cpc.2017.11.015.

[86] Sungpack Hong, Sang Kyun Kim, Tayo Oguntebi, and Kunle Olukotun. Ac-
celerating CUDA Graph Algorithms at Maximum Warp. In Proceedings of the
16th ACM Symposium on Principles and Practice of Parallel Programming, PPoPP
’11, pages 267–276, New York, NY, USA, 2011. ACM. doi:10.1145/1941553.
1941590.

[87] Ryota Horiguchi, Masahiko Katakura, Hirokazu Akahane, and Masao Kuwa-
hara. A development of a traffic simulator for urban road networks: AVENUE.
In Vehicle Navigation and Information Systems Conference, VNIS ’94, pages 245–250.
IEEE Computer Society, Aug 1994. doi:10.1109/VNIS.1994.396833.

[88] Xiaohuang Huang, Christopher I. Rodrigues, Stephen Jones, Ian Buck, and
Wen-Mei Hwu. XMalloc: A Scalable Lock-free Dynamic Memory Allocator for
Many-core Machines. In Proceedings of the 10th IEEE International Conference on
Computer and Information Technology, pages 1134–1139. IEEE Computer Society,
June 2010. doi:10.1109/CIT.2010.206.

[89] Klaus Iglberger, Georg Hager, Jan Treibig, and Ulrich Rüde. Expression Tem-
plates Revisited: A Performance Analysis of Current Methodologies. SIAM
Journal on Scientific Computing, 34(2):C42–C69, 2012. doi:10.1137/110830125.

[90] Daniel H. H. Ingalls. A Simple Technique for Handling Multiple Polymorphism.
In Proceedings of the 1986 Conference on Object-oriented Programming Systems,
Languages and Applications, OOPSLA ’86, pages 347–349, New York, NY, USA,
1986. ACM. doi:10.1145/28697.28732.

[91] Kazuaki Ishizaki, Akihiro Hayashi, Gita Koblents, and Vivek Sarkar. Compiling
and Optimizing Java 8 Programs for GPU Execution. In Proceedings of the
2015 International Conference on Parallel Architecture and Compilation (PACT),
PACT ’15, pages 419–431, Washington, DC, USA, 2015. IEEE Computer Society.
doi:10.1109/PACT.2015.46.

https://doi.org/10.1145/2935323.2935326
https://doi.org/10.1145/2935323.2935326
https://doi.org/10.1145/2568058.2568068
https://doi.org/10.1145/2660193.2660244
https://doi.org/10.1145/2660193.2660244
https://doi.org/10.1016/j.cpc.2017.11.015
https://doi.org/10.1145/1941553.1941590
https://doi.org/10.1145/1941553.1941590
https://doi.org/10.1109/VNIS.1994.396833
https://doi.org/10.1109/CIT.2010.206
https://doi.org/10.1137/110830125
https://doi.org/10.1145/28697.28732
https://doi.org/10.1109/PACT.2015.46

BIBLIOGRAPHY 197

[92] ISO/IEC. ISO International Standard 14882:2011 – Information technology – Pro-
gramming languages – C++. International Organization for Standardization,
February 2012.

[93] Hans J. M. Baveco and Arnold M. W. Smeulders. Objects for Simulation:
Smalltalk and Ecology. SIMULATION, 62(1):42–56, 1994. doi:10.1177/
003754979406200106.

[94] Byunghyun Jang, Dana Schaa, Perhaad Mistry, and David Kaeli. Exploiting
Memory Access Patterns to Improve Memory Performance in Data-Parallel
Architectures. IEEE Transactions on Parallel and Distributed Systems, 22(1):105–
118, January 2011. doi:10.1109/TPDS.2010.107.

[95] Zhe Jia, Marco Maggioni, Benjamin Staiger, and Daniele Paolo Scarpazza. Dis-
secting the NVIDIA Volta GPU Architecture via Microbenchmarking. Technical
report, Citadel Enterprise Americas LLC, 2018. arXiv:1804.06826.

[96] Mark S. Johnstone and Paul R. Wilson. The Memory Fragmentation Problem:
Solved? In Proceedings of the 1st International Symposium on Memory Management,
ISMM ’98, pages 26–36, New York, NY, USA, 1998. ACM. doi:10.1145/286860.
286864.

[97] B. Jones, W. Sterner, and J. Schank. Biota: An Object-Oriented Tool for Modeling
Complex Ecological Systems. Mathematical and Computer Modelling, 20(8):31–48,
1994. doi:10.1016/0895-7177(94)90229-1.

[98] Laxmikant V. Kale and Sanjeev Krishnan. CHARM++: A Portable Concurrent
Object Oriented System Based on C++. In Proceedings of the Eighth Annual
Conference on Object-oriented Programming Systems, Languages, and Applications,
OOPSLA ’93, pages 91–108, New York, NY, USA, 1993. ACM. doi:10.1145/
165854.165874.

[99] Kamran Karimi, Neil G. Dickson, and Firas Hamze. A Performance Comparison
of CUDA and OpenCL. CoRR, abs/1005.2581, 2010. arXiv:1005.2581.

[100] Joseph Kehoe. The Specification of Sugarscape. CoRR, abs/1505.06012, 2015.
arXiv:1505.06012.

[101] Haim Kermany and Erez Petrank. The Compressor: Concurrent, Incremental,
and Parallel Compaction. In Proceedings of the 27th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’06, pages 354–363,
New York, NY, USA, 2006. ACM. doi:10.1145/1133981.1134023.

[102] Farzad Khorasani, Rajiv Gupta, and Laxmi N. Bhuyan. Efficient Warp Execution
in Presence of Divergence with Collaborative Context Collection. In Proceedings
of the 48th International Symposium on Microarchitecture, MICRO-48, pages 204–
215, New York, NY, USA, 2015. ACM. doi:10.1145/2830772.2830796.

[103] James C. King. Symbolic Execution and Program Testing. Commun. ACM,
19(7):385–394, July 1976. doi:10.1145/360248.360252.

[104] Fredrik Kjolstad, Danny Dig, Gabriel Acevedo, and Marc Snir. Transformation
for Class Immutability. In Proceedings of the 33rd International Conference on
Software Engineering, ICSE ’11, pages 61–70, New York, NY, USA, 2011. ACM.
doi:10.1145/1985793.1985803.

https://doi.org/10.1177/003754979406200106
https://doi.org/10.1177/003754979406200106
https://doi.org/10.1109/TPDS.2010.107
http://arxiv.org/abs/1804.06826
https://doi.org/10.1145/286860.286864
https://doi.org/10.1145/286860.286864
https://doi.org/10.1016/0895-7177(94)90229-1
https://doi.org/10.1145/165854.165874
https://doi.org/10.1145/165854.165874
http://arxiv.org/abs/1005.2581
http://arxiv.org/abs/1505.06012
https://doi.org/10.1145/1133981.1134023
https://doi.org/10.1145/2830772.2830796
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/1985793.1985803

198 BIBLIOGRAPHY

[105] Fredrik Berg Kjolstad and Marc Snir. Ghost Cell Pattern. In Proceedings of the
2010 Workshop on Parallel Programming Patterns, ParaPLoP ’10, pages 4:1–4:9,
New York, NY, USA, 2010. ACM. doi:10.1145/1953611.1953615.

[106] Klaus Kofler, Biagio Cosenza, and Thomas Fahringer. Automatic Data Layout
Optimizations for GPUs. In Jesper Larsson Träff, Sascha Hunold, and Francesco
Versaci, editors, Euro-Par 2015: Parallel Processing, pages 263–274, Berlin, Hei-
delberg, 2015. Springer-Verlag. doi:10.1007/978-3-662-48096-0_21.

[107] Iisakki Kosonen. HUTSIM - Simulation Tool for Traffic Signal Control Planning.
PhD thesis, Helsinki University of Technology, 1996.

[108] Glenn Krasner. Smalltalk-80: Bits of History, Words of Advice. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1983.

[109] Jiří Kroc. Editorial. Advances in Complex Systems, 10(supp01):1–3, 2007. doi:
10.1142/S0219525907001057.

[110] Sandia National Laboratories. VTK-m Wiki: Virtual Methods in the Execution
Environment, 2017. URL: http://m.vtk.org/index.php/Virtual_Methods_
in_the_Execution_Environment#Virtual_Methods_in_CUDA.

[111] Bernard Lang and Francis Dupont. Incremental Incrementally Compacting
Garbage Collection. In Papers of the Symposium on Interpreters and Interpretive
Techniques, SIGPLAN ’87, pages 253–263, New York, NY, USA, 1987. ACM.
doi:10.1145/29650.29677.

[112] Scott Le Grand. Chapter 32 - Broad-Phase Collision Detection with CUDA. In
Hubert Nguyen, editor, GPU Gems 3. Addison-Wesley Professional, first edition
edition, 2007.

[113] Mark Lee, Brian Green, Feng Xie, and Eric Tabellion. Vectorized Production
Path Tracing. In Proceedings of High Performance Graphics, HPG ’17, pages
10:1–10:11, New York, NY, USA, 2017. ACM. doi:10.1145/3105762.3105768.

[114] Roland Leißa, Sebastian Hack, and Ingo Wald. Extending a C-like Language
for Portable SIMD Programming. In Proceedings of the 17th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP ’12, pages
65–74, New York, NY, USA, 2012. ACM. doi:10.1145/2145816.2145825.

[115] Roland Leißa, Immanuel Haffner, and Sebastian Hack. Sierra: A SIMD Exten-
sion for C++. In Proceedings of the 2014 Workshop on Programming Models for
SIMD/Vector Processing, WPMVP ’14, pages 17–24, New York, NY, USA, 2014.
ACM. doi:10.1145/2568058.2568062.

[116] Florian Lemaitre and Lionel Lacassagne. Batched Cholesky Factorization for
tiny matrices. In Proceedings of the 2016 Conference on Design and Architectures for
Signal and Image Processing, DASIP ’16, pages 130–137. IEEE Computer Society,
Oct 2016. doi:10.1109/DASIP.2016.7853809.

[117] Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W. Mahoney.
Community Structure in Large Networks: Natural Cluster Sizes and the Ab-
sence of Large Well-Defined Clusters. CoRR, abs/0810.1355, 2008. arXiv:
0810.1355.

https://doi.org/10.1145/1953611.1953615
https://doi.org/10.1007/978-3-662-48096-0_21
https://doi.org/10.1142/S0219525907001057
https://doi.org/10.1142/S0219525907001057
http://m.vtk.org/index.php/Virtual_Methods_in_the_Execution_Environment#Virtual_Methods_in_CUDA
http://m.vtk.org/index.php/Virtual_Methods_in_the_Execution_Environment#Virtual_Methods_in_CUDA
https://doi.org/10.1145/29650.29677
https://doi.org/10.1145/3105762.3105768
https://doi.org/10.1145/2145816.2145825
https://doi.org/10.1145/2568058.2568062
https://doi.org/10.1109/DASIP.2016.7853809
http://arxiv.org/abs/0810.1355
http://arxiv.org/abs/0810.1355

BIBLIOGRAPHY 199

[118] Chuck Lever and David Boreham. Malloc() Performance in a Multithreaded
Linux Environment. In Proceedings of the Annual Conference on USENIX Annual
Technical Conference, ATEC ’00, Berkeley, CA, USA, 2000. USENIX Association.

[119] Ang Li, Gert-Jan van den Braak, Henk Corporaal, and Akash Kumar. Fine-
Grained Synchronizations and Dataflow Programming on GPUs. In Proceedings
of the 29th ACM on International Conference on Supercomputing, ICS ’15, pages
109–118, New York, NY, USA, 2015. ACM. doi:10.1145/2751205.2751232.

[120] Xiaosong Li, Wentong Cai, and Stephen J. Turner. Efficient Neighbor Searching
for Agent-Based Simulation on GPU. In Proceedings of the IEEE/ACM 18th
International Symposium on Distributed Simulation and Real Time Applications,
DS-RT ’14, pages 87–96, Washington, DC, USA, 2014. IEEE Computer Society.
doi:10.1109/DS-RT.2014.19.

[121] Xiaosong Li, Wentong Cai, and Stephen J. Turner. Cloning Agent-based Simu-
lation on GPU. In Proceedings of the 3rd ACM SIGSIM Conference on Principles of
Advanced Discrete Simulation, SIGSIM PADS ’15, pages 173–182, New York, NY,
USA, 2015. ACM. doi:10.1145/2769458.2769470.

[122] Xiaosong Li, Wentong Cai, and Stephen J. Turner. Supporting efficient execution
of continuous space agent-based simulation on GPU. Concurrency and Computa-
tion: Practice and Experience, 28(12):3313–3332, 2016. doi:10.1002/cpe.3808.

[123] Yuan Lin and Vinod Grover. NVIDIA Developer Blog: Using
CUDA Warp-Level Primitives, 2018. URL: https://devblogs.nvidia.com/
using-cuda-warp-level-primitives/.

[124] Barbara H. Liskov and Jeannette M. Wing. A Behavioral Notion of Subtyping.
ACM Trans. Program. Lang. Syst., 16(6):1811–1841, November 1994. doi:10.
1145/197320.197383.

[125] Xin Lu, Bo-Yang Chen, Vincent B. C. Tan, and Tong-Earn Tay. Adaptive floating
node method for modelling cohesive fracture of composite materials. Engineer-
ing Fracture Mechanics, 194:240–261, 2018. doi:10.1016/j.engfracmech.2018.
03.011.

[126] Justin Luitjens. Global Memory Usage and Strategy, July 2011. GPU Com-
puting Webinar 7/12/2011, Accessed: 2019-02-28. URL: https://developer.
download.nvidia.com/CUDA/training/cuda_webinars_GlobalMemory.pdf.

[127] Ching lung Su, Po-Yu Chen, Chun-Chieh Lan, Long-Sheng Huang, and Kuo-
Hsuan Wu. Overview and comparison of OpenCL and CUDA technology
for GPGPU. In Proceedings of the 2012 IEEE Asia Pacific Conference on Circuits
and Systems, APCCAS ’12, pages 448–451. IEEE Computer Society, Dec 2012.
doi:10.1109/APCCAS.2012.6419068.

[128] Lijuan Luo, Martin Wong, and Wen-mei Hwu. An Effective GPU Imple-
mentation of Breadth-first Search. In Proceedings of the 47th Design Automa-
tion Conference, DAC ’10, pages 52–55, New York, NY, USA, 2010. ACM.
doi:10.1145/1837274.1837289.

[129] Mikola Lysenko and Roshan M. D’Souza. A Framework for Megascale Agent
Based Model Simulations on Graphics Processing Units. Journal of Artificial
Societies and Social Simulation, 11(4):10, 2008. URL: http://jasss.soc.surrey.
ac.uk/11/4/10.html.

https://doi.org/10.1145/2751205.2751232
https://doi.org/10.1109/DS-RT.2014.19
https://doi.org/10.1145/2769458.2769470
https://doi.org/10.1002/cpe.3808
https://devblogs.nvidia.com/using-cuda-warp-level-primitives/
https://devblogs.nvidia.com/using-cuda-warp-level-primitives/
https://doi.org/10.1145/197320.197383
https://doi.org/10.1145/197320.197383
https://doi.org/10.1016/j.engfracmech.2018.03.011
https://doi.org/10.1016/j.engfracmech.2018.03.011
https://developer.download.nvidia.com/CUDA/training/cuda_webinars_GlobalMemory.pdf
https://developer.download.nvidia.com/CUDA/training/cuda_webinars_GlobalMemory.pdf
https://doi.org/10.1109/APCCAS.2012.6419068
https://doi.org/10.1145/1837274.1837289
http://jasss.soc.surrey.ac.uk/11/4/10.html
http://jasss.soc.surrey.ac.uk/11/4/10.html

200 BIBLIOGRAPHY

[130] Sven Maerivoet and Bart De Moor. Transportation Planning and Traffic Flow
Models. ArXiv Physics e-prints, July 2005. arXiv:physics/0507127.

[131] Deepak Majeti, Rajkishore Barik, Jisheng Zhao, Max Grossman, and Vivek
Sarkar. Compiler-Driven Data Layout Transformation for Heterogeneous
Platforms. In Dieter an Mey, Michael Alexander, Paolo Bientinesi, Mario
Cannataro, Carsten Clauss, Alexandru Costan, Gabor Kecskemeti, Chris-
tine Morin, Laura Ricci, Julio Sahuquillo, Martin Schulz, Vittorio Scarano,
Stephen L. Scott, and Josef Weidendorfer, editors, Euro-Par 2013: Parallel Pro-
cessing Workshops, pages 188–197, Berlin, Heidelberg, 2014. Springer-Verlag.
doi:10.1007/978-3-642-54420-0_19.

[132] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: A System for Large-
scale Graph Processing. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’10, pages 135–146, New York, NY,
USA, 2010. ACM. doi:10.1145/1807167.1807184.

[133] Naoya Maruyama and Takayuki Aoki. Optimizing Stencil Computations for
NVIDIA Kepler GPUs. In First International Workshop on High-Performance
Stencil Computations, HiStencils ’14, 2014.

[134] Amrita Mathuriya, Ye Luo, Anouar Benali, Luke Shulenburger, and Jeongnim
Kim. Optimization and Parallelization of B-Spline Based Orbital Evaluations in
QMC on Multi/Many-Core Shared Memory Processors. In 2017 IEEE Interna-
tional Parallel and Distributed Processing Symposium, IPDPS ’17, pages 213–223.
IEEE Computer Society, May 2017. doi:10.1109/IPDPS.2017.33.

[135] Toni Mattis, Johannes Henning, Patrick Rein, Robert Hirschfeld, and Malte
Appeltauer. Columnar Objects: Improving the Performance of Analytical
Applications. In Proceedings of the 2015 ACM International Symposium on New
Ideas, New Paradigms, and Reflections on Programming and Software (Onward!),
Onward! 2015, pages 197–210, New York, NY, USA, 2015. ACM. doi:10.1145/
2814228.2814230.

[136] Xinxin Mei, Kaiyong Zhao, Chengjian Liu, and Xiaowen Chu. Benchmarking
the Memory Hierarchy of Modern GPUs. In Ching-Hsien Hsu, Xuanhua Shi,
and Valentina Salapura, editors, Network and Parallel Computing, pages 144–156,
Berlin, Heidelberg, 2014. Springer-Verlag. doi:10.1007/978-3-662-44917-2_
13.

[137] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and How to
Develop Domain-specific Languages. ACM Comput. Surv., 37(4):316–344, De-
cember 2005. doi:10.1145/1118890.1118892.

[138] Duane Merrill and Michael Garland. Single-pass Parallel Prefix Scan with
Decoupled Look-back. Technical Report NVR-2016-002, NVIDIA Corporation,
Mar. 2016.

[139] Duane Merrill, Michael Garland, and Andrew Grimshaw. High-Performance
and Scalable GPU Graph Traversal. ACM Trans. Parallel Comput., 1(2):14:1–14:30,
February 2015. doi:10.1145/2717511.

[140] Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1st ed. edition, 1988.

http://arxiv.org/abs/physics/0507127
https://doi.org/10.1007/978-3-642-54420-0_19
https://doi.org/10.1145/1807167.1807184
https://doi.org/10.1109/IPDPS.2017.33
https://doi.org/10.1145/2814228.2814230
https://doi.org/10.1145/2814228.2814230
https://doi.org/10.1007/978-3-662-44917-2_13
https://doi.org/10.1007/978-3-662-44917-2_13
https://doi.org/10.1145/1118890.1118892
https://doi.org/10.1145/2717511

BIBLIOGRAPHY 201

[141] Maged M. Michael. Safe Memory Reclamation for Dynamic Lock-free Objects
Using Atomic Reads and Writes. In Proceedings of the Twenty-first Annual Sympo-
sium on Principles of Distributed Computing, PODC ’02, pages 21–30, New York,
NY, USA, 2002. ACM. doi:10.1145/571825.571829.

[142] Maged M. Michael. Hazard Pointers: Safe Memory Reclamation for Lock-Free
Objects. IEEE Transactions on Parallel and Distributed Systems, 15(6):491–504,
June 2004. doi:10.1109/TPDS.2004.8.

[143] Maged M. Michael. Scalable Lock-free Dynamic Memory Allocation. In Pro-
ceedings of the ACM SIGPLAN 2004 Conference on Programming Language Design
and Implementation, PLDI ’04, pages 35–46, New York, NY, USA, 2004. ACM.
doi:10.1145/996841.996848.

[144] Mikołaj Morzy, Tadeusz Morzy, Alexandros Nanopoulos, and Yannis
Manolopoulos. Hierarchical Bitmap Index: An Efficient and Scalable Indexing
Technique for Set-Valued Attributes. In Leonid Kalinichenko, Rainer Manthey,
Bernhard Thalheim, and Uwe Wloka, editors, Advances in Databases and Infor-
mation Systems, ADBIS ’13, pages 236–252, Berlin, Heidelberg, 2003. Springer-
Verlag. doi:10.1007/978-3-540-39403-7_19.

[145] Kai Nagel and Michael Schreckenberg. A cellular automaton model for freeway
traffic. J. Phys. I France, 2(12):2221–2229, Sept. 1992. doi:10.1051/jp1:1992277.

[146] Lars Nyland, Mark Harris, and Jan Prins. Chapter 31 - Fast N-Body Simula-
tion with CUDA. In Hubert Nguyen, editor, GPU Gems 3. Addison-Wesley
Professional, first edition edition, 2007.

[147] Nathaniel Nystrom, Derek White, and Kishen Das. Firepile: Run-time Compila-
tion for GPUs in Scala. In Proceedings of the 10th ACM International Conference on
Generative Programming and Component Engineering, GPCE ’11, pages 107–116,
New York, NY, USA, 2011. ACM. doi:10.1145/2047862.2047883.

[148] Amos O. Olagunju and Bassey Akpan. The Benefits of Object-oriented Method-
ology for Software Development. International Journal of Information and Com-
puter Science, 4:39–46, Mar 2015. doi:10.14355/ijics.2015.04.007.

[149] Yoav Ossia, Ori Ben-Yitzhak, and Marc Segal. Mostly Concurrent Compaction
for Mark-sweep GC. In Proceedings of the 4th International Symposium on Memory
Management, ISMM ’04, pages 25–36, New York, NY, USA, 2004. ACM. doi:
10.1145/1029873.1029877.

[150] Undisclosed Authors (SPARC Internal White Paper). Understanding the Appli-
cation Binary Interface, pages 373–378. Springer-Verlag, New York, NY, 1991.
doi:10.1007/978-1-4612-3192-9_25.

[151] Parag Patel. Object Oriented Programming for Scientific Computing. Master’s
thesis, The University of Edinburgh, 2006.

[152] Matt Pharr and William R. Mark. ispc: A SPMD compiler for High-Performance
CPU Programming. In 2012 Innovative Parallel Computing, InPar ’12, pages 1–13.
IEEE Computer Society, May 2012. doi:10.1109/InPar.2012.6339601.

[153] Everett H. Phillips and Massimiliano Fatica. Implementing the Himeno bench-
mark with CUDA on GPU clusters. In Proceedings of the 2010 IEEE International

https://doi.org/10.1145/571825.571829
https://doi.org/10.1109/TPDS.2004.8
https://doi.org/10.1145/996841.996848
https://doi.org/10.1007/978-3-540-39403-7_19
https://doi.org/10.1051/jp1:1992277
https://doi.org/10.1145/2047862.2047883
https://doi.org/10.14355/ijics.2015.04.007
https://doi.org/10.1145/1029873.1029877
https://doi.org/10.1145/1029873.1029877
https://doi.org/10.1007/978-1-4612-3192-9_25
https://doi.org/10.1109/InPar.2012.6339601

202 BIBLIOGRAPHY

Symposium on Parallel Distributed Processing, IPDPS ’10, pages 1–10. IEEE Com-
puter Society, April 2010. doi:10.1109/IPDPS.2010.5470394.

[154] Benjamin C. Pierce. Types and Programming Languages. The MIT Press, 1 edition,
2002.

[155] Max Plauth, Frank Feinbube, Frank Schlegel, and Andreas Polze. A Perfor-
mance Evaluation of Dynamic Parallelism for Fine-Grained, Irregular Work-
loads. International Journal of Networking and Computing, 6(2):212–229, 2016.
doi:10.15803/ijnc.6.2_212.

[156] Viera K. Proulx. Traffic Simulation: A Case Study for Teaching Object Oriented
Design. In Proceedings of the Twenty-ninth SIGCSE Technical Symposium on
Computer Science Education, SIGCSE ’98, pages 48–52, New York, NY, USA, 1998.
ACM. doi:10.1145/273133.273160.

[157] Dan Quinlan. ROSE: Compiler Support for Object-Oriented Frame-
works. Parallel Processing Letters, 10(02n03):215–226, 2000. doi:10.1142/
S0129626400000214.

[158] Mohaned Qunaibit, Stefan Brunthaler, Yeoul Na, Stijn Volckaert, and Michael
Franz. Accelerating Dynamically-Typed Languages on Heterogeneous Plat-
forms Using Guards Optimization. In Todd Millstein, editor, 32nd Euro-
pean Conference on Object-Oriented Programming (ECOOP 2018), volume 109
of Leibniz International Proceedings in Informatics (LIPIcs), pages 16:1–16:29,
Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
doi:10.4230/LIPIcs.ECOOP.2018.16.

[159] Paul Rendell. Game of Life Universal Turing Machine. Springer International
Publishing, Cham, 2016. doi:10.1007/978-3-319-19842-2_5.

[160] Jon Peddie Research. Marktanteile der führenden Hersteller
am Absatz von Grafikchips weltweit vom 3. Quartal 2009 bis
zum 1. Quartal 2019. Statista - Das Statistik-Portal, 2019. URL:
https://de.statista.com/statistik/daten/studie/36476/umfrage/
marktanteile-der-hersteller-von-grafikkarten-seit-dem-2-quartal-2009/.

[161] Dirk Riehle. Value Object. In Proceedings of the 2006 Conference on Pattern
Languages of Programs, PLoP ’06, pages 30:1–30:6, New York, NY, USA, 2006.
ACM. doi:10.1145/1415472.1415507.

[162] Tiark Rompf, Arvind K. Sujeeth, HyoukJoong Lee, Kevin J. Brown, Hassan
Chafi, Martin Odersky, and Kunle Olukotun. Building-Blocks for Performance
Oriented DSLs. In Olivier Danvy and Chung chieh Shan, editors, Proceedings of
the 2011 IFIP Working Conference on Domain-Specific Languages, DSL ’11, pages
93–117, 2011. doi:10.4204/EPTCS.66.5.

[163] Sami Rosendahl. CUDA and OpenCL API comparison. T-106.5800 Seminar on
GPGPU Programming, 2010.

[164] Nikolay Sakharnykh. Everything You Need to Know about Unified Memory,
2018. URL: http://on-demand.gputechconf.com/gtc/2018/presentation/
s8430-everything-you-need-to-know-about-unified-memory.pdf.

https://doi.org/10.1109/IPDPS.2010.5470394
https://doi.org/10.15803/ijnc.6.2_212
https://doi.org/10.1145/273133.273160
https://doi.org/10.1142/S0129626400000214
https://doi.org/10.1142/S0129626400000214
https://doi.org/10.4230/LIPIcs.ECOOP.2018.16
https://doi.org/10.1007/978-3-319-19842-2_5
https://de.statista.com/statistik/daten/studie/36476/umfrage/marktanteile-der-hersteller-von-grafikkarten-seit-dem-2-quartal-2009/
https://de.statista.com/statistik/daten/studie/36476/umfrage/marktanteile-der-hersteller-von-grafikkarten-seit-dem-2-quartal-2009/
https://doi.org/10.1145/1415472.1415507
https://doi.org/10.4204/EPTCS.66.5
http://on-demand.gputechconf.com/gtc/2018/presentation/s8430-everything-you-need-to-know-about-unified-memory.pdf
http://on-demand.gputechconf.com/gtc/2018/presentation/s8430-everything-you-need-to-know-about-unified-memory.pdf

BIBLIOGRAPHY 203

[165] Shigeyuki Sato and Hideya Iwasaki. A Skeletal Parallel Framework with
Fusion Optimizer for GPGPU Programming. In Proceedings of the 7th Asian
Symposium on Programming Languages and Systems, APLAS ’09, pages 79–94,
Berlin, Heidelberg, 2009. Springer-Verlag. doi:10.1007/978-3-642-10672-9_
8.

[166] Henry Schäfer, Benjamin Keinert, and Marc Stamminger. Real-time Local
Displacement Using Dynamic GPU Memory Management. In Proceedings of the
5th High-Performance Graphics Conference, HPG ’13, pages 63–72, New York, NY,
USA, 2013. ACM. doi:10.1145/2492045.2492052.

[167] Shubhabrata Sengupta, Aaron E. Lefohn, and John D. Owens. A Work-Efficient
Step-Efficient Prefix Sum Algorithm. In Workshop on Edge Computing Using New
Commodity Architectures, 2006.

[168] Jie Shen, Ana Lucia Varbanescu, Xavier Martorell, and Henk Sips. A Study of
Application Kernel Structure for Data Parallel Applications. Technical Report
PDS-2015-001, Delft University of Technology, 2015.

[169] Jakob Siegel, Juergen Ributzka, and Xiaoming Li. CUDA Memory Optimiza-
tions for Large Data-Structures in the Gravit Simulator. Journal of Algorithms
& Computational Technology, 5(2):341–362, 2011. doi:10.1260/1748-3018.5.2.
341.

[170] William Silvert. Object-oriented ecosystem modelling. Ecological Mod-
elling, 68(1):91–118, 1993. Theoretical Modelling Aspects. doi:10.1016/
0304-3800(93)90110-E.

[171] Abhayendra Singh, Shaizeen Aga, and Satish Narayanasamy. Efficiently Enforc-
ing Strong Memory Ordering in GPUs. In Proceedings of the 48th International
Symposium on Microarchitecture, MICRO-48, pages 699–712, New York, NY, USA,
2015. ACM. doi:10.1145/2830772.2830778.

[172] Hark-Soo Song and Sang-Hee Lee. Effects of wind and tree density on forest fire
patterns in a mixed-tree species forest. Forest Science and Technology, 13(1):9–16,
2017. doi:10.1080/21580103.2016.1262793.

[173] Tyler Sorensen and Alastair F. Donaldson. Exposing Errors Related to Weak
Memory in GPU Applications. In Proceedings of the 37th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI ’16, pages
100–113, New York, NY, USA, 2016. ACM. doi:10.1145/2908080.2908114.

[174] Roy Spliet, Lee Howes, Benedict R. Gaster, and Ana Lucia Varbanescu. KMA:
A Dynamic Memory Manager for OpenCL. In Proceedings of 7th Workshop on
General Purpose Processing Using GPUs, GPGPU-7, pages 9:9–9:18, New York,
NY, USA, 2014. ACM. doi:10.1145/2576779.2576781.

[175] Markus Steinberger, Michael Kenzel, Bernhard Kainz, and Dieter Schmalstieg.
ScatterAlloc: Massively Parallel Dynamic Memory Allocation for the GPU.
In 2012 Innovative Parallel Computing, InPar ’12, pages 1–10. IEEE Computer
Society, May 2012. doi:10.1109/InPar.2012.6339604.

[176] Radek Stibora. Building of SBVH on Graphical Hardware. Master’s thesis,
Faculty of Informatics, Masaryk University, 2016.

https://doi.org/10.1007/978-3-642-10672-9_8
https://doi.org/10.1007/978-3-642-10672-9_8
https://doi.org/10.1145/2492045.2492052
https://doi.org/10.1260/1748-3018.5.2.341
https://doi.org/10.1260/1748-3018.5.2.341
https://doi.org/10.1016/0304-3800(93)90110-E
https://doi.org/10.1016/0304-3800(93)90110-E
https://doi.org/10.1145/2830772.2830778
https://doi.org/10.1080/21580103.2016.1262793
https://doi.org/10.1145/2908080.2908114
https://doi.org/10.1145/2576779.2576781
https://doi.org/10.1109/InPar.2012.6339604

204 BIBLIOGRAPHY

[177] Bjarne Stroustrup. Foundations of C++. In Proceedings of the 21st European
Conference on Programming Languages and Systems, ESOP’12, pages 1–25, Berlin,
Heidelberg, 2012. Springer-Verlag. doi:10.1007/978-3-642-28869-2_1.

[178] Bjarne Stroustrup. Bjarne Stroustrup’s C++ Style and Technique FAQ. Is there a
“placement delete"?, 2017. URL: http://www.stroustrup.com/bs_faq2.html#
placement-delete.

[179] Robert Strzodka. Chapter 31 - Abstraction for AoS and SoA Layout in C++.
In Wen mei W. Hwu, editor, GPU Computing Gems Jade Edition, Applications
of GPU Computing Series, pages 429–441. Morgan Kaufmann, Boston, 2012.
doi:10.1016/B978-0-12-385963-1.00031-9.

[180] Robert Strzodka. Data Layout Optimization for Multi-valued Containers in
OpenCL. J. Parallel Distrib. Comput., 72(9):1073–1082, September 2012. doi:
10.1016/j.jpdc.2011.10.012.

[181] Akihiro Tabuchi, Masahiro Nakao, and Mitsuhisa Sato. A Source-to-Source Ope-
nACC Compiler for CUDA. In Dieter an Mey, Michael Alexander, Paolo Bienti-
nesi, Mario Cannataro, Carsten Clauss, Alexandru Costan, Gabor Kecskemeti,
Christine Morin, Laura Ricci, Julio Sahuquillo, Martin Schulz, Vittorio Scarano,
Stephen L. Scott, and Josef Weidendorfer, editors, Euro-Par 2013: Parallel Pro-
cessing Workshops, pages 178–187, Berlin, Heidelberg, 2014. Springer-Verlag.
doi:10.1007/978-3-642-54420-0_18.

[182] Alexandros Tasos, Juliana Franco, Tobias Wrigstad, Sophia Drossopoulou, and
Susan Eisenbach. Extending SHAPES for SIMD Architectures: An Approach
to Native Support for Struct of Arrays in Languages. In Proceedings of the
13th Workshop on Implementation, Compilation, Optimization of Object-Oriented
Languages, Programs and Systems, ICOOOLPS ’18, pages 23–29, New York, NY,
USA, 2018. ACM. doi:10.1145/3242947.3242951.

[183] Hayo Thielecke. An introduction to C++ template programming. Technical
report, University of Birmingham, Jan 2016.

[184] Seiya Tokui, Kenta Oono, Shohei Hido, and Justin Clayton. Chainer: a Next-
Generation Open Source Framework for Deep Learning. In Proceedings of
Workshop on Machine Learning Systems in The Twenty-ninth Annual Conference on
Neural Information Processing Systems (NIPS), LearningSys, 2015. URL: http:
//learningsys.org/papers/LearningSys_2015_paper_33.pdf.

[185] Katsuhiro Ueno, Atsushi Ohori, and Toshiaki Otomo. An Efficient Non-moving
Garbage Collector for Functional Languages. In Proceedings of the 16th ACM
SIGPLAN International Conference on Functional Programming, ICFP ’11, pages
196–208, New York, NY, USA, 2011. ACM. doi:10.1145/2034773.2034802.

[186] Leslie G. Valiant. A Bridging Model for Parallel Computation. Commun. ACM,
33(8):103–111, August 1990. doi:10.1145/79173.79181.

[187] Ronald Veldema and Michael Philippsen. Parallel Memory Defragmentation on
a GPU. In Proceedings of the 2012 ACM SIGPLAN Workshop on Memory Systems
Performance and Correctness, MSPC ’12, pages 38–47, New York, NY, USA, 2012.
ACM. doi:10.1145/2247684.2247693.

https://doi.org/10.1007/978-3-642-28869-2_1
http://www.stroustrup.com/bs_faq2.html#placement-delete
http://www.stroustrup.com/bs_faq2.html#placement-delete
https://doi.org/10.1016/B978-0-12-385963-1.00031-9
https://doi.org/10.1016/j.jpdc.2011.10.012
https://doi.org/10.1016/j.jpdc.2011.10.012
https://doi.org/10.1007/978-3-642-54420-0_18
https://doi.org/10.1145/3242947.3242951
http://learningsys.org/papers/LearningSys_2015_paper_33.pdf
http://learningsys.org/papers/LearningSys_2015_paper_33.pdf
https://doi.org/10.1145/2034773.2034802
https://doi.org/10.1145/79173.79181
https://doi.org/10.1145/2247684.2247693

BIBLIOGRAPHY 205

[188] Todd Veldhuizen. C++ Gems. chapter Expression Templates, pages 475–487.
SIGS Publications, Inc., New York, NY, USA, 1996.

[189] Kanagaraj Venkatesan, Asaithambi Gowri, and R. Sivanandan. Develop-
ment of Microscopic Simulation Model for Heterogeneous Traffic using Ob-
ject Oriented Aproach. Transportmetrica, 4(3):227–247, 2008. doi:10.1080/
18128600808685689.

[190] Kris Venstermans, Lieven Eeckhout, and Koen De Bosschere. Object-Relative
Addressing: Compressed Pointers in 64-Bit Java Virtual Machines. In Erik
Ernst, editor, ECOOP 2007 – Object-Oriented Programming, pages 79–100, Berlin,
Heidelberg, 2007. Springer-Verlag. doi:10.1007/978-3-540-73589-2_5.

[191] Marek Vinkler and Vlastimil Havran. Register Efficient Dynamic Memory
Allocator for GPUs. Comput. Graph. Forum, 34(8):143–154, December 2015.
doi:10.1111/cgf.12666.

[192] Vasily Volkov. Better Performance at Lower Occupancy. GPU Technology
Conference, 2010. URL: https://www.nvidia.com/content/GTC-2010/pdfs/
2238_GTC2010.pdf.

[193] Vasily Volkov. Understanding Latency Hiding on GPUs. PhD thesis, EECS
Department, University of California, Berkeley, Aug 2016. URL: http://www2.
eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-143.html.

[194] Mohamed Wahib and Naoya Maruyama. Scalable Kernel Fusion for Memory-
bound GPU Applications. In Proceedings of the 2014 International Conference for
High Performance Computing, Networking, Storage and Analysis, SC ’14, pages
191–202, Piscataway, NJ, USA, 2014. IEEE Press. doi:10.1109/SC.2014.21.

[195] Joachim Wahle, Jörg Esser, Lutz Neubert, and Michael Schreckenberg. A
Cellular Automaton Traffic Flow Model for Online-Simulation of Urban Traffic.
In S. Bandini, R. Serra, and F. Suggi Liverani, editors, Cellular Automata: Research
Towards Industry, pages 185–193, London, 1998. Springer-Verlag. doi:10.1007/
978-1-4471-1281-5_17.

[196] Joachim Wahle, Lutz Neubert, Jörg Esser, and Michael Schreckenberg. A cellular
automaton traffic flow model for online simulation of traffic. Parallel Computing,
27(5):719 – 735, 2001. Cellular automata: From modeling to applications.
doi:10.1016/S0167-8191(00)00085-5.

[197] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy Riffel,
and John D. Owens. Gunrock: A High-performance Graph Processing Library
on the GPU. In Proceedings of the 21st ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP ’16, pages 11:1–11:12, New York, NY,
USA, 2016. ACM. doi:10.1145/2851141.2851145.

[198] Nicolas Weber and Michael Goesele. Auto-tuning Complex Array Layouts for
GPUs. In Proceedings of the 14th Eurographics Symposium on Parallel Graphics
and Visualization, PGV ’14, pages 57–64, Aire-la-Ville, Switzerland, Switzerland,
2014. Eurographics Association. doi:10.2312/pgv.20141085.

[199] Nicolas Weber and Michael Goesele. MATOG: Array Layout Auto-Tuning
for CUDA. ACM Trans. Archit. Code Optim., 14(3):28:1–28:26, August 2017.
doi:10.1145/3106341.

https://doi.org/10.1080/18128600808685689
https://doi.org/10.1080/18128600808685689
https://doi.org/10.1007/978-3-540-73589-2_5
https://doi.org/10.1111/cgf.12666
https://www.nvidia.com/content/GTC-2010/pdfs/2238_GTC2010.pdf
https://www.nvidia.com/content/GTC-2010/pdfs/2238_GTC2010.pdf
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-143.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-143.html
https://doi.org/10.1109/SC.2014.21
https://doi.org/10.1007/978-1-4471-1281-5_17
https://doi.org/10.1007/978-1-4471-1281-5_17
https://doi.org/10.1016/S0167-8191(00)00085-5
https://doi.org/10.1145/2851141.2851145
https://doi.org/10.2312/pgv.20141085
https://doi.org/10.1145/3106341

206 BIBLIOGRAPHY

[200] Peter Wegner. Concepts and Paradigms of Object-oriented Programming.
SIGPLAN OOPS Mess., 1(1):7–87, August 1990. doi:10.1145/382192.383004.

[201] Sven Widmer, Dominik Wodniok, Nicolas Weber, and Michael Goesele. Fast
Dynamic Memory Allocator for Massively Parallel Architectures. In Proceedings
of the 6th Workshop on General Purpose Processor Using Graphics Processing Units,
GPGPU-6, pages 120–126, New York, NY, USA, 2013. ACM. doi:10.1145/
2458523.2458535.

[202] Wikipedia contributors. Type punning — Wikipedia, The Free Encyclopedia,
2019. [Online; accessed 23-May-2019]. URL: https://en.wikipedia.org/w/
index.php?title=Type_punning&oldid=889434798.

[203] Christian Wimmer and Hanspeter Mössenböck. Automatic Array Inlining in
Java Virtual Machines. In Proceedings of the 6th Annual IEEE/ACM International
Symposium on Code Generation and Optimization, CGO ’08, pages 14–23, New
York, NY, USA, 2008. ACM. doi:10.1145/1356058.1356061.

[204] Mirek Wójtowicz. Mirek’s Cellebration: Cellular Automata Rules Lexicon, 2002.
Accessed: 2019-02-22. URL: http://psoup.math.wisc.edu/mcell/rullex_
gene.html.

[205] Carolin Wolf, Georg Dotzler, Ronald Veldema, and Michael Philippsen. Object
Support for OpenMP-style Programming of GPU Clusters in Java. In 27th
International Conference on Advanced Information Networking and Applications
Workshops, pages 1405–1410. IEEE Computer Society, March 2013. doi:10.
1109/WAINA.2013.62.

[206] Henry Wong, Misel-Myrto Papadopoulou, Maryam Sadooghi-Alvandi, and
Andreas Moshovos. Demystifying GPU Microarchitecture through Microbench-
marking. In Proceedings of the 2010 IEEE International Symposium on Performance
Analysis of Systems Software, ISPASS ’10, pages 235–246. IEEE Computer Society,
March 2010. doi:10.1109/ISPASS.2010.5452013.

[207] Cliff Woolley. GPU Optimization Fundamentals, 2013. URL: https://www.
olcf.ornl.gov/wp-content/uploads/2013/02/GPU_Opt_Fund-CW1.pdf.

[208] Haicheng Wu, Gregory Diamos, Srihari Cadambi, and Sudhakar Yalamanchili.
Kernel Weaver: Automatically Fusing Database Primitives for Efficient GPU
Computation. In Proceedings of the 45th Annual IEEE/ACM International Sympo-
sium on Microarchitecture, MICRO-45, pages 107–118, Washington, DC, USA,
2012. IEEE Computer Society. doi:10.1109/MICRO.2012.19.

[209] Jingyue Wu, Artem Belevich, Eli Bendersky, Mark Heffernan, Chris Leary,
Jacques Pienaar, Bjarke Roune, Rob Springer, Xuetian Weng, and Robert Hundt.
Gpucc: An Open-source GPGPU Compiler. In Proceedings of the 2016 Interna-
tional Symposium on Code Generation and Optimization, CGO ’16, pages 105–116,
New York, NY, USA, 2016. ACM. doi:10.1145/2854038.2854041.

[210] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler, Gilles
Duboscq, Christian Humer, Gregor Richards, Doug Simon, and Mario Wol-
czko. One VM to Rule Them All. In Proceedings of the 2013 ACM International
Symposium on New Ideas, New Paradigms, and Reflections on Programming &
Software, Onward! 2013, pages 187–204, New York, NY, USA, 2013. ACM.
doi:10.1145/2509578.2509581.

https://doi.org/10.1145/382192.383004
https://doi.org/10.1145/2458523.2458535
https://doi.org/10.1145/2458523.2458535
https://en.wikipedia.org/w/index.php?title=Type_punning&oldid=889434798
https://en.wikipedia.org/w/index.php?title=Type_punning&oldid=889434798
https://doi.org/10.1145/1356058.1356061
http://psoup.math.wisc.edu/mcell/rullex_gene.html
http://psoup.math.wisc.edu/mcell/rullex_gene.html
https://doi.org/10.1109/WAINA.2013.62
https://doi.org/10.1109/WAINA.2013.62
https://doi.org/10.1109/ISPASS.2010.5452013
https://www.olcf.ornl.gov/wp-content/uploads/2013/02/GPU_Opt_Fund-CW1.pdf
https://www.olcf.ornl.gov/wp-content/uploads/2013/02/GPU_Opt_Fund-CW1.pdf
https://doi.org/10.1109/MICRO.2012.19
https://doi.org/10.1145/2854038.2854041
https://doi.org/10.1145/2509578.2509581

BIBLIOGRAPHY 207

[211] Naigong Yu, Mingai Li, and Xiaogang Ruan. Applications of Cellular Automata
in Complex System Study. International Journal of Information and Systems Sci-
ences, 1(3–4):302–310, 2005.

[212] Mengchi Zhang, Roland Green, and Timothy G. Rogers. Characterizing the
Runtime Effects of Object-Oriented Workloads on GPUs. In Proceedings of
the 2018 IEEE International Symposium on Performance Analysis of Systems and
Software, ISPASS ’18, pages 109–110. IEEE Computer Society, April 2018. doi:
10.1109/ISPASS.2018.00019.

[213] Xiuxia Zhang, Guangming Tan, Shuangbai Xue, Jiajia Li, Keren Zhou, and
Mingyu Chen. Understanding the GPU Microarchitecture to Achieve Bare-
Metal Performance Tuning. In Proceedings of the 22nd ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP ’17, pages 31–43, New
York, NY, USA, 2017. ACM. doi:10.1145/3018743.3018755.

[214] Hong Zheng, Young-Jun Son, Yi-Chang Chiu, Larry Head, Yiheng Feng, Hui
Xi, Sojung Kim, and Mark Hickman. A Primer for Agent-based Simulation and
Modeling in Transportation Applications. Technical Report FHWA-HRT-13-054,
Federal Highway Administration, U.S. Department of Transportation, 11 2013.

[215] Yutao Zhong, Maksim Orlovich, Xipeng Shen, and Chen Ding. Array Re-
grouping and Structure Splitting Using Whole-program Reference Affinity.
In Proceedings of the ACM SIGPLAN 2004 Conference on Programming Language
Design and Implementation, PLDI ’04, pages 255–266, New York, NY, USA, 2004.
ACM. doi:10.1145/996841.996872.

[216] Xiangyuan Zhu, Kenli Li, Ahmad Salah, Lin Shi, and Keqin Li. Parallel Imple-
mentation of MAFFT on CUDA-enabled Graphics Hardware. IEEE/ACM Trans.
Comput. Biol. Bioinformatics, 12(1):205–218, January 2015. doi:10.1109/TCBB.
2014.2351801.

https://doi.org/10.1109/ISPASS.2018.00019
https://doi.org/10.1109/ISPASS.2018.00019
https://doi.org/10.1145/3018743.3018755
https://doi.org/10.1145/996841.996872
https://doi.org/10.1109/TCBB.2014.2351801
https://doi.org/10.1109/TCBB.2014.2351801

	Declaration of Authorship
	Abstract
	Acknowledgements
	1 Introduction
	2 Background
	2.1 GPU Execution Model
	2.1.1 Parallel Execution
	2.1.2 Memory Hierarchy
	2.1.3 CUDA Programming Model
	2.1.4 Memory Coalescing
	2.1.5 Memory Coalescing Experiment

	2.2 Object-oriented Programming
	2.2.1 Class-based Object-oriented Programming
	2.2.2 Problems of Object-oriented Programming on GPUs

	2.3 Array of Structure (AOS) vs. Structure of Arrays (SOA)
	2.3.1 Abstractions for Object-oriented Programming
	2.3.2 Performance Characteristics of Structure of Arrays
	2.3.3 Object vs. SOA Array Alignment
	2.3.4 Choosing a Data Layout

	3 Expressing Parallelism in Object-oriented Programs
	3.1 Ikra-Ruby: A Parallel Array Interface
	3.1.1 Parallel Operations
	3.1.2 Mapping Ruby Types to C++ Types
	3.1.3 Object Tracer
	3.1.4 Example: Image Manipulation Library
	3.1.5 Summary

	3.2 Ikra-Cpp: A C++/CUDA Library for SMMO Applications
	3.2.1 Single-Method Multiple-Objects
	3.2.2 Programming Interface and Notation
	3.2.3 Implementation Details
	3.2.4 Conclusion

	3.3 Related Work
	3.3.1 Parallel Array/Tensor Interface
	3.3.2 For-Loop Parallelization

	4 Optimizing Memory Access
	4.1 Kernel Fusion in Ikra-Ruby
	4.1.1 Kernel Fusion
	4.1.2 Host Sections
	4.1.3 Symbolic Execution in Host Sections
	4.1.4 Type Inference
	4.1.5 Code Generation
	4.1.6 Benchmarks
	4.1.7 Future Work
	4.1.8 Related Work

	4.2 A Data Layout DSL for Ikra-Cpp
	4.2.1 Language Overview
	4.2.2 Implementation Details
	4.2.3 Addressing Modes
	4.2.4 Code Generation Experiment
	4.2.5 Preliminary Performance Evaluation
	4.2.6 Related Work
	4.2.7 Summary

	4.3 Inner Arrays in a Structure of Arrays
	4.3.1 Data Layout Strategies for Inner Arrays
	4.3.2 Performance Evaluation
	4.3.3 Conclusion and Related Work

	4.4 Summary

	5 Dynamic Mem. Allocation with SOA Performance Characteristics
	5.1 Design Goals
	5.1.1 Programming Interface
	5.1.2 Memory Access Performance
	5.1.3 High Density Memory Allocation
	5.1.4 Parallel Object Enumeration Strategy
	5.1.5 Scalability

	5.2 Architecture Overview
	5.2.1 Block Structure
	5.2.2 Block Capacity
	5.2.3 C++ Data Layout DSL and Object Pointers
	5.2.4 Block Bitmaps
	5.2.5 Object Slot Allocation
	5.2.6 Object Deallocation
	5.2.7 Parallel Object Enumeration: parallel_do

	5.3 Optimizations
	5.3.1 Hierarchical Bitmaps
	5.3.2 Reducing Thread Contention
	5.3.3 Efficient Bit Operations

	5.4 Concurrency and Correctness
	5.4.1 Object Slot Reservation/Freeing
	5.4.2 Safe Memory Reclamation with Block Invalidation
	5.4.3 Object Allocation
	5.4.4 Object Deallocation
	5.4.5 Correctness of Hierarchical Bitmap Operations

	5.5 Related Work
	5.6 Benchmarks
	5.6.1 Performance Overview
	5.6.2 Space Efficiency
	5.6.3 Detailed Analysis of wa-tor
	5.6.4 Raw Allocation Performance
	5.6.5 Parallel Object Enumeration

	5.7 Conclusion

	6 GPU Memory Defragmentation
	6.1 Why GPU Memory Defragmentation?
	6.2 Heap Layout and Data Structures
	6.2.1 Running Example
	6.2.2 Overview of the DynaSOAr Allocator

	6.3 Defragmentation with CompactGpu
	6.3.1 Defragmentation Candidate Bitmaps
	6.3.2 Defragmentation Pass
	6.3.3 Copying Objects
	6.3.4 Storing Forwarding Pointers
	6.3.5 Rewriting Pointers
	6.3.6 Updating Block State Bitmaps
	6.3.7 Multiple Defragmentation Passes
	6.3.8 Defragmentation Frequency

	6.4 Pointer Rewriting Alternatives
	6.4.1 Recompute-Global
	6.4.2 Recompute-Shared

	6.5 Evaluation
	6.5.1 Defragmentation Quality
	6.5.2 Number of Defragmentation Passes
	6.5.3 Benchmark Applications
	6.5.4 Runtime Overhead

	6.6 Related Work
	6.7 Conclusion

	7 SMMO Examples
	7.1 nbody: N-body Simulation
	7.1.1 Data Structure
	7.1.2 Application Implementation
	7.1.3 Further Optimizations

	7.2 collision: N-Body Simulation with Collisions
	7.2.1 Data Structure
	7.2.2 Application Implementation
	7.2.3 Benefits of Object-oriented Implementation
	7.2.4 Further Optimizations

	7.3 barnes-hut: Approximating N-Body with a Quad Tree
	7.3.1 Data Structure
	7.3.2 Application Implementation
	7.3.3 Virtual Function Calls
	7.3.4 Benefits of Object-oriented Programming
	7.3.5 Further Optimizations

	7.4 structure: Finite Element Method
	7.4.1 Data Structure
	7.4.2 Application Implementation

	7.5 traffic: Traffic Flow Simulation
	7.5.1 Data Structure
	7.5.2 Application Implementation
	7.5.3 Object-oriented Traffic Simulations

	7.6 wa-tor: Fish and Sharks Simulation
	7.6.1 Data Structure
	7.6.2 Application Implementation
	7.6.3 Benefits of OOP and Dynamic Allocation

	7.7 sugarscape: Simulation of Population Dynamics
	7.7.1 Data Structure
	7.7.2 Application Implementation

	7.8 gol: Game of Life
	7.8.1 Data Structure
	7.8.2 Application Implementation
	7.8.3 generation: Generational Cellular Automaton

	7.9 Conclusion

	8 Conclusion

