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“This is the Unix philosophy: Write programs that do one thing and do it well. Write
programs to work together. Write programs to handle text streams, because that is a
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Chapter 1

Motivation

The UNIX shell programming model has played an important role in integrating
applications and operating systems by composing programs—spawning independent
programs in parallel to communicate over operating-system pipes. Beyond the most
simple tasks, however, bash and similar tools break down, due to various language
deficiencies.

1.1 Pipe-Based Languages
In this paper, we use the term pipe-based language to mean a programming lan-
guage intended to be used on a command line, with the ability to spawn many
processes which communicate through synchronous channels or pipes in an ad-hoc
manner—and in which this facility is the primary method of composing different
functions or units.

Our overarching goal is to create a language and a programming system that
retains the pipe-based programming and interaction model of bash, but allows for
large programs in a way that existing shell languages do not.

1.2 General Purpose Languages
In this work, we will use the term general-purpose languages, to refer to languages
such as C, Python, or Java, which provide data structures and abstraction tools, and
run on an operating system and can access standard APIs.

Because they have the proper abstraction tools, they can be used to write large
programs—programs that are difficult to understand by one person in their entirety,
because of the fundamental complexity of the problem space. This is in contrast to
small scripts, which may have high incidental complexity, but are fundamentally
accomplishing a small task.

1.3 The Shell-Language Design Problem
The shell-language design problem is a well-studied problem in programming
language design: how can we make shell languages have more useful semantics, and
be more appropriate for larger programs? Many attempts have been made to solve this
problem (discussed in Chapter 2), and many works-in-progress1, are being designed
at the time of publication. We hope that this research contributes meaningfully to
this effort.

1At the time of publication, the maintainers of the Oil project [Chu, 2019] maintain a list of such
projects at https://github.com/oilshell/oil/wiki/ExternalResources.

https://github.com/oilshell/oil/wiki/ExternalResources
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1.4 The Desktop-Scripting Problem
Related to the shell-language design problem is the desktop-scripting problem:
How should unrelated programs written in different languages be integrated—especially
in an ad-hoc manner in a desktop environment? Such a task can require a large
amount of glue code, written by users who are unfamiliar with the inner workings of
the programs they are using. Notable attempts at solving the desktop-scripting prob-
lem include the TCL language [Ousterhout, 1989] and Guile Scheme [Blandy, 1998].
However, while most of these approaches use a large, robust language, it still remains
difficult to integrate them with external programs—instead putting the burden on
those programs to integrate with their system. We believe a shell-based approach is
promising, because if we are successful, our language could use the already-ubiquitous
UNIX calling convention to integrate unrelated programs.

1.5 Evaluation Criteria
In order to evaluate a solution to the above problems, then, a new language would
have to meet at least the following criteria:

• It is a viable general-purpose language: i.e. it is appropriate for writing large
programs.

• It is a viable solution to the desktop-scripting problem: it is appropriate for
scripting unrelated programs.

• It is a viable solution to the shell-language design problem: it is usable as an
interactive system shell.

We take the above as our main research goals.

1.6 Overview
We will first introduce the current state of the art and related work in Chapter 2,
including existing shell languages, as well as previous attempts to create shell-like
general-purpose languages or extend shell languages with general-purpose features.

In Chapter 3, we will describe the general design requirements for a language in
the intersection of pipe-based and general-purpose languages. This will inform and
justify our approach to the design of Magritte.

We will describe the design of Magritte in Chapter 4, along with several design
challenges and choices. Then we will describe in detail the reference implementation
in Chapter 5, and elaborate on several implementation challenges and our solutions.

In Chapter 6, we will evaluate Magritte based on the above criteria, and we will
argue in Chapter 7 that Magritte represents a viable direction for solving the shell
language design problem.
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Chapter 2

Background

Many attempts have been made at the shell design problem (Section 1.3), to improve
the design of shell languages without sacrificing the usability and composition model
of the underlying language. In this section we will outline some of the problems with
traditional shell languages that these languages attempt to solve, the strategies each
takes, and which problems remain unsolved.

2.1 Traditional Shell Languages
The most popular family of shell languages are based on the Bourne Shell (hereafter
sh), and its modern variant, the Bourne Again Shell (hereafter bash). This family
of languages, which we will refer to as traditional shell languages, or shells for
short, include zsh, fish, csh, and others. Traditional shell languages vary in specific
features and syntax, but all contain a large core semantics that influence the way
programs are written.

The core unit of computation in a traditional shell language is a command. Com-
mands are intended to be used the same way in scripts and through the interactive
REPL1 system, and can refer either to external programs written in other languages,
builtin commands from the shell language, or user-defined functions in a script.

Shell builtins and user-defined functions often have capabilities that external pro-
grams do not, but the basic calling convention remains the same: a command re-
ceives a list of byte vectors, referred to as an argument vector or argv for short,
and performs computation with full access to the operating system. Additionally, a
command will be provided with three implicit file descriptors: A readable descriptor
called the standard input or stdin, and two writable file descriptors called the
standard output (or stdout) and the standard error (or stderr). Rather than
returning a value, as in most programming languages, a command returns an error
code (normally 0 to indicate no error), and provides all output by writing data to
stdout.

This convention enables commands to be connected via pipes: a special operator
that connects the stdout of one command to the stdin of another. Because reading
and writing from file descriptors is a blocking, ad-hoc operation, the pipe operator
is able to run both commands in parallel, such that both sides use read and write
operations to synchronize and communicate. In practice, though, synchronization can
be difficult because the pipe provides a buffer so that the writing side can continue
without the data being read.

Variables in traditional shell languages are either global or dynamic—they are
scoped to a particular stack frame, and visible from all lower stack frames. They are

1Short for read-eval-print-loop, a REPL is another word for a console interface: in which a
segment of user input is read, then evaluated, and the result printed to the console, in a loop.
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optionally passed to external programs as environment variables, which visible
from an operating system API available to most programming languages. In bash,
variables from parent stack frames are also mutable, as long as the stack frame is in
the same thread.

This interface has been the common denominator of programs for many decades[Mahoney
et al., 1989], and serves as the most common way for end users to integrate unrelated
OS programs in an ad-hoc manner.

2.2 Unsuitability for Large Programs
We argue that traditional shell languages are unsuitable for large programs, because
they lack necessary features.

2.2.1 Lack of Usable Data Structures
A priori in a shell language, the only possible value type is a plain sequence of bytes.
Numbers, processes, and files all share the same representation as strings. Since this
extremely limits the expressiveness of the language, many traditional shells, including
bash itself, have attempted to add arrays and associative arrays as standard objects.
However, these are not generally treated as first class values: they are not allowed to
be passed into or returned from functions, or importantly, passed through pipes.

These values are therefore relegated to a second class of value, one for which
pipe-based composition is not possible. Furthermore, serialization through pipes is
generally not possible except in a single-threaded case, due to the undifferentiable
nature of byte pipes (Section 2.2.2).

It is also very difficult in shells to capture return values from functions, either as
strings or as simple values. For example:

f() { echo a; echo "b c"; }

# assignment captures the whole string
y=$(f)
echo "$y" # => writes the string "a\nb c"

# iteration breaks on whitespace
for c in $(f); do echo "$c"; done # => 3 lines: a, b, c

# read‑loop spawns a new isolated subshell
f | while read line; do echo "$line"; done

Because one of the values that f outputs contains whitespace, it is considered to be
a separate value for iteration. We can preserve the entire string, but none of these
separate the output properly into the two writes “a” and “b c”. One way around this
is to use a read loop, which depends on the behavior of the builtin read to properly
split lines2. However, this will corrupt the data in a similar way as soon as the data
contains a newline.

In order to return rich values from functions then, a strategy that is sometimes
used is to set a global variable:

2Technically, this should use the ‑n flag to disable backslash handling, plus a few more special-
purpose flags to turn off some convenience features that can corrupt the input.
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array‑one‑two() { RET=(1 2) ;}

array‑one‑two
echo "${RET[1]}" # => 2

However, arrays are not generally copyable to other variables, which means it is not
easy to bind a variable to the current array-value of $RET. The inability to return
or accept these kinds of variables as arguments means that these structures are not
viable as data structures.

2.2.2 Undifferentiable Byte Pipes
While pipes provide a convenient way to chain together programs, anything more
than the simplest data can be corrupted through interleaving. Even if that were not
the case, there is no reliable way to separate values that come through a pipe.

To illustrate, consider the fairly common architecture of producer/consumer: A
producer process produces values that are processed in parallel by multiple consumer
processes, and the values are collected in a single output. This might be expressed in
bash as:

# *consume* the stream, labeling every line
label() { while read x; do echo "$1$x"; done ;}

# process the stream with two threads
split() { label a & label b & ;}

# *produce* and process the numbers 1‑100,
# limiting output to the first 3 lines
seq 100 | split | head ‑3

With this code, a user might expect the output to be three lines, each consisting of
a letter a or b, and a number, for example:

a1
a2
a3

b1
a3
b2

a2
b1
a3

Unfortunately, when we run this process, the outputs from the label function become
interleaved3, resulting in outputs such as:

a2
b1
b

b12
a
a4

a
b12
a34

This behavior is in accordance with the Linux User’s Manual [Linux man-pages
Project, 2018]:

The communication channel provided by a pipe is a byte stream: there
is no concept of message boundaries.

3We have observed some behavior in the output that cannot be explained simply by interleaving,
suggesting there may be some other race conditions in play.
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2.2.3 Lack of Modularity
In writing large programs, it is desirable to write modular interfaces that bundle data
and code, with public and private members.

This is generally impossible in traditional shell languages, as all functions share
a single global scope, and variables must be either global or stack-based. The closest
approximation would be using a name-mangling strategy (using “:” as a normal
identifier character):

my‑module::public‑member() { ... ;}
my‑module::__private‑member() { ... ;}

Furthermore, all variables are stored on the stack, and there is no support for
nested or mutable data structures. Therefore shared data must be global-only, and
the programmer must use manual name-prefixing to avoid clashes with other modules.
This precludes any kind of object-like semantics.

2.2.4 Global-Only Exception Handling
It is well-known that exception handling in bash is difficult and error-prone. The
only way to react to an error is to use the builtin trap command, which can register
a global handler for the ERR event. However, it is not possible to control the extent
of this exception (it always unwinds the stack globally), and only one handler can
be registered at a time. Accordingly, programmers must be very careful lest they
unintentionally clear an exception handler by registering a new one.

2.3 Related Work
The following languages have attempted to extend the notion of a shell to have more
modern features. We argue, however, that they do not constitute a complete solution
to our research goal.

2.3.1 Rc Shell
Rc shell [Duff, 1990] was planned as the default system shell for the Plan 9 operating
system from Bell Labs. Rc Shell fixes many whitespace inconsistencies from bash
by representing every value as a list of strings—plain strings being simply a list of
length 1. However, these lists fall short of being usable as data structures, as it is not
possible to nest them. According to the manual:

Argument lists have no recursive structure, although their syntax
may suggest it. The following are entirely equivalent:

echo hi there everybody
((echo) (hi there) everybody)

Rc Shell offers no other data structure primitives. Its error handling remains
global-only, calling a user-defined global function when an operating system signal
is received. Additionally, Rc shell does not change the semantics of pipes in any
significant way—they remain byte-based, and undifferentiable.
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2.3.2 Es Shell
Es Shell [Haahr and Rakitzis, 1993] is an extension of Rc shell that adds lambda func-
tions using the syntax @ arg { body }. This is accomplished by serializing functions
as strings, together with their closure:

$ let (x = 1) { y = @z { echo $x; echo $z }}
$ echo $y
@z %closure(x=1){%seq {echo $x} {echo $z}}

In order to capture return values, Es introduces a special syntax <={ command }4 to
capture the return value from a command. Return values are produced using the
return keyword, and are integrated with the error code return system for external
programs.

Function output, however, remains strictly byte-based, as do all of the channels,
so pipe-based composition is not possible.

2.3.3 Scheme shell (scsh)
Scheme shell, or scsh, [Shivers, 1994] is a shell-programming environment that uses
scheme syntax. It mixes external program semantics with scheme semantics, essen-
tially using scheme as a metaprogramming layer over calls to external programs and
low-level builtins. While this enables high-level programming in scheme, we find that,
with the exception of the shell layer, scheme syntax lacks sufficient linear composition
(see Section 3.2.1) to be used effectively as an interactive shell. Additionally, there is a
very large semantic gap between the scheme semantics used for in-language constructs
and the semantics of external programs, which means that any kind of interfacing
between the two that goes beyond simple orchestration or unquoting requires a much
more complex interface than simple pipes.

2.3.4 Xonsh
Xonsh [Scopatz, 2018] is a syntax extension of Python that allows shell behavior.
Being a syntax extension, it needs to determine the difference between “subprocess
mode”, in which the syntax behaves in a shell-like manner, and “python mode”, in
which case the code is parsed as normal Python. The translation is not direct: Python
functions cannot be directly used in subprocess mode without manual registration,
and a series of special embed syntaxes are necessary to call subprocesses from Python
mode in different ways. Additionally, the gap between Python semantics and shell
semantics is large enough that, like scheme shell, deep integration is difficult.

2.3.5 Windows Powershell
Windows Powershell has all but replaced the old cmd shell for modern Windows
programs. It is an object shell—in that pipes consume objects as well as bytes. It is
also completely integrated with the .NET API that runs most programs on modern
Windows systems.

Because Windows APIs are unified into a single rich set of functions, this means
that Powershell can integrate unrelated Windows programs in different languages, so
long as those languages use the .NET API. This effectively solves the desktop-scripting

4In the paper, this syntax is described as @<...>, but the current implementation uses the syntax
described here.
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problem for Windows environments. However, though Powershell can be run outside
of Windows, this advantage is mostly lost in other environments where integration
with .NET is not so ubiquitous.

Additionally, while the language does support some object-oriented features, it is
still not widely considered to be appropriate for larger programs. And while it does
support anonymous lambda functions, it does not support pattern-matching over
nested structures, so most functional patterns are not supported. Finally, naming
conventions of the standard library are unnecessarily heavy, requiring long names and
parameters such as ValueFromPipelineByPropertyName for accessing basic language
functionality.

2.3.6 Elvish shell
Elvish shell [Xiao, 2019] is a new shell, developed concurrently with Magritte, with
value-based semantics. It allows for nestable list and map data structures, as well as
lambda functions with closure. It contains both value and byte-based pipes, allowing
for a large amount of pipe-based programming.

A major difference between Elvish and Magritte is that Elvish does not allow for
ad-hoc reads from value channels. All functions available to read from the standard
input consume the entirety of the input in one loop. It is also not possible to refer
to channels explicitly as values, or pass channels over channels. In fact, channels
are only available implicitly through the pipe operator. It could be argued that
this is sufficient for shell programming, but it does restrict the concurrency system
somewhat, such that for example the Magritte program listed in Section A.2 would
be impossible in Elvish.
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Chapter 3

Design Constraints

In this section we discuss several feature requirements and design considerations for
a pipe-based language to be viable for large programs.

3.1 Programming With Values
3.1.1 Value Pipes
It is desirable in a general purpose language to be able to create and use complex
data structures, and to use them freely throughout the language. In particular, if we
are to allow for pipe-based composition to be the core composition method for large
programs, we must address the problems with pipes discussed in Section 2.2.2 and
Section 2.2.1. To do this, we must ensure that channels are consistent—that is, that
every read corresponds to exactly one write.

We propose to accomplish this by using value pipes: a strategy wherein a value
is the smallest atomic unit of communication, and we allow rich values to be passed
wholesale through pipes and emerge exactly once and intact on the other side.

3.1.2 Capture and Substitution
For processes that output values, we need to support a mechanism to capture those
values for use in variables, data structures, and function arguments, similar to back-
ticks or $(...) in bash. This enables processes to be used like functions, which
return data to their caller.

But we showed in Section 2.2.1 and Section 2.2.2 that in most shells, rich values
are not writable to output streams, nor is it possible to consistently separate values
written to byte streams, and thus stdout cannot effectively be used as a return path
for values. Es Shell accounts for this by introducing a return value which is separate
from stream output and can be accessed via special-purpose call syntax.

If we allow values to be written to output streams, however, we can directly
capture and separate values written to the output.

3.1.3 Modern Language Features
Users will expect a modern programming language to have, at minimum:

• Lambda functions with closure. This requires the introduction of lexically scoped
variables.

• Dynamic variables. Most shell languages already include these, as OS Environ-
ment variables are dynamic by nature.
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• Product structures with support for open recursion.1A prototype-based object
system is sufficient for this.

• Sum structures. In an untyped language, a method for pattern matching over
nestable heterogenous lists is sufficient.

For large programs, an object system is desirable as a way to provide user-defined
types and abstractions. The existing foundations of shell languages already make use
of the UNIX environments API, which consists of a map of strings to strings, together
with a parent pointer. Therefore, if we allow environments as first-class values, they
could be used in a straightforward manner as prototype-based objects.

For programs that deal with syntax or other kinds of trees, it is convenient to
have compact nestable data structures that support pattern matching, which can be
made possible with nestable vectors.

3.2 Syntax Design
In this section we will outline the goals and requirements of a shell syntax.

3.2.1 Linear Composition: Why Not Lisp?
A common choice for “simple” syntax in programming languages is to use a variant
of Lisp, in which all expressions use parentheses for delimiting subexpressions, and
no infix operators are allowed. This lack of infix operators has led some to claim that
Lisp “has no syntax” [Graham, 2002]. However, when we evaluate the performance
of Lisp syntax in a REPL context, we immediately find that they lack a syntax
property that we call linear composition. To illustrate, consider an example in which
a user has typed some code that they wish to execute (where represents the user’s
cursor):

~> (fan 4 fetch‑webpage urls)

In this example, the user intention is to retreive a list of urls from a file, and fetch
them from a network using 4 threads. Now suppose the user wants to extract the
titles from these pages, as well as sort them. The user would need to return the cursor
to the beginning of the line (by pressing arrow keys or a macro such as ^A), add the
required code, and then return to the end to insert the final parentheses.

# move cursor to the beginning
~> (fan 4 fetch‑webpage urls)

# insert new code
~> (sort (map get‑title (fan 4 fetch‑webpage urls)

# move to the end
~> (sort (map get‑title (fan 4 fetch‑webpage urls)

1We use the terms sum structures and product structures to refer to what would normally
be called “sum types” and “product types”. In an untyped language context, we choose to emphasize
the shape of the data structure itself over its type.
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# add parentheses
~> (sort (map get‑title (fan 4 fetch‑webpage urls)))

In this example, it was necessary to create a deeply nested expression to express a
task that is essentially a sequence of sub-tasks. Worse, the sub-tasks are actually listed
in reverse order from the flow of data, meaning that any additional component will
require expansion to the left. Compare to an example using Magritte syntax:

~> fan 4 fetch‑webpage urls | each get‑title | sort

This expression not only requires no nesting, but also allows extension by adding
components directly to the right. This is an important syntax property we call linear
composition: the ability to use previous results by inserting more text to the right,
without backtracking with the cursor.

To be clear: the problem with the above example is not parentheses, though they
contribute to the overall nesting of the syntax. Rather, the problem is the prefix-only
calling convention that requires a back-and-forth movenent of the cursor, and causes
the expression to expand leftwards, opposite of the direction of the user’s typing.

While some languages have some support for linear composition using operators
such as Clojure’s arrow macros or OCaml’s |> operator, the integration of these
macros with the underlying subsystem is shallow, and most tasks require a large
amount of such nested code.

3.2.2 REPL Flexibility: One-Dimensional Code
A user typing on a REPL interface will often find it difficult and cumbersome to
manage whitespace correctly. This is because code in a REPL is generally contained
in one semantic “line”, even if the text wraps. We call this one-dimensional code,
in contrast with two-dimensional code, which can be edited in a text editor, and
has room to be formatted in a neat manner.

Because of the one-dimensional property of REPL input, it is necessary for a
syntax targetting REPL interfaces to be whitespace-agnostic, or at least to preserve
the property that any expression usable in a file is also expressible in a single line.
This property necessarily precludes indentation-sensitivity.

At the same, users expect a shell to not require any special character (such as “;”)
to end a command or section—to simply enter a newline (or press enter at a prompt)
to separate commands. This can introduce some parsing ambiguities when combined
with pattern-matching. We describe our approach to solving these ambiguities in
Section 4.1.4.

3.2.3 Shell Flexibility: Barewords
In a shell, it is necessary to be able to call external programs without quotation. In
most languages, unadorned strings are interpreted as variables or keywords. Instead,
in shells, these are interpreted as strings. Therefore, code such as:

git "commit" "‑m" "hello world"

does not require quotations as long as the argument does not contain a space or other
terminating character:
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git commit ‑m "hello world"

Accordingly, any variables and keywords we introduce into the language must be
marked with special syntax or sigils to distinguish them from barewords.

3.2.4 Macros
While Magritte does not yet support macros, a language operating in a very dynamic
and interactive environment is likely to require syntactic abstraction features. Thus
it is desirable to design the syntax structure to be easy to generate and manipulate
in the way that Lisp syntax is. We describe our approach to solving this problem,
inspired by the Dylan language, in Section 5.2.1.

3.3 Automatic Process Cleanup
3.3.1 Interruption
In shell programming, we tend to compose infinitely running processes together as
pipeline elements. Thus we require a well-defined semantics of process interruption2:
automatic clean-up of processes that will no longer be used. Consider the following
Magritte code:

read‑lines tmp/large‑file (1)
| take 10 (2)
| each (?line => do‑expensive‑work $line) (3)

In this example, three processes are spawned concurrently: (1) a process with an
open file that writes one line at a time to its output, (2) a process that reads 10 times
from its input, writes each entry to the output, and then exits, and (3) a process that
reads every input and calls a function to perform an expensive task. A user’s intent
when typing such code may be to read 10 lines from a file and synchronously perform
an action on each line.

A user will also expect that, after the first 10 lines are processed and the take
function returns, the file will be closed, and all three processes will exit. This ex-
pectation is despite the fact that process (1) is specified to read the entire file, and
process (3) is an infinite loop.

In a naïve implementation using synchronous channels, process (1) will never be
able to write more than 10 lines, and will remain blocked on its output with the file
open forever. Similarly, the call to the each function will never be notified that its
input has finished, and will block forever on its input stream.

3.3.2 Compensation
In interacting with an operating system, it is necessary to manage side effects, and
gracefully recover or restore state in the case of an interruption. Such an error-
handling system would also be a way for user code to directly observe interruption.

Without compensation of errors, the only way of observing forever-blocked pro-
cesses would be to inspect the process table, or to observe the memory footprint of
the program. Thus, we can define the primary task of the interruption system as
running a process’s compensation actions at the appropriate time.

2We use the term interruption in the generic sense—to mean the halting of normal flow in a
process, due to some external event. It is unrelated to hardware or OS signalling.
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3.3.3 Lazy Interruption vs. Eager Interruption
In a system such as this, there is a language design choice that must be made—
whether interruption is eager, in which processes are interrupted immediately upon
closing a channel, or lazy, in which processes are only interrupted upon interaction
with a closed channel. Both approaches have advantages and drawbacks. In making
this choice, we desire that the behavior of interruption be predictable—however, there
are two competing viewpoints for predictability.

Consider the following example, with the assumption that do‑other‑operation
does not write to the standard output:

(produce‑values) = (
put 1 2 3
do‑other‑operation

)

produce‑values | take 3

The produce‑values function will write three times to the pipe, and then continue
to do other processing in-thread that does not write to the standard output. The
final take 3 operation will return after 3 inputs are read. It is important to de-
cide, then, whether the process on the left should be interrupted in the middle of
do‑other‑operation (eager interruption), or whether it should be left alone until it
attempts to write a value (lazy interruption).

From the perspective of someone spawning a process, eager interruption can seem
more predictable, as they can guarantee a point at which the process has stopped
doing work.

However, from the perspective of a function author, lazy interruption is more
predictable, because the author can identify precisely which points in the code have
the potential to be interrupted—those points which run a put or a get. Contrast this
with eager-interruption semantics, where any point in the code may be interrupted,
introducing the need for users to mark critical sections and be very careful with
implementing stateful algorithms.

On the other hand, lazy interruption has the disadvantage that a producing pro-
cess must do enough work to produce one more value than will be consumed. If each
value is relatively cheap to produce, this is not a problem, but in the case that the
values are expensive to produce, this would result in a large amount of unnecessary
work.

3.3.4 Closing of Channels
Given that multiple processes may be reading from and writing to a channel, it is often
the case that a communicating process will end when there are other processes still
communicating over the channel. It would not be appropriate in this case to interrupt
other processes attached to the channel, as they are still able to communicate.

We define our guiding principle for the appropriate time to interrupt a process
as: A process is interrupted exactly when it can no longer be woken up. When a
process is blocked on a synchronous channel, it will be woken up as soon as another
process communicates on the other end. Therefore the appropriate time for it to
be interrupted is when it is blocked on a channel that will never receive any more
operations.
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This can be difficult to detect when a reference to a channel can be passed any-
where in the program as a standard value. Luckily, the arrangement of pipes and
channels are usually specified at process spawn time. We can therefore relax our
constraint to guarantee that channels will be closed at appropriate times in common
architectures, and that they never close if there are active readers or writers.

3.3.5 Reopening Channels
Some systems, like UNIX named pipes, allow a channel to be re-used by new processes
after it has been closed [Linux man-pages Project, 2018]. This is, however, not a
desirable feature, as it can lead to some unexpected races between a channel closing
and a new process spawning. Consider the example:

c = (make‑channel) # create a new channel
& count‑forever > $c # write infinitely
& take 10 < $c # read 10 elements and exit
put 10 > $c # write once from a new process

This example represents an unavoidable race with first-class channels: between take 10
closing the channel and put 10 opening the channel for writing. If we allow channel
reopening, we will either block forever, or insert the number 10 into the stream, de-
pending on which happens first. However if we do not allow channel reopening, we
can say that, if a process initiates a read or write on a closed channel, it is immediately
interrupted. In this case, both sides of the former race have the same termination
behavior—the process is interrupted when take 10 returns.

3.3.6 Tail Call Detection
In order for channel closing to work properly, it is necessary to identify tail calls that
change the channel environment. For example:

(
process‑data
write‑log > $c1

) > $c2

In this example, the tail-position call to write‑log is redirected, and $c2 falls out
of scope. In this case, it is important that $c2 is deregistered before entering the
tail-call, to allow other processes to continue.

3.3.7 Masking Interruptions
We must include a facility to control the extent of interruptions. This is because
an interruption semantics can make it difficult to perform final calculations after a
channel is closed.

At the most basic level, we define the extent of channel-closing interruption as
unrolling the stack until the channel is no longer in the current frame’s corresponding
input or output. However, more manual control of the extent is still needed. Consider
the following example, which sums all numbers from the standard input:
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(sum) = (
total = 0
each (?x => %total = (add %total %x))
put %total

)

In this example, the function each will consume the input stream and mutate a
lexical variable (marked with %). After the entire input stream is consumed, we wish
to output the resulting %total value.

However, with the semantics described above, the each function will loop until it
receives an interrupt signal from the input channel closing. Since containing scope
still has the same channel set as its input, we will unroll past the point where we can
execute the final “put %total”.

Thus, in order to continue properly after consuming a stream, a mechanism to
capture this unrolling is required.

3.4 UNIX Integration
For a shell language to be viable for script-writing or interactive use, it must have
robust OS integration. We focus on the UNIX model in particular. In order to be
usable as a shell, it is desirable to unify the notions of an in-language function call and
an external program call as much as possible. For this reason we say that our goal
is to be able to transparently replace Magritte function calls with external program
calls, in the case that they are equivalent. For example, a call to filter that only
searches for certain strings should behave the same and have the same syntax as a
call to /usr/bin/grep. This is a feature of every successful shell—while in-language
functions may have extra features, they fundamentally behave the same as external
programs.

This is a key difference between Magritte and projects such as scsh and xonsh:
Magritte’s computation model is similar enough to the shell that this replacement
property should be possible in many cases.

3.4.1 Marshalling
In order to call external functions with rich-valued arguments, we introduce the need
for marshalling: since external programs can only receive byte vectors as arguments,
we need a flexible and user-configurable way of rendering and parsing values to and
from strings.

3.4.2 Marshalling Over Pipes
Additionally, the language must provide a compatibility layer between UNIX byte
pipes and value pipes. This is extra challenging because external processes require
values to be separated in a wide variety of ways: spaces, newlines, tabs, or even null
bytes—and they also often support different ways of escaping content. It is necessary,
therefore, to provide a way of specifying different rendering and parsing behavior for
each command. Worse, though, many programs exhibit different parsing behavior
when passed different flag arguments, so it is necessary to either specify pattern-
matches against full command vectors, or ask the user to manually parse or render
strings through a separate command.
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Chapter 4

Description of Magritte

We propose a language that meets the requirements of Chapter 3.

4.1 Syntax Overview
Here we will briefly describe each syntax class, so that the following examples are
more readable. See Appendix B for a more complete and formal description of the
syntax.

We will include an imprecise EBNF approximation of the syntax for readers who
are more comfortable with this kind of specification, but the syntax is more precisely
defined using a strategy described in Section 5.2.1.

4.1.1 Token Syntax: Barewords and Non-Reserved Symbols
The syntax of Magritte includes barewords, as discussed in Section 3.2.3. Addi-
tionally, we do not reserve any keywords - every unadorned string is a bareword in
Magritte. Language features are expressed in terms of punctuation designed to be
intuitive to those familiar with shell languages, and all unadorned words are either
command names or barewords. All command names come from the same names-
pace as variables, and are not treated specially based on their names. We do have
a small number of builtin functions, but their semantics remains much the same as
user-defined functions.

Because they are often used in filenames and expected as arguments of commands,
we also do not reserve the symbols “.”, “/”, “:”, “,”, or “‑”, treating them the same
as other characters in barewords. Because it may be used in file-globs in the future,
we reserve but do not use “*”. This restriction means that we must be very economical
with respect to choices of features and use of syntax.

4.1.2 Grouping & Lines
As with many shell languages, parsing of Magritte code begins by splitting the code
into semantic lines:

group ::= line*

These lines are more complex than simple newline-separated fragments, however.
They can be continued, contain nested forms, or be specified inline using semicolons.
The definition of what constitutes a line is described precisely in Appendix B, but
for the purposes of this chapter it is sufficient to think of a line as being a grouping
that is ended by either a newline or semicolon (;), is continued by infix tokens such
as “=>”, “=”, and “|”, and is nestable—newlines within parentheses or other nesting
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forms do not end the containing line, but their contents may be split into lines as
well.

4.1.3 Line Syntax
Each line is broken up with various infix operators, indicating control flow, compen-
sation, and more. We will explain each of these in turn.

line ::= assignment | spawn | instr
spawn ::= "&" line
assignment ::= lhs+ "=" expr+
lhs ::= access (* see Data Structures *) | BARE
instr ::= cond ("%%" | "%%!") cond | cond
cond ::= pipe ("&&" | "||") (pipe "!!" cond | cond) | pipe
pipe ::= pipe "|" with | with
with ::= command redir+ | command
redir ::= (">" | "<") expr
command ::= block | expr+
block ::= "(" group ")"

A line can contain either an assignment, a spawn command, or an instruction to
run with side-effects (e.g. a command).

We will quickly summarize the line-syntax categories from the outside to the in-
side. The loosest binding operators of a line are the optional compensation operators
%% and %%! (Section 3.3.2). The next level is conditional expressions, indicated by &&
and ||, with an optional else parameter: for example “cond && if‑true !! if‑false”
or “cond || if‑false !! if‑true”. Following are pipes that can chain commands
together in a pipeline (a | b | c), followed by specific channel redirection operators
“<” and “>”. Finally, a command can be either a parenthesized group (a block) or a
command vector of expressions.

4.1.4 Expression Syntax
Unlike the line syntax, which is intended to represent side effects and commands,
expressions are intended to produce one or more values to be used as arguments,
values to be assigned, or elements of other expressions. We will describe each in turn.

Variables & Constants

Variables come in two forms: lexical %x and dynamic $x (See Section 4.2.1). Strings
are either delimited with quotes or left bare. For example, magritte, "magritte",
and 'magritte' are all equivalent.

Numbers are written in the usual fashion. We do not currently distinguish between
floats and integers, so 1.0 and 1 are considered equivalent.

Substitution

A substitution is a type of expression consisting of a group surrounded by paren-
theses:

expr ::= ... | subst | ...
subst ::= "(" group ")"
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However, this does introduce an ambiguity with the previous definition of command—a
group surrounded by parentheses could be interpreted either as a block or as a com-
mand with a single subst expression. In this specific case we say that the block syntax
takes precedence, and commands cannot consist of a single substitution. Should a
user wish to execute a single substitution as a command, the exec builtin function is
provided.

Data Structures

Square brackets delimit vectors, which can be nested. For example, the expres-
sion “[node [leaf 1] [leaf 2]]” is a vector containing the string "node" and two
vectors [leaf 1] and [leaf 2]. Square brackets are defined as free_nl (See Sec-
tion B.2.2), which means that newlines are ignored at the top-level, and substitution
must be performed using parentheses.

Curly braces in argument position define environments, which are used in
Magritte as prototype objects (See Section 4.2.4). The inside of curly braces are
treated as a group, in which all assignment syntaxes are available. For example:

my‑env = {
a = 1
b = [$a 1]

}

Environments can be explicitly accessed with “!” syntax: $obj!key. This token
was chosen because it is already reserved by bash, so users are accustomed to needing
quotation marks to use it as a string, unlike “/” and “.”, which are commonly used
in filenames (see Section 4.1.1).

Functions & Patterns

Lambda function syntax is similar to:

lambda ::= "(" (pattern+ "=>" line*)+ ")"

These are also defined using parentheses, but the special token => is used to separate
the arguments from the body. The left-hand side of the arrow is a pattern, and the
right-hand side is parsed as a group of lines. For example:

add‑one = (?x => add 1 $x)

The syntax ?x represents a type of pattern called a binder, which introduces a
new variable assigned to the matched value.

Multiple clauses and nested patterns are also possible. For example, this function
outputs all the leaf values in a binary tree:

iter‑tree = (
[node ?l ?r] => iter‑tree $l

iter‑tree $r
[leaf ?v] => put $v

)
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This function has two clauses: The first can only be run if the argument is a three-
element vector beginning with "node"; if so, it will run two recursive commands with
the matched elements. The second can only be run on two-element vectors beginning
with "leaf"; if so, it will output the matched value.

Note that there is no need for delimiters around or between clauses, nor is the
indentation strictly necessary: a new clause is defined to begin at the beginning of a
“line” that contains a => token (See Section 5.2.1 for a detailed explanation of how
this is accomplished).

For named functions with only one clause, we also support a syntax sugar for
function definition:

(foo ?x) = (
y $x
z $x

)

# equivalent to
foo = (?x => y $x; z $x)

Any clause or vector pattern can use the special syntax (?x) (a “rest-pattern”)
to match any number of values and bind a vector. For example,

# a function with a variable number of arguments
(f (?args)) = ...

# a function that returns the head and tail of a vector
(shift [?head (?rest)]) = put $head $rest

These are currently only allowed as the final pattern.
Because we use different syntax for binders and variables, we are able to allow

matching values against the content of a variable, which is often a tricky problem in
pattern-matching implementations. For example:

(extract‑tag ?t ?x) = (
[$t ?v] => put $v
?other => put $other

) $x

The pattern [$t ?v] will only successfully match a vector whose first element is equal
to the value of $t. The second element, however, can be any value, and will be bound
to the binder ?v.

4.2 Values and Variables
In this section we will describe the basic value semantics of Magritte.

4.2.1 Lexical vs. Dynamic Variables
In order to support both lexical and dynamic variables, we introduce a separate
syntax for lexically scoped variables at variable reference and mutation points, using
a % instead of $ (e.g., %x).
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Assignment (x = 1) will bind a variable both lexically and dynamically, using a
plain syntax which allows us to maintain compatibility with standard environment
files.

Both lexical and dynamic variables behave dynamically at lookup time, but free
lexical variables are captured and included at the top of the scope at function call
time. For example,

# dynamic $x, captures nothing
(g) = (put $x)
(f) = (x = 1; g)
(f) # => 1

# lexical %x, is saved from the local environment,
# and supersedes the dynamic binding.
g = (x = 2; (=> put %x))
(f) = (x = 1; g)
(f) # => 2

For mutation, we use assignment syntax, but with the location (dynamic or lexical)
specified on the left-hand side, e.g. %x = 1 or $x = 1. These expressions will raise a
compile-time error or a runtime error, respectively, if the variable is not bound. By
separating binding syntax from mutation syntax, we are able to statically determine
every lexical variable’s scope with no need for declaration.

4.2.2 Lambda Functions
Function values have an attached closure environment, which copies references to
any free lexical variables at the time of creation. This environment is spliced in to the
top of the running environment at function-call time. It is possible to mutate these
references, and the mutation will be visible to other functions (see Section 5.1.2).
Function clauses are tried in order, and only the first successfully matched clause is
evaluated. In the case that no clause matches, the process will crash.

4.2.3 Nestable Vectors
Vectors are a straightforward extension of argv vectors: an immutable ordered col-
lection of values, which can be nested. A common pattern is to use vectors that
have strings at the beginning to represent data variants: for example, nodes of a
tree:
a‑tree = [node [node [leaf 1] [leaf 2]] [leaf 3]]

These can be matched in lambda arguments by patterns such as [node ?x]. A typical
strategy for traversing this kind of structure might be a function that outputs all leaf
node values to its output in a predefined order, to be consumed by another process.

The builtin function for takes a vector as an argument and outputs each element
in order, so that a vector can be traversed with:

for [1 2 3 4 5] | each (?el => ...)

Vectors can also be called as functions, with the first element as a function, and
the rest of the elements as extra arguments. So for example “[f $x] $y” is equivalent
to “f $x $y”. In this way we can use vectors as partially-applied functions, a common
functional programming pattern.
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4.2.4 Environments as Objects
Variable environments can be captured directly as key-value maps with a parent

pointer. Environment capture uses { } syntax, which runs a block of code in a new
environment, then removes the running environment from its parent list. The result-
ing environment value is substituted in place of the { } expression. Therefore all as-
signment syntaxes are available, including function definition. For example:

(make‑account ?balance) = {
balance = $balance
(deposit ?amt) = (%balance = (add %amt %balance))
(withdraw ?amt) = (%balance = (sub %amt %balance))

}

my‑account = (make‑account 10)
$my‑account!deposit 20
put $my‑account!balance # => 30
$my‑account!withdraw 5
put $my‑account!balance # => 25

A planned extension would allow using special syntax to register additional parents,
allowing users to inherit by direct delegation:

(fancy‑account ?b) = {
+(account $b) # add the object to the lookup chain
(display) = str "<account: " %balance ">"

}

4.2.5 Reading and Writing
Values are returned from functions by writing them to the standard output. They
can be written by any function, but they can be directly written using the put builtin
function. Asynchronous inputs (i.e. from a pipe) can be read using the get builtin
function. Both of these block until they complete a communication.

4.2.6 Collection and Substitution
A priori, a capture mechanism such as described in Section 3.1.2 would have to return
a list, as any process may output zero or more values. However, as a function calling
convention, that would require callers to manually unwrap lists on every function call.

In order to simplify substitution, Magritte will collect and expand the values out-
put by the contained code into the current command vector—increasing the argument
number by the number of values output from the function. For example:

# A function definition: output three values
(count‑three) = (put 1; put 2; put 3)

# Collect three writes and expand 1 2 3 in‑place
other‑fn 0 (count‑three) 4
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# equivalent to
other‑fn 0 1 2 3 4

These semantics are similar to the $(...) syntax in bash, with the exception that
we have the ability to properly separate values without relying on whitespace.

This mechanism is also available in vector literals, allowing us to collect outputs
as a vector:
outputs = [(some‑command)]

The list built-in function, which simply returns its argument vector, is also available
for this purpose. The for function can also be used to splat vector arguments into
function calls:
vec = [3 4]
some‑fn 1 2 (for $vec)

4.2.7 Blocks
Blocks, on the other hand, do not collect or modify the environment’s channels in
any way, but instead simply run the code contained within them, and output values
normally. These are mostly used to group commands within a pipeline, and in the
body of function definitions:

generate‑values | (process; process; process)

In the case that a user might want to use a substitution at the root level—i.e. to gen-
erate a function and immediately call it, we provide the exec builtin which executes
its arguments as a command:

exec (put %put; put 1; put 2; put 3) # runs `put 1 2 3`

4.3 Concurrency and Interruption
4.3.1 Synchronous Channels
Channels in Magritte are synchronous—readers and writers cannot continue until
a communication is completed successfully. Given the decision to allow rich values
to be passed through channels, we have decided that a buffer is not as necessary for
performance purposes, since a single write may contain an arbitrarily large amount
of data—or for that matter a process handle or object reference. Additionally, syn-
chronous channels have simpler semantics both for implementation and for users, and
we leave open the possibility of user-implemented queues, such as:

producer | buffer 10 | consumer

4.3.2 Lazy Interruption
We have decided that the predictability of lazy interruption is worth the tradeoff for
the extra-values problem discussed in Section 3.3.3. We plan to mitigate the extra-
values problem in the future by providing a primitive check operation for a channel,
which will interrupt the current process if the channel is closed, and be a no-op if it
is open. In this way, function authors can opt-in to aborting early before performing
expensive calculations that may not be used.
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4.3.3 Process Registration
In order to satisfy the constraints of Section 3.3.4, we maintain a process register inside
of each channel, so that we can decide when all readers or all writers have returned
or been interrupted, at which time we can guarantee that processes on the other side
of the channel cannot be woken up without spawning new processes. Therefore this
covers the architecture of pipelines, in which many processes are spawned together
in fixed configurations. Other architectures will have to manually manage process
shutdown in some cases.

4.3.4 Compensation and Unconditional Compensation
We employ a variant of the compensation mechanism introduced by [Inoue, Aotani,
and Igarashi, 2018] using the “%%” operator to indicate a compensation action, which
is run in case of an interruption in the left hand side or subsequent lines. Compen-
sations are cleared at the end of the current function body:

(my‑function) = (
action %% cleanup‑action
# in effect until the end of the function

)

Additionally, we define unconditional compensations using the “%%!” operator,
which run both in the case of an interruption and also in the case of a normal return.
In this way, they are analogous to finally or ensure sections of standard excep-
tion handling. For example, the function read‑lines above could be implemented
as:

(read‑lines ?fname) = (
f = (open‑file $fname) %%! close‑file $fname
until (=> eof? $f) (=> read‑until "\n" $f)

)

In this way, we can ensure that the file is closed when the function exits, whether by
a normal return or by interruption.

4.3.5 Interrupt Handling
While we plan to explore more general mechanisms for exception handling, we find

that it suffices for most applications to provide two builtin functions, produce and
consume, to indicate the intent to fill or consume the entirety of the output or input
streams, respectively. Each of these functions takes a single zero-argument function
which will loop forever until the standard output or standard input respectively is
closed, whereby control flow continues after the invocation. Using these functions,
we might define each as:

(each ?fn) = (consume (=> %fn (get)))

With this definition, the call to consume will mask the interruption from the standard
input closing, and control flow after any each invocation will continue as normal. This
is enough to resolve the issue discussed in Section 3.3.7.
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4.4 UNIX Integration: The Input-Stealing Problem
We determined that a fully-transparent design as described in Section 3.4 was not
possible. However, we found a solution that was able to handle most cases, so long
as the user follows the simple guideline that external processes that use the standard
input must be explicitly directed using a pipe or a redirect operator.

The reason a fully transparent solution is more difficult than expected is a problem
we call the input-stealing problem, in which use of external programs that do not
use the standard input can nevertheless drain or “steal” inputs from the environment.
To illustrate, consider the following code:

(f) = (
shell echo "a debug statement!"
each (?x => str "f processed: " $x)

)

put 1 2 3 | f

A user would expect this code to output four lines: a debug statement, and three
lines with the string "f processed: " prepended. With a naïve implementation,
however, the output will only contain the debug statement. Though the echo com-
mand does not actually open or read from its standard input, its input file descriptor
has an empty and rather large buffer, and will report that it is currently writable.
Thus the values from the standard input will be “stolen”: serialized and written to
the buffer, only to be discarded when echo exits.

We therefore will require a syntactic distinction between external commands that
use the standard input and commands that don’t. For external commands used in
a pipeline, or external commands with an explicit redirect operator, this will work
transparently. However, if a user wishes to implicitly use the standard input, they
must make that use explicit:

# will not work: does not connect the input to `tr`
(capitalize) = tr a‑z A‑Z

# this will cause the input to be connected
(capitalize) = drain | tr a‑z A‑Z

This restriction allows us to avoid the input-stealing problem.
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Chapter 5

Implementation of Magritte

In this chapter we will discuss various stages of the implementation of Magritte.
The implementation is written in Ruby, and the source code is publicly available at
https://github.com/prg‑titech/magritte.

5.1 Magritte-DSL
We implemented Magritte in two steps: first, we implemented Magritte-DSL, a Ruby
DSL that expressed the concurrency semantics of Magritte. Finding that the DSL
was not alone sufficient, we then used Magritte-DSL to implement an interpreter for
Magritte syntax. We will explain the embedded syntax, but use equivalent Magritte
syntax in further examples for simplicity.

5.1.1 DSL Syntax
The Ruby DSL implemented the basic concurrency primitives of Magritte using Ruby
blocks and instance_eval.

Magritte::DSL.run do
s { put 1 }.p { put(5 + get) }.call
put 10

end # => [6, 10]

The method s, globally available in DSL blocks, creates a “spawn” object, but
does yet run any code. This is because we may decide to run it in a number of
different ways later. In this example, we use the .p { ... } method to chain the
resulting spawn object into a new one, such that the two pieces of code will be piped
together. At the end, we call .call, which launches the threads and waits for the
final one to finish. We could also have used the .go method, which is similar to the &
operator in Magritte—it would run the code in the background, and continue without
waiting for it to finish.

Alternatively, we could have used the .collect method, which would modify the
environment of the contained code such that it didn’t write to the outer output, but
instead returned an array of its results:

Magritte::DSL.run do
one, two, three = s { put 1; put 2; put 3 }.collect
put two

end # => [2]

This system implements the process registration system described in Section 4.3.3,
so it is also well-behaved on infinite loops:

https://github.com/prg-titech/magritte
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Magritte::DSL.run do
s { for_ [1, 2, 3] }

.p { loop { put (get * 2) } }.call
put 20

end # => [0, 2, 4, 20]

In this example, we use the “for_” method1 to output all the elements of an Enumerable
object, then pipe it into a component that runs an infinite loop, outputting twice
whatever it reads from its input. When the Enumerable runs out of values, it will
naturally return, causing channel cleanup. Then the call to get will result in a Ruby
exception, which will unroll the stack, breaking the loop. Since the outer scope does
not have the closed channel in its input, it then continues from “put 20”.

5.1.2 Architecture
Magritte-DSL is broken into several modules:

• Std: A collection of shared methods, available in Magritte-DSL scopes. Con-
tains methods such as put, get, s, and make_channel.

• Spawn: The class of the object returned by “s { ... }” in Magritte-DSL. It
contains a Ruby block of code to run, along with an environment to run it in.

• Proc: A Magritte procedure, running concurrently with other procedures. Con-
tains a reference to a Ruby thread running the code, and a stack of Frame
objects. Responds to .env, to return the top frame’s environment. Its class
structure is shown in Figure 5.1. We use a thread-local variable to keep track
of the currently-running Proc, accessible globally as Proc.current.

• Frame: A frame of execution. Contains an an Environment. These objects are
registered to Channel, and de-register when the frame exists (see Section 5.1.2).
A frame will also contain a list of Compensations to be run on interruption or
return.

• Channel: A channel. Contains a two registries of reader and writer frames,
respectively, and a set of blocked threads. Every thread in @blocked_threads
is interrupted when the reader or writer registries become empty.

• Env: An environment. Contains an optional parent pointer, as well as lists
of input and output channels (which default to the parent if missing). The
interpreter extends this with a hash-map of variable names to Ref objects,
which are passed around to enable mutation from other scopes. Includes a
static .base method, creates a new Env including all entries from Builtins as
well as everything defined in the special file prelude.mag.

Process Architecture

A process is represented by a Proc object, which contains a stack of Frames. Each
time .call or .collect is used, we run the contained code not in its own process,
but in a new frame on the current one. The frame contains an Env object, which
keeps track of the current input and output channels. In the interpreter, it also keeps
track of variable bindings.

1with an underscore because for is reserved in Ruby
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Proc

@thread
@stack

Frame

@env
@compensations

Channel
...
@blocked_threads
@registered_writers
@registered_readers

Env

@parent
@values
@in_channels
@out_channels

Ref

@value

Figure 5.1: The Structure of a Proc

Channel Registry

Our channel implementation is a standard implementation of synchronous chan-
nels, with the addition of four intrinsic methods, used only internally by the inter-
preter: add_reader, remove_reader, add_writer, and remove_writer, which register
and deregister processes as described in Section 4.3.3. When a remove_* method re-
sults in an empty set, it will additionally close the channel and raise an internal
exception in every blocked thread, as shown in Figure 5.2.

Once the channel is closed, every call to read and write will interrupt the calling
process as described in Section 3.3.5.

In order to reduce unnecessary use of Ruby threads, we also find it is simpler,
instead of registering processes to the channels, to register stack frames. In this
way, we can register all inputs and outputs on frame entry, and use standard Ruby
exception handling to ensure we properly run compensations and deregister inputs
and outputs on frame exit. This means that different frames in the same process
can be connected to different channels, which makes the > and < redirection syntax
straightforward to implement—we simply push a new frame with different channels
attached.

Interruptions then cascade naturally—when a channel closes, a process is inter-
rupted, causing it to unwind its stack and deregister channels, thereby potentially
causing other channels to close.

Collectors

In order to implement the return semantics described in Section 3.1.2, we also imple-
ment a write-only channel called a collector, and an intrinsic that waits for channel
closing. Collectors cannot be created directly by users, but only appear in the inter-
preter when we evaluate parentheses in argument position.

Naïvely, collectors would ignore registration commands and simply append writ-
ten elements to an array. However, it is still necessary to track registered writers.
Consider the example:

(range ?n) = (count‑forever | take %n)
my‑list = [(range 10 | (& drain; & drain))]
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Channel

Channel Channel

frame

frame

frame

frame

frame

frame

remove_writer remove_reader

frame

frame

frameframe

remove_writer: close!

frame

frame

frame frame

remove_reader: close!

Figure 5.2: Channel Closing

In this example, there is an open question of how long we should wait until reading
the collection and continuing. If we naïvely wait until the base command is finished,
we will continue early and miss values that may be written later. Thus substitution
waits until all writers to the collector have deregistered.

To implement this, we add a wait_for_close intrinsic to collectors, which returns
immediately if closed, and otherwise adds the current thread to a waiting set and
sleeps. Upon closing the channel, all elements of this waiting set are awoken, and
flow continues. Thus the algorithm for substituting a block is:

* Create a new collector $c
* Run the parenthesized expressions with standard output set to the

collector
* Run $c.wait_for_close

In the most common case, there will only be a single thread writing to the collector,
so that the channel will be closed by the time the evaluation is finished, making
wait_for_close a null operation.

Spawning Order Dependency

It is necessary to take some care with the implementation of the spawning primitive
(&, or .go), that we wait until the spawned process has finished registering its channels
before the spawning process continues. Consider the following example, which outputs
10 numbers, possibly out of order:

(drain) = (each (?x => put %x))
count‑forever | (& drain; & drain) | take 10

The middle process is responsible for spawning two processes that funnel data from
their input to their output. However, since they are both spawned in the background,
the spawning process will immediately return. In general, the drain processes should
be keeping the two pipes open. However, if we do not take care to wait until they
have finished registering their channels, there is a risk that the spawning process will
return first and close the two pipes.
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Interrupt and Status

In order to implement the stack-unwinding behavior described in Section 4.3.5, we
ensure that every interruption contains a Status, which indicates the intended effect
of the interruption. Every use of .call also returns this status, and properties of
the status are later used to implement && and || in the interpreter. Each status
also contains an optional reference to a Reason for the crash. This could include
code errors such as type mismatches, or it could include a channel closure. The Proc
runtime will inspect these reasons as they bubble up the stack, and stop the unwinding
if interrupt was caused by a channel that has gone out of scope. Additionally, the
loop_channel function from Std inspects these reasons and conditionally stops the
unwinding. This is used to implement the produce and consume functions, which
protect against stdout and stdin closure respectively.

5.1.3 Shortcomings
The main shortcoming of the embedded DSL was the fact that we could not mod-
ify Ruby’s call, return, and variable binding semantics. To illustrate, consider this
function which we used to implement a looping server (similar to the one shown in
Section A.2):

def server_request(channel, message)
receiver = make_channel
s { put [message, receiver] }.into(channel).go
s { put get }.from(receiver).collect[0]

end

In this example, we send a message and a reply-channel into a server channel and
expect to read one message back. We will focus on the final line, in which the simple
task of “read a value from this channel and return it”, expressed in Magritte syn-
tax as “get < $receiver”, becomes much more complex due to the Ruby semantics
surrounding it.

First, we must redirect the input to the receiver. To do this, we must create a
new spawn context and use the .from method to specify the input channel:

s { get }.from(receiver).call

However, the behavior of the method get is to return the read value, which we
have no way of accessing. So instead we must output it using put:

s { put get }.from(receiver).call

This will indeed output the correct value. However, it will write the output to the
current stdout, rather than returning it. In Magritte, these are the same operation,
but in Ruby, this means that the caller of server_request can no longer simply bind
its result to a variable. Instead of response = server_request(c, m), the caller
would have to use a .collect operation to access the results:

response = s { server_request(c, m) }.collect[0]

Additionally, the .collect operation must return an array, which the caller must
unwrap.
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In Magritte, the parenthesis and bind semantics do this work for us, so the above
would be equivalent to “response = (server‑request $c $m)”. However, in Ruby,
we want to enable direct binding, so we have to patch this in the function body
itself:

s { put get }.from(receiver).collect[0]

This example illustrates that the unification of return values with output is a necessary
feature that is not in general implementable as a library. A language with its own
semantics is necessary.

5.2 The Magritte Interpreter
5.2.1 Parsing
The syntax is described formally in Appendix B. We present a higher-level guide to
the implementation here.

Skeleton Trees

We specify Magritte syntax using a parsing technique called skeleton trees [Bachrach
and Playford, 1999], which allows enough flexiblity for both REPL use and extension
with macros. The overview of the parsing system looks like:

Text → Tokens → Skeleton → AST

Because of the extra step, we will describe more complex syntax forms by their
translation from the skeleton tree data structure, which we introduce here.

The strategy begins with a normal lexer, which transforms the input text into
a token stream. In order to ensure that all code is expressible in a one-dimensional
manner (see Section 3.2.2), we completely unify the characters ; and newline into
a single nl token, so that both are transparently interchangeable throughout the
language. These nl tokens are consolidated (so there are never two in a row), and
filtered based on their previous and next tokens to allow line continuation.

The remaining nl tokens, along with nesting tokens such as “(” and “)”, are used
to break the tokens into groups and lines, represented by a skeleton tree.

This stripped-down syntax tree only has four node classes:

• [root ...?nodes] is a special node that specifies the root of the tree.

• [tok ?type (?val)] specifies an individual non-nesting token with an optional
value. Most simple syntax elements, like variables, constants, and non-nesting
punctuation are represented by this node.

• [nested ?open ?close ...?elems] specifies a nested group with open and
close delimiters. All nesting tokens, such as [ ], ( ), and { } have their con-
tents grouped together in this type of node. In this way, the skeleton tree
ensures that the input is well-nested.

• [item ...?elems] represents a newline-separated “item”—a semantic line, which
is separated by nl tokens. This line-continuation behavior is controlled by defin-
ing properties on each token class (See Section B.2.2 for a detailed description).

For example, given the code
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a = {
(f ?x) = $x
y =

(add $z $w)
}

we would generate a tree similar2 to:

[root
[tok BARE "a"]
[nested "{" "}"

[item
[nested "(" ")" [tok BARE f] [tok BIND x]]
[tok EQL]
[tok VAR x]]

[item
[tok BARE y]
[nested "(" ")" [tok BARE add] [tok VAR z] [tok VAR w]]]]]

The AST is then generated recursively by pattern-matching on the skeleton tree.
However, because the skeleton tree has already ensured and expressed the nesting of
the code, this pattern-matching can be naïve and not worry about nested forms.

A macro in this system would be an operation Skel → Skel, such that the resulting
tree is parseable as an AST. Importantly, this would only enforce that the output is
valid syntax—the input only needs to be able to be broken into lines and groups, which
would enable the free use of the Magritte token structure, independent of Magritte’s
actual syntax categories.

Lambda Clause Disambiguation

When parsing with traditional EBNF-like tools, it is often difficult to implement
truly free lambda clauses. We managed to not require delimiters around multiline
sub-clauses in Magritte through the use of skeleton trees.

In the first version of Magritte, we required that multi-statement lambda bodies
be surrounded by parentheses, for fear that we would introduce ambiguity other-
wise:

iter‑tree = (
[node ?l ?r] => (iter‑tree $l

iter‑tree $r)
[leaf ?v] => put $v

)

However, as we developed a programming style for Magritte, we found that this
created an unacceptable overhead for multiline, single-pattern functions. Simple ex-
pressions suddenly required two levels of parentheses: for example,

2Ideally, we would represent these using actual Magritte vectors, so as to allow manipulation
with Magritte code. In the implementation, they are actually Ruby objects, and contain some extra
information such as source location.
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produce‑values | each (?value => (
f $value
g $value

))

For this reason, we wanted to do away with the inner parentheses, and consider
subsequent lines to continue the previous clause. However, since expressions and
patterns often re-use the same tokens, it is difficult to tell where an expression stops
and a new pattern begins. This grammar is ambiguous:

lambda ::= "(" clause* ")"
clause ::= pattern "=>" exp*

The ambiguity comes from the fact that the beginning of pattern and the end of exp
share tokens. Most languages solve this by amending the syntax—either requiring a
delimiter between clauses, or by requiring that the body be surrounded by delimiters.

Even when a delimiter between clauses is required, however, this can introduce
problems if the same delimiter can function as a separator in the body. For example,
in OCaml, this syntax is ambiguous:

let f = function
| A x ‑> match x with

| C y ‑> ...
| D z ‑> ...

| B ‑> ...

Because there is no delimiter at the end of a match expression, the OCaml parser is
not able to tell whether “| B ‑> ...” represents a new clause in the inner match or
the outer function. OCaml users are usually advised to surround the inner match
with parentheses to avoid this ambiguity.

In Magritte, pattern matches are only performed with lambda functions, which
already define their extent entirely using parentheses. We also use a separator token
to separate clauses: the nl token, which can either be a real newline or a semicolon.

In our case, however, the skeleton tree parse already handles breaking the inside
of the parentheses into lines. Thus our parser can simply search for lines that contain
=> and combine the right-hand side with all the subsequent lines that do not contain
=>. This combined set of lines is then parsed as a single group.

5.2.2 Interpretation
The interpreter builds on the primitives designed for Magritte-DSL by adding an
interpreter and builtin-registry layer. It adds the following modules, as shown in
Figure 5.3:

• Interp: The actual expression interpeter, implemented as a simple visitor over
the AST. Includes Std to call into the concurrency APIs. Expresses all Magritte
values as instances of a superclass Value. Though we cannot implement proper
tail-call optimization due to the limitations of Ruby, we do detect tail calls (the
last line in a group) and eagerly unregister the current Frame.

• Builtins: A registry of builtin functions—Magritte functions implemented in
Ruby, using methods from Std.
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FreeVars Interp Value Builtins

Std

SpawnEnvProcChannel

}


Magritte Interpreter
(language implementation)

Magritte-DSL components

Figure 5.3: Implementation Architecture

• Value: A collection of classes to represent Magritte values. This includes the
class Function, which calls back into the interpreter, and the class BuiltinFunction,
which is a callable value that references one of the functions from Builtins.

• FreeVars: Statically scans an entire AST from the root, and creates a cache of
free lexical variables. This is used at runtime by the interpreter to capture free
lexical variables at function creation time. It also performs lifting of lambda
declarations to enable mutual recursion, and replaces barewords in call position
with lexical variable references.

5.3 Solutions to the Input Stealing Problem
We outline several considered solutions to the input-stealing problem.

5.3.1 Read detection
Our first attempt at solving the input-stealing problem involved detecting when the
subprocess actually performs a read, and only then consuming an input from the
Magritte standard input. Unfortunately, we were not able to find a UNIX API that
was both correct and performant. Most methods, such as select and fcntl, will
always indicate that a pipe is writable if the buffer is empty, regardless of whether
any process is actively reading.

5.3.2 Write-Back
Another option would be to attempt to read back the contents of the buffer after
the program has ended, and write them back to the Magritte standard-input. We
implemented the following Ruby program as a proof of concept:

# readback.rb
data = (1..10).map(&:to_s).join("\n")

stdin, inp = IO.pipe
outp, stdout = IO.pipe

pid = Process.spawn(*ARGV, STDIN => stdin, STDOUT => stdout)

Thread.new { inp << data; inp.close }

Process.wait(pid)
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puts
puts "============"
puts "remaining data:"
puts stdin.read.inspect

This program will spawn any command and write the numbers 1 through 10, each
followed by a newline, then read back whatever data was not consumed and print it
to the console. For example:

$ ./readback.rb bash ‑c 'read; read; read'

============
remaining data:
"4\n5\n6\n7\n8\n9\n10"

This works by connecting the external process to a UNIX pipe (IO.pipe), and
then reading from that pipe once the process has finished. We could theoretically
keep track of how many bytes each Magritte value used, perform a calculation to
determine which values from the Magritte standard input were unused, and write
those values back to the channel.

Unfortunately, most UNIX programs assume that they have exclusive access to
their standard input stream, and will greedily consume pages at a time of content,
even for small reads. For example:

$ ./readback.rb bash ‑c 'head ‑3'

============
remaining data:
""

$ ./readback.rb ruby ‑e 'gets; gets; gets'

============
remaining data:
""

This means that functions that do read from the standard input will consume po-
tentially many more values than was intended. We believe it is therefore necessary,
for programs that use the standard input, to give the external program exclusive
access to the input, and assume that the channel is completely consumed; and for
programs that do not use the standard input, to never write any values at all. Un-
fortunately, as above, we have not found a generic way of making this distinction
outside the kernel.

5.3.3 Special Functions “shell-in”, “shell-out”, and “shell-through”
Another option is to ask the user to specify whether their shell invocations will use
the standard input, output, or both. For example:
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shell‑out echo hello # uses stdout only
shell‑in ./bin/consume‑data # uses stdin only
shell‑through tr a‑zA‑Z # uses both stdout and stdin

This solves the input-stealing problem by specifying that when shell‑out is used,
no values are ever read from the Magritte standard input.

However, this places a large burden on the user, who will likely want to simply
type ls ‑l and see results immediately, without worrying about its effect on the
surrounding environment. Indeed, ideally we would not have such shell functions
at all, but integrate a $PATH-based program lookup with the usual function lookup
semantics in the interpreter.

5.3.4 Syntax Distinction
Our final design, which we have not yet implemented, works around the input-stealing
problem by only allowing an external program to use the standard input when it is
directly specified in the syntax, through the use of | or <. In this way, adding a simple
debug statement will never use the standard input, but code such as:

sort %usernames | tr a‑z A‑z

./bin/consume‑data < $channel

would allow the command to have exclusive access to the standard input. While this
may be surprising behavior (as Magritte functions behave differently), we believe that
this is less surprising than the input-stealing problem itself.
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Chapter 6

Evaluation

In this chapter we will revisit the evaluation criteria defined in Section 1.5.

6.1 Magritte for Large Programs
6.1.1 Feature Sufficiency
We showed in Section 4.2 that the semantics of Magritte are sufficient to encompass
many object-oriented programming patterns through the use of environments, as well
as functional programming patterns through the use of vectors, lambda functions,
pattern matching, and tail call optimization.

6.1.2 Example Programs
We further evaluated Magritte by implementing two simple programs.

Primality Test

We implemented the Miller-Rabin primality test [Rabin, 1980] using Magritte (code
included in Section A.1). We selected this example because the standard implementa-
tion is described in a very imperative style, and we wanted to find out if the pipe-based
style was expressive enough to represent this kind of algorithm without resorting to
manual loops. Instead of loops, this code depends heavily on the standard library
function iter, which is defined as:

(iter ?f ?v) = (produce (=> put %v; %v = %f %v))

This function is slightly dense, but in essence, it takes a function ?f and an initial
value ?v, and runs an infinite loop in which it produces the value %v and then mutates
it with the result of calling %f %v. In this way, instead of specifying a loop, we specify
an infinite stream of values that we can map, filter, and limit.

For example, in the function divmod‑twos, we wish to count how many factors of
2 are in a number; i.e., produce r and d such that n = r · 2d. To do this, we use iter
to produce the sequence of pairs (0, n), (1, n

2 ), (2, n
4 ), (3, n

8 ), . . ., then use filter and
get to select the first entry in which the second element is odd. Finally we use for
to unwrap the vector, and result in two outputs, which can be unpacked as r and d,
respectively.

Later, in the definition of test‑prime, we use the builtin function produce, which
simply calls the given function in an infinite loop, to produce an infinite stream
of random numbers, transform them, and limit them by %i. Instead of passing a
function, however, we pass a vector, which when called will execute its first element
as a command, as described in Section 4.2.3.



40 Chapter 6. Evaluation

This code also makes use of the scope of parenthesized expressions to create
a module: a collection of functions with a common closure. In this way, some
helper functions are allowed to be private, and external code can access the two pub-
lic members, test‑prime and gen‑prime, using object access syntax, for example
%miller‑rabin!gen‑prime.

Stateful Server

This module (Section A.2) implements two main functions: server, and send. Through
these three primitives, we implement a looping server similar to an actor (though its
input is synchronous—it has no queue). In this way, we show that semantics similar
to the actor model are possible, and that therefore process abstraction is possible.

The server function makes use of the spawn function, which will spawn a user-
provided command vector. However, rather than inheriting the environment’s input
and output channels, it will create two new channels and immediately return them.
In this way, we can start a program running in the background and interact with it
freely through its input and output channels.

We must be careful, however, that we don’t inadvertently close the channels be-
fore we are done. For example, a process started by server will receive messages
from many different processes, which will immediately return, causing the number of
registered writers to reach 0. Based on the automatic process cleanup semantics (see
Section 3.3.4), this would close the server’s input channel, terminating the server. To
avoid this, we run a background process:

& sleep‑forever > %i

Spawning this process ensures that the read channel of the server can only be closed
by the server (the reading side), since there will always be at least one process that
is a registered writer (even if it never actually performs a write). It will be naturally
interrupted when the server shuts down.

The send method simply creates an anonymous reply-channel, writes a pair of
the message and the reply-channel to the server, and drains the channel—waiting for
the server to write and close the reply-channel. The server function ensures that
the reply-channel will naturally become the standard output of the implementation
function:

([?msg ?reply] => exec (for %fn) %msg > %reply)

We also include an implementation of the same program using Magritte-DSL. Here
we find that not only is the syntax more cumbersome (requiring s { ... } around
most expressions), but also that the problem discussed in Section 5.1.3 arises. That
is, the send method must collect the reply-values into an array and return the array,
rather than simply outputting them normally, as in the Magritte implementation.

We also find that the lack of pattern-matching makes the server implementa-
tion more cumbersome: it must manually destructure the message using ruby’s case
expression.

6.1.3 Discussion
While these two examples cannot be considered “large”, they show that:

• Magritte is capable of basic modularization, namespacing, and private functions,
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• the pipe-based programming style is capable of modeling loop-heavy imperative
code, and

• Magritte is capable of using the pipe-based programming style to emulate some
other concurrent abstractions.

Importantly, these are all difficult or impossible in bash and in most existing shell
languages.

6.1.4 Drawbacks
Debugging

Debugging Magritte code proved to be difficult. Because the default composition
method involves concurrent code, the resulting code is very concurrent and often a
programmer will find themselves facing unexplainable deadlocks or race conditions for
even simple code. This is partly due to the nature of concurrent programming, but
partly also due to the lack of any kind of debugging support in the current system.

We believe that integration with a concurrent debugger such as Kómpos [Marr
et al., 2017], would go a long way towards improving the usability of Magritte for
more complex programs. Such a tool would allow operations like jump-to-read, where
we could trace the flow of a single value through a channel to its reader, or break-on-
channel-operation.

Speed

The current implementation is also very slow. This may be due to the speed of the
Ruby runtime, but there is also overhead involved in using unbuffered channels for
all composition. We believe a new virtual-machine based runtime, as well as support
for multi-read and multi-write operations, could go a long ways towards improving
the performance.

6.2 Magritte for Shell Scripting
Due to the input-stealing problem described in Section 4.4, further work is required for
Magritte to be appropriate for shell scripting. However, we have preserved barewords
(Section 3.2.3) and the basic I/O model and calling convention, so if we are able
to solve the input-stealing problem and implement the marshalling system, Magritte
will be very useful for scripts that combine unrelated programs.

6.3 Magritte as an Interactive System Shell
This use case also relies on the unimplemented UNIX integration. However, we
have preserved the properties of linear composition (Section 3.2.1) and enabled one-
dimensional code (Section 3.2.2), which make REPL use straightforward.

6.4 Discussion
While there are many unimplemented features still required for Magritte to be viable
for its intended use case in real-world applications, we believe that Magritte represents
a promising direction in shell-language design.
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Chapter 7

Conclusion

We propose Magritte as a viable direction for improving shell languages. We will
conclude by summarizing a comparison between Magritte’s pipe system and the tra-
ditional UNIX shell system, followed by outlining possible future directions for this
research.

7.1 Comparison To Bash
7.1.1 Private Variables, Modularization
We showed in Section 6.1.2 that Magritte is capable of basic modularization using
closures. This is a feature that is prominently missing from bash, as we discussed in
Section 2.2.3.

7.1.2 Functional Data Structures
We showed in Section 4.1.4 and Section 4.2.2 that Magritte is capable of programming
with immutable variant data structures and pattern matching. We showed this was
impossible in bash in Section 2.2.1.

7.1.3 Object-Oriented Programming
We showed in Section 4.2.4 that Magritte is capable of basic object-oriented patterns,
and that a planned extension would enable most object-oriented design patterns.
Again, we showed in Section 2.2.1 that this would be impossible in bash, because
there is no way to access heap memory.

7.1.4 Pipe-Based Programming
In Section 6.1.2 we introduced pipe-based programming, a style of programming
in which all iteration is managed by processing streams of data through pipes. We
evaluated this programming style by implementing a fairly imperative algorithm using
no recursion or manual loops, but only generating and consuming values.

We showed in Section 2.2.2 that this is technically possible in bash, up to a limit.
As long as the data is well-behaved and easily separable, pipe-based programming is
a viable way to design bash programs. However, we showed in Section 3.1.1 that as
soon as the data becomes more complex—either concurrently managed or difficult to
separate by a consistent delimiter—the pipe-based approach breaks down, and the
programmer is forced to refactor their code. The consistency of Magritte’s value pipes
ensures that this does not occur in Magritte.
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7.1.5 Interrupt Handling
In Section 3.3.2 and Section 4.3.4 we described a way to define context-sensitive error
compensation to be able to enable the configuration of scoped cleanup actions. We
showed in Section 2.2.4 that the exception method available to bash is not capable
of these features.

7.2 Future Directions
While Magritte has a long way to go to be usable as a robust language, we believe that
the overall design is capable of supporting large programs. The following represent
what we believe are next steps toward the goal of being able to use Magritte in
practical applications.

7.2.1 UNIX Integration
The UNIX integration strategy described in Section 4.4 and has not yet been imple-
mented, and thus has not yet been evaluated from a practical sense. A next step
would be to integrate this idea into the interpreter and test whether it meets the
requirements of Section 3.4.

7.2.2 Debugging Support
Integration with a debugging system such as Kómpos [Marr et al., 2017] would go a
long way toward making the user experience of Magritte less frustrating. Additionally,
many of the subtle bugs and surprising behavior are a result of the instability and
opacity of Ruby’s thread API. Implementing a virtual-machine-based runtime with a
custom scheduler would give much more insight into and control over the runtime.

7.2.3 Feature Completion
Magritte is still missing many features. For concurrency, it is still not possible to
express multi-select, and without this feature it is difficult to implement programs
such as a queue. There is generally a need for much more custom handling of channels.
A planned extension to allow multiple registered inputs and outputs would be a start,
but it is likely that it is necessary to generalize the current concurrency system to
lower-level primitives.

Additionally, direct object delegation remains unimplemented. This feature would
need to be fully designed, implemented, and evaluated on existing object-oriented
design patterns.

7.2.4 Library & Module Support
Once the core language semantics are more or less feature-complete, there remains
much work to be done to provide proper library, packaging, and module support.
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Example Programs
A.1 Miller-Rabin Primality Test
miller‑rabin = (

# Factor a number n = (2^r)*d. Here we generate [r d] pairs,
# incrementing r and halving d each time, detect when d becomes
# odd, and then take and unwrap the first entry
(divmod‑twos ?n) =

iter ([?r ?d] => put [(incr %r) (div 2 %d)]) [0 %n]
| filter ([?r ?d] => is‑odd %d)
| for (get)

# The Miller‑Rabin primality test, using $i random numbers.
# Succeeds if num is probably prime, fails if num is not prime.
(test‑prime ?i ?num) = (

r d = (divmod‑twos (decr %num))

# Check if any of the first r elements in the sequence
# xi+1 = x2

i mod n is equal to n‑1
(test‑sequence ?x) = iter (?x => mod %num (pow 2 %x)) %x

| take %r
| any [%eq (dec %num)]

# Check (r^d mod num) for i random numbers r between 2 and n‑2.
produce [rand‑between 2 (sub 2 %num)]

| each (?rand => mod %num (pow %d %rand))
| take %i
| any (?x => eq 1 %x || test‑sequence %x)

)

(gen‑odds ?start) = produce [rand‑between $start (mul 2 $start)]
| each (?x => incr (mul 2 $x))

(gen‑primes ?b) = gen‑odds $b
| each (?n => iter [%add 2] %n | take (div 2 $b))
| filter [%test‑prime 10]

# output the module
put { test‑prime = $test‑prime

gen‑primes = $gen‑primes }
)

(__main__) = %miller‑rabin!gen‑primes 7 | take 5
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A.2 Stateful Server

# spawns a function in the background, returning its
# input and output channels
(spawn (?fn)) = (
i = (make‑channel)
o = (make‑channel)
& exec (for %fn) < $i > $o
put $i $o

)

# starts a request‑reply server. usage:
# server (?msg => put reply)
(server (?fn)) = (
i o = (spawn %each ([?msg ?reply] =>

exec (for %fn) %msg > %reply
))

# keep the channel alive on the read end
& sleep‑forever > $i

put { request = %i }
)

# sends a message to a server, and waits for
# a reply. output: the reply.
(send ?server ?msg) = (
c = (make‑channel)
& put [%msg $c] > %server!request
drain < $c

)

(__main__) = (
s = (server (

[greet ?x] => str "hello " %x
[die] => crash

))

x = (send %s [greet world])
put $x # => hello world
send %s [greet jneen]
send %s [die]

)
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A.3 Stateful Server (Magritte-DSL)

module Server
include Magritte::Std

ServerInstance = Struct.new(:request)

def spawn(&block)
i = make_channel
o = make_channel
s(&block).into(o).from(i).go
[i, o]

end

def server(&block)
i, o = spawn do

each do |(msg, reply)|
s(&block).into(reply).call

end
end

# keep the channel alive on the read end
s { Thread.stop }.into(i).go

ServerInstance.new(i)
end

def send(server, msg)
c = make_channel
s { put [msg, reply] }.into(server.request).go
s { drain }.from(c).collect

end

def test
s = server do |msg|

case msg[0]
when :greet then put "hello #{msg[1]}"
when :die then crash!
end

end

hello_world = send(s, [:greet, 'world'])[0]
hello_jneen = send(s, [:greet, 'jneen'])[0]
send(s, [:die])

end
end
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Syntax Description

B.1 Overview
We formally describe the syntax of Magritte at three levels: the lexical structure
(tokens), the skeleton syntax tree (skeleton nodes), and the final abstract syntax tree
(AST). We also provide a small grammar detailing the Tokens → Skel phase of the
parse, and a set of pattern-matches which implements the Skel → AST phase.

B.2 Lexical Syntax
B.2.1 Table of tokens

Name Example Description Properties

Special Tokens
eof <eof> end of file eof
nl ;, <\n> newline & semicolon nl, skip

Nesting Tokens
lparen ( left parenthesis nested(rparen), skip
rparen ) right parenthesis continue
lbrack [ left bracket nested(rbrack), free_nl
rparen ] right bracket ‑
lbrace { left brace nested(rbrace), skip
rbrace } right brace continue

Punctuation
arrow => arrow skip, continue
equal = equal sign skip, continue
write_to > output redirect skip, continue
read_from < input redirect skip, continue
d_per %%! compensation skip, continue
d_per_bang %%! uncond. compensation skip, continue
d_amp && conditional and skip, continue
d_bar || conditional or skip, continue
d_amp & spawn operator ‑
d_pipe | pipe operator skip, continue
d_bang ! lookup operator ‑

Variables & Constants
bind ?x variable binders ‑
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variable $x dynamic variables ‑
lex_variable %x lexical variables ‑
intrinsic @!x intrinsics (not in use) ‑
keyword @x keywords (not in use) ‑
num 123, 123.4 numbers ‑
string "foo", 'foo' strings ‑
bare x bare words ‑

B.2.2 Description of Token Properties
Name Description
eof Indicates the end of the file
nl Indicates a newline token (may not be an actual newline).

Should not appear in the skeleton tree.
nested(?token) Indicates a nested pair to the skeleton tree parser. Should

only appear as delimiters in [nested ...] elements in
the skeleton tree.

skip Erase any subsequent nl tokens
continue Erase any previous nl token (implemented by peeking the

next token in the skeleton tree parser)
free_nl For a nesting token, ignore any nl tokens at the top level

The token stream is pre-processed to filter out nl tokens that appear after a token
with the skip property, or before a token with the continue property.

B.3 Skeleton Syntax
B.3.1 Table of Nodes

Structure Description
[root ...?nodes] The root of the tree
[nested ?open ?close ...?nodes] A nested structure surrounded by tokens with

the nested property
[item ...?nodes] A newline-separated “semantic line”
[tok ?token] Any other token

B.3.2 Skeleton Syntax Grammar
The grammar below is included for reference. The implementation is manual recursive
descent. Here we manually specify each nesting token, but in the implementation
this behavior is defined by the nested and free_nl properties of the nesting tokens.
The resulting tree will not to contain any TOK nodes that refer to nl or nesting
tokens.

ITEM ::= (NESTED | TOK)+
NESTED ::= "(" ITEM*:nl ")" | "{" ITEM*:nl "}"

| "[" (NESTED | ATOM)+ "]"
TOK ::= (* all non‑nested, non‑special tokens *)
ROOT ::= ITEM*
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B.4 Abstract Syntax
B.4.1 Description of AST
We describe each node as [NodeName ...?attributes]. Recursive attributes (that
are themselves nodes) are parenthesized. Attributes that are lists of nodes are pre-
sented as [?attr]. Optional attributes are presented as {?attr}. All other attributes
are plain non-recursive data.

Structure Example Description

[Variable ?name] $x Variables

[LexVariable ?name] %x Lexical variables

[Binder ?name] ?x Variable binders

[String ?value] "foo" Strings

[Number ?value] 123 Numbers

[Vector [?els]] [a b c] A vector.

[StringPattern ?value] foo A pattern that matches a
string

[VectorPattern
[?patterns]
{?rest}]

[tag ?value]
~ or ~
[?first (?rest)]

A pattern that matches a vec-
tor, containing sub-patterns.
?rest, if present, must be a
RestPattern.

[DefaultPattern] _ A pattern that matches noth-
ing.

[RestPattern ?name] (?rest) A pattern that matches and
collects the remaining ele-
ments of a vector

[Lambda
?name
[?patterns]
[?bodies]
?range]

(?x = 1; ?y => 2)
~ or ~
(?x ?y =>

...

...)

A lambda expression that
maps a group of patterns
to bodies. ?patterns and
?bodies must be the same
length, and corresponding in-
dices are matched. New
clauses start at the beginning
of lines that contain a => to-
ken. We record an optional
name and source location for
traceback purposes.
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[Pipe
(?producer)
(?consumer)]

produce‑values
| consume‑values

A pipe expression. Nested
left-recursively, so that
a | b | c is similar to
(a | b) | c.

[Redirect
?direction
(?target)]

> $channel
~ or ~
< $channel

A redirection of input or out-
put. Target must be a vari-
able or lexical variable.

[With
[?redirects]
(?expr)]

cmd > $out < $in Redirects inputs and outputs.
?redirects must be a list of
Redirect nodes.

[Or (?lhs) (?rhs)] c1 || c2 Short-circuiting or operator

[And (?lhs) (?rhs)] c1 && c2 Short-circuiting and operator

[Else (?cond) (?rhs)] c1 && c2 !! c3
~ or ~
c1 || c2 !! c3

Specifies an else to continue
a conditional. ?cond must be
an And or Or node.

[Compensation
(?expr)
(?compensation)
?range
?is‑unconditional]

c1 %% c2
~ or ~
c1 %%! c2

Registers a compensation (See
Section 4.3.4). A boolean
specifies whether it is con-
ditional. We also record a
source location for traceback
purposes.

[Spawn (?expr)] & fn Spawn operator: evaluates
the expression in a new
thread.

[Command [?vec]
?range]

cmd arg arg arg A command vector. ?vec may
not be empty. A source loca-
tion is recorded for traceback
purposes.

[Group [?els]] cmd; cmd; cmd A generic group of commands.

[Block (?group)] (cmd; cmd; cmd) A group of commands to be
run in a sub-environment.

[Subst (?group)] foo (cmd; cmd) A group of commands to sub-
stitute with their output

[Environment
(?group)]

{a = 1; b = 2} A group of commands and as-
signments to run, and substi-
tute with the resulting envi-
ronment.
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[Access (?source)
(?lookup)]

$foo!bar
~ or ~
$foo!$bar

Environment lookup. Can be
used as an LValue.

[Assignment
(?lval)
(?rval)]

x = 1
~ or ~
$x = 2
~ or ~
$o!x = 3

An assignment or a mutation.
The semantics depend on the
syntax class of ?lval.

B.4.2 Description of Parsing Rules
We describe the parsing rules (Skel → AST) recursively, using a matching system
similar to Macro By Example [Kohlbecker and Wand, 1987]. Any variable with a ∗

on the left side should be matched on the right side, so that for example F([e∗]) =
[G(e)∗] describes a mapping operation, in which every matched e on the left is
replaced with G(e) on the right. We define the ∗ operator as matching greedily:
that is, it will always match the largest possible number of elements. However, it is
occasionally necessary to indicate whether we search from the left or from the right,
and in this case we will use the symbol ∗? to indicate a non-greedy match. Thus
a∗? b c∗ will find the first pattern that matches b, and a∗ b c∗ will match the last1.
The rules are also listed here in order—in the case that more than one rule applies,
we always select the first one.

Occasionally, for simplicity, we simply write the text representation of a token
instead of the tok skeleton node: for example, we will write && instead of [tok d_and].

Root

Root:
MAG([root e∗]) = GRP(e∗)

Group:
GRP(c∗) = [Group LIN(c)∗]

Assignments & Commands

Spawn: & f $x
LIN([item & v∗]) = [Spawn LIN(v∗)]

Function Definitions: (f ?x) = y z
LIN

(
[item [nested "(" ")" a p∗] = c∗]

)
Assignment: x y = z w

LIN([item l∗? [tok =] r∗]) = [Assign [LV(l)∗] [EXP(r)∗]]
= [Assign [LV(a)] [Lambda [PAT(p∗)] [EXP([item c∗])]]]

And/Or: a && b, a || b
LIN([item c∗? (o : &&|||) d∗])

= ELS(T(o) [item c∗] [item d∗])
where T(&&) = And and T(||) = Or

Else: a && b !! c
1In the actual implementation, we have special matching primitives lsplit and rsplit for this

purpose.
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ELS(o c [item (t|t /∈ {&& ||})∗? !! e∗])
= [Else [o LIN(c) LIN([item t∗])] LIN([item e∗])]

No-Else: a && b, a || b
ELS(o c t) = [o LIN(c) LIN(t)]

Compensation: c1 %% c2
LIN([item e∗? %% c∗])

= [Compensation LIN([item e∗]) LIN([item c∗]) false]
Unconditional Compensation: c1 %%! c2

LIN([item e∗? %%! c∗])
= [Compensation LIN([item e∗]) LIN([item c∗]) true]

Pipe: c1 | c2 | c3
LIN([item l∗ | r∗?]) = [Pipe LIN([item l∗]) CMD(r∗)]

Command: f $x
LIN([item e∗]) = CMD(e∗)

Commands & Elements

With: f $x < $c1 > $c2
CMD

(
e∗? (d : <|>) c)∗

)
= [With [([Redirect d EXP(c)])∗] CMD(e∗)]

Elements
CMD(e∗) = [Command [ELE(e∗)]]

Access: $foo!bar
ELE(e ! n r∗) = [Access EXP(e) EXP(n)] ELE(r∗)

Expr
ELE(e r∗) = EXP(e) ELE(r∗)

Empty Elements
ELE() = ∅

Variables & Constants

Variables: $x
EXP([tok var(n)]) = [Variable n]

Lexical Variables: %x
EXP([tok lex_variable(n)]) = [LexVariable n]

Barewords: foo
EXP([tok bare(v)]) = [String n]

Strings: "foo"
EXP([tok string(v)]) = [String v]

Numbers: 123
EXP([tok num(v)]) = [Number v]

Nested Expressions

Vectors: [a b c]
EXP([nested "[" "]" e∗]) = [Vector [EXP(e)∗]]

Lambda: (x => y; z; w => u)
EXP

(
[nested "(" ")" ([item p∗? => h∗] c∗?)∗]

)
= [Lambda [PAT(p∗)∗] [GRP([item h∗] c∗)∗]]

Example 1:
EXP(SKEL((x => y; z; w => u)))

= EXP([nested "(" ")" [item x => y] [item z] [item w => u]])
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= [Lambda [PAT(x) PAT(w)] [GRP(y; z) GRP(u)]]
Example 2:

EXP(SKEL((x => y; z; w)))
= EXP([nested "(" ")" [item x => y] [item z] [item w]])
= [Lambda [PAT(x)] [GRP(y; z; w)]]

Substitution: (a b c)
EXP([nested "(" ")" e∗]) = [Subst GRP(e∗)]

Environment: {a = 1; b = 2}
EXP([nested "{" "}" e∗]) = [Environment GRP(e)∗]

Patterns

Rest Pattern: ?x ?y (?z)
PAT(e∗ [nested "(" ")" [tok bind(n)]]) =

= [VectorPattern [PTM(e)∗] [Binder r]]
Pattern: ?x ?y

PAT(e∗) = [VectorPattern [PTM(e)∗]]
Binders: ?x

PTM([tok bind(name)]) = [Binder name]
Vector Pattern Terms ([?x ?y (?rest)])

PTM([nested "[" "]" e∗]) = PAT(e∗)
Default pattern: _

PTM([tok bare(_)]) = [DefaultPattern]
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