
Deep Learning based Code Completion with
ASTToken2Vec

AUTHOR: Li Dongfang 17M38058

Supervisor: Masuhara Hidehiko

Tokyo Institute of Technology
Mathematical and Computing Science

July 2019

Abstract

Software development has been a quite complicated job in recent years due
to the complexity of modern software and program systems. In order to
work efficiently, programmers depend on libraries and frameworks to de-
velop software so that the existing excellent source code can be reused to
develop new programs. However, As the software grows huger and includes
more source code, it is difficult to remember all Application Programming
Interfaces (APIs) and every variable name in a software project. To support
programmers writing code more efficient, this thesis focuses on the code com-
pletion system which is one of the most useful features of modern integrated
development environments (IDEs) and able to improve software development
efficiency, reduce the possibility of writing errors. When a programmer types
code, a good code completion system provides a list of completion suggestions
with high predicting accuracy and inserts suggestion code automatically to
enable the software development becoming faster.

Most of traditional code completion systems are based on statistical tech-
niques which have a not good performance and fails to predict tokens in
the long term program context. In this thesis, we attempt to increase the
prediction performance of deep learning-based code completion systems by
introducing a new embedding method(a vector representation method) for
AST nodes. This new embedding model is called ASTToken2Vec which is in-
spired by Word2Vec embedding. This model trains a neural network by using
the context information in ASTs to generate semantic-based representation
vectors which contain more semantic knowledge for AST nodes and valuable
for code completion. We name our model as AT2V-LSTM integration model
which means we integrate our embedding method ASTToken2Vec with an
LSTM model to predict both program text(next non-terminal and terminal)
and structural components of non-terminal nodes. Our model is able to ex-
tract more AST structural information by ASTToken2Vec embedding and
take advantage of the sequence of program tokens by LSTM model.

We evaluate the prediction performance of our integration model on a
JavaScript AST dataset generated from open-source programs which contains
a total of 150,000 JavaScript files. Our model achieves a good performance of
the next token prediction with the help of the semantic-based representation
vectors generation by ASTToken2Vec model.

Contents

1 INTRODUCTION 5
1.1 Motivation . 5
1.2 Research Problems . 6
1.3 Deep Learning Methods . 7
1.4 Our Work . 8

2 BACKGROUND 11

3 PRELIMINARIES 16
3.1 Data Format . 16

3.1.1 Source Code Text . 17
3.1.2 Sequence of Tokens . 18
3.1.3 Abstract Syntax Tree 18

3.2 Data Processing for the LSTM Model 22
3.2.1 AST to Sequence Conversion 22
3.2.2 Conclusion . 25

3.3 AST Reconstruction . 27
3.4 Identifiers Renaming . 30

4 ASTToken2Vec EMBEDDING 33
4.1 Data Represention . 33

4.1.1 One-hot Encoding . 34
4.1.2 Embedding Representation 34
4.1.3 Word2Vec Embedding 35

4.2 AST Nodes Embedding . 36
4.2.1 Contexts of Non-terminal Tokens 38
4.2.2 Contexts of Terminal Tokens 40

4.3 Data Processing . 41

1

4.4 Model Structure . 42
4.5 Joint Loss Function . 44
4.6 Conclusion . 46

5 LSTM INTEGRATION MODEL 47
5.1 Recurrent Neural Network . 47

5.1.1 Long Short Term Memory(LSTM) 48
5.2 LSTM for Code Completion 49

5.2.1 Model Structure . 50
5.2.2 Conclusion . 53

5.3 Integration . 54
5.4 Conclusion . 54

6 EXPERIMENT 56
6.1 Dataset and Data Processing 56

6.1.1 Dataset Details . 56
6.1.2 Data Processing . 58

6.2 Experiment of ASTToken2Vec 59
6.2.1 Training details . 59
6.2.2 Visualization . 60
6.2.3 Similarity Calculation 62
6.2.4 Conculsion . 63

6.3 Experiment of AT2V-LSTM Model 63
6.3.1 Training details . 64
6.3.2 Next Token Prediction 64
6.3.3 Prediction Analysis . 67
6.3.4 Conclusion . 69

7 CONCLUSION 70
7.1 Summary . 70
7.2 Future Research Directions . 72

2

List of Figures

1.1 Code completion in Eclipse . 6
1.2 Overview of ASTToken2Vec LSTM integration model 10

3.1 A JavaScript ’loop statement’ and its AST format 20
3.2 One AST sample of a JavaScript code snippet 21
3.3 Training samples generated from a toy non-terminal binary tree 25
3.4 The complete binary tree of JavaScript ‘loop printing’ code

snippets . 27
3.5 (1) is a toy complete binary tree and (2) is the sequence of

samples generated in terms of AST processing regulations . . . 29
3.6 AST reconstruction from a sequence 30
3.7 Identifier renaming . 31

4.1 Non-terminal and terminal context for nodes. (1) is the con-
text for non-terminal nodes, (2) is the context for terminal
nodes . 40

4.2 model structure for ASTToken2Vec. (1) is the structure of
NT2V, (2) is the structure of TT2V 44

5.1 The structure of NTI2P model 51

6.1 The visualization for the 2-D terminal representation vectors
generated by ASTToken2Vec 62

6.2 Validation accuracy for non-terminal prediction during the
training phase . 65

6.3 Validation accuracy for terminal prediction during the training
phase . 66

6.4 Code snippets for prediction result analysis 68

3

List of Tables

3.1 Training samples generated from the AST representation com-
plete binary tree in the figure3.4 26

4.1 Training samples for NT2V model 42
4.2 Training samples for TT2V Model 43

6.1 Dataset . 57
6.2 Non-terminal Evaluation Accuracy 66
6.3 Terminal Evaluation Accuracy 66
6.4 Node Information Evaluation Accuracy 66

4

Chapter 1

INTRODUCTION

1.1 Motivation

With the rapid development of the software industry, modern software has
become much more complex and huger in recent years. The development
of software depends on the existing excellent source code like frameworks
and libraries. For many programmers, it is very difficult to remember every
Application Programming Interfaces(APIs) to call the existing functions and
every variable which has been specified. Software development has become
hard work due to this complexity. In order to overcome this problem, more
and more programs begin to write source code with modern Integrated Devel-
opment Environments (IDEs). A good IDE is able to integrate interpreters,
compilers, servers and other tools together so that it can help programmers
writing code and developing software more efficient with a low possibility of
bugs and errors. Code completion systems play a significant role in mod-
ern IDEs which are used by most programmers. These systems can help
programmers writing code faster and more correct. Code completion has be-
come an indispensable tool in IDEs. An effective code completion system can
predict what kind of code will be written and generate a code suggestion list
for programmers when they are writing some code. It can predict the next
method names, APIs and even next variables programmers want to write in
real-time. Figure1.1 shows a code completion system in Eclipse for Java. In
this example, code completion system is going to predict what kind of code
the programmer wants to write according to the existing information of the
program.

5

Figure 1.1: Code completion in Eclipse

1.2 Research Problems

Traditional code completion systems pay attention to the aforementioned
context of the source code, they are able to scan all libraries and classes
which are included and imported by current programs and analyze the static
and syntactic methods and variables to do prediction and suggestion. Pro-
grammers do not need to write down all code because some code can be
predicted and inserted by code completion systems. This is the reason why
code completion can substantially accelerate software development and im-
prove programmers’ efficiency. But this traditional code completion system
has some problems that it is not intelligent, the code it suggests only de-
pends on the statistical information generated from libraries. This statistical
method is based on simple term frequency statistics which often relatively
and brittle have a higher error rate which means some crucial information
such as common structural idioms and the names of currently scoped vari-
ables would be ignored and cannot be used to predict code even it is a very
significant influence on the completion. Traditional systems can not ana-
lyze the existing code but only can gather statistical information so that the
prediction is hard to depend on the context of the program in real-time.

Another problem of the traditional code completions is that most of
the systems rely on strong typing information (like Visual Studio for C++,
Eclipse for Java) to give a strict restriction to complete code for a high pre-

6

diction accuracy, however, the dependency on typing information limits their
applicability to widely used in dynamically typed languages like Python and
JavaScript programming languages. Basing on statistics and the reliance on
typing information, both of these two problems limit the usage of the code
completion. In order to solve these problems and increasing the usability
and accuracy of code completion systems, people try to find a better way to
predict next code programmers want to type and increase the efficiency of
code completions especially the prediction performance of accuracy.

1.3 Deep Learning Methods

Deep learning techniques, also known as part of machine learning methods
based on hierarchical artificial neural networks, develop rapidly in recent
years. Deep neural networks are inspired by the discovery of information
processing in biological systems especially the working mechanism of hu-
man brains. Deep learning has made great achievements in many fields
and becomes more and more potential for handling existing tremendous
data. The representative deep learning models like convolutional neural
networks(CNNs) are much more powerful handling images data than any
other existing methods to solve image-related tasks like image recognition
and picture segmentation. Rather than the strength of image comprehen-
sion abilities, recurrent neural networks(RNNs) achieved an excellent perfor-
mance in the natural language processing (NLP) field like sentences predic-
tion or speech recognition. One of the typical RNNs, the long-short-term-
memory(LSTM) model are even better than human beings of the abilities to
understand natural languages.

The LSTM model[1], which is widely used in sequence data like natu-
ral language sentences, leverages memory structure and gate operations to
understand the crucial knowledge hidden in the given sequence data. With
‘cell’ memory structure, LSTM models are able to store information over a
very long time which plays a significant influence on the following predic-
tion. By defining three operation gates: forget gate, update gate, output
gate, they not only can forget some useless information intelligently of prior
input data but also are able to record more meaningful information inputted
in the present moment. With the help of this ‘cell’ structure and three oper-
ation gates, LSTM models make a great achievement on capturing the useful
information of the input of sentences sequence and predict the next words

7

by the storing information in natural languages processing tasks.
Due to the success of the usage of LSTM models in natural languages sen-

tences, people consider applying these models to the research of programming
environment like code completion systems because of the similarity between
natural languages and programming languages. Concretely, a programming
language is able to be considered as a special language just with more seman-
tic and syntax restrictions. Programmers write source code in a code file, just
like people write natural sentences in a text. In this case, a programming
language is a special natural language, program expressions are similar to
natural sentences and code files can be considered as natural language text
files. Due to this similarity, it is evident that recurrent neural networks are
also available to programming languages tasks like code completion and may
have an exciting performance on the prediction of code. With the help of
applying the RNNs to programming languages, we can gain insight into code
structure, locality, and latent information and extract the deeper semantic
and idiomatic meaning of the code easily which are unavailable to traditional
statistic-based code completions systems.

1.4 Our Work

There has been some research about applying deep learning to code com-
pletion. These deep learning-based code completion models give a better
performance of predicting next tokens. These works show that the usage of
deep learning to complete code is available and worth to have a try. They
also indicate that it is valuable to digging into deep learning-based code com-
pletion systems deeply to improve the prediction performance of next tokens.
However, most of existing deep learning used code completion leverages a ba-
sic LSTM model to predict code rather than a totally special new proposed
method for code completion. For example, the representation vectors for
tokens used in LSTM models are randomly initialized comparing with the
embedding methods for natural languages like Word2Vec[2] which are able
to generate semantic-based representation vectors. Embedding methods, like
the name of them, are used to represent discrete variables as continuous vec-
tors. This technique is practically applied in many areas especially word
embeddings for natural languages processing. Word2Vec, one of the most
widely used word embedding methods, trains a neural network with a single
hidden layer to generate the representation vectors of words which is more

8

meaningful and semantic-based than random initialization and improves the
performance of word-based tasks.

In this work, we explore the embedding method for nodes in abstract
syntax trees(ASTs) to improve the prediction performance of code comple-
tion. We propose an embedding method called ASTToken2Vec which is
inspired by the idea of Word2Vec. the ASTToken2Vec model is just simi-
lar to Word2Vec, trains a neural network with the context information of a
node in an AST and able to generate the embedding representation vectors
for AST nodes. These representation vectors are semantic and syntax-based
and contain more knowledge hidden behind ASTs. We consider this ASTTo-
ken2Vec model as a pre-trained model and use the AST nodes representation
vectors to initialize the vectors fed in LSTM models. We integrate this AST-
Token2Vec model and an LSTM model for the prediction of the next token.
We evaluate the performance of our integration model with a JavaScript AST
dataset[3] collected from open-source programs containing a total of 150,000
JavaScript files. In the experiment, we convert the ASTs in the dataset to
sequences of training sample and feed these samples to our integrated model
to predict next tokens in the given sequence. The way to convert ASTs
in the previous work proposed by Chang Liu et al.[4] is, first, an AST is
transformed to a left-child-right-sibling(LCRS) binary tree, and then, a deep
first in-order traversal is applied in this binary tree to generate a visiting
sequence of training samples and each training samples contains two tokens:
non-terminal, terminal. We extend the AST transformation in the previous
work, the way to process ASTs we use is similar to the previous work but
a little bit different. We build our LCRS tree as a complete binary tree by
padding special non-terminal token and our training samples contain four el-
ements: non-terminal, terminal, nonleaf-or-leaf, right-or-left. The extended
two bits of information is used to reconstruct the AST from the prediction
sequence easily. The first bit is whether the non-terminal token is a leaf node
or a nonleaf node in the LCRS complete binary tree, and the second bit is
whether the non-terminal token is the right child of its parent node or left
child. The overview of our model illustrates in Figure1.2

In the experiment, we evaluate both ASTToken2Vec embedding method
by representation vector visualization and ASTToken2Vec LSTM integrated
model for the prediction of next tokens with the same JavaScript AST
dataset[3]. We also analyze in which case, our integrated LSTM model
is more possible to give the correct prediction of the next terminal token.
From the result of the evaluation, we draw a conclusion that the represen-

9

Figure 1.2: Overview of ASTToken2Vec LSTM integration model

tation vectors generated by ASTToken2Vec model are semantic-based and
ASTToken2Vec could be used to improve the performance of the next to-
ken prediction as a pre-trained model for ASTToken2Vec LSTM integrated
model.

10

Chapter 2

BACKGROUND

Due to the obvious advantages of code completion systems, there is more and
more research about code completion to improve its performance in recent
years. Hindle et al.[5] explore how to use a widely adopted n-gram statistical
language model for code completion and provide empirical evidence which is
able to prove that programming language code is even more repetitive than
natural languages. Their work improves the complete capability of exciting
completion engine for Java in Eclipse. Nguyen et al.[6] propose generative
models of natural source code with hierarchical structure and a distributed
representation of source code element. They also leverage compiler logic
and abstractions to improve their generative models. Tung et al.[7] extends
the state-of-the-art n-gram approach by incorporating semantic information
into code tokens. Their model is called SLAMC, a novel statistical semantic
language model for source code which is able to model the regularities of
programming languages. These three works are based on the n-gram model
which enable to show that the n-gram model have a great predicting perfor-
mance of code suggestion and completion.

Comparing with n-gram model, a probabilistic programming language
grammar-based method[8] is proposed to extract code idioms from the exist-
ing written code files in software projects in 2014 by Allamanis et al. They
present a statistical nonparametric Bayesian probabilistic tree-based system
for mining code idioms. With the semantically meaningful resulting-idioms
of this system, programmers can write idiomatic code more efficient or use
libraries which programmers may not be familiar with. In 2015, Allamanis et
al.[9] extends their model[8] with a similarity embedding method which can
extract more semantic information about the tokens. Their extension work

11

is more about method naming problem and the suggesting name for classes.
Liang et al.[10] focus on learning programs for multiple related tasks with a
few training samples for each learning task. They propose a nonparametric
hierarchical Bayesian model which is able to share the statistical information
across multiple tasks for code completion.

Bielik et al.[11] introduce a generative model for code. This model is
called probabilistic higher-order grammar (PHOG) which is able to capture
the rich context information between tokens by allowing conditioning of a
production rule. Raychev et al.[12] explore how to apply the decision tree to
learn a general probabilistic model of code. They create a domain-specific
language(DSL) over abstract syntax trees(ASTs) called TGEN which is able
to encode an AST to a specific language context and be fed into the decision
tree. They also propose a special decision tree called DEEP3 which can
make predictions about new programs leveraging the dynamically computed
context in the ASTs encoded by the TGEN model.

In the recent year, deep learning-based models have a great achievement
in both industries and research area, especially RNN models[13] for natural
language processing tasks. However, due to the problem of gradient vanishing
and long-term dependencies, traditional RNN models do not work well in
some cases like the current prediction depend on the far previous information.
Hochreiter et al[1] proposed a special variant of RNN models which is called
the long short term memory model(LSTM) with a special cell hidden state
and three operating gates. The LSTM model enables RNN models to work
better and two main problems of RNN model are solved well by it. This model
is widely used in sequence-structure data like natural languages, speeches,
and videos and achieves a great performance in many tasks. Due to the
success of LSTM model and programming languages can be considered as
peculiar kinds of languages just with more syntax constraints comparing
with natural languages, source code files are same with languages texts in
many ways. Tokens in a code expression can be regarded as words in a
natural sentence. Applying deep learning models to handle the source code
and predict the next tokens as suggestion attracts increasing interest recently.

Raychev et al.[14] explore how to apply RNN models to facilitate the task
of code completion. They address the synthesizing code completions problem
with APIs. and compare several statistical language models like n-gram.
However, their work focus on training an RNN model with token sequence
data and applying this trained model to predict next tokens based on the
abstract object input of all prior context. Although with token sequences

12

data, it is much more direct and easier to apply RNN models to predict
for code completion, the token sequences contain less structural information
of source code file which is very useful and necessary for the prediction of
tokens. Structural information of a source code file which is expressed as an
abstract syntax tree contains significant knowledge about language syntax
and language semantics. If an RNN model leverages this information in
ASTs rather than learning from sequences of token directly, it can be trained
better by the structural information in the AST training dataset and may
achieve a better performance than a token sequence-based dataset. White et
al.[15] propose two particular deep learning models and show the effectiveness
of these two models on a corpus of Java projects. Nevertheless, same with
research by Raychev[14], these two exploratory research works only consider
the usage of sequences of tokens as the dataset but hard to leverage the
structural information contained in ASTs directly.

Chang et al.[4] propose several LSTM-based models for code completion
with an AST dataset. They leverage the ASTs by transforming the original
AST to a sequence of training samples. They convert ASTs to a left-child-
right-sibling tree which is a binary tree, and the in-order deep first traversal
is applied on this binary tree so that a traversal visiting sequence can be
generated. Each element in this sequence is a training pair which contains
two tokens: a non-terminal token and a terminal token. Training pairs in
the sequences are fed into several variants of LSTM models, and trained
LSTM models are able to predict the next non-terminal and terminal to-
kens. Their work gives us inspiration about how to convert an AST to a
sequence and how to train an LSTM model with AST dataset. However,
The representation vectors of tokens are initialized randomly rather than
embedding representation methods are applied which are widely used in nat-
ural language processing tasks as a pre-trained model like Word2Vec[2]. This
is what we want to extend in our work, an embedding method which is able
to generate syntax-based representation vectors for both non-terminal and
terminal tokens.

In recent years, program generation with deep learning models has at-
tracted great attention. The target of program generation tasks is to gen-
erate a meaningful sequence of code just like “there is a machine writing
programs intelligently and automatically”. Program generation tasks are
similar to code completion in the theory, both of these two research try to
leverage the previous contexts and complex structure of source code. Know-
ing research about program generation may inspire our code completion.

13

Matthev et al.[16] propose a deep learning-based model called neural at-
tribute machines(NAMs) which is a logical machine for program generation
in 2017. This model is able to learn the rules and constraints of the program-
ming languages’ grammar. With the specification of context-free grammar
extended by attaching attributes to the non-terminal tokens’ and terminal
tokens’ symbols, NAMs model can extract the constraints of the underly-
ing grammar and integrate these constraints with RNN models to generate
source code with a lower grammar error. This idea is quite instructive to
our code completion tasks. By specifying the attributes grammar (AG) and
integrating its language’s constraints with RNN model, the code suggestions
would have a lower possibility of grammar error. However, the grammar
constraints machine limits the application scope of our code completion. A
basic deep learning-based code completion system is able to be applied in all
programming languages. If grammar constraints of a special programming
language (e.g. Java, C++, etc.) is employed in code completion models,
these models can only work for this special programming language. It loses
its extensive application.

Due to the similarity between programming languages and natural lan-
guages, the research about using deep learning for natural language process-
ing tasks also needs the people who research learning model-based code com-
pletion to pay attention to. For example, Tomas Mikolov et al.[2] propose an
embedding model which is called Word2Vec to generate the semantic-based
embedding representation vectors for words in natural sentences. Word2Vec
model is widely used in most natural language tasks and has a good achieve-
ment of performance improvement. It also gives people many ideas to explore
how to represent the original data in a better way. Our embedding model
for AST nodes is also inspired by this pre-trained model.

Another research direction of natural language processing which may give
us inspiration is the extension of basic LSTM models. The traditional LSTM
models are chain-structured models so that they can be applied in a sequence-
like dataset which is the most frequent data format of natural language pro-
cessing tasks. The input of traditional LSTM models is a sequence and the
output of them is also the elements in the feeding sequence. The exploration
of LSTM models’ structure gives us the idea about how to invent variants
of LSTM models to expand a more wider scope of their applications. For
example, KaiSheng Tai, et. al.[17] propose a tree-structured LSTM model
to improve the semantic representations of natural languages. In their pa-
per, they expand the basic chain-structure LSTM model to a tree-structure

14

LSTM. In their model, each unit at every moment would have more than one
input rather than only single input of traditional models, these inputs are
the calculation results of its children units. In this way, A tree-structured
LSTM model is created and it can make use of the syntax tree of natural
language directly. From their experiment, this tree-based model can discover
more implicit semantic knowledge hidden behind the natural language sen-
tences. Due to the improvement of the input structure of LSTM models, this
tree-structured model can be applied in many tree-based datasets not only
syntax trees of natural languages and is able to increase the performance of
effectiveness. Due to the programs written by programming languages can
also be parsed to an abstract syntax tree, it is worth to explore whether it is
possible to apply tree-structured LSTM models to code completion system
with an ASTs dataset.

15

Chapter 3

PRELIMINARIES

In this chapter, we first discuss the advantages and disadvantages of each
data format we use as the dataset in our code completion models especially
abstract syntax tree(AST), the main data format in our dataset. Second, we
introduce how to convert an AST to a sequence of training samples which is
able to be fed into an LSTM model. The transformation we employ is inspired
by the previous work proposed by Chang et al.[4]. We extend their work
about AST transformation so that our transformation is much friendly for
the AST reconstruction from the predicting sequence. The training samples
in the sequence is also different from training pairs in the previous work by
adding two more bits of information about the non-terminal token. Then, we
explain how to reconstruct an AST from the predicting sequence with two
bits of information in each training samples. We use an example to illustrate
the AST format of a program, how does its left-child-right-sibling binary tree
look like and all the training samples generated from this program. Finally,
we propose a trick named identifier renaming to improve the performance of
the next identifier prediction.

3.1 Data Format

Using the different format of programs as the dataset has a significant in-
fluence on the performance of deep learning-based code completion system,
choosing a favorable type of data can make the code completion system work
more efficient or have a better accuracy performance. There are several kinds
of the code format like source code text, sequences of tokens and AST. As

16

for code completion tasks, all of these three formats are available and worthy
to have a try. In this section, we will introduce several kinds of code format
and discuss the shortcoming of each format. We will also explain the reason
why we choose AST as the main data format in our dataset.

3.1.1 Source Code Text

Source code texts are the most common and straightforward format of pro-
grams, they can be used as a training dataset for learning based code comple-
tion directly. The benefit of using source code texts is that they are the most
basic format of code files which means the source code text-based dataset
can be collected from online repositories easily, and there are no need of lex-
ers, parsers or other interpreter tools to create a dataset for learning models.
Another good point of source code texts usage is that it is very easy to feed
texts to an LSTM model because of their sequence structure. There is no
other necessary processing of data and models. After the model is trained
well, during the use phase, it can be used to predict next code program-
mers want to write in a real-time directly. Because of the simple sequence
structure of source code texts, Using them as the data format is the easiest
way to complete code with deep learning models. Nevertheless, it is plain
work to find the obvious disadvantage of source code texts usage. Because of
its simplicity, code texts do not contain enough information about program
files which, however, has a significant influence on the performance of code
completion. For example, a source code text is just a sequence of token pro-
grammers type, there is no program analysis(lexers or parsers) applied on
this original text to attach some information about each token like the type
of tokens (identifier, literal-string or other types) or the structure information
of code snippets which can be obtained from the AST generated by parsers.
But both of these two information plays a significant role in predicting the
next codes.

Due to the lack of type information of token and structural information
of programs, most of deep learning-based code completion systems do not
use source code texts as the data format of the dataset even they are the
easiest way to implement. In our model, we also discard the idea of using
source code texts.

17

3.1.2 Sequence of Tokens

For the most modern compilers, there are several steps to process code after
programmers write down the source code as a text so that the program can
be checked and executed by computers. Lexical analysis is the first step to
analyze code, it is a process of converting a source code text into a sequence
of tokens. The tool that performs the lexical analysis is called a lexer. The
output of a lexer is a sequence of tokens and the elements in it are not simple
tokens but contain the type information of tokens themselves. Lexers can
analyze what kind of type a token belongs to and enclose it to each token
to create a type-labeled token in a sequence automatically. This type of
information contains more semantic knowledge of code which is serviceable
to enable code completion systems to predict the next code more precisely.
Choosing the sequence of tokens as the data format of the dataset for deep
learning models is a better idea than source code texts usage due to the lexical
token contains type information which we can be sure that it would help
deep learning models achieve a better performance of the code completion
task. Another advantage of lexical token sequences is that it is still sequence-
structure which means they are easy to be applied to the LSTM based model
without too much change of the model structure.

In order to use the sequence of tokens as the dataset, we first need to
covert the source code texts to sequences of tokens to train models. After
models predict the next tokens in the input sequence, this sequence is con-
verted back to a source code text to give an intuitive suggestion result for
programmers. The shortcoming of lexical token sequences is similar to source
code texts, sequences of tokens only have type information analyzed by lex-
ers but still do not contain structural information of code snippets. This
information covers some more available knowledge like programming syntax
restriction and language grammars which is more useful for deep learning-
based code completion systems. Due to this shortcoming and the goal of
code completion performance improvement, we do not use the sequence of
tokens as our data format of dataset either.

3.1.3 Abstract Syntax Tree

After lexers convert the source code text to a lexical token sequence, parsers
in compilers could receive the sequence of tokens created by lexers as the
input and convert it into an abstract syntax tree(AST) with the unambiguous

18

context-free grammar of programming languages. An AST is a tree data
structure which is able to represent the abstract syntactic of the source code.
It is usually considered as the result of the syntax analysis phase of a compiler
and it contains rich structural information about the source code due to
its hierarchical tree structure. This information makes it is widely used in
program analysis and program transformation systems.

AST is a tree abstract data structure which represents structural, content-
related details about the syntax and grammar of the given programming
language. There are two kinds of the node in an AST, non-leaf node and
leaf node, and each node in the AST denotes a construct token in the source
code.

A non-leaf node has a children list which represents all its children node
of the non-leaf node. Each non-leaf node corresponds to a non-terminal
token in context-free grammar specifying information in a program. For ex-
ample, in JavaScript, a non-terminal token could be “FunctionDeclaration”,
“VariableDeclarator”, etc. These non-terminal tokens declare what kind of
functions or variables specified in the program. Other kinds of non-terminal
tokens contain more knowledge about the structure and logical judgment of a
program like “ForStatement”, “IfStatement”, “WhileStatement”, etc. A leaf
node does not have any children node which corresponds to a terminal in the
context-free grammar of a programming language. It is always called a ter-
minal node which represents code text and contains more knowledge about
the content of a program. In JavaScript, for instance, the type of terminal
tokens could be “LiteralString”, “LiteralNumber”, “Identifier” etc. Due to
programmers can specify any string and numerical literals or variable and
function names in a program, it is obvious that there are infinite possibilities
for terminal tokens.

Figure 3.1 illustrates a simple JavaScript source code snippet, it contains
a loop statement and will print “Hello World” for three times. The corre-
sponding sequence under this code snippet is its AST format representation
generated by a parser. Each element in the sequence represents a node in
the AST. From this figure, we can find it is definite that each node at least
has two elements: the index of the node and its type information no matter
it is a non-terminal or terminal node.

A non-terminal node has a children node list which is an array of integers
denoting the index of all its children node. For example, the second node is
a “ForStatement” and it has four children nodes which are listed as “[2, 5, 8,
10]”. One thing to emphasis here is that not all non-terminal tokens have a

19

children list. For instance, “BreakStatement” and “ContunueStatement” do
not have any children nodes but they are non-terminal tokens in terms of the
context-free grammar of JavaScript language. Other kinds of non-terminal
tokens may have a children node list and sometimes may not have it like
“ReturnStatement”.

A terminal node, on the contrary, does not have any node as a child.
Furthermore, all terminal nodes have a “value” element to represent the
value of the node. For example, the seventh node in the sequence is an
identifier and value of this node is “i” which is the name of this identifier.
Figure 3.2 is the visualization of the sample AST in Figure 3.1. In this tree,
a node without a surrounding box (e.g. ForStatement, VariableDeclaration,
etc.) denotes a non-terminal node. A terminal node (e.g. LiteralString,
Identifier, etc.) is surrounded by a box.

Figure 3.1: A JavaScript ’loop statement’ and its AST format

ASTs are the data format which is the most widely used in the tradi-
tional code completion engines. The Advantage of ASTs is pretty apparent:
they contain a wealth of knowledge about the tokens and structure in the
source code. An AST node contains ’type’ information and ’value’ informa-
tion which can represent the content of tokens in the source code. And the
position of the node denotes the structural information of code snippets, es-
pecially non-terminal nodes. Is it a terminal token or a non-terminal node?

20

Figure 3.2: One AST sample of a JavaScript code snippet

how many children nodes does it have? What is the type of its parent node?
All of this information is particularly useful in code completion tasks and can
help deep learning models discover more implicit knowledge hidden behind
the source code. Information given by ASTs is extremely important to help
our deep learning-based code completion system to improve the performance
of the next token prediction.

However, even the deep learning models for code prediction tasks can
benefit from the extensive knowledge if the training dataset is composed of
ASTs, the disadvantages of the AST is also obviously. First, we need to pay
attention to the way to convert ASTs to sequences structure if we want to
use ASTs as the training dataset. The reason for this transformation is that
LSTM models are a sequence-based model which means the input and the
output of them should be sequence-like data. However, an AST is just like its
name, it is a tree structure and can not be fed into LSTM models directly. It
is necessary to consider how to convert an AST to sequence-like data without
losing too much structural information in the AST. Another shortcoming of
ASTs usage is that ASTs are much more complex than both source code
texts and the sequences of tokens. The generation of ASTs needs parsers
in compilers. Different parsers generate the different format of ASTs which
cause the way to convert ASTs to sequences also need to be changed at the
same time and this change has a significant influence on the performance of

21

code completion. Finally, AST based deep learning code completion models
cannot predict next token appearing after the current given code snippets
directly. They can only predict the next elements in the sequence which is
generated from an AST. So, the way to reconstruct an AST for this predicting
sequence effectively and easily is also a question we need to handle if the AST
dataset is used.

Even the shortcoming of ASTs usage is obvious because of their com-
plex processing and parsers dependency. We still use ASTs as our dataset
for our deep learning-based code completion system due to ASTs contain
rich structural information. And the goal of our code completion system is
the improvement of the code suggestion accuracy, we believe that the syn-
tax knowledge hidden behind ASTs enables the system to achieve a better
performance of code completion.

3.2 Data Processing for the LSTM Model

There are two parts of our code completion system and each part is a neural
network model. A pre-trained embedding model called ASTToken2Vec which
is introduced in the chapter4. A LSTM based model for code completion
which is introduced in the chapter5. Both of these two models need a dataset
to train. Due to the obvious advantages of ASTs, the format of our data is
AST so that the rich structural information of source code can be used by
our models. However, ASTs are tree structure and hard to be fed into either
the LSTM model and ASTToken2Vec model. In this section, we explain
how we convert the original ASTs to sequences of training samples for the
LSTM model as the training dataset. The way to process ASTs to a huge
set of training samples for ASTToken2Vec model training is declared in the
ASTToken2Vec chapter4.

3.2.1 AST to Sequence Conversion

Due to ASTs are tree structure, in order to apply the chain-structure LSTM
model in our code completion system, the first step of data processing is to
convert the AST, a tree-like structure, to a sequence. We extend the way
this transformation proposed in the previous work[4]. An AST is a multi-way
tree structure, so we first convert the original AST to a left-child-right-sibling
(LC-RS) tree which is a binary tree. During this conversion, we only consider

22

non-leaf nodes(also means non-terminal nodes) to build the LC-RS binary
tree and leaf nodes(terminal nodes) only serve as an element in its parents
non-terminal’s children list.

The process of converting an AST, a multi-way tree, to an LC-RS binary
tree works like this: first, using the root node of the original AST to create
the root of the new binary tree. The root node of an AST is always a non-
terminal node in terms of programming languages’ grammar. Then, starting
with this root, given a non-terminal node, its leftmost child in the original
tree is used to make the left child of the given non-terminal node in the new
binary tree, and its nearest non-terminal sibling to the right in the original
tree is made the right child of the given non-terminal in the binary tree.
During this binary tree build process, we ignore all terminal nodes and only
record them as a children list of the element of their parent’s non-terminals.

In the converting way described above, an AST can be converted to a
binary tree. Next step, we build a complete binary tree based on generating
LC-RS tree. For each non-leaf non-terminal node in the LC-RS tree, if it
only has one non-terminal child node(either right child or left child), we give
it a special non-terminal node NT-EMPTY leaf node to make sure all of
the non-terminal nodes in the LC-RS tree have either two non-terminal child
nodes or do not have any child nodes as leaves in the tree. For instance, if a
non-terminal node in the LC-RS tree only has a right child node, we give it a
NT-EMPTY non-terminal node to represent its left child. On the contrary, if
a non-terminal node only has a left child node, we pad a right NT-EMPTY
child node to make sure this binary tree is a complete binary tree. The
reason why converting a general LC-RS binary tree into a complete binary
tree is that it is much easier to reconstruct the AST from the predicting
sequence with this NT-EMPTY node padding method. We declare the way
to reconstruct AST with more details in the next section.

A complete binary tree is generated from the transformation above. In
order to obtain a sequence, we apply a deep-first in-order traversal on this
binary tree. When a non-terminal node in the binary tree is visited, we con-
sider this visited node as the target non-terminal node and scan the children
list of the target non-terminal to generate n training samples as the elements
in the generation sequence on the basis of this target non-terminal node. n
is equal with the number of children terminal nodes this visited non-terminal
node has. If the target non-terminal node does not have any terminal child,
we give a specified terminal node TT-EMPTY as its child terminal node.
After all non-terminal nodes in the binary tree are visited, a traversal se-

23

quence is generated to build the dataset for deep learning model as the input
of our deep learning model for code completion.

There are four elements in one training sample, the first two elements
are about the content knowledge of ASTs: a target non-terminal token and
a child terminal token of it. The last two elements are used to describe
the structural information of the target non-terminal token: node-or-leaf
and right-or-left. Both of these last two elements are bits information
which means there are only two possible values of them: 0 or 1. “node-or-
leaf” is used to declare whether the target non-terminal node is a leaf in
the complete binary tree or not. 0 represents leaf which means there is no
non-terminal child node and 1 represents it is not a leaf in the tree. The
fourth-bit element is “right-or-left” which is used to represent the position
relationship between the target non-terminal node and its parent node. If
the target non-terminal node is the right child of its parent non-terminal
node, 0 is labeled to “right-or-left”. If the target non-terminal node is the
right child of its parent non-terminal node, “right” will be labeled. On the
contrary, the value of “right-or-left” is 1 if the target non-terminal node is
the left child of its parent node.

So, the structure of a training sample looks like this: (non-terminal, ter-
minal, node-or-leaf, right-or-left). From the perspective of the model predic-
tion, these four elements are fed into the deep learning model every training
moment and the model makes predictions about the elements in the next
training samples in the inputting sequence. There are two different points
with the way to process AST data described in the previous work[4][18]. We
not only convert an AST to an LC-RS binary tree but also create a complete
binary tree with NT-EMPTY padding. The second one is, in the previ-
ous work, the training samples are pairs which only contain two elements:
non-terminal and terminal. We extend them with two more bits of informa-
tion. The reason for our extension is that the AST reconstruction from the
sequence is easier with this another two bits information.

Figure 3.3 illustrates an example of how to generate training samples
from a target non-terminal node in an AST. In this example, “non-terminal
2” is the target node which is surrounded by a box in the figure. And three
terminal nodes with underline are the children terminal nodes of the target
non-terminal node. We generate three training samples on the basis of this
target node. The first element in these samples is the target non-terminal
node: “non-terminal 2”, the second element which is the only difference
between these three samples, is the different terminal child of the target

24

node: “terminal 1”, “terminal 2” and “terminal 3”. Because the target non-
terminal node is a leaf node in the given binary tree, the third bit in these
samples is “leaf”, and the fourth element is “left” due to the target node is
the left child of its parent node.

Figure 3.3: Training samples generated from a toy non-terminal binary tree

Figure3.2 illustrates the AST format of a JavaScript “loop printing” code
snippets shown in the figure3.1. And figure 3.4 is the complete binary tree
of the AST in the figure 3.2 after the conversion. On the basis of this
binary complete tree, we visit each non-terminal nodes in a deep first in-
order-traversal order and generate a sequence of training samples. Table 3.1
illustrates the generated training samples.

3.2.2 Conclusion

To summarise the AST processing in our work: There are three main steps
in this AST transformation: First, an original AST is converted to an LC-
RS binary tree. Then, we pad a special non-terminal node NT-EMPTY to
build a complete binary tree. all nodes in this tree are non-terminal nodes
in the original AST. Finally, a deep-first in-order traversal is applied in this
complete binary tree so that each non-terminal node is visited to generate a
sequence of training samples. Each training sample contains four elements.

25

Index Non-terminal Terminal Node-or-leaf Right-or-left
1 3:VariableDeclarator 4:LiteralNumber Leaf Left
2 2:VariableDeclaration TT-EMPTY Node Left
3 NT-EMPTY TT-EMPTY Leaf Left
4 5:BinaryExpression 6:Identifier Node Right
5 5:BinaryExpression 7:LiteralNumber Node Right
6 NT-EMPTY TT-EMPTY Leaf Left
7 8:UpdateExpression 9:Identifier Node Right
8 13:MemberExpression 14:Identifier Leaf Left
9 13:MemberExpression 15:Property Leaf Left
10 12:CallExpression TT-EMPTY Node Left
11 NT-EMPTY TT-EMPTY Leaf Right
12 11:ExpressionStatement TT-EMPTY Node Left
13 NT-EMPTY TT-EMPTY Leaf Right
14 10:BlockStatement TT-EMPTY Node Right
15 NT-EMPTY TT-EMPTY Leaf Right
16 1:Forstatement TT-EMPTY Node Left
17 NT-EMPTY TT-EMPTY Leaf Right
18 0:Program TT-EMPTY Node Left
19 NT-EMPTY TT-EMPTY Leaf Right

Table 3.1: Training samples generated from the AST representation complete
binary tree in the figure3.4

26

Figure 3.4: The complete binary tree of JavaScript ‘loop printing’ code snip-
pets

This sequence is fed into the LSTM model to train the model. We will scan
the entire original AST dataset to produce a tremendous number of training
samples in terms of our AST processing regulation. More details of AST
processing are introduced in the experiment chapter6. This AST processing
is used to generate the sequences of training samples for the LSTM code
completion model. The way to process AST for ASTToken2Vec model, our
pre-trained embedding model for code completion is described in the chapter4
of ASTToken2Vec model.

3.3 AST Reconstruction

The original ASTs are transformed into sequences of training samples to
build the dataset for the code completion model in terms of previous AST
processing rules. With this dataset, we train an LSTM model with ASTTo-
ken2Vec embedding to predict next training samples in the given sequence
as code prediction. After this prediction, a sequence with the new completed

27

code is generated. However, this sequence is not the final result of code com-
pletion due to code completion systems serve programmers and they cannot
understand the completed code in the predicting sequence. This predicting
sequence should be reconstructed back to an AST and this AST is parsed
back to source code text as the final result of code completion. In the pre-
vious work of LSTM based code completion, there is no effective way to
reconstruct. In our work, we propose a method to reconstruct the AST from
the predicting sequence easily with our extension training samples in the
sequence.

The way to reconstruct an AST from the sequence includes the following
steps: First we reconstruct an LC-RS complete binary tree from predicting
the sequence of training samples. Then we delete unnecessary padding non-
terminal nodes (“NT-EMPTY” placeholder non-terminal nodes we pad to
build complete binary trees during the AST processing phase) in the LC-
RS complete binary tree. Finally, we convert this LC-RS binary tree back
to an AST. The second and third steps are quite easy to be understood.
We introduce how to reconstruct a binary complete tree from the predicting
sequence with more details in this section.

In order to reconstruct the AST, the last two elements: node-or-leaf, right-
or-left in the training sample are used to locate the position of non-terminal
nodes in the LC-RS binary tree with the help of a stack auxiliary tool. Stacks
are an abstract data structure widely used in computer programming which
is a linear data type and serves as a collection of elements following the “last
in, first out”(LIFO) principal operations. The reconstruction method would
be implemented with the help of a stack.

This is how does our reconstruction stack work: Training samples in a
predicting sequence are pushed into this stack and elements in the stack
are reduced recursively. Concretely, we push each training sample in the
predicting sequence into the stack as an element, after a sample is pushed
into the stack, the top element in the stack is checked by our reduction
regulation: If the third bit in the element, “node-or-leaf”, is “leaf” and the
fourth bit “right-or-left” is “left”, reduction of the stack operation occurs:
three elements on the top of the stack are popped and build a binary subtree
which contains three nodes: The first element on the top of the stack poped
is the right child node of the binary subtree. The second element is the
root node of the subtree and the third one is the left child node. After this
subtree reconstruction, we push this subtree back to the stack as the top
element. The two bits information: “node-or-leaf” and “right-or-left” is the

28

same with these two bits information of the root node in the subtree. Then,
we continue to check whether stack still conforms to the reduction regulation.
Tf the reduction condition meets, we continue to do reduction operation in
the stack described above and a larger subtree is created recursively until
there is no necessary to reduce. Then, the next sample in the predicting
sequence is pushed to the stack and the reduction operation keep working
recursively until there is no sample in the sequence. When the predicting
sequence is empty, the last element in the stack is the AST we reconstruct.

We use a concrete example to illustrate how to reconstruct a binary tree
from a sequence of samples. Figure 3.5 shows a simple AST and it deep first
in-order-traversal visiting sequence. When a node in the AST is visited, two
bits of information node-or-leaf, right-or-left are added to generate samples.

Figure 3.5: (1) is a toy complete binary tree and (2) is the sequence of samples
generated in terms of AST processing regulations

Figure 3.6 illustrates how to reconstruct an binary tree from the sequence
of samples in the figure 3.5. We push the samples in the sequence into the
stack or reduce the stack depending on the bits information of the top element
in the stack. In this example, we first check whether the elements “D” and
“B” are a “leaf” node and “left” child of their parent node. Due to they do
not meet the reduction regulation, we push them into the stack. When the
token “E” is on the top of the stack, the reduction occurs and three elements
on the top of the stack are popped to build a subtree. Then we push this
subtree back to the stack and the token “A” is pushed to the stack due to
it does not mean the reduction regulation. “C” is the last sample in the
sequence and we use ‘C’, “A” and the subtree in the stack to construct a

29

new tree and this tree this the final result of our reconstruction.

Figure 3.6: AST reconstruction from a sequence

3.4 Identifiers Renaming

From the application perspective of code completion systems, the most use-
ful prediction that the programmers really want might be the prediction of
Identifiers. Identifiers are the names of both variables and functions, the
prediction of them can not only observably reduce the possibility of writing
errors, but also inspire the ideas of programming. From the dataset per-
spective, same as above, They also play a significant role in the terminal
tokens. According to the statistics of terminal tokens number in the training
dataset we used, the proportion of Identifiers have the largest percentage
with 43 percent. From both application and experiment ideas, if there are
some methods can make the predicting of Identifiers have a better perfor-
mance, it can be sure that not only the users of our code completion system

30

have a much better user experience, but also the performance of prediction
is going to increase in our experiment.

Renaming identifiers can help us to achieve a better prediction perfor-
mance of identifiers. In theory, there are infinite kinds of identifiers that
may occur in the source code because programmers can specify identifiers
with any names they want just follow the regulation of the programming
language. This huge size of candidate identifier vocabulary makes the deep
learning models become quite cumbersome and causes a lower performance
of prediction. Usually, the size of the token vocabulary is specified by a not
too huge number according to the frequency of occurrence of each token in
the dataset, other infrequent tokens are represented by a special UNKNOWN
token. This specification makes our model unable to predict some unusual
terminal identifiers which occur in the dataset infrequent. Renaming identi-
fiers can help us to solve this problem.

Figure 3.7: Identifier renaming

The way to rename identifiers is that we rename all identifiers as “arg1”,
“arg2”... which means we give each identifier in the source code text an
order-including uniform name. Concretely, we use a mapping dictionary to
record the order of appearance of each identifier in a code file, and swap the
identifiers’ name with this order information and use this renamed data to
train our deep learning model. The mapping dictionary is recorded in or-
der to get the original identifiers’ name. When the model is evaluated with
some test queries, for the identifier completion, the model can predict the
appearance order of identifiers in the evaluation queries and we use the map-
ping dictionary to find the real name of these prediction identifiers. With
identifiers renaming, the number of identifiers type have a great reduction.

31

According to our statistics of experiment dataset, there are near 485,000
kinds of identifiers in the dataset before renaming, and only 8,150 kinds of
identifiers after renaming. With identifiers renaming, we can predict infre-
quent identifiers and achieve better performance. Figure3.7 shows how to
rename two code snippets to a single code file.

32

Chapter 4

ASTToken2Vec EMBEDDING

In this chapter, we discuss the ways to represent data, we introduce sev-
eral common methods of data representation including one-hot encoding and
word2vec embedding. We also talk about the representation method used
in the previous work of deep learning-based code completion. Finally, we
present the embedding model proposed by us: a pre-trained embedding model
for AST nodes called ASTToken2Vec. ASTToken2Vec is able to generate
syntax-based representation vectors. Due to there are two kinds of tokens in
ASTs: non-terminal and terminal. We design two application variant of our
embedding model: ASTToken2Vec for terminal token abbreviated as TT2V
and ASTToken2Vec for a non-terminal token called NT2V. We introduce the
mechanism and details of our embedding models and how to integrate it with
our LSTM code completion to improve the predicting performance.

4.1 Data Represention

Most of machine learning models, especially deep learning models, have a
requirement for the format of input data. Due to the input layer of deep
learning models is a vector, the feeding data of them should also be vector
format. However, almost all data we face in real life are not vectors(natural
words, speeches, images, etc.). Methods to encode the original data to vectors
for deep learning models are called data representation. In our task, the
data we use is nodes in ASTs which are a composite data structure contains
information about tokens(the type of a token, children of a token, etc). And
due to the similarity between tokens in code and words in natural languages,

33

we consider using data representation methods for natural languages. In this
section, we introduce several representation methods widely used in machine
learning models and how to apply them to AST nodes.

4.1.1 One-hot Encoding

The simplest method to represent AST nodes is one-hot encoding. This
method gives a unique number of each token in the training dataset vocabu-
lary. Then it creates a special representation vector to distinguish each token
from every other token in the vocabulary. The length of these vectors is equal
to the size of the token vocabulary. All elements in a vector consisting of
zeros with the exception of a single one in the position of the unique number
of a token to identify it. In other words, the position of one in the vector is
equal to the unique number of the token which this vector wants to represent.

The most intuitive strength of one-hot encoding is that it is the most
uncomplicated way to represent tokens. It is easy to design and modify and
users do not need to pay much attention to it. However, the disadvantage
of one-hot encoding is also equally obvious: The length of the representation
vector is out of control. It must be equal to the size of the token vocabulary.
If it is quite large(There are infinite kinds of terminal tokens theoretically),
the length of one-hot encoding representation vectors is going to become
very huge and it may cause a dimension disaster for deep learning models.
Another shortcoming is almost all elements in vectors are 0s but only single
1 which means the content of each vector is the same only the order of 1 in
the vector is different. It causes that the one-hot encoding vectors can only
distinguish each token in the vocabulary but they are not able to represent
the meaning of nodes which, however, is much more significant for token
representation. One-hot encoding is the simplest way to identify tokens, but
not a good way to represent them.

4.1.2 Embedding Representation

Due to the disadvantages of one-hot encoding, it is not directly used in ma-
chine learning models. Rather than using one-hot encoding directly, learning-
based embedding representation has become one of the most popular repre-
sentation methods which can solve the two problems of one-hot encoding:
The length of the vector generated by the embedding learning method can
be defined by users as a hyper-parameter comparing with the uncontrolled

34

length of the one-hot encoding representation vector. The elements in the
embedding vectors not either 0 or 1 but any float numbers which enable
vectors to represent the meaning of data. Embedding methods for natural
language processing tasks are a more efficient solution which is capable to
capture the context information of target natural words like syntactic sim-
ilarity, semantic similarity, and the relationship between words. With this
similarity and relationship knowledge, representation vectors generated by
learning the embedding method become more meaningful and are able to
improve the performance of machine learning models.

Tomas et al.[2] propose a learning-based embedding representation method
for words in natural sentences in 2013 which is still widely applied in many
machine learning model based natural language processing tasks as a pre-
trained model. Our embedding model for AST nodes is also inspired by
their method.

4.1.3 Word2Vec Embedding

The embedding learning model proposed by Tmoas et al.[2] is called Word2Vec
which means it is a method which is able to encode the words to embedding
representation vectors with more semantic meaning by the usage of the con-
text information in a sentence of the target words.

In order to generate the semantic-based representation vectors of words,
Word2Vec[2] model declares a basic hypothesis that “if two target words
have a similar meaning, their context would also be similar”. A target word
means the word that the generation embedding vector wants to represent,
the context is n surrounding words of the target word in a sentence, n is a
hyper-parameter which can be specified by users to control the size of sur-
rounding context Word2Vec model considered. For example, let’s assume
that there are two sentences in the whole language corpus: “I really like
eating apples because it is delicious.”; “I really like eating bananas, it is
tasty”. We consider two words in these sentences: “apples” and “bananas”
as target words to generate their representation vectors. It is easy to find
that the contexts(surrounding words) of these two target words have a high-
level similarity. In terms of the hypothesis of Word2Vec, these two target
words: “apples” and “bananas” are considered that they are similar to each
other. If we visualize the representation vectors of these two words gen-
erated by Word2Vec, the location of vectors near to each other. In other
words, Word2Vec leverages the context similarity of the words in a sentence

35

to generate a more significant representation vector.
For the purpose of semantic-based representation generation with sur-

rounding contexts, Word2Vec puts forward two neural network architectures:
Skip-gram and Continuous Bag of Words (CBOW), both of these two mod-
els contain three neural layers: an input layer, a single hidden layer, and an
output layer. The size of the hidden layer is much smaller than the input and
output layer. The input of Skip-gram model is the one-hot encoding repre-
sentation of a target word and the output of it is the addition of the one-hot
encoding representation of surrounding context words of the input word. On
the contrary, the input and output of CBOW is opposite to Skip-gram. In
order to train the Word2Vec model, sentences in the corpus are processed to
a huge number of training pairs. A training pair looks like this: “(target-
x, context-y)” for Skip-gram and “(context-x, target-y)” for CBOW. After
models are trained well, for Skip-gram, the embedding representation vector
can be obtained by extracting the value in the hidden layer after feeding the
one-hot encoding representation of a target word into the model. Due to
the size of the hidden layer can be specified as a hyper-parameter n, with
Word2Vec, the dimension of the representation vector decreases from the
length of input layer which is equal to the size of word vocabulary to the
length of the hidden layer. This reduction is quite useful for some natural
language processing tasks with huge size of the vocabulary and is also helpful
for AST node dataset because of the infinite possibility of terminal tokens.
Furthermore, these representation vectors contain model semantic and syn-
tactic knowledge of a natural language hidden behind the sentences due to
the model leverages the surrounding context information of the words. The
evidence of this semantic information included is that the distance between
embedding vectors is able to describe the relationship between words quite
robustly and well. If two words are similar to each other, their representation
vectors are also near to each other in the high dimensional space.

4.2 AST Nodes Embedding

In this section, we first discuss the way to initialize the vectors in the previ-
ous work. Then, we introduce details about our embedding model: ASTTo-
ken2Vec. Its architecture, how we define the context of an AST node and its
joint loss function.

Chang Liu.at.al[4] used vanilla LSTM models to predict next non-terminal

36

and terminal tokens. However, they initialize the embedding representation
vectors of nodes in ASTs randomly rather than employ any pre-trained mod-
els. Random initialization is not a good way compare with the embedding
initialization because a groovy pre-trained embedding model can generate
more meaningful embedding vectors which are able to speed up the model
training and improve the performance of the deep learning model. In this
case, we propose a neural pre-trained embedding model which can be used to
generate the semantic and syntax-based representation vector for AST nodes
called ASTToken2Vec. This model not only is available in our code comple-
tion task but also can be applied to other deep learning-based source-code-
related tasks (Inferring coding conventions, code migration.etc.[19] which
employ AST based datasets.

Because of the excellent performance of Word2Vec, it is widely used as a
pre-trained model for most natural language processing tasks. The idea of our
ASTToken2Vec model is inspired by Word2Vec embedding, ASTToken2Vec is
also a neural pre-trained model for nodes in ASTs with learning method and
is able to be used to generate embedding representation vectors of AST nodes.
In order to do that, we have a basic hypothesis of ASTToken2Vec which is
same to Word2Vec’s: we assume that if two nodes in an AST have a similar
context, the meaning of these two nodes also has a high-level similarity.
The meaning of AST nodes is not as obvious as natural words, it is the
semantic and syntax of the token specified by the context-free grammar of
programming languages. The context of an AST node we defined is the
surrounding AST nodes. As for the architecture of our model, similar to
Word2Vec, it is a three layers neural network model with a single hidden
layer.

There are three points of our ASTToken2Vec that are different from
Word2Vec. The first one is that the way we define the context. Due to
natural sentences are one dimension linear structure, it is easy to define the
context of a word as some surrounding words in a sentence for natural lan-
guages, Nevertheless, the data in use by our model is AST nodes and AST
are tree data structure. So the context of a node in an AST we define is some
tokens surrounding with the target node but not same as the context in a
natural sentence due to the special 2-dimensions tree structure of an AST.
“Surrounding context” here is not some preceding tokens and incoming to-
kens, we define it as some parent nodes and some children nodes surrounding
with the target node in an AST. Namely, we assume if two nodes in an AST
have similar parent nodes and similar children nodes, the meaning of these

37

two nodes also have a high-level similarity. Due two there are two kinds of
tokens in a programming language, we define two different contexts for a
target node: Non-terminal context and terminal context.

The second different point of our ASTToken2Vec is that we create two
ASTToken2Vec models: non-terminal node to vector(NT2V) model and ter-
minal node to vector(TT2V) model due to there are two kinds of the node
in ASTs: non-terminal nodes and terminal nodes in terms of programming
languages grammar. NT2V is able to generate the representation vectors for
non-terminal nodes and TT2V is for terminal representation vectors gener-
ation. Non-terminal nodes are the non-leaf nodes in AST which are more
about the control statement and structure of the source code like ForState-
ment and IfStatement. The number of non-terminal tokens is specified by
the context-free grammar of programming languages. On the contrary, Ter-
minal nodes are the leaf nodes in ASTs which are able to record the content
of the source code like LiteralString and Identifier. The huge difference be-
tween non-terminal and terminal is the reason we define two different AST-
Token2Vec models.

The third difference is the architecture of the model. Both our NT2V and
TT2V models extend the Skip-gram model which means the input is a target
token and the output is the context of the input token. However, because
the number of contexts is two for each model, These two contexts make
both NT2V and TT2V models have two output layers to represent the non-
terminal context and terminal context of the input target node separately
rather than one single layer to represent the context in Skip-gram model.
For the NT2V model, the input is a target non-terminal token and the two
outputs are non-terminal context and terminal context of the input non-
terminal. TT2V model is contrary to NT2V, the input of it is terminal
tokens.

4.2.1 Contexts of Non-terminal Tokens

The ASTToken2Vec model for non-terminal tokens to vectors is abbreviated
as NT2V which is able to generate embedding representation vectors for
non-terminal tokens. NT2V employs both the terminal context and the non-
terminal context of the target non-terminal tokens and we define these two
contexts as follows.

38

Non-terminal context

The non-terminal context for a non-terminal token means the surrounding
non-terminal node of it in an AST. Concretely, we define the n parent non-
terminal nodes of the target non-terminal as the parent non-terminal context.
And all non-terminal child nodes of the target non-terminal as the child non-
terminal context if it has. The combination of parent non-terminal context
and child non-terminal context is used to represent the non-terminal context
of a target non-terminal.

If a target non-terminal node does not have any parent node(the root
node in an AST), we use the special non-terminal node: “NT-EMPTY” to
represent its parent non-terminal context which has been used as the padding
non-terminal to build a complete binary tree in the AST processing phase.
If a non-terminal node does not have any non-terminal children node(all
its children nodes are terminal nodes), The child non-terminal context is
ignored and the non-terminal context of this target non-terminal is only its
n parent non-terminal nodes. Here, n is a hyper-parameter which declares
the scope of the parent non-terminal context employed by the NT2V model.
If n is relatively small, it means NT2V does not consider the surrounding
non-terminal tokens which are far from the target node as the non-terminal
context. On the contrary, if n is relatively large, more surrounding non-
terminals are covered as the non-terminal context.

Terminal context

Terminal context of a target non-terminal is all terminal nodes surround the
target node. Specifically, surrounding terminal nodes are all children termi-
nal nodes of the target node. We specify these terminal nodes as the terminal
context of a non-terminal node. If a non-terminal node does not have any ter-
minal children nodes(all its children nodes are non-terminal tokens), we use
the special terminal token: “TT-EMPTY” to declare the terminal context
of this target non-terminal node is empty.

Figure4.1(1) is an example of partial AST which is able to illustrate the
terminal context and the non-terminal context of a target non-terminal node.
Nodes whose name starts with “NT” are non-terminal nodes and nodes whose
name starts with “TT” represent terminal nodes. In this particular AST,
the target non-terminal node is ‘NT-4’ which is surrounded by an oval. Non-
terminal nodes surrounded by a rectangle are the non-terminal context of

39

the target node including “NT-2” and “NT-1”. Terminal nodes: “TT-1”,
“TT-2” and “TT-3” which have an underline mean the terminal context of
the target node. Hyper-parameter n here is specified as two.

Figure 4.1: Non-terminal and terminal context for nodes. (1) is the context
for non-terminal nodes, (2) is the context for terminal nodes

4.2.2 Contexts of Terminal Tokens

TT2V is the abbreviated name of ASTToken2Vec model for terminal tokens
to vectors. TT2V model is able to generate embedding representation vectors
for terminal nodes. Same with NT2V model, TT2V uses both the non-
terminal context and terminal context to generate the representation vectors.

Non-terminal context

We only consider the non-terminal context of a target terminal node as the
parent non-terminal context: n parent non-terminal nodes because there is no
children node of a terminal node. Here, same with the NT2V model, hyper-
parameter n is used to control how many surrounding parent non-terminal
tokens are considered as the non-terminal context. Due to a terminal node
must have at least one parent non-terminal node, we do not need to specify
any “NT-EMPTY” non-terminal as a padding token.

40

Terminal context

Because a terminal node in ASTs does not have any children nodes, we define
the terminal context of a target terminal node as m neighbor terminal nodes
in an AST. Neighbor terminal nodes mean the other terminal children nodes
of the non-terminal node which is the parent node of the target terminal
node. Here m is a hyper-parameter which is used to specify the size of the
terminal context. A relatively small m means TT2V model does not consider
too many surrounding terminal nodes as the terminal context.

If a target terminal node does not have any neighbor terminal nodes which
means its parent non-terminal node only has it as the single terminal child,
in this case, we use the special terminal node: “TT-EMPTY” to represent
an empty terminal context.

Figure4.1(2) shows an example of partial AST to illustrate the non-
terminal context and terminal context of a target terminal node. In this
example, terminal node “TT-2” is the target node surrounded by an oval.
Non-terminal nodes: “NT-2” and “NT-4” which are emphasized by a rect-
angle represent the non-terminal context of the target node. The neighbor
terminal nodes of the target node are “TT-1” and “TT-3” which are the
terminal context of the target node. In this example, hyper-parameter n is
specified as two and m is equal to one.

4.3 Data Processing

In this section, we explain how we generate training samples from ASTs for
model training. Training samples for ASTToken2Vec model is different with
training samples generated for LSTM based code completion introduced in
chapter3 but both of them are generated from the same JavaScript AST
dataset.

There are two kinds of training samples we generate, non-terminal train-
ing samples for NT2V model training we name it as NTS and terminal train-
ing samples for TT2V model training called TTS. For a given AST, we gen-
erate x NTS and y TTS in terms of processing regulation. x is the number
of non-terminal nodes in the AST and y is equal to the number of terminal
nodes in the AST. We scan all ASTs in the dataset and generate a set of
NTS for NT2V model and TTS for TT2V model.

41

Index Target non-terminal Non-terminal context Terminal context
1 NT-1 [NT-EMPTY] [TT-EMPTY]
2 NT-2 [NT-1, NT-4] [TT-EMPTY]
3 NT-3 [NT-1] [TT-5, TT-6]
4 NT-4 [NT-1, NT-2, NT-6] [TT-1, TT-2, TT-3]
5 NT-5 [NT-1, NT-2] [TT-4]
6 NT-6 [NT-2, NT-4] [TT-7]

Table 4.1: Training samples for NT2V model

Structure of NTS The structure of a NTS is a tuple which includes three
elements: (target non-terminal token, non-terminal context, terminal con-
text). A target non-terminal token is the training x which is going to be fed
into NT2V as the input. Both non-terminal context and terminal context
are a list which represents the non-terminal context and terminal context of
the target non-terminal token. These two contexts are used as the ground
truth label of the input target non-terminal to calculate the loss.

Table4.1 shows all NTS generated from the example AST in the figure4.1.
We specify the hyperparameter n as two which is the size of non-terminal
context. Due to there are six non-terminal nodes in the AST, there are six
NTS generated in terms of the definition of generation regulation.

The structure of TTS for TT2V model training is similar to NTS. The dif-
ference is the first element in TTS is a target terminal token. Tuple TTS looks
like (target terminal node, non-terminal context, terminal context). Same
with NTS, the second element is a list to represent the non-terminal context
of target terminal node and the third element is used to represent the termi-
nal context. Table4.2 shows all TTS for TT2V model training generated from
the example AST in figure4.1. For this generation, we declare the hyperpa-
rameter n is 2 which represent how many surrounding non-terminal tokens
are considered as non-terminal context and m is equal to 1 which means the
size of the terminal context of target terminal node to be considered.

4.4 Model Structure

After the introduction of what is a target node, the non-terminal, terminal
contexts of it and two variants of ASTToken2Vec: NT2V and TT2V. We
explain the structure of the model in this section. The structure of NT2V

42

Index Target terminal Non-terminal context Terminal context
1 TT-1 [NT-2, NT-4] [TT-2]
2 TT-2 [NT-2, NT-4] [TT-1, TT-3]
3 TT-3 [NT-2, NT-4] [TT-2]
4 TT-4 [NT-2, NT-5] [TT-EMPTY]
5 TT-5 [NT-1, NT-3] [TT-6]
6 TT-6 [NT-1, NT-3] [TT-5]
7 TT-7 [NT-4, NT-6] [TT-EMPTY]

Table 4.2: Training samples for TT2V Model

and TT2V is the same to each other only the input and output is different,
we introduce both of them as the structure of ASTToken2Vec.

The structure of ASTToken2Vec model is a four layers neural network
contains one input layer, one single hidden layer, and two output layers which
similar to Skip-gram in Word2Vec. The length of the input layer is equal to
the size of non-terminal vocabulary for NT2V model and is equal to the size
of the terminal vocabulary for TT2V model. The input of ASTToken2Vec is
the one-hot encoding representation vector of a target non-terminal node for
NT2V and a target terminal node for TT2V.

The length of the hidden layer is the length of the embedding represen-
tation vectors which is a hyperparameter d specified by users. We use the
values in the hidden layer as the embedding vectors to represent a target
token after it is fed into the ASTToken2Vec model.

The ASTToken2Vec model contains two output layers: non-terminal out-
put layer for non-terminal context and terminal output layer to represent
the terminal context of the input target node. The length of these two out-
put layers is equal to the size of the terminal vocabulary and non-terminal
vocabulary. Context output layers are the addiction of one-hot encoding
representation vectors of context tokens as the training target of the input.

Figure4.2 illustrates the structure of ASTToken2Vec models, figure(1)
is the NT2V model, the one-hot encoding representation of a target non-
terminal node is fed into the model and the output is two contexts of this
target non-terminal node. Figure(2) is the structure of TT2V model which
is quite similar with NT2V only the input layer is different.

43

Figure 4.2: model structure for ASTToken2Vec. (1) is the structure of NT2V,
(2) is the structure of TT2V

4.5 Joint Loss Function

In this section, we introduce the loss function in the ASTToken2Vec model.
We specify a joint loss function of non-terminal context output and terminal
context output to our ASTToken2Vec model to update the parameters in
the model. This joint loss function combines the loss value of the terminal
context output layer and the loss value of the non-terminal context output
layer.

There are three parts of the loss function calculation. Lossnt is used to
represent the loss of non-terminal context output and the loss of terminal
context output is called Losstt. Both of these two are multi-labels loss cal-
culations because there are more than one surrounding tokens as the context
output. And Losstotal is the final joint loss function for our model’s training.
The joint loss calculation is the same between NT2V model and TT2V.

Lossnt = −
N∑
i=1

yint−context × log(ŷint−context) (4.1)

Equation4.1 is the Lossnt calculation formula which is a log loss function.
Concretely, for an input token x, ASTToken2Vec model calculates the non-
terminal context output as ŷnt−context. The value range of ŷnt−context is from
zero to one which represents the possibilities of non-terminal token i as the

44

non-terminal context of input x predicted by the model. yint−context is the
one-hot encoding vectors of the non-terminal context ground-truth label of
the input token x. N is the size of the non-terminal vocabulary. log loss
between the output of the model and the ground truth non-terminal context
is calculated and summed as the non-terminal loss of the input token.

Losstt = −
M∑
j=1

yjtt−context × log(ŷjtt−context) (4.2)

Equation4.2 illustrates the formula of Losstt calculation which also a log
loss formula. M is the size of terminal vocabulary and the model predicts the
possibilities of terminal token j as the terminal context of the input token x.
Then, we calculate the log loss between the output terminal context of the
model ŷtt−context and the ground truth terminal context ytt−context.

Losstotal = α ∗ Lossnt + (1− α)× Losstt (4.3)

Equation4.3 is the joint loss function combining Lossnt and Losstt, here
we utilize a hyperparameter α which is used to adjust the influence of Lossnt
and Losstt. The range of α is from zero to one to emphasize the importance
between non-terminal context and terminal context. When the value of α is
zero, the loss of non-terminal context output is ignored. On the contrary, if
α is equal to one, only Losstt is considered.

Sampled Softmax Sebastien Jean et al.[20] propose a method called sam-
pled softmax which is a sample method to calculate the loss function. It
can train neural network models with a very large output target vocabulary
faster and keep training complexity not increase even the size of vocabulary
increasing. This method is widely used by many deep learning models for
natural language processing tasks due to the large size of vocabularies. Both
Skip-gram and CBOW model of Word2Vec are able to leverage the sampled
softmax trick to speed up the training efficiency. Our ASTToken2Vec model
also has a huge size of terminal token vocabulary, it is also possible to apply
sampled softmax to our ASTToken2Vec model for training.

45

4.6 Conclusion

In this chapter, we propose a pre-trained model extending from Word2Vec
model called ASTToken2Vec. It is able to generate semantic and syntax-
based representation vectors for AST nodes. Due to there are two kinds of
tokens specified by programming language grammar, we design two differ-
ent variants of ASTToken2Vec: NT2V model for non-terminal representation
vectors generation and TT2V model for terminal representation vectors gen-
eration. We introduce the structure of ASTToken2Vec model, it is a neural
network which has four layers: one input layer, one single hidden layer and
two output layers which represent two different contexts of an input node.
We explain the joint loss function we specify and how to generate two kinds
of training samples from ASTs: NTS for NT2V model training and TTS for
TT2V model training.

Embedding representation vectors generated by ASTToken2Vec model
not only can be used as the pre-initialized representation for our LSTM-based
code completion system and enhance the performance of token prediction due
to the rich structural information of ASTs but also are able to serve in many
other machine learning-based tasks with an AST dataset. We introduce how
to integrate our ASTToken2Vec embedding model and an LSTM model to
predict the next token as code completion in the next chapter. The evaluation
of performance and visualization of the ASTToken2Vec model in a JavaScript
dataset illustrates in the experiment chapter.

46

Chapter 5

LSTM INTEGRATION
MODEL

In this chapter, we introduce what is recurrent neural network(RNN) model,
how does it work and the shortcoming of traditional RNNs. We also introduce
an extension variant of RNNs called long-short-term memory(LSTM) model
which is widely used in sequence-based deep learning tasks and how do LSTM
models overcome the shortcoming of RNN models. Then, we explain how to
apply an LSTM model for code completion with an AST dataset which is
our basic model to predict next tokens. Furthermore, we propose a method
to integrate ASTToken2Vec embedding model introduced in chapter4 and
an LSTM model together in details. This integration model is abbreviated
as AT2V-LSTM model which is able to predict the next non-terminal, next
terminal and the position of the next non-terminal as code completion.

5.1 Recurrent Neural Network

Programming languages can be considered as special natural languages with
more grammar constraints, programmers type code just like human write
natural sentences. Both code texts and sentences are linear time-sequence
structure data. When traditional artificial neural networks are applied to
handle this linear structure data like predicting the word in a sentence or
classifying the sentiment information of a sentence, the traditional neural
networks always achieve a not good performance because they are hard to
handle this sequence-structure data and cannot leverage the information of

47

previous words in a sentence. This is a major shortcoming of traditional
neural networks: Models cannot record the previous input information for
the current output but this information is much more important for linear
sequence-structure data-based prediction tasks.

Recurrent neural work(RNN) models[13] is proposed by Rumelhart et al.
in 1988 which can address this issue pretty well. RNNs extend a new feature
from the traditional neural networks. They contain many loops on their
hidden units which are able to record the previous input of models. When an
RNN model is unrolled, it becomes a chain-like structure neural network and
each two adjacent hidden units on time series is connected. This connection
enables the model to use the previous internal state(previous input) for the
training of input. The input of each hidden unit is not only the output of
units in the previous layer but also the output of hidden unit itself at the
previous input moment. This feature allows RNN models becoming more
applicable to linear sequence-structured data-based problems like natural
language processing tasks.

However, even there is incredible success applying RNN models to a va-
riety of sequence tasks, it still has two fatal flaws: long-term dependencies
problem and gradient vanishing problem. The long-term dependencies prob-
lem means the model is hard to leverage the further input information of
the sequence, further information is covered by the recent input even the
further information is more useful for the following model prediction. Gradi-
ent vanishing is a more serious problem for RNNs. When gradient vanishing
problem happens, the gradient which is used to update the parameters in
models is vanishingly small and it many completely stop RNN models from
training.

5.1.1 Long Short Term Memory(LSTM)

Long short term memory (LSTM) model[1] is a variant of the standard RNN
models introduced by Hochreiter et al. in 1997. LSTM is capable of solv-
ing both gradient vanishing problem and learning long-term dependencies
problems. It is also a chain-like neural network with a special state record
structure: cell memory and three operation gates: forget gate, update gate
and output gate. Instead of only using a linear connection of each adjacent
hidden unit in a traditional RNN model, the LSTM model leverages the
cell memory as a “conveyor belt” running straight down the entire sequence
model chain. Cell memory also serves as a structure to record the infor-

48

mation of previous inputting. The three special operation gates are able to
change the value of cell memory. The forget gate decides what information in
the cell memory should be discarded. The update gate determines the new
information be added into the cell memory and the output gate chooses the
output of the current moment to the next moment in terms of the cell mem-
ory. At each model running moment, the value of cell memory is changed
by three operation gates in terms of the output of the last moment and the
input at the current moment. With the help of cell memory structure, the
significative further inputting context in a sequence could be recorded and
the information in the cell can be updated by three operation gates automat-
ically and intelligently. LSTM models have a quite great achievement and
improve performance of linear-sequence data-based tasks especially natural
language processing comparing with standard RNN models.

Due to the great achievement of LSTM models in natural languages tasks
and the similarity between source code files and natural sentences texts. More
and more research explores the way to apply LSTM models to source code
based tasks like code completion systems. Our code completion system is also
an LSTM based model extending from the previous work[4]. We integrate
the LSTM based model with our ASTToken2Vec embedding to predict the
next code.

5.2 LSTM for Code Completion

In this section, we introduce the basic LSTM model we use for code comple-
tion which is called NTI2P, how to train this model with the AST dataset,
The details about the structure of our model. Finally, we introduce how to
integrate the LSTM based model with ASTToken2Vec embedding which is
named AT2V-LSTM integration model.

The data format of dataset for our code completion system training is
the AST, a tree-structure data. We introduce how to convert an AST
to a sequence of training samples in the chapter3. As the description in
this chapter, A sequence is composed of training samples which contain
four elements each sample: (non-terminal, terminal, node-or-leaf, right-or-
left). Thus, we consider the input of our LSTM model as a sequence like
(N1, T1, NL1, RL1), (N2, T2, NL2, RL2), ...(Nk, Tk, NLk, RLk). In this exam-
ple sequence, there are k training samples and i is the ith training sample
in the sequence. Ni is a non-terminal and Ti is one of the children termi-

49

nal node of Ni. NLi is called type infomation which represents the Ni is
a non-leaf non-terminal node(has at least one non-terminal children) or leaf
non-terminal node(has no non-terminal children). RLi is the side informa-
tion which is used to describe the Ni is the right child of its parent node or
left child. These four bits of information are introduced in the chapter3 in
details. Both Ni and Ti are represented by randomly initialized vectors. The
value of NLi and RLi is either 1 or 0 which are used to represent node or
leaf for NLi and right or left for RLi.

We name our basic LSTM model as NTI2P which means we are going
to use the sequence of training samples contain non-terminals, terminals and
two bits of information about type/side to predict the next sample. We
introduce our AT2V-LSTM model in details in the next subsection.

5.2.1 Model Structure

The structure of NTI2P is illustrated in Figure5.1. It contains an input
layer, an LSTM layer, and an output layer. The input layer is a combination
layer of the representation vectors of feeding elements, and the output layer
has four trainable matrices as the linear mapping between the output of the
LSTM layer and our output prediction.

Input layer

As mentioned above, there are two tokens and two bits of information fed
into the model and all of these inputting elements are encoded with the
one-hot encoding method. There is another step for non-terminal Ni and
terminal Ti inputting rather than feeding the one-hot encoding vectors into
the input layer directly. We use two matrices to map the non-terminal and
terminal to embedding vectors with the same length linearly. Concretely,
for the basic NTI2P model, the one-hot encoding vectors of non-terminal
and terminal multiply two embedding matrices separately to generate the
embedding representation of tokens. Both of the mapping matrix for non-
terminals and matrix for terminals is trainable by the model and randomly
initialized before the model training(This random initialization is replaced
by the representation vectors generated by ASTToken2Vec model in our inte-
gration model). After the one-hot encoding vectors multiply the embedding
matrix and generate the embedding vectors for non-terminal and terminal

50

Figure 5.1: The structure of NTI2P model

separately, we add these two vectors together as the representation of token
content in a training sample.

As for NLi and RLi, we also use two relatively small embedding matrice
as a linear mapping. Then, we add the embedding vectors of NLi and RLi

together to represent the structural postion information of Ni. Finally, we
concatenate the addition embedding vectors for token content and addition
embedding vectors for token structure together as the final representation
vectors of a training sample. This vectors is the input of LSTM layer. The
input layer of NTI2P model is computed as below:

inputi = concat(A ·Ni +B ·Ni, C ·NLi +D ·RLi) (5.1)

where A,B,C, and D are the embedding matrices for non-terminals, ter-
minal, type information, and side information in a training sample. A is a
K×VN matrix and The shape of matrix B is K×VT . K is the length of the
embedding vector for tokens which is a hyper-parameter specified by users.
VN and VT are the size of non-terminal vocabulary and terminal vocabulary
respectively. The shape of C and D is J × 2 where J is the length of embed-
ding vector for NLi and RLi. After the concatenation of these embedding

51

vectors, inputi is a combination embedding vector which serves as the rep-
resentation of the whole four elements in a training sample in an inputting
sequence during the training phase. From the formula above, it is easy to
calculate that the length of inputi is K + J .

LSTM layer

After the calculation of input layer, the LSTM layer receives the embedding
representation vectors from the input layer as xt and takes the output ht−1

and hidden state ct−1 from the previous state of LSTM layer. With xt and
ht−1, this layer calcuates three operating gates(input gate, update gate, out-
put gate). These three operating gates are used to change the state of cell
memory at the current moment as ht and calcuates the output as ct. The
calcuation of the LSTM layer in our NTI2P model is same with the vanilla
LSTM introduced in 1997[1]. Three operating gates is computed as below:

ft = σ(Wfxt + Ufht−1 + bf) (5.2)

it = σ(Wixt + Uiht−1 + bi) (5.3)

ot = σ(Woxt + Uoht−1 + bo) (5.4)

where ft is the forget gate, it is the input gate and ot is the output
gate. σ is the sigmoid function which makes certain that the range of the
result of these gates is from 0 to 1. Matrices W,U and bias vector b are the
parameters of the model which are trained during the training phase. These
three operating gates change the hidden state of the LSTM cell depending
on the input at the current model xt and the output ht−1 of the LSTM layer
at the previous moment. The calculation formula of the state of the LSTM
hidden cell ct and output ht is computed as:

ct = ft ◦ ct−1 + it ◦ σ(Wcxt + bc) (5.5)

ht = ot ◦ σ(ct) (5.6)

where the forget gate ft and the input gate it control what information
should be forgotten from the hidden cell ct and what needs to be updated to
it. The output gate ot is used to compute the output of the LSTM model ht
at the current moment which is one of the input elements of the LSTM layer
at the next moment.

52

Output layer

The output of the LSTM layer ht is a vector calculated from the state of the
hidden cell and the output gate. Output layer of our model use this output
vector to compute four predictions: next non-terminal Ni+1, next terminal
Ti+1, side information of the next non-terminal NLi+1 and type information
of the next non-terminal RLi+1. Concretely, linear mapping is applied on
ht. ht is going to multiply four different mapping matrices separately, and
the result of linear mapping are four vectors which are fed into two softmax
classifiers and two sigmod classifiers to calcuate the possibilities of prediction.
Formula of the output layer is as:

pnt = softmax(Wnt × ht + bnt) (5.7)

ptt = softmax(Wtt × ht + btt) (5.8)

psi = softmax(Wsi × ht + bsi) (5.9)

pti = softmax(Wti × ht + bti) (5.10)

where pnt, ptt, psi and pti represent the prediction of next non-terminal,
next terminal, the side (right or left) information of the next non-terminal
pnt and the type(non-leaf or leaf) of pnt. W s are trainable matrices for linear
mapping. The shape of Wnt is K × VN and the shape of Wtt is K × VT .
Concretely, K is the length of the hidden cell in the LSTM layer and VN and
VT are equal to the size of non-terminal vocabulary and terminal vocabulary.
Wsi and Wii are the linear mapping matrices whose shape is equal to K ×
2. Then these four outputs are fed into softmax classifiers. The softmax
function could return the possibility of prediction which is also known as the
confidence for the predicting result.

5.2.2 Conclusion

We introduce the details about the structure of our basic LSTM model for
code completion. There are four elements are fed into the model at every
training moment and the model predicts the next four elements in the train-
ing sequence. Our basic model is the extension of the previous work[4]. In
the experiment, we use this basic model as the baseline to compare the per-
formance of our integration model. The way to integrate this basic LSTM
model and ASTToken2Vec embedding method is introduced in the next sec-
tion.

53

5.3 Integration

As mentioned in the previous section, the embedding vectors for non-terminals
and terminals in the input layer of the basic NTI2P model are the result of
the one-hot encoding vectors multiplies two embedding matrices separately.
The embedding matrices are randomly initialized and the embedding vectors
for both non-terminal and terminal generated by them do not contain any
semantic and syntax information of the nodes because of random initializa-
tion. In order to make the representation vectors become more meaningful,
we integrate the ASTToken2Vec embedding model which is described in the
chapter4 as a pre-trained model and the basic LSTM model for code comple-
tion NTI2P so that the integration model is able to leverage more semantic
and syntax-based information to improve the performance of predicting the
next token. This integration model is named AT2V-LSTM model which
means the combination between ASTToken2Vec and basic LSTM model.

This the way to integrate two models: We first process the original ASTs
to training samples for ASTToken2Vec model and then train two ASTTo-
ken2Vec models: NT2V model is used to generate representation vectors for
non-terminals and TT2V model generates the representation vectors for ter-
minals. The way to generate training samples from ASTs and the details of
ASTToken2Vec models are introduced in the chapter4. From the mechanism
of ASTToken2Vec model, the representation vectors contain more semantic
and syntax of AST nodes. Then, we use these representation vectors to build
the embedding matrix for non-terminals and embedding matrix for terminals
which are used to replace the matrix A and B in the equation5.1 in the in-
put layer of basic NTI2P model. With this initialization, Our AT2V-LSTM
integration model is able to leverage both the order information of the input
sequences of training samples and the semantic structural knowledge for each
non-terminal and terminal hidden in ASTs to complete code.

5.4 Conclusion

In this chapter, we first introduce RNN models and an extension variant
of them, the LSTM model. The reason why they are powerful in handling
the tasks based on linear sequence data. Then, we explain the idea of using
LSTM models for code completion tasks. We propose a basic LSTM model
which is named NTI2P to predict the next training samples in the sequence

54

and the way to generate sequences of training samples for this model is
introduced in the chapter3. We introduce details about the structure of
NTI2P model, the mechanism of it and how does it work. We explain the
difference between our basic NTI2P model and the LSTM model described
in the previous work[4]. Finally, we introduce the shortcoming of the vanilla
NTI2P model and how to integrate the ASTToken2Vec embedding model
with the NTI2P model which is called AT2V-LSTM model. How does this
integration model leverage the semantic and syntax knowledge of AST nodes
and why it may have a better performance of the next tokens prediction.

55

Chapter 6

EXPERIMENT

In this chapter, we describe the experiments we do for both ASTToken2Vec
model and AT2V-LSTM integration model. There are four models we im-
plement, we first train an NT2V model for non-terminal embedding vectors
generation and a TT2V model for terminal embedding vectors generation.
Then we analyze the result of these embedding vectors by visualizing repre-
sentation vectors of some tokens as the evaluation of ASTToken2Vec models.
Then we implement another two models for code completion tasks: basic
NTI2P model as the baseline and our AT2V-LSTM integration model to
compare the performance of them. We also analyze in what situations our
AT2V-LSTM model works better than the NTI2P model which means for
what kind of test cases the integration model can predict right but the ba-
sic model predicts wrong. In order to explain experiments better, we also
introduce the dataset and the result of our data processing in details.

6.1 Dataset and Data Processing

In this section, we introduce the details about the dataset we use, how we
build the vocabularies and the statistical information about our training
dataset.

6.1.1 Dataset Details

The data we use for both the ASTToken2Vec embedding model training
and AT2V-LSTM integration model for code completion training is the same

56

size 10.77GB
programs 100,000
total terminals 8.9× 107

total non-terminals 8.3× 107

(a) Training set

size 5.15GB
programs 50,000
total terminals 4.3× 107

total non-terminals 3.9× 107

(b) Evalution set

size 15.92GB
programs 150,000
total terminals 1.3× 108

total non-terminals 1.2× 108

(c) Overall

Table 6.1: Dataset

dataset which is a JavaScript AST dataset provided by Raychev et al.[3].
This dataset is collected from online open-source programs and it contains
100,000 JavaScript programs as the training dataset and 50,000 programs as
evaluation dataset. All of this source code has been parsed to AST format.
This dataset is also used by Raychev et al[3], the PHOG model for next
token prediction of code completion and Liu et al[4] also use this dataset to
train several LSTM-based models for code completion. We use the training
part of this dataset to generate training samples for two ASTToken2Vec
models training described in the chapter4. After ASTToken2Vec models
are trained well and representation vectors are generated by these models.
We process the same training part of the dataset to generate sequences of
training samples for both basic NTI2P model and AT2V-LSTM model for
code completion. Finally, we evaluate our trained NTI2P model and AT2V-
LSTM model with the test queries generated from the test part of this dataset
and analyze the performance of the models.

The statistics details of the dataset can be found in Table6.1. Subtable(a)
is the information about the training set which contains 100,000 ASTs, and
subtable(b) is the test set we use to evaluate the performance of the predicting
of the next tokens.

57

6.1.2 Data Processing

During the processing of AST data, we first build the non-terminal vocabu-
lary and terminal vocabulary. The specification of vocabularies determines
what kind of tokens is considered by our models. For non-terminal vocabu-
lary, we add another two bits in each non-terminal.

Non-terminal Vocabulary Because the dataset we use is a JavaScript
AST based dataset, we consider that there are 44 different kinds of non-
terminal tokens specified by the JavaScript programming language grammar.
Base on these 44 non-terminal tokens, we add two more bits of information
to each token: whether the non-terminal token has a child token; whether
this non-terminal has a right sibling or not. These two bits of information
care more about the surrounding context(a child or a sibling) of each non-
terminal and makes the task of non-terminal predict become more challenge.
This adjunction is also used in the previous work[3][4]. There are 97 kinds
of bits-information combination non-terminal tokens. From the method to
convert an AST to a sequence described in chapter3, there is a special non-
terminal token:NT-EMPTY we use as a padding token to build a complete
binary tree from an AST. We also consider this special non-terminal as an
element in the vocabulary of non-terminal which the model needs to predict.
In total, we have 98 non-terminal tokens as the elements in the non-terminal
vocabulary. Our models predict non-terminal tokens inside this non-terminal
vocabulary.

Terminal Vocabulary Due to the terminal tokens of programming lan-
guages are symbols specified by programmers themselves like LiteralString,
Identifier, LiteralNumber, and Property, etc., in theory, there are infinite
kinds of terminal tokens may be included in programs because programmers
are able to specify any value and name of variables they want. It is very hard
for deep learning models to predict all of these tokens directly because of this
infinity and meaningless(In fact, programmers do not want code completion
systems to predict next numeric value even it is a terminal LiteralNumber).
In order to predict terminal tokens in a more reasonable way, we use the
idea of Word of Bag to specify the terminal vocabulary. Concretely, we sort
all terminal tokens appearing in the training dataset by their frequencies of
occurrence. Then we choose the 50,000 most frequent terminal tokens as
the vocabulary of the terminal. For the terminal tokens which have a lower

58

frequency in our dataset which means they are out of our terminal vocabu-
lary bag, we use a special terminal token UNK to represent these infrequent
terminal tokens. Same with the vocabulary of non-terminal, there is a partic-
ular terminal token TT-EMPTY described in the chapter3 which serves as
the padding terminal token to represent the case of a non-terminal who does
not have a terminal child. In total, we have 50,002 tokens in the vocabulary
of the terminal.

Then, we generate a mass of training samples for ASTToken2Vec models
training: both NT2V and TT2V model. This generation for ASTToken2Vec
model described in the section4. The structure of training samples for NT2V
model is target non-terminal, non-terminal context, terminal context where
target non-terminal is the input and non-terminal context and terminal con-
text are the ground truth of the model. The structure of training samples
for TT2V model is target terminal, non-terminal context, terminal context.
Ather the processing for ASTToken2Vec model, there are 8.9 × 107 train-
ing samples for NT2V model and the training set for TT2V model contains
8.3× 107 training samples.

Finally, we transform all ASTs in the training dataset to the sequences of
training samples for both basic NTI2P model and AT2V-LSTM integration
model which is explained in the chapter3. After the data processing, there
are 100,000 sequences for models training which is equal to the number of
ASTs. And there are 1.6× 108 training samples in sequences totally.

6.2 Experiment of ASTToken2Vec

In this section, we introduce the experiment for ASTToken2Vec embedding
models. We implement NT2V model and TT2V model with TensorFlow[21]
deep learning framework. We train both the NT2V model and TN2V model
with the training samples generated from ASTs described as above. We
discuss details of ASTToken2Vec models training and visualize the represen-
tation vectors of some terminal tokens and compute the similarity of tokens.

6.2.1 Training details

Due to the architectures of NT2V and TT2V are similar to each other only
the input layer and output layers are different, we explain the training details
of these two models together. We define the size of the hidden layer is equal

59

to 1,000 for both NT2V and TT2V model which is the same as the length of
representation vectors for tokens.

Because there are two output layers of the ASTToken2Vec model which
represents the terminal context and the non-terminal context of the input
token, we specify a hyper-parameter α in the definition of our loss function
in the chapter4 which is able to adjust the proportion of terminal context
and non-terminal context. The choice of α has a significant influence on the
performance of ASTToken2Vec models. In our NT2V model for non-terminal
representation vectors generation, we specify the adjuster α equal to 0.5 so
that the NT2V treat both non-terminal context and terminal context equally.
In the TT2V model for terminal representation vectors, however, we define
α equal to 0.7 which means we ask the model to care more(70%) about the
non-terminal context comparing with the terminal context(30%). The reason
why we choose α for TT2V model as 0.7 is that the non-terminal context
contains more knowledge about the structure of the AST which is much more
important than the neighbor terminal context. For example, non-terminal
tokens like ForStatement, IfStatement and so on represent the structure of
a code snippet in a source code, and identifier terminal tokens like Iden-
tifer i or Identifer index are more possible appearing near to non-terminal
ForStatement from the programming habit of coders, Programmers are more
interested in writing a ‘for’ expression like “for(var i = 0; ...; ...)...”. So, if the
TT2V model cares more about the non-terminal context, representation vec-
tors containing more semantic information are more possible to be generated,
This assumption is also confirmed by our experiment.

In the training phase, we use the Adam optimization algorithm[22] with
learning rate 0.01 to train models, this optimization algorithm has a better
performance comparing with stochastic gradient descent algorithm in our
ASTToken2Vec model training. The size of the training batch in our model
is 100 and we train both two models with 10 epochs. We train our models
with the GPU supporting and the time cost for each epoch is near to five
hours with a GeForce 980 NVIDIA GPU.

6.2.2 Visualization

What ASTToken2Vec models generate is the embedding representation vec-
tors for AST nodes. In order to illustrate the performance of ASTToken2Vec
models, we visualize embedding vectors of several terminal tokens generated
by our TT2V model. Due to the size of the hidden layer in the TT2V model

60

we trained is equal to 1,000, the length of the representation vectors is 1,000
too.

We first apply principal component analysis(PCA) algorithm[23] to our
embedding vectors. PCA algorithm is a dimensionality reduction method
which is widely used to reduce the dimension of a vector to a relatively lower
dimension one without losing much information of the vector. In this case, we
use PCA to reduce the dimension of the embedding vectors from 1000 dimen-
sions to 2 dimensions so that they are much easier to be visualized because
two value x and y in the dimension vector are considered easily as the coor-
dinate of the representation tokens. After the dimensionality reduction, we
normalize the two-dimension vectors with min-max normalization. Basically,
min-max normalization is a normalization strategy which linearly transforms
x to xnew = (x−min)/(xmax− xmin) where xmax and xmin is the maximum
and minimum value of all x and y to ymew = (y − ymin/(ymax − ymin). Our
normalization is different with this standard normalization, in our visualiza-
tion, we transform the entire range of values of elements in the 2 dimensions
vectors from min to max are mapped to the range -2 to 2 rather than -1 to
1. These processed vectors are used as the coordinate of terminal tokens.

We pick up several terminal tokens to visualize, the visualization is shown
in Figure6.1. Terminal token Identifiers are blue including “userName”,“id”,
“size”, “length”, “user id” and so on. LiteralNumber is represented by
purple. Tokens like “add”, “append”, “value”, “key” are terminal Prop-
erty which is green token in the figure. Red tokens are LiteralString like
“mouseup”,“mousedown”, “keyup” and “keydown”.

From the visualization of tokens in the figure6.1, it is not hard to find
that terminal tokens with the similar feature(tokens belong to the same type
like LiteralString or Property) are near to each other but far from other dif-
ferent types of tokens. We can find there are several clusters like: “literal
string cluster”, “property cluster” and so on. Another valuable thing is that
even tokens belong to the same type, if another feature is different, the 2
dimension reduction representation vectors are also far from each other. For
example, even both “append” and “value” are terminal token Property, they
are still not in the same cluster because “property append” is a function
which is able to add some elements to a container in the most cases, how-
ever “property value” serves as a member in a class without some operation
functionality of a container. Another example is Identifiers, in the most in-
stances, “identifier length”, “identifier len” and “identifier size” are used to
express length or scope of a class or a container and they are also bonded

61

Figure 6.1: The visualization for the 2-D terminal representation vectors
generated by ASTToken2Vec

with a LiteralNumber. Their semantic meaning is similar and their syntax
location in an AST is also nearly similar to each other. This is the reason why
their representation vectors are in the same cluster and near to each other.
Nevertheless, even “userName”, “user id” and “name” are also belong to the
type Identifiers, their 2 dimension representation vectors are still far from
the “identifier length” cluster in our figure due to they have different seman-
tic meaning and different surrounding context in an AST(“userName” and
“user id” are used to record the information about a user in most instances).

6.2.3 Similarity Calculation

We also calculate the cosine similarity between embedding vectors of several
terminal tokens. The embedding vectors we use for similarity calculation is
the original 1000 dimension vectors rather than the dimensionality reduction

62

vectors. The cosine similarity is a measuring method of similarity between
two vectors. The range of cosine similarity is from 0 to 1. If two vectors
have the same orientation, their similarity is equal to 1. On the contrary,
if the similarity is 0, it means these two vectors are perpendicular to each
other(there is no similarity between them). Cosine similarity of two vectors
A and B is calculated with the formula:

similarity =
A ·B

‖A‖ × ‖B‖
(6.1)

The result of the cosine similarity calculation meets our conclusion of
ASTToken2Vec models. The most similar token to “identifier length” is
“identifier size” with the similarity 0.927. The second similar token is “identi-
fier len” with the similarity 0.883. The similarity between “identifier length”
and “property push” is equal to 0.327 which means these two embedding
vectors are not near to each other. The analysis conclusion of similarity
calculation is the same as the conclusion of vector visualization.

6.2.4 Conculsion

In this section, we introduce the implementation of our ASTToken2Vec mod-
els, the hyper-parameters we specified and the training details of the experi-
ment. After models are trained well, they generate the representation vectors
for both non-terminal tokens and terminal tokens. We also leverage the di-
mensionality reduction method: PCA to reduce the dimension of the vectors
from 1,000 dimensions to 2 dimensions and normalize the 2 dimensions rep-
resentation vectors to the range of value from -2 to 2. Then, we visualize
reduction dimension embedding vectors of several terminal tokens by drawing
the values of their 2 dimension vectors as the coordinate of these terminal
tokens. We also calculate the cosine similarity between these embedding
vectors. From the analysis of the visualization and similarity calculation, we
can find that the embedding representation vectors of the terminal token are
semantically meaningful. These embedding vectors are used to initialize the
representation of tokens in our AT2V-LSTM integration model.

6.3 Experiment of AT2V-LSTM Model

In this section, we implement two models for code completion: basic NTI2P
model and AT2V-LSTM integration model. The basic NTI2P model works

63

as the baseline to compare the performance of the next token prediction.
The details about these two models are described in chapter5. We use
TensorFlow[21] deep learning framework to implement two models for the
next token prediction.

6.3.1 Training details

The RNN core we use in our models is a basic LSTM core rather than
the gated recurrent unit(GRU)[24] core. The reason is from our control
experiment of LSTM and GRU, the GRU is a little bit faster than LSTM core
during the training phase but losing 1.2 percent accuracy of the evaluation
performance. Due to the degree of speedup is so small that can be ignored
comparing with the losing of accuracy, we choose basic LSTM as the hidden
core of our models rather than GRU core. We use Adam[22] optimization
algorithm to train our model with base learning rate 0.0025. Due to we
use learning rate decay trick for model training, this basic learning rate is
multiplied by 0.85 every 0.5 epoch. Even the LSTM can avoid the gradient
vanishing problem and prevent the gradient exploding problem in most cases,
the gradient exploding problem still occurs one time among our experiments.
So we use gradient clipping method to forbid the occurrence of gradient
exploding problem. Basically, we clip the gradient which is more than 6 to 6
and less than -6 to -6 to avoid the gradient becoming too large or too small.
We use randomly uniformly initialize the initial state of LSTM cell with
values from -0.1 to 0.1. Due to the training of RNN models is backpropagate
through time, we unroll the LSTM model with the time sequence s = 50 to
take a subsequence of length 50 in each input batch and the batch size is
b = 100. Therefore, there are s× b = 5000 training samples for one training
batch. The training epoch is e = 10. We also train these models with the
supporting of a GeForce 980 NVIDIA GPU and each epoch costs 8 hours for
model training.

6.3.2 Next Token Prediction

We evaluate our AT2V-LSTM integration model and the basic NTI2P model
with the test dataset after the models are trained well. We present the per-
formance of prediction accuracy including the next non-terminal prediction,
next terminal prediction and the prediction of the type and side information
of the predicting non-terminal. And then, we compare the performance of

64

these two models and analyze the comparing predicting result to explore in
which case our AT2V-LSTM integration model is more accurate than the
basic NTI2P model.

Next non-terminal prediction The valid accuracy curve of the next non-
terminal token prediction during the training phase is illustrated in Figure6.2,
the blue curve represents the validation accuracy of the basic NTI2P model
and the orange curve is our AT2V-LSTM integration model. the x-axis rep-
resents the validation checkpoint among training step, there are four check-
points for each training epoch. Due to we train our models 10 epochs totally
in the experiment, there are 40 checkpoints to record the validation accuracy.

Figure 6.2: Validation accuracy for non-terminal prediction during the train-
ing phase

From the validation accuracy curve in Figure6.2, we find the accuracy
of AT2V-LSTM integration model is little higher than the accuracy of the
basic NTI2P model. The evaluation result illustrated in the table6.2 also
show that the non-terminal accuracy of the integration model is 1.5% higher
than the basic baseline model.

Next terminal prediction Figure6.3 illustrates the validation accuracy
curve for next terminal token prediction during the training phase. Orange
curve represents our AT2V-LSTM integration model and the blue curve is the
accuracy of our baseline: the basic NTI2P model. The evaluation accuracy

65

Models Top one accuracy Top 3 accuracy
Vanilla LSTM 83.5 ± 0.2% 92.6 ± 0.2%
AT2V-LSTM 85.2 ± 0.2% 94.4 ± 0.2%

Table 6.2: Non-terminal Evaluation Accuracy

Models Top one accuracy Top 3 accuracy
Vanilla LSTM 75.8 ± 0.2% 87.7 ± 0.2%
AT2V-LSTM 78.9 ± 0.2% 89.2 ± 0.2%

Table 6.3: Terminal Evaluation Accuracy

for the terminal in the test phase is shown in Tabel6.3. From both validation
result and evaluation result of terminal prediction, we can find that the
AT2V-LSTM integration model has a better performance with the predicting
accuracy of 78.9% than the basic baseline model.

Figure 6.3: Validation accuracy for terminal prediction during the training
phase

Models Token type accuracy Token side accuracy
Vanilla LSTM 97.6 ± 0.2% 94.8 ± 0.2%
AT2V-LSTM 97.8 ± 0.2% 95.1 ± 0.2%

Table 6.4: Node Information Evaluation Accuracy

66

Next token information prediction There are another two bits of in-
formation our models need to predict which is the type(non-leaf or leaf) and
the side(right-child or left-child) of the next predicting non-terminal. Both
of these two information is binary which means there are only two possible
value:0 or 1 to predict by our models. The evaluation accuracy of these two
bits prediction is shown in the Table6.4, from this result, we can find that
both basic NTI2P model and AT2V-LSTM integration model achieve a good
performance that the accuracy of type information is near to 97% and the
accuracy of side information is near to 95%. There is not too much difference
between the performance of the two models.

6.3.3 Prediction Analysis

From the evaluation result of the predicting performance, we find that the
AT2V-LSTM integration model has a better performance for the next ter-
minal prediction. In order to figure out in which case the integration model
is more correct, we extract some featured evaluation queries where the basic
NTI2P model predicts wrong but our AT2V-LSTM model predicts correctly.
We analyze the possible reasons that may cause our integration model to
work better.

Infrequent Terminal Repeation

When programmers specify variables or functions, they may not use some
common name to define the name of identifiers due to the special purpose of
these identifiers and these special identifiers always used only in one program
files repeatedly(An example is an identifier: ‘shouldBe’ in the code snippet
shown in the figure6.4(1)). This situation usually happens in Web-related
programs. However, these special identifiers are quite infrequent both in the
daily programming and our dataset. Basic deep learning models for code
completion are hard to learn enough knowledge of these infrequent terminals
from the training dataset because they only appear in several program files.
But for our AT2V-LSTM model, because the ASTToken2Vec model is able
to learn syntax knowledge of a repeat terminal from ASTs even this terminal
token is only included in several training ASTs.

The code snippet in the figure6.4(1) is an evaluation source code file in
the test dataset. In this file, the programmer specifies a function called
“shouldBe” which is a terminal token “identifier” in terms of the program-

67

Figure 6.4: Code snippets for prediction result analysis

ming language grammar. From the programming habits of most coders,
identifier “shouldBe” is an infrequent terminal. In this figure, we create a
hole which is covered by a blue oval and transforms the previous context
of the hole as a sequence. Both trained NTI2P model and AT2V-LSTM
model predict what kind of terminals may appear in the hole as the code
completion. In this example, the basic NTI2P model predicts “UNK” which
means this model consider the terminal token appearing in the hole is a quite
infrequent terminal token and this terminal is out of the terminal vocabu-
lary we specified. On the contrary, our AT2V-LSTM integration model gives
a correct prediction: “shouldBe” identifier. From our analysis of this test
case, we can conclude that the ASTToken2Vec model is useful to improve
the performance of code completion and our AT2V-LSTM integration model
is more powerful to predict the infrequent terminal tokens which appear in
a single source code file repeatedly.

Literal Number Prediction

The prediction for the literal number is hard for our model because there are
infinite numeric values. However, some numbers determined appear in some

68

code snippets. For example, the literal number zeros most possible appears
in the variable specification of identifier “i” expression in the “for loop” state-
ment. The example code snippet shown in the figure6.4(2) is a test case in
our test dataset. We ask our models to predict what terminal token should
be filled in the hole covered by a blue oval. The ground truth label in this
test case is “LiteralNumber 0”. Our AT2V-LSTM model predicts correctly
comparing with the NTI2P model predicts unknown terminal tokens here.
From the analysis of this test case, we can conclude that the representation
embedding vector of “ LiteralNumber 0” is able to learn from its non-terminal
context “ForStatement” so that the embedding vector contains syntax infor-
mation of “for loop statement”. And when our AT2V-LSTM model leverage
this syntax information included by the embedding vector and predict the
terminal token in this hole, it has a higher possibility to predict correctly.

6.3.4 Conclusion

In this experiment, we implement both NTI2P model and the AT2V-LSTM
integration model. We feed the same sequences of training samples to these
two models and ask them to predict the next non-terminal token, next ter-
minal token, the type and side information of the next non-terminal token.
We compare the predicting performance of two models and find that our
AT2V-LSTM model has a better performance of next token prediction espe-
cially the predicting of next terminal tokens. Finally, we analyze in which
case our integration model is more likely to predict correctly than the basic
model and its reason. We conclude that our AT2V-LSTM model has a higher
possibility to predict infrequent repetition identifiers and literal number ter-
minal tokens which the usage of representation embedding vectors generated
by ASTToken2Vec model.

From the experiment of code completion and the experiment of ASTTo-
ken2Vec models, we can conclude that ASTToken2Vec is a useful pre-trained
embedding model which is able to generate more semantic-based representa-
tion vectors for AST nodes. And these representation vectors contain more
information hidden in the structure of ASTs and they can be used to help
the LSTM based model achieve a better performance of the next token pre-
diction.

69

Chapter 7

CONCLUSION

In this chapter, we summarize the work we do for deep learning-based code
completion and analyze its performance, we also discuss the future research
direction about code completion with deep learning models.

7.1 Summary

AST reconstruct from the sequence We extend the method to trans-
form ASTs to sequences in our work so that an AST can be reconstructed
from a sequence directly. Deep learning-based code completion research in
the previous work provides the method to transform ASTs in the dataset to
sequences of training samples as the data processing. Each element in this
sequence is a training pair which contains two tokens: non-terminal token
and terminal token. Each training pair is fed to an LSTM model to predict
the next training pair.

We consider the shortcoming of this AST processing that: after the model
outputs the predicting sequence of pairs, it is hard to reconstruct the AST
from this predicting sequence directly. Our method, rather than only two
tokens: non-terminal and terminal in training pair in the sequence, we give
another two bits of information: the type information and side information
the non-terminal. This information is more about the structural information
of the AST and the position of the non-terminal tokens. It is used to recon-
struct the AST from the predicting sequence. So we enhance the content of
the original training pair to a four elements training samples: non-terminal,
terminal, node-or-leaf, right-or-left. Our model is able to predict the next

70

non-terminal and next terminal token in the training sequence, but also pre-
dict the two bits of information.

Embedding model for AST nodes: ASTToken2Vec The most sig-
nificant part of this thesis is that we propose a pre-trained model called
ASTToken2Vec which is inspired by a widely used embedding method for
natural languages called Word2Vec[2]. The ASTToken2Vec model is also an
embedding method which is able to generate the representation vectors for
both non-terminal and terminal AST nodes. The generation embedding vec-
tors contain more semantic-based information of AST nodes. There are two
variants of the ASTToken2Vec model: ASTToken2Vec for non-terminal is
called NT2V and ASTToken2Vec for the terminal is abbreviated as TT2V.
The ASTToken2Vec model is a neural network model which contains one
input layer, one single hidden layer, and two output layers. The mecha-
nism of ASTToken2Vec is using the surrounding context of a target non-
terminal/terminal token in an AST to generate the representation vectors.
ASTToken2Vec model not only can be applied in deep learning-based code
completion systems but also is useful for other learning-based tasks with an
AST dataset as a pre-trained model. In the experiment chapter, we also train
both of two ASTToken2Vec models and visualize the representation vectors
of several terminal tokens. We reduce the dimension of the embedding vec-
tors by PCA algorithm and analyze the visualization result of these terminal
tokens.

AT2V-LSTM Integration Model We propose a basic LSTM model as
the baseline for code completion named NTI2P model. Then, we integrate
this basic model and the ASTToken2Vec method as a pre-trained model to
predict the next tokens. We name this integration as AT2V-LSTM model.
Basically, we use the embedding vectors of non-terminal and terminal to-
kens generated by ASTToken2Vec method to initialize the representation
vectors of all tokens in the vocabulary rather than random initialization. In
the experiment phase, we train our AT2V-LSTM integration model with a
JavaScript AST dataset and evaluate the performance of both NTI2P model
and AT2V-LSTM model with test queries. We find that our integration
model has better accuracy on the next terminal token prediction. We also
analyze in what situation the integration model is more possible to predict
correctly compared with the basic model. From the analysis, we conclude

71

that the integration model is more powerful to predict infrequent identifier
terminal tokens.

7.2 Future Research Directions

Code completion with deep learning models is still an exciting research di-
rection. Code completion is one of the most useful tools for programmers to
write code and it has great research value. Deep learning models have a great
achievement in many areas especially handling linear sequence-structure data
like natural languages. It is possible to apply deep learning models to source
code based tasks like code completion due to the similarity of natural lan-
guages and programming languages. Our work is an extension of the existing
LSTM based code completion research and there are more available research
methods are worth to try and can be applied in code completion systems.

Tree-based LSTM models[17] have been applied in natural languages and
have a good performance on semantic analysis of natural languages. This
model is able to leverage the syntax tree data directly rather than transform
a syntax tree of a sentence to a sequence of tokens. Due to the abstract
syntax tree of a program is also a semantic-based tree structure which is
similar to the syntax tree of a sentence, this similarity makes it possible to
try to apply this tree-structured LSTM model to some AST data-based tasks
like code completion. The challenge of it is how to feed a dynamic AST to
the tree-LSTM model and predict the next node appearing in the AST.

Generative Adversarial Nets(GAN) have a rapid development in recent
years. GAN models are able to generate data from the confrontation be-
tween two neural networks. It has been applied to generate natural sentences.
William Fedus et al.[25] propose the MaskGAN model as a text generation
model which have a great performance of natural sentence generation. Its
success inspires us to consider code completion tasks as code generation prob-
lems and try to apply GAN models to predict the next tokens of grograms.

72

ACKNOWLEDGEMENTS

First of all, I’d like to express my gratitude to my supervisor: Prof.Masuhara
Hidehiko. With his guidance, extraordinary patience for my asking, great
encouragement when I am confused and pressured and valuable suggestions,
I spend two years of an excellent time in Japan and complete graduation
thesis. This thesis would have been impossible without him.

I am thankful to all the present and past members of the Programming
Languages Lab for their support, and advice especially Doctor.Matthias
Springer who give me inspiration about this research. Their friendly and
patient help gives me a harmonious and comfortable environment to work
even I am a foreigner in this country.

I would like to thank all professors and staff members in the Department
of Mathematical and Computing Science. They help me to solve the prob-
lems I face throughout my master’s studies. I am grateful to them for their
generous education support that helps me to concentrate more deeply on my
research work.

I also want to say thanks to my future girlfriend. Due to her absence, I
am able to put all my time and energy to the research work and finish this
thesis on time. With the help of her disappearance, I find the real fun in
coding and computer science which may have a significant influence on my
life.

Finally, I’d like to express my heartiest gratitude to my family members
especially my mother Fu Zhicui and my father Li Jun. Their love and support
give me the confidence and courage to face and overcome all problems and
challenges in my whole life. They encourage me to take the calculated risk,
to dream and to build, to fail and to succeed. Without their love, I cannot
find what kind of life I really want to live and it is impossible to complete
this thesis.

73

Bibliography

[1] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural computation, 9:1735–80, 12 1997.

[2] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey
Dean. Distributed representations of words and phrases and their com-
positionality. CoRR, abs/1310.4546, 2013.

[3] Veselin Raychev, Pavol Bielik, Martin Vechev, and Andreas Krause.
Learning programs from noisy data. SIGPLAN Not., 51(1):761–774,
January 2016.

[4] Chang Liu, Xin Wang, Richard Shin, Joseph E Gonzalez, and Dawn
Song. Neural code completion. 2017.

[5] Abram Hindle, Earl T Barr, Zhendong Su, Mark Gabel, and Premku-
mar Devanbu. On the naturalness of software. In 2012 34th Inter-
national Conference on Software Engineering (ICSE), pages 837–847.
IEEE, 2012.

[6] Chris J. Maddison and Daniel Tarlow. Structured generative models of
natural source code. CoRR, abs/1401.0514, 2014.

[7] Tung Thanh Nguyen, Anh Tuan Nguyen, Hoan Anh Nguyen, and
Tien N. Nguyen. A statistical semantic language model for source code.
In Proceedings of the 2013 9th Joint Meeting on Foundations of Soft-
ware Engineering, ESEC/FSE 2013, pages 532–542, New York, NY,
USA, 2013. ACM.

[8] Miltiadis Allamanis and Charles Sutton. Mining idioms from source
code. In Proceedings of the 22nd ACM SIGSOFT International Sym-

74

posium on Foundations of Software Engineering, pages 472–483. ACM,
2014.

[9] Miltiadis Allamanis, Earl T Barr, Christian Bird, and Charles Sutton.
Suggesting accurate method and class names. In Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering, pages 38–
49. ACM, 2015.

[10] Percy Liang, Michael I Jordan, and Dan Klein. Learning programs: A
hierarchical bayesian approach. In Proceedings of the 27th International
Conference on Machine Learning (ICML-10), pages 639–646, 2010.

[11] Pavol Bielik, Veselin Raychev, and Martin Vechev. Phog: probabilistic
model for code. In International Conference on Machine Learning, pages
2933–2942, 2016.

[12] Veselin Raychev, Pavol Bielik, and Martin Vechev. Probabilistic model
for code with decision trees. In ACM SIGPLAN Notices, volume 51,
pages 731–747. ACM, 2016.

[13] David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. Learn-
ing representations by back-propagating errors. Cognitive modeling,
5(3):1, 1988.

[14] Veselin Raychev, Martin Vechev, and Eran Yahav. Code completion
with statistical language models. In Acm Sigplan Notices, volume 49,
pages 419–428. ACM, 2014.

[15] Mario Linares-Va squez Martin White, Christopher Vendome and Denys
Poshyvanyk. Toward deep learning software repositories. 2015.

[16] Matthew Amodio, Swarat Chaudhuri, and Thomas W. Reps. Neural at-
tribute machines for program generation. CoRR, abs/1705.09231, 2017.

[17] Christopher D. Manning Kai Sheng Tai, Richard Socher*. Improved
semantic representations from tree-structured long short-term memory
networks. 2015.

[18] Pavol Bielik, Veselin Raychev, and Martin Vechev. Phog: Probabilistic
model for code. In Maria Florina Balcan and Kilian Q. Weinberger,
editors, Proceedings of The 33rd International Conference on Machine

75

Learning, volume 48 of Proceedings of Machine Learning Research, pages
2933–2942, New York, New York, USA, 20–22 Jun 2016. PMLR.

[19] Miltiadis Allamanis, Earl T. Barr, Premkumar T. Devanbu, and
Charles A. Sutton. A survey of machine learning for big code and nat-
uralness. CoRR, abs/1709.06182, 2017.

[20] Sébastien Jean, Kyunghyun Cho, Roland Memisevic, and Yoshua Ben-
gio. On using very large target vocabulary for neural machine transla-
tion. CoRR, abs/1412.2007, 2014.

[21] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Ge-
offrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz
Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga,
Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vin-
cent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete
Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng. TensorFlow: Large-scale machine learning on heterogeneous sys-
tems, 2015. Software available from tensorflow.org.

[22] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[23] Ian Jolliffe. Principal component analysis. Springer, 2011.

[24] Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho, and Yoshua Ben-
gio. Empirical evaluation of gated recurrent neural networks on sequence
modeling. CoRR, abs/1412.3555, 2014.

[25] William Fedus, Ian Goodfellow, and Andrew M Dai. Maskgan: Better
text generation via filling in the . arXiv preprint arXiv:1801.07736,
2018.

76

