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by Akio OKA

Live programming is a way to make programming easier. Traditional programming
is divided into a phase for editing a program and a phase for confirming whether
the program is working as expected. The programmer needs to return to editing
the program if the execution result of the edited program differs from the expected
result.

Kanon is a live programming environment that automatically visualizes data
structures to assist programmers data structure programming. It provides imme-
diate connection between the program text and graphical images of data structures
in the programmer’s mind. This dissertation reports two studies on Kanon; The one
is a user experiment, the other is development of a feature that supports recursive
functions.

First, since it was not obvious how the visualization of data structure affects pro-
gramming, the author carried out a user experiment, which lets participants use one
each of the existing Kanon and a text-based live programming environment to solve
programming tasks with different degrees of difficulty. Observation of their behav-
iors and the interview revealed that, though most of the participants had positive
impressions, Kanon still has room for improvement.

Second, one of the findings from the experiment is that, though its visualization
is useful for the programmer to think about the next code fragment to be written, it
becomes useless when defining recursive functions. The author guesses the reason
is that, when he or she writes a code fragment following the call to an incomplete
function, the object graph displayed in Kanon differs from the state of objects in the
programmer’s mind. The author proposes an extended feature of Kanon for defining
recursive functions.

More specifically, the feature lets the programmer manually build a structure
that he or she expects after executing the call. The expected structure serves two
roles. (1) It is used as the program state after a function call. When the programmer
adds lines after the call, those lines will manipulate the expected structure. (2) It
also serves as a test case. Whenever the programmer edits the recursive function
definition, the runtime system compares the actual data structures from execution
against the expected structure, and notify the programmer whether they match each
other.

This dissertation also discusses the usefulness of the extended feature through
case studies.
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Chapter 1

Introduction

1.1 Programming

Programming is a process to create a program, which is an enumeration of characters
that gives a computer commands. A person who creates a program is called a pro-
grammer, and a programmer uses an editor, which is one of software, to create or
modify a program.

The programming is sometimes a burdensome action for programmers. When
the program created by the programmer does not behave as expected, the program-
mer needs to find which part of the program is wrong. Perhaps, some programmers
feel a burden even to write a program.

A lot of research has been conducted to make programming easier. One of the
researches is program synthesis, which automatically synthesizes an executable pro-
gram to satisfy given specifications (Gulwani, 2010). Also, there is a research about
programming environment which helps a programmer to edit a program. An Inte-
grated Development Environment (hereinafter called IDE), which is a kind of pro-
gramming environment, provides comprehensive facilities (e.g., editor, build tool,
and debugger) necessary to do programming (Teitelman and Masinter, 1981). One
of the research to improve programming environments such as IDE is live program-
ming (Hancock, 2003; Victor, 2012), which is a way to make programming easier.

1.2 Live Programming

Traditional programming is divided into a phase for editing a program and a phase
for confirming whether the program is working as expected. The programmer needs
to return to editing the program if the execution result of the edited program differs
from the expected result.

Live programming assists the programmer by giving an “immediate connec-
tion” between a program and its execution result without requiring the program-
mer to run the program in their mind. Most past demonstrations of live program-
ming target programs whose results are not obvious from their texts, including the
programs for drawing pictures (Victor, 2012), for synthesizing music (Aaron and
Blackwell, 2013), for animating game characters (McDirmid, 2007), and for teaching
algorithms (Khan Academy, 2018). The details of live programming is discussed in
Section 2.2.

Data structure programs (detailed in Section 2.1) fall into the same category, and
therefore we believe live programming can be helpful in this domain as well. By
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data structure programs, we here mean definitions of data structures and their op-
erations at various levels of abstractions, ranging from generic ones like a doubly-
linked list to application-specific ones like “data for a hospital medical record sys-
tem.” In object-oriented programming languages, data structure programs are usu-
ally defined as class and method definitions.

Previously, the author proposed a live programming environment, called Kanon,
specialized for data structure programming (Oka et al., 2017a; Oka, Masuhara, and
Aotani, 2017; Oka et al., 2017b; Oka, Masuhara, and Aotani, 2018). Kanon automat-
ically visualizes data structures to assist programmers data structure programming,
provides the immediate connection between the program text and graphical images
of data structures in the programmer’s mind.

1.3 Contributions

This dissertation reports two studies on Kanon: The one is a user experiment for the
initial version of Kanon, the other is development of a feature that supports recursive
functions. The contributions of this dissertation are as follows:

• Interview in the user experiment revealed that most of the participants had
positive impressions of the initial version of Kanon.

• Through observation of the participants’ behaviors, the author observed inter-
esting programming behaviors with Kanon and found that the visualization of
Kanon becomes useless for programmers when a programmer defines recur-
sive functions.

• This dissertation proposes a set of features that let the programmers manually
specify an object structure expected after the call. The extended Kanon auto-
matically tests whether the actual object structure is the same as the expected
structure, and automatically overrides the actual objects to satisfy the expected
structure.

• The author confirmed, through case studies, that the proposed features can
work well and are helpful when defining typical recursive functions.

In the following chapter, the author discusses the background of this research
(Chapter 2). Chapter 3 evaluates the initial evaluation Kanon, and then about the
proposing features are discussed in Chapter 4, which includes case studies and im-
plementation. Finally, the author concludes the dissertation (Chapter 5).
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Chapter 2

Background

2.1 Data Structure Programming

Data structure programming is the act of programming data structures as well as
operations that manipulate those structures. Data structures include common ones
like lists and problem specific ones, and appear in many programs.

Data structure programming is sometimes difficult and frustrating, as it is often
involved with multiple references. When we define an operation on a data structure,
the operation needs to take several steps to modify the structure such as by changing
references. In such a case, we need to think about the next step by imagining the
shape of the structure modified by the steps written so far. The problem can be even
harder when there is aliasing of references and cyclic references.

When we are defining a complicated operation that manipulates a data structure,
we sometimes write a test case and examine the (partly) modified structure. How-
ever, textual printouts of data structures, which would be the most widely taken ap-
proach, are often hard to read, especially when the structures become complicated.
It is also difficult to recognize changes in a data structure from its textual outputs.

Though the programmers could have a variety of mental images for data struc-
tures, we assume that images with boxes and arrows are common enough. Figure 2.1
is an example of such an image for a doubly-linked list.

3 1 4 1

FIGURE 2.1: A mental image of a doubly-linked list.

While it is a straightforward idea and there is a tremendous amount of research
that visualizes data structures, it is not obvious what features programming environ-
ments should provide in the context of live programming. Though there are many
programming environments, like ZStep (Lieberman and Fry, 1995), jGRASP (Hen-
drix, Cross, and Barowski, 2004) and Python Tutor (Guo, 2013), that visualize user-
defined data structures, they mainly focus on the situation when the developer tries
to examine the behavior of programs in a post-mortem fashion. In other words, de-
velopment and examination are separated processes in those environments.

2.2 Live Programming Environment

We can classify live programming environments into two groups with respect to the
types of the programs they support. The first group’s environments enable code
editing of a running program (e.g., SonicPi (Aaron and Blackwell, 2013)). The sec-
ond group’s environments automatically re-execute a program to show the effects of
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changes immediately (e.g., Live Editor (Resig, 2012) and YinYang (McDirmid, 2013)).
The former group is mainly used for artistic performances, like improvising music
and animated graphics. The latter is mainly used for software development and
pedagogical purposes.

We can also classify live programming by the types of outputs from programs.
Many environments mainly target programs that generate visual or acoustic outputs.
Additionally, environments for artistic performances, demonstrations for educational
usages often use programs that draw pictures.

A few exercises are reported to use live programming for programs that do not
output visual or acoustic outputs. Live Editor (Resig, 2012) and YinYang (McDirmid,
2013), for example, live-update textual outputs from a program being edited. These
tools are used to show the course of computation taken place in a loop of a numerical
function, such as the square root of numbers.

If we apply live programming to data structures programs, the current environ-
ments are not suitable for the following reasons: in the first case, the programmer
has to write a program that explicitly generates visual, acoustic or textual outputs.
This is clearly tedious for operations that manipulate data structures. In the latter,
the only standard way to output data structures is printing in text, which is not
friendly to the programmer’s eyes as we discussed in the previous section.

2.3 Algorithm Animation

Many algorithm animation systems, including Balsa (Brown and Sedgewick, 1984),
Zeus (Brown, 1991) and Tango (Stasko, 1989), can graphically display data struc-
tures. Some of these systems provide frameworks where we can easily develop an
animation by instrumenting an implementation of an algorithm like sorting.

While these algorithm animation systems could be used for program under-
standing, they are fundamentally different from live programming, as they do not
have a live updating feature. In other words, they are designed for visualizing be-
haviors of completed programs; they would not work well for partly-written and
frequently edited programs. Though it would be hypothetically possible to auto-
matically apply an algorithm animation system to a program being edited, it would
not provide continuous feedback as we will discuss in the later section.

2.4 Kanon: A Live Data Structure Programming Environment

We proposed Kanon, a live programming environment for data structure program-
ming (Oka et al., 2017a; Oka, Masuhara, and Aotani, 2017; Oka et al., 2017b; Oka,
Masuhara, and Aotani, 2018). Here, we introduce notable features of Kanon that are
relevant to define recursive functions.

2.4.1 Design Overview and Assumptions

Figure 2.2 is a screenshot of Kanon. The left, upper-right, and lower-right sides are
the editor pane in which a program is written, the visualization pane that displays
data structures, and the call tree pane that displays control flow, respectively. It is
designed under the following assumptions.

• We assume that a program is written in JavaScript1 in a single file. It consists
1We chose JavaScript as a general-purpose programming language that supports data structures.

Therefore, we do not consider use-cases specific to JavaScript, such as DOM and async.
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FIGURE 2.2: A screenshot of Kanon.

of definitions of data structures and their operations, followed by top-level
expressions that serve as test cases.

• Kanon draws data structures as a node-link diagram. Each oval in the visual-
ization pane represents an object that is created during an execution, labeled
with the class name of the object. The blue arrows from the ovals show the
field values in the object, which point to either other objects or primitive val-
ues, and the green arrows with no origin (e.g. the arrow labeled list) show
which object the local variables refer to.

• Kanon continuously executes the program, and visualizes all objects created
from the beginning up to an execution point that corresponds to the cursor
position in the editor.

2.4.2 Visualization of Changes and Two View Modes

2.4.2.1 Visualization of Changes

When a live programming environment visualizes data, the data can change during
execution. For example, given a program that repeatedly approximates a mathe-
matical function, we might want to see the changes of intermediate results during a
run. Existing environments can show such changes as a series of values (McDirmid,
2007; Imai, Masuhara, and Aotani, 2015) or as a line chart (Apple Computer, 2016).
For programs that produce visual images (i.e., drawing programs), there have been
attempts to use a stroboscopic visualization (Granger, 2012) or a timeline visualiza-
tion (Kato, McDirmid, and Cao, 2012).

For data structures, there is no definitive way to visualize changes. Though there
have been a number of studies on algorithm animation, those studies tend to de-
velop techniques specialized to specific algorithms.
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2.4.2.2 Snapshot and Summarized View Modes

Kanon provides two ways of showing changes in a program run: one is called the
snapshot view mode, which animates the graphical representation using cursor move-
ment in the text editor, and the other is called the summarized view mode, which shows
summarized effects of changes in one graphical representation.

With the snapshot view mode, the view shows the object graph with variable ref-
erences when the program execution reaches the cursor position. If the execution
reaches the cursor position multiple times (due to multiple function calls or loops),
the execution of a specific context2 is chosen.

Figure 2.3 is an example of a snapshot view for the program text in Listing 2.1 (in
which the cursor position is denoted by a black rectangle), in the context of l.add(4).
The green arrows in Figure 2.3, which are labeled this and temp, represent the ref-
erences by the this expression and the variables available in the specified calling-
context. In this example, the programmer is defining the add method for doubly-
linked lists and has finished defining the case when the list is empty. The view
shows the object graph when the execution of l.add(4) reaches the cursor position.
Note that the node for 5 is not yet created in this view.

With the summarized view mode, the view shows effects of a statement3 at the cur-
sor position over the object graph at the end of the execution. The view summarizes
the effects by two means: (1) when the statement is executed more than once, it vi-
sualizes all the effects performed in those executions; and (2) when the statement
contains a function call, it visualizes all the effects performed in the call.

Figure 2.4 is an example of a summarized view for the program text in Listing 2.2,
where the programmer has finished definition of add. This view shows an object
graph at the end of execution. At the same time, the view illustrates the effects of the
code at the cursor position, in this case, the assignment “this.head.next = temp;”,
where the orange solid arrow ( 3©) shows the reference found at the end of execution.
The dashed arrows ( 1©, 2©) denote the overwritten references, i.e., once created by
this (orange 1©) or other (green 2©) assignment, and then disappeared due to later
assignments.

From the diagram, the programmer can observe that the final graph is incorrect.
The next field of the leftmost Node should reference the middle Node, where instead
it references the rightmost Node in the final state. The programmer can also see that
the reference was initially correct (as shown with the green dashed arrow 2©) and
then overwritten by the assignment at the cursor position. In fact, the cursor line
should assign to this.tail.next, instead of this.head.next.

2.4.3 Backward Connection to Code from Graphical View

2.4.3.1 Relating Visualized and Program Elements

It is important to the programmer to be able to establish a connection between vi-
sualized information and program elements. For example, consider an environment
that visualizes a time-series of values of multiple variables in a program. We then
need to find out the correspondence between a series of values to a variable, as well
as a value in a series to a specific moment in an execution.

2Users can spcify the context by clicking one node in the call tree.
3Though our current implementation only shows effects of one statement, it is not difficult to extend

it to show the effects of a series of statements. It is a part of our future work.
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LISTING 2.1: Partially de-
fined add.

class DLList {...
// add the given val at the end of the list
add(val) {

var temp = new Node(val);
if (this.head === null) {

// when the list is empty
this.head = temp;
this.tail = temp;

} else {
// when the list is not empty

}
}

}
var l = new DLList ();
l.add (3); l.add (4); l.add (5);

FIGURE 2.3:
A snapshot
view in the
context of
l.add(4).

LISTING 2.2: Finished (yet
incorrect) definition of add.

class DLList {...
// add the given val at the end of the list
add(val) {

var temp = new Node(val);
if (this.head === null) {

// when the list is empty
this.head = temp;
this.tail = temp;

} else {
// when the list is not empty
temp.prev = this.tail;
this.head.next = temp;
this.tail = temp;

}
}

}
var l = new DLList ();
l.add (3); l.add (4); l.add (5);

FIGURE 2.4:
A summa-
rized view for
the program
in Listing 2.2.
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YinYang’s solution to this issue is a probe that displays a value of an expression
just below the expression, and a tracing construct that produces a clickable output,
which rewinds the program state to the time when the output is produced.

For data structures, since a visual representation (i.e., a node-link diagram) has a
structure, environments should help to establish a connection between those visual
elements and program elements.

2.4.3.2 Jump to Construction

We provide a mechanism that helps to connect visual elements to program elements.
The mechanism is called jump-to-construction, which is invoked by a double-click on
a graphical element, and moves the cursor position to the program element that
corresponds to the graphical element (either a new expression or a field-assignment
statement).

2.4.4 Control Flow Graph

Kanon provides a call tree pane that displays which function calls which function as
shown in the lower right in Figure 2.2. The nodes in the call tree represent parts of the
program that might be executed multiple times (i.e., function, loop, and constructor).

The user can specify the specific context in the snapshot view mode. As shown
in the call tree pane, the border of some nodes is thick. This thick border means
that the context is selected for the snapshot view mode. In the case of Figure 2.2,
the user has selected the second execution as the add method defined in the DLList
class. Therefore, when the cursor moves into the add method in that situation, the
visualization pane shows an object graph at the time that the execution reaches the
cursor position in the context of the function call at line 32 in Figure 2.2.
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Chapter 3

Initial Evaluation

As an initial evaluation, we carried out a user experiment1 in order to collect pro-
grammers’ opinions about the implementation of existing Kanon. Since we have not
yet implemented many practical features such as code completion, we do not believe
that we can do the meaningful quantitative evaluation. (In the experiment, we mea-
sured time to task completion, which is not a primary purpose of the experiment.)
Nevertheless, as we will see in our experiment, we observed interesting program-
ming behaviors with Kanon, positive opinions on the Kanon’s features, and several
future improvements.

3.1 Design of the Experiment

In our experiment, we let the participants use Kanon to solve several programming
tasks in order to observe their usage of the Kanon’s features, and to gather their
opinions. In addition, we designed the experiment with the following questions in
our mind.

• Do graphical outputs make difference in programmer’s behavior from textual outputs?
We build a textual live programming environment (called TLPE hereafter) as a
counterpart of Kanon and let the participants use both environments.

• Does the amount of programming experience affect the usage of Kanon?
Our experiment had 13 participants consisting of 9 students (at the senior un-
dergraduate and graduate levels) and 4 computer scientists in a corporate re-
search laboratory. Note that all the students and one scientist have heard about
Kanon before the experiment, but none of them have ever used it.

• Does difficulty of programming tasks affect the usability of Kanon?
We prepared two tasks with different difficulties and let the participants solve
them. The simple one merely requires to modify a few object references. The
difficult one requires to traverse references while modifying the references
themselves.

3.2 Experimental Procedure

We carried out the experiment for each participant one by one. The participant took
the four phases, namely tutorial, practice, main and interview, which amount to ap-
proximately one and a half hours in total. We recorded the participant’s activity

1This experiment was carried out in Japanese all the time. In this dissertation, the participants’
opinions have been translated into English.
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by recording the computer’s screen and participants’ voice. Throughout the experi-
ment, we asked the participants to speak out their thoughts, for example “I’m con-
fused now”, “Why is the figure displayed like this?” and “Oh, this program includes
an error.” What the participants are thinking tells us where they are paying attention
to during programming.

3.2.1 Tutorial

In the tutorial phase, the participant is asked to read a 67-pages document that de-
scribes the usage of Kanon and the format of the tasks. In this experiment, all the
tasks are to define a method for a common data structure. The participants were
given the definition of the data structure, a definition of the method without an
empty body, and a series of method call expressions that serve as test cases, which
cover all the situations. The document uses the scene in which a programmer defines
the LinkedList.add method as an example. At the same time that the participants
read the document, they are allowed to use Kanon to grasp how Kanon works.

3.2.2 Practice Phase

In the practice phase, the participant is asked to define a LinkedList.insert method
as the exercise simple task using Kanon in order to get used to Kanon and the format
of tasks.The excercise task took up to approximately 15 minutes. Throughout this
phase, we allowed the participants to question anything. After they have completed
the task or time is over, we commented the feedback and the answer to the task to
them.

3.2.3 Main Phase

In the main phase, the participant tasked to solve two tasks, namely rotate and re-
verse, in this order. We grouped the participants into two, and assigned Kanon or
TLPE to those tasks according to Table 3.2. Each task was given a 20 minutes time
limit.

The rotate and reverse tasks are to define a method that rotates a root node of
binary tree, and a method that reverses a doubly-linked list, respectively. The former
task can be accomplished by merely modifying a few references in the given tree
nodes. The latter task is rather difficult, as it requires to follow links between nodes
while modifying those links.

TLPE is a simple live programming environment as shown in Figure 3.1. It pro-
vides a customized println function that prints out data on the right-hand side of
the screen. It is live in the sense that the output is immediately updated whenever
the code on the left-hand side changes, which is similar to Khan Academy’s Live
Editor (Resig, 2012) and YinYang (McDirmid, 2013). Unlike the built-in print func-
tion in JavaScript, the println function displays internal elements in a nested data
structures. It also supports cyclic structures (by showing #n as in the figure).

3.2.4 Interview

In the interview phase, one of the authors asked the participants several questions.
The first question is about difficulties throughout the experiment. The role of this
question is to clearly remind the participants of their thoughts during the experi-
ment. Then, for each feature of Kanon, we asked the participants their opinion. We
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FIGURE 3.1: Textual Live Programming Environment (TLPE).
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FIGURE 3.3: Error
time.

encouraged them to answer, not just “good” or “bad”, but rather concrete opinions
on specific parts of the feature, and possible improvements. Finally, we asked an
overall impression of Kanon. The participants may answer the impression of Kanon
itself, or in comparison with TLPE.

3.3 Results

Table 3.1 and Table 3.2 show a quantitative result of this experiment such as time
taken to complete the tasks and a count of using features of Kanon. The qualitative
opinions received in the interview are described below.

3.4 Opinions about Kanon’s Features

About the snapshot view, there are several positive opinions like:

• “The feature was very helpful for changing references”, and

• “The feature is reasonable because we often want to see the states (of the program)
around the code fragment being written.”

Visualization of variable references (e.g., the arrows labeled this and temp in Fig-
ure 2.3) are also positively taken by most participants, but also had suggestions like:

• “I also wanted to see arrows for function arguments2 when I was writing a recursive
function,” and

• “It looks strange that the arrows for variables lacks originating ovals.”

The summarized view was not used by the most participants. One participant
gave the reason:

2The current implementation of the snapshot view merely displays locally declared variables and
this, but not function arguments.
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TABLE 3.1: Average number of times of uses of each feature.
(“Snap:Summ” means the proportion of each in the overall task. The
column of “Context” is constructed the number of (correct usage : in-
correct usage). Each column of “JtoC” and “print” is the number of

using jump to construction and print statement, respectively.)

(A) task1

Snap : Summ Context print JtoC
80.6% : 19.4% 2.57 : 3.57 2.17 0.29

(B) task2

Snap : Summ Context print JtoC
96.9% : 3.1% 7.5 : 3.17 6.29 0.17

TABLE 3.2: The participant information.

Group A Group B total min/ave/max exp #js
task1 (rotate) Kanon TLPE

task2 (reverse) TLPE Kanon
#Students 5 4 9 2 / 4.4 / 10 2

#Researchers 2 2 4 14 / 17 / 25 1
#total 7 6 13 2 / 8.3 / 25 3

min/ave/max exp 2 / 7.3 / 14 3 / 9.5 / 25 2 / 8.3 / 25
#js 3 0 3

• “I only needed the snapshot view mode”.

However, there are opinions that suggest its potential like:

• “The visualization with orange and green arrows was very easy to recognize,” and “I
used it to show the final state of the program, and completed the task by imagining the
other states,” (This participant mainly used the summarized view mode.)

• “It might be useful when it is hard to understand an overview of a program”, and

• “It might be useful for tasks of fixing bugs.”

A few participants used the jump-to-construction feature but they thought that
the feature was not so helpful. The opinions are:

• “I had no chance to use it,”

• “It might be useful for larger programs because it would be difficult to understand the
overview,” and

• “Construction sites are not so relevant when we modify fields in existing objects.”

The automatic layout engine had positive comments like:

• “The visualization was similar to what I imagined,” and

• “The figure after the completion of the task was cleanly arranged without moving the
node ourselves.”

At the same time, it also had suggestions like:

• “Though the final layout looks good, it does not in the middle of programming,” and

• “I wanted to undo the (automatic) layout as it became messy.”
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3.5 Overall Impression

Overall, the participants gave positive comments like:

• “It is amazing. I want to use it,”

• “With visualization, it was easy to program since I often draw pictures when I reason
about data structures,” and

• “I felt it is wonderful when I was solving a task with TLPE.”

and also several suggestions for future improvements like:

• “It was helpful for those tasks, but not sure if it will be so for other situations and for
large programs,”

• “When the object graph disappears, I wanted to know the reason3,” and

• “After I thought about (the strategy) based on the visualization, I had to think again
based on the program. I wish I could generate code fragments by directly manipulating
the object graph. ”

3.6 Discussion

This section discusses finding in the results of the experiment as well as the obser-
vations of the participants’ behavior by the authors.

3.6.1 Kanon vs. TLPE

The experiment did not give a clear answer whether the graphical representation
as opposed to the textual representation is useful. With respect to the task comple-
tion times on Figure 3.2, TLPE is faster than Kanon for the rotate task, or is as fast
as Kanon for the reverse task. (Again, due to the limitations of the current imple-
mentation, we do not consider the task completion times are the primary factor of
the experiment. Also, the number of participants is not large enough to evaluate
statistical significance of those figures.)

From the closer observations, we had the following findings and insights.

• Roughly the half of the participants misused the Kanon’s features related to
changing specified context. As the “Context” column on Table 3.1 shows, se-
lection of the execution context seems to be difficult. This suggests that Kanon
needs more improvements on its GUI.

• Some participants, when they were using TLPE, drew object graphs on a pa-
per. This suggests usefulness of graphical representation regardless the envi-
ronment used.

• The styles of problem solving are different by the participants. Some carefully
thought out algorithms before writing code, and some others carried out the
trial-and-error style programming. Those difference in the styles and the dif-
ference programming environment could affect each other, which should be
investigated in future.

3In the version we used for the experiment, Kanon will erase the object graph when a runtime error
occurs. The error message was actually displayed bottom of the screen.
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• We observed interesting difference in the participants’ behaviors when errors
occurred. First, from the observations of the behaviors, we found that many
participants took, when using Kanon, longer time to notice occurrence of er-
rors. This would be partly because the current design of the environment that
reports errors as a plain text at the bottom of the screen, which hardly attract
the programmer’s attention. However, this would also due to the policy of our
visualization, which keeps showing a previous visual image when an error oc-
curs. This policy is based on the fact that, when the programmer is editing a
program, it transiently becomes incorrect either syntactically or semantically.
By preserving a previous image, the next image from a successfully executed
run is smoothly connected with an animation. At the same time, by seeing the
previous image, the participants sometime misunderstood as the program was
executed without errors but the object graph was not changed. With TLPE, the
programmers can immediately notice runtime errors because an error will pre-
vent execution of subsequent println calls, which results in disappearance of
the output.

Second, for the reverse task, the participants with TLPE spent longer time
with erroneous states. Though we do not have clear explanation for this, one
possible reason would be that Kanon helped finding an incorrect state that will
cause an error in the subsequent execution.

• Even though we do not observe clear difference in the task completion times,
the participants opinions favor Kanon as reported in Section 3.5. We would
like to consider the reasons why they thought like that.

3.6.2 Students vs. Researchers

With respect to the task completion times, we did not observe clear differences
between inexperienced and experienced participants (i.e., the students and the re-
search laboratory scientists, respectively). This might be because the students took
the courses on programming and data structures more recently.

We noticed difference a difference between students and researchers in their pro-
gramming styles. While the researchers tried to add more test cases on top of the
provided cases, the students declare completion by only considering the provided
test cases.

3.6.3 Difficulty of the Tasks

Difficulty of tasks and visualization can affect the types of mistakes that the pro-
grammer makes. While the types of the mistakes with Kanon and TLPE are not
different for the easier task (rotate), we observed a unique kind of mistakes with
Kanon for the more difficult task (reverse).

For the reverse task, several participants with Kanon took an inappropriate plan
to solve the problem. Since the task is to reverse a doubly-linked list, the function
must have a loop scanning over the nodes. A common and correct plan is to let each
iteration of the loop modify the forward and backward references of a focused node.
However, some participants with Kanon planned to modify the forward reference
of the focused node and the backward reference of the next node in one iteration
(which was at least not easy to maintain references consistently across iterations,
and all of them eventually gave up the plan).
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Though we cannot investigate the cause of this mistake, we conjecture that the
visual representation might mislead the programmer at the planning of a solution.
With Kanon, the programmer starts defining reverse with visual representation,
where the first and the second nodes reference each other. With this visual clue, one
might plan to modify those two references.4

In general, we believe that making a correct plan is crucial for solving difficult
programming tasks regardless the programming environment used. With a new
type of programming environment, we would probably need more experience to
develop good recipes for typical types of problems.

3.6.4 Is Kanon Helpful?

In the experiment, we observed rare usage of some features, namely the summarized
view mode and jump-to-construction. We presume that this is due to the type of the
tasks used in our experiment, which are to define a new function body. We design
the summarized view mode and jump-to-construction for the situations of modifying
a program and of understanding program behavior, respectively. We might have
observed more usage with those features if the experiment included such tasks.

As mentioned in Section 3.6.1, notifying the programmer an error as early as
possible is crucial. We found that the problem is not trivial. In a live programming
environment, a program transiently becomes an erroneous state when the program-
mer edits a code fragment. The environment should also delay notification so as to
smoothly connect visual images between the states without errors. The problem is
even more difficult when a program correctly runs around the code being edited,
but causes an error at the later execution point.

3.7 Related Work

Collabode is a web-based Java IDE, and it is evaluated by a user study (Goldman,
Little, and Miller, 2011). Through the user study, they confirm its usefulness quali-
tatively and quantitatively. The qualitative evaluation is based on the participants’
thought observed in the questionnaire phase.

4The current implementation draws nothing for a field with null. Hence the first node has only
one outgoing reference. This could also be the cause of the mistake.
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Chapter 4

Recursive Function Definition in
Live Data Structure Programming

In this chapter, we propose features which solve one of the problems found in the
experiment. First, we will describe the problems when defining recursive function
with existing Kanon. Second, we will propose a mechanism to solve the problems.
Third, we will present case studies to show the features are helpful, and then we will
explain how to implement them.

4.1 Problem

There is a problem in Kanon when defining a recursive function. Before explain-
ing the problem, we first review a process of defining a non-live recursive function
definition.

4.1.1 Defining Recursive Functions in Traditional Environments

Many programs define recursive data structures, whose functions are also recursive.
For example, a linked list is a pair of an data element and another linked list. A tree
node is a tuple of a data element and children tree nodes.

A recursive function for a recursive data structure usually consists of two parts,
namely, the base case and the recursive case. The base case defines operations when
the function reaches at an edge (i.e., a tail of a list, or a leaf of a tree) of the structure.
The recursive case applies the recursive function to its recursive components, and
combines the results.

Listing 4.1 shows an incomplete recursive method reverse for linked-lists. The
then clause of the if-statement defines the recursive case when this node has a
trailing list. The else clause defines the base case when this node is at the end
of a list. After receiving a reversed list of the trailing list in the then clause, the
programmer will write a code fragment that adds itself to the tail of the reversed list
and returns the head of the reversed list, whose code is not shown in the listing.

4.1.2 Defining Recursive Functions with Existing Kanon

Even though it is possible to use Kanon to define recursive functions, it is not as
helpful as it is for non-recursive functions. The problem is that the visualized data
structures at the cursor position, which supposed to assist the programmers to de-
cide what they should write next, become useless for recursive functions.

Here, we explain the problem by using the same example above. Assume that
the programmer created a test case with a linked-list and method call as shown in
Listing 4.2, partially wrote reverse as shown in Listing 4.1, and then located the
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LISTING 4.1: An example of recursive data structures and methods.
1 class Node {
2 constructor(val, next) {
3 this.val = val;
4 this.next = next;
5 }
6
7 reverse() {
8 if (this.next) {
9 let next_lst = this.next.reverse();

10 // users assume that the recursive function behaves as
expected in order to write here

11 } else {
12 return this;
13 }
14 }
15 }

cursor at the end of the recursive function call (i.e., at the end of line 9.) Even though
the cursor is located after the recursive function call, Kanon shows an object graph
(Figure 4.1) that remains the same structure as the one before the recursive call.

The visualization is useless, or even harmful, to define the rest of reverse. What
the programmer should do is to add a code fragment that appends this node to the
end of next_lst. However, in the visualization, the trailing list is not reversed.

LISTING 4.2: An example call expression of reverse method.
1 let list = new Node(1,
2 new Node(2,
3 new Node(3,
4 new Node(4, null))));
5 list = list.reverse();

FIGURE 4.1: A node-link diagram displayed by the existing Kanon
just after writing the recursive function call in Listing 4.1.

4.1.3 Why Is the Visualization by the Existing Kanon Useless?

The cause of the problem can be generalized as follows. (Note that in the above
situation Kanon worked as it was intended.)

The reason is that the object graph displayed in Kanon differs from the state of
objects in the programmer’s mind. On one hand, the programmer thinks about the
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next code fragment by reasoning about (A) the program state that is supposed to be
at the cursor position. On the other hand, Kanon shows (B) the program state that is
actually obtained at the cursor position. In most cases, Kanon is helpful since both of
the states (A) and (B) are the same. However, in the case of a recursive function, they
do not match since (A) is a completed program and (B) is an incomplete program the
programmer is currently writing.

4.2 Automated Testing and Overriding for Data Structures

We propose a set of extended features for defining recursive functions in Kanon.
The features let the programmers, when there is a call to a partly written function,
manually specify an expected object structure after the call.

The expected structure serves two roles. (1) It is used as the program state after
the function call. When the programmer adds lines after the call, those lines will
manipulate the expected structure. (2) It also serves as a test case. Whenever the
programmer edits the recursive function definition, the runtime system compares
the actual data structures from execution against the expected structure, and notify
the programmer whether they match each other.

4.2.1 Specifying an Expected Structure

We provide a user-interface to specify an expected structure where the programmer
directly manipulates a node-link diagram on the screen by using a pointing device.
The interface lets the programmer specify in the following two steps.

4.2.1.1 Selection of a Function Call with a Calling Context

First, the programmer selects a function call expression with a calling-context by
moving the cursor in the editor pane. When the program executes the selected func-
tion call more than once, the calling-context currently used for visualization is cho-
sen.

In the following, we assume that the programmer selects the recursive call at
line 9 in Listing 4.1 with the first calling-context; i.e., the first execution of reverse,
which is called from the top-level call at line 5 in Listing 4.2.

4.2.1.2 Building an Expected Structure

Second, the programmer builds an expected structure. After selecting the function
call and calling-context, the system pops up a window showing a node-link diagram.
The diagram is the object structure just before calling the function.

Figure 4.2 shows a screenshot of Kanon with a window to edit the graph to spec-
ify the expected structure1. The window appears after selecting the recursive func-
tion at line 9.

The programmer builds the expected object structure by modifying the diagram.
When the modification is completed, clicking the accept button2 on the upper right
corner of the window registers the diagram as an expected structure3.

1When building an expected structure, the user can move any nodes by dragging.
2Clicking the actual graph button in Figure 4.2 opens a new window with an object graph just after

executing the selected function call. The new window is just to check the actual structure.
3Our current implementation does not support a function that merely returns primitive values,

though it would not be difficult to support such a function.
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FIGURE 4.2: A pop-up window for building an expected structure.
The red rectangle def var is a button to introduce a variable reference

(like the green arrow with this) into the diagram.

4.2.2 Automated Testing

Whenever the user program has no syntax error, Kanon automatically runs the pro-
gram and checks, at each execution context where a test case is inserted, whether the
actual structure (i.e., the objects generated by the execution of the program) matches
the expected structure. We call it automated testing.

When Kanon matches the expected and the actual object structures, it uses ref-
erence equality for objects existing before the function call, and structural equality for
objects created during the call. In other words, two references are regarded as equal
when they are pointing at the identical object in the object structure before the func-
tion call, or pointing at newly created and structurally equal objects.

4.2.2.1 Visualization of Test Results

The result of testing is shown in the editor and the call tree panes. If a test case
succeeded, the background color of the parentheses of the respective function call
becomes green. Otherwise, it becomes red (as shown in Figure 4.3).

Additionally, the result is also displayed on the visualization of the call tree (like
Figure 4.4.) The red circle represents that all test cases at the context failed. The
red edge represents that the test of the function call on the calling-context failed. If
all test cases in the context succeeded, the circle becomes green. If there are both
succeeded and failed test cases in a context, it becomes yellow.

4.2.3 Object Overriding

If Kanon finds a failed test case (i.e., the actual structure differs from the expected
structure), it automatically overrides objects; i.e., it modifies fields of objects in the
actual structure so that they match the expected structure, and let the program con-
tinue execution with the modified objects.
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FIGURE 4.3:
A func-
tion call
which an
expected
graph is
inserted
and
its test

failed.

FIGURE 4.4: A call tree with test
highlight.

We assume that the programmer built the expected structure as shown in Fig-
ure 4.5. From the programmer’s viewpoint, Kanon merely shows an object diagram
identical to the manually built expected structure as if it were constructed by the
execution of the (incomplete) recursive function. However, this lets the programmer
to continue live programming with the expected structure; i.e., when he or she adds
code fragments that manipulate the expected structure after the function call, and
can further observe the result of manipulation from the visualization.

FIGURE 4.5: An example of a graph after overriding object structure.

4.3 Implementation

We implemented a prototype of Kanon for JavaScript running on web browsers. It
is available online4. Below, we first overview the implementation and then describe
how to realize the automated testing and overriding.

4.3.1 Overview

Figure 4.6 overviews the implementation. We will explain the structure by following
the operations taken place upon a program modification.

We use a modified version of the Ace editor (Jakobs, 2018) for editing program
text. When the programmer edits a piece of text, it notifies the visualization engine.

1© The visualization engine uses Esprima (Hidayat, 2018) to parse the program
text in the editor. It then traverses the syntax tree by applying the following modifi-
cations:

• It inserts declarations of global variables for keeping track of calling contexts
and the virtual timestamp.

4https://github.com/prg-titech/Kanon (source code), https://prg-titech.github.io/
Kanon/ (executable in web browsers)

https://github.com/prg-titech/Kanon
https://prg-titech.github.io/Kanon/
https://prg-titech.github.io/Kanon/
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FIGURE 4.6: Overview of the implementation.

• For each new expression, it appends a piece of code that records object ID in a
special field of the created object.

• For each statement and new expression, it inserts checkpointing code before
and after the statement. The checkpointing code is an expression that applies
a list of global and local variables to the object traversal function.

• At the beginning of each loop body and function body, it inserts counting code.

2© The engine then evaluates it using eval. When the checkpointing code runs,
it collects JavaScript objects that are reachable from the variables in the scope. We
use the object reflection mechanism to obtain field values from an object. The objects
and their references are recorded as graph data (i.e., nodes and links) with a virtual
timestamp that increases every checkpointing execution.

3© To update graphical representation, the engine first obtains the cursor position
from the editor and then identifies the nearest checkpoint to the cursor position.
It then calculates a range of virtual timestamps which corresponds to the current
visualization context. Finally, it selects the object graph that is recorded at the nearest
checkpoint within the calculated timestamp range.

4© The engine computes the initial layout of the nodes of the objects in the object
graph, and draws the graph. The layout is computed by using the currently shown
layout (for an older object graph) in combination with a physics-based graph layout
algorithm. First, it determines the set of the nodes in the new object graph that are
included in the old object graph. It pins those nodes down to the same geometric
locations as in the layout currently shown. Second, it runs a physics-based graph lay-
out algorithm so that the newly created nodes will be placed aesthetically-pleasing
positions. We use the vis.js visualization library (B.V., 2018) both for calculating the
layout as well as for drawing the resulted layout.

5© Finally, the engine computes the structure-aware layout and smoothly moves
the visualized graph from the initial layout to the new one. The current algorithm
simply recognizes a list or binary-tree structure based on field names, and then
places the nodes of the structure on a horizontal line or a tree shape.
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4.3.2 Synchronizing Visualization Context with Cursor

Kanon provides two view modes for visualization of data structures which are changed
as execution progresses. Here we explain which object structure is selected in these
two view modes as a graph displayed in Kanon.

add (val) {
let n =  new Node(val);
// add new node to the tail of this list

}
list.add(1);
list.add(2);

execution	time

… … …

① ②

③

object	graphs	stored
at	each	checkpoint

①1 ②1 ①2 ②2 ③

(A) An example program
inserted checkpoints.

add (val) {
let n =  new Node(val);
// add new node to the tail of this list

}
list.add(1);
list.add(2);

execution	time

… … …

① ②

③

object	graphs	stored
at	each	checkpoint

①1 ②1 ①2 ②2 ③

(B) Object graphs stored at
each checkpoint.

FIGURE 4.7: Which checkpoint is chosen?

In the snapshot view mode, Kanon displays an object structure stored at the clos-
est checkpoint before the current cursor position. Because the selected checkpoint
might be executed multiple times, the user can specify a context of the closest loop
or method surrounding the cursor position. In the case of Figure 4.7, “the closest
checkpoint before the cursor position” indicates checkpoint 1© and Kanon selects
1©n from the specified loop count n.

In the case of the summarized view mode, Kanon displays an object structure stored
at the final checkpoint. Additionally, Kanon calculates the difference between the
object structures stored directly before and after the cursor position for each loop
iteration. When the two checkpoints are directly within the same loop or method,
we highlight the difference in the graph. In the case of Figure 4.7, we display the
object graph stored at the final checkpoint, namely 3©, and highlight the nodes and
links that are different either between 1©1 and 2©1, and between 1©2 and 2©2.

4.3.3 Mental Map Preservation

4.3.3.1 Motivation

Live programming environments should preserve the mental map when a program is
modified. Here, the mental map5 means a representation in the developer’s mind
who saw a visual image of a program output. Preservation of the mental map is
achieved, when the system displays a visual image of an output of a new program,
by keeping the differences of those visual images as small as possible.

For example, adjusting constant parameters in a drawing program is one of the
well-known demonstrations of live programming. By immediately executing (i.e.,
drawing pictures) a modified program, the programmer can observe the effect of
changes as animation. Some environments provide special mechanisms like slider
bars for continuously modifying constant values (Khan Academy, 2018).

5The concept of the mental map preservation was proposed for drawing algorithms for dynamically
changing graphs (Archambault and Purchase, 2012; Lee, Lin, and Yen, 2006). It should not be confused
with the concept of navigability, which concerns about the connection between a code fragment and
a visualization element in live programming environment (Burckhardt et al., 2013). We discuss the
features related to navigability in Section 2.4.3.
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In Kanon, the mental map preservation means keeping the differences of the
graph layouts as small as possible, when it draws a modified object graph. This
property is known to be important in the studies of dynamic graph drawing (Ar-
chambault and Purchase, 2012; Lee, Lin, and Yen, 2006) because the human who
saw a graph would need a lot of time to grasp the structure of the graph.

4.3.3.2 Problem of a Naïve Implementation

It is not a trivial task for Kanon to preserve of the mental map. Assume that a pro-
grammer is writing a function make that creates a binary tree. Figure 4.8(a) shows an
incomplete function definition that merely creates right children of the tree, which
effectively creates a linked-list. The programmer moves the cursor at line 9 in or-
der to insert a piece of code, and sets the visualization context to the second call to
make, where Figure 4.8(b) is the object graph at this moment. Note that the program-
mer is thinking about a Node object referenced by a next field of the root node, whose visual
representation is at just right of the root node.

Now the programmer inserts a statement “node.left = make(n-1);” to line 9,
which lets the program create a binary tree. The questions are: Where should the
nodes of the binary tree be placed? Where should the visualization context be set?

If there were a naïve algorithm that places the nodes created by the modified
program based on the order of object creation, its visualization would be like Fig-
ure 4.8(c). The Node object (linked with next from the root) the programmer was thinking
about is now located at a upper-right position from the root (the dashed oval in the figure).
At the position the programmer was focused on, there is a Node object referenced by the left
field of the root node because it is created by the second execution of line 8. Another
problem is that a context that differs from the context they were focusing on is spec-
ified. They must expect the context of function call of line 10 during an execution of
function call of line 14 as a context of the snapshot view mode. However, a specified
context after the insertion differs from the expected context because an addition of
several functions calls by the insertion changes the focused context of function call
from second execution to ninth execution.

4.3.3.3 Context-Sensitive Identification for Mental Map Preservation

When a program is modified, Kanon visualizes the new object graph and maintains
the context (in the snapshot view mode) so as to preserve the mental map. Here
we first explain the requirements for this feature and then describe the proposed
mechanism.

Since Kanon executes the modified program under a fresh environment, it needs
to identify (1) a visualization context that corresponds to the one previously dis-
played, and (2) mapping between objects created in the execution of the modified
program and those created in the previous program. in Figure 4.8, this means (1)
identifying one of seven executions of line 8 that corresponds to the second execu-
tion in the previous program, and (2) identifying three of seven Node objects that
correspond to the ones created in the execution of the previous program.

We propose a novel technique, called calling-context sensitive identification, for pre-
serving mental map of object graphs6. The technique gives a calling-context based

6The use of calling-contexts per se is not a novel idea as there are systems that use calling-context
for identifying corresponding execution points before and after program modification. The novelty
of the paper is the use of calling-context for visualization of object graphs. We discuss the existing
systems in Chapter ??.
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1  class Node {...}
4  
5  function make(n) {
6    if (n === 0)
7      return null;
8    let node = new Node();
9    
10   node.next = make(n-1);
11   return node;
12 }
13 
14 let tree = make(3);
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1  class Node {...}
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5  function make(n) {
6    if (n === 0)
7      return null;
8    let node = new Node();
9    
10   node.next = make(n-1);
11   return node;
12 }
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1  class Node {...}
4  
5  function make(n) {
6    if (n === 0)
7      return null;
8    let node = new Node();
9    
10   node.next = make(n-1);
11   return node;
12 }
13 
14 let tree = make(3);
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FIGURE 4.8: Naïve and mental-map-preserved visualizations after
code editing. (For the ease of understanding, the nodes that are cre-

ated beyond the current visualization context are also drawn.)
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FIGURE 4.9: An example of labeling and simplified call trees before
and after editing on Figure 4.8. A new expression is also regarded as

a node of the call tree.

identifier, called context-sensitive ID, to each function call, and records each object
graph by associating it with the context-sensitive IDs. When it executes a modified
program, it selects an object graph matching the context-sensitive ID, and draws
nodes so that the objects with the same context-sensitive ID will be placed at the
same positions.

Figure 4.9 shows two call graphs that explain the calling-context sensitive identi-
fication. Those call graphs (note that they are not Kanon’s visualization) respectively
represent the executions of the programs before and after the insertion. A node of
the call graphs is either a function call or object creation, attributed with a label (e.g.,
call1 and new1) that denotes a source code location. A context-sensitive ID of a call
graph node is a list of the labels on the path from the root node.

Kanon uses the context-sensitive IDs, when a program text is modified, to iden-
tify the “same” visualization context and to identify the “same” object. In Figure 4.9,
when the current context was the second call to make in the older program, the
context-sensitive ID of the context is "call2-call3". In the call graph of the mod-
ified program, the context that has the same context-sensitive ID is the right child
of make(3). This means that the executions triggered by the newly added line are
successfully skipped even in the modified program.

In addition, it uses the context-sensitive ID of the new expression as the ob-
ject ID. In Figure 4.9, the secondly created Node object in the older program has
"call2-call1-new1". When the program is modified, the object that has the same
ID in the new call graph will be placed at the same position.

Our proposal can be summarized in this way:

• We give a unique label to each program location (precisely, we only maintain
labels for new expressions, object literal, method call expressions, and loops.)
We preserve the labels by tracking the modification when the programmer ed-
its the program text.

• We give a context-sensitive ID to each execution of an expression such as func-
tion call and new expression. In order to determine each object’s context-
sensitive ID, a stack (each frame of which is configured by either method call
label, new expression label or a pair of loop label and loop count) manages the
context during execution.

• When new expression is executed, we use the stack information for context-
sensitive ID as the ID of the created object.
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• When we draw an object graph obtained from an execution of a modified pro-
gram, we lay it out so that each object will be placed at the same position of
the object with the same ID in the execution of the previous program.

• When a program modification changes the call tree, we change the context for
snapshot view mode so that the context after the change is the same as the
context-sensitive ID before editing.

Intuitively, we consider two objects to be the same when they are created by the same
expression, and the execution of the new expression has the same calling context and
the same loop count.

Kanon manages a table of program locations for associating expressions with la-
bels, which is robust for most type of editing operations, but has some limitations.
When Kanon finds an expression in a program, it gives a new label and records the
beginning and ending locations. Upon an editing operation like insertion or dele-
tion of characters, it shifts those locations if necessary. Therefore, it can identify the
“same” expressions before and after editing in most cases. There are some opera-
tions, such as cut-and-paste and undoing, that the current implementation cannot
keep track of, but we believe some of those operations can also be supported by
bookkeeping the labels for the text inside the cut- and undo-buffers in the editor.

4.3.4 Automatic Layout Engine

The current automatic layout engine implemented in Kanon specifies special lay-
out behavior for some structures. Currently, these include binary trees and linked
lists. In the case of binary trees, the nodes are specially arranged only if each ele-
ment is constructed by a Node class and the left element and the right element are
represented by left and right properties. In the case of linked lists, the nodes are
specially arranged only if each element is constructed by a Node class and the next
element is represented by the next property.

In order to implement the above, it is necessary to identify the specified struc-
tures from the set of objects. First, in order to find the root of the tree or the head of
the list, we must check both sides of each edge. If the root of the tree or the head of
the list is found, we then calculate the position of each element. In the case of binary
trees, we position each element so that the distance between elements at the deepest
level is kept above a threshold. We then set the horizontal position of the parent
element to the center of the horizontal position of its child elements. In the case of
linked lists, we position each element so that the distance between elements is kept
above a threshold. At this time, we adjust the entire graph to preserve the center of
gravity of the elements.

However, this layout engine still needs more improvements. The layout engine
should recognize arbitrary data structures other than lists and trees. It should also
provide a mechanism to shrink or fold unimportant nodes so that the programmer
can see a large data structure within a limited drawing area. Supporting customized
visualization, where the programmer can control the presentations of data struc-
tures, is also important.

4.3.5 Steadiness

Following the lessons from Hancock and Victor (Hancock, 2003; Victor, 2012), we
implemented several mechanisms to stabilize the visualization in Kanon, though
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there are still many challenges. We here explain those mechanisms and then present
the remaining challenges.

Similar to many live programming environment, it keeps the previous visual-
ization when the program has a syntax error. This prevents the visualization flicks
while editing the program text.

When the execution of a program causes a runtime error (e.g., null pointer deref-
erencing), it either updates the visualization if the error happens after the previous
visualization context, or keeps the previous visualization with translucent colors7.
The former case is useful to see the immediate effect of the code fragment being
edited, regardless the future errors. Surprisingly, some live programming environ-
ment, such as Khan Academy’s Live Editor, does not have this feature. For the lat-
ter case, an alternative is not hide the visualization. We did not do so because in
Javascript programs often cause runtime errors while they are being edited. For ex-
ample, when we are typing a long variable name, the program causes an unbound
variable error at runtime until we finish typing. Making the visualization translu-
cent in the latter case is important to alert the programmer of the error; otherwise
the programmer sometimes misinterpret that the program runs up to the previous
visualization context yet no changes were made to the objects.

When it updates the visualization with a new snapshot (either selected by cursor
movement or by editing the text), it suppresses re-drawing the object graph as long
as the graph is topologically equivalent to the shown one. This is a workaround
to avoid the inconvenient feature of underlying visualization library, namely vis.js,
that randomly changes the geometric positions of edges every time it draws the
same graph.

4.3.6 Automated Testing and Overriding

4.3.6.1 Specifying an Expected Structure

We provide an user-interface to specify an expected structure where the program-
mer directly manipulates a node-link diagram on the screen. They can apply oper-
ations (e.g., adding nodes, changing references of objects) to the node-link diagram
displayed on the opened window by using a pointing device.

As a library to open windows in the browser, Kanon uses Prototype Window
Class (Prototype Window Class). In the window, the manipulation mechanism uti-
lizes the feature provided in vis.js library (B.V., 2018), which enables us directly to
manipulate the displayed graph.

If they click the accept button in the upper right corner of the window, the user-
manipulated graph is stored with both the function call label and the context-sensitive
ID. By doing so, Kanon can uniquely identify the function call at runtime by using
the call label and the context-sensitive ID. Additionally, because all call labels are
maintained even with editing, Kanon can maintain the expected graphs in the same
position and the same context even if the program is edited.

For the more intuitive user interface, we devised the implementation so that the
programmer can build the structure without explicit changing edit mode such as
“Add Node” and “Edit Edge”. To enable the original manipulation feature of vis.js,
the user has to click “Edit” button, positioned at the upper-right of the pop-up win-
dow in Figure 4.2. However, most software that the user directly manipulates dis-
played graphical representation by pointing devices does not require its wasteful
action.

7This feature was not available when we carried out the user experiment in Chapter 3.
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Based on the fact, we implemented the manipulation feature without clicking the
“Edit” button. Concretely, holding down an edge invokes editing the reference of the
edge. Double-clicking a node or an edge invokes editing the label of the target.

4.3.6.2 Automated Testing

After inputting an expected structure into a function call, Kanon automatically checks
whether the actual structure after executing the function call matches the expected
structure. On the code conversion, which is the step 1© in Section 4.3.1, Kanon con-
verts function calls as shown in Listing 4.3. in Listing 4.3, Kanon performs the fol-
lowing process:

• In the function call func at line 4, Kanon executes the original function call,
and binds the returned object to a variable retObj. Kanon uses the variable
retObj to check which object the function returns.

• In the function call match at line 9, Kanon checks whether the actual structure
is the same as the expected structure. This function returns true if the runtime
object structure is the same structure as the expected structure.

• If match returns false in the previous process, Kanon overrides the properties
of the objects to be the same as the expected structure in a function override at
line 10 (described in Section 4.3.6.3). After execution, binds the returned object
to a variable varRefs, whose key is a variable name and whose value is an
object the variable should refer to.

• Finally, Kanon changes variable references in a for statement written from
line 12 to line 15 by using an object the function override returns.

LISTING 4.3: A simplified code conversion example of func-
tion call func(). We assume the variables callLabel and

contextSensitiveId are already defined.
1 (() => {
2 var retObj, error, expectedGraph = ...;
3 try {
4 retObj = func(...);
5 error = false;
6 } catch (e) {
7 error = true;
8 } finally {
9 if (expectedGraph && (error || !match(objs, retObj,

expectedGraph))) {
10 let varRefs = override(objs, retObj, expectedGraph);
11 let varNames = Object.keys(varRefs);
12 for (let i = 0; i < varNames.length; i++) {
13 let obj = varRefs[varNames];
14 eval(varNames[i] + " = obj");
15 }
16 }
17 }
18 return retObj;
19 })()

The function match checks the runtime objects as follows:
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• Kanon traverses both graph simultaneously by depth first. The traversal starts
from nodes referred by variables, therefore Kanon does not care about unrefer-
able nodes.

• On each node, Kanon checks the consistency of properties, displayed label,
type, and unique ID. Here, the properties mean the names of properties the
focused node has. The displayed label means a text labeled to a node. The type
means a type of a node at runtime such as "string", "number", and "object".
The unique ID is runtime object ID which is assigned at runtime to identify
nodes.

• If matching, then Kanon traverses the next node. Otherwise, the function
match returns false. When Kanon have traversed all nodes, then the function
match returns true.

4.3.6.3 Object Overriding

After that, Kanon follows these procedures to override the properties of the objects
in a function override.

• Kanon deletes all properties of all objects. At this time, all objects and their
unique IDs are stored in order to be able to refer all objects. If the expected
structure includes newly created nodes, Kanon constructs objects represented
the nodes by using class constructors which are taken from an extra argument.

• Kanon lets all objects refer to other objects connected edges of the stored graph.
When a type of the reference destination of an object is not "object" (i.e., the
reference destination is literal), the literal is assigned to the property of the
object.

• Referring to edges of stored expected graph, this function returns an object
whose keys are variable names and whose values are objects the variable name
will refer to. (The returned object is bound to the variable varRefs at line 10 in
Listing 4.3.)

After overriding the objects’ properties, Kanon needs to rebind variables to ob-
jects properly to be the same structure as the expected structure. This is because the
variables are not accessible in the scope of the function override. In the for state-
ment from line 12 to line 15, Kanon rebinds the variables to appropriate objects by
using a function eval. Additionally, Kanon can change an object the original func-
tion returns, which is represented by retObj.

The new objects by overriding should be constructed by appropriate construc-
tors. For example, if a programmer add one node labeled Node in the manipulation
window of Figure 4.2, the object has to have methods defined in class Node. To con-
struct an object by an appropriate class, the function override actually takes one
more argument. The argument includes the constructors whose names are labels of
nodes in the expected graph. The function override uses the constructors to con-
struct new objects properly.

4.3.6.4 Reconstruct Expected Structure

The programmer’s editing of the program affects the actual structure. Therefore,
the programmer might expect a structure that is different from the one given before
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editing. Here, we describe an automated mechanism to reconstruct new expected
structure.

4.3.6.4.1 Why Do We Need Structure Reconstruction?

We describe a situation where we need structure reconstruction. We assume that
the user program is shown in Figure 4.2, and the programmer has put the expected
structure as shown in Figure 4.5 to the function call reverse at line 9. In this case,
the user expects the built structure only when the structure just before executing
the function call is the same structure as the structure of the window in Figure 4.2.
More concretely, in the case that the programmer inserted an element to the middle
of the list after building the expected structure shown in Figure 4.5, the programmer
expects a structure where the new element has been inserted to Figure 4.5. There-
fore, when the structure just before executing the function call changes, the expected
structure should also be updated.

One solution in the situation is to remove the expected structure and let the pro-
grammer specify the new expected structure. However, the solution increases the
burden because the programmer needs to build the newly expected structure.

4.3.6.4.2 Reconstruting New Expected Structure

When the expected structure was defined, the programmer operated the struc-
ture before executing the function call to put the expected structure. Here, we call a
structure before executing a function call preconditional structure. Based on the fact,
when the program is edited, it can be understood that Kanon can generate a plausi-
ble expected structure by applying the operations to a new preconditional structure.

Our choice to solve the problem is that Kanon automatically reconstructs new
expected structure by reproducing the mouse operations. We explain the mechanism
to reconstruct new expected structure.

As a preliminary preparation, we assume that Kanon has preserved the mouse
operation when constructing the expected structure, and stored a preconditional
structure just before executing a function call. When running the user program
again, Kanon checks the actual structure before executing the function call is the
same as the preconditional structure by using the function match. If it doesn’t match,
Kanon tries to reconstruct new expected structure. In the reconstructing step, Kanon
reproduces the stored mouse operations, such as “add node", “change variable edge",
and “delete edge". If all operations could be applied to the preconditional structure,
Kanon deals with the applied structure as new expected structure.

Actually, however, all operations cannot always be applied because, for example,
any nodes might be removed. If the reconstructing failed, instead of updating the
expected structure, Kanon warns the programmer that please confirm the expected
structure by making the function call parentheses become purple8. The programmer
needs to confirm the warned structure to remove the warning.

8Additionally, it also makes the circle of the context, which contains the warned function call, on
the call tree become purple.
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4.4 Case Studies

4.4.1 Reversing a Linked List

Specification: the reverse method on linked lists re-links the elements in the reverse
order, returning the head element of the reversed list.

First, we wrote the program halfway as shown in Figure 4.2. At the time, we
expected the structure after executing the recursive call as shown in Figure 4.5, and
built and registered the structure. After that, Kanon shows the graph as shown in
Figure 4.5 in the visualization pane.

Programming experiences with and without the proposed features differ in the
following ways. Since the existing Kanon shows the same object graph structure
before/after the function call, we needed to imagine the structure after the recursive
call. However, since Kanon with the features shows the object graph reflecting the
expected structure, the programmer can write the next statement this.next.next =
this; after the recursive call by seeing the visualization.

FIGURE 4.10: A screenshot of Kanon after the programmer has com-
pleted defining the recursive function reverse.

Figure 4.10 shows a scene when we completed the recursive function definition.
Since the parentheses of the recursive call and the node of the call tree in Figure 4.10
become green, we immediately understood that the definition is correct (at least with
respect to the test case).

4.4.2 Insertion Sorting of a Linked List

Specification: the insertSort method of a linked list destructively reorders the ele-
ments of the list in the order of their ‘value’s.

We completed the definition in the following steps. First, we created a list (lines 19–
23) and a call to insertSort (line 24). We added an expected structure (i.e., a sorted
list) to this call. Second, we defined an empty insertSort method of Node (lines 7,14)
and inserted a conditional branch with empty then/else branches (line 8). Third,
we inserted a recursive call to insertSort on next in the then-branch (line 9), and
added an expected structure (i.e., a sorted list except for the first element). Fourth,
we realized that we need to insert this element into the sorted list by looking at the
visualization of the expected structure. So we inserted a call to a helper function
insert on the sorted list (line 11) with its empty definition (line 16). We added an
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expected structure after insert, which turns the first test case (on line 24) succeeded.
Figure 4.11 shows the screenshot at this point.

FIGURE 4.11: A screenshot after writing the body of insertSort.

Interestingly, the call tree in Figure 4.11 shows only two calls to insert. This is
because the incomplete definition of insertSort returns empty results, which even-
tually causes errors upon subsequent call to insert. After added two more expected
structures to the calls to insertSort, the call tree becomes like Figure 4.12. It was
easy to add them since we only needed to modify part of the list.

FIGURE 4.12: A call tree after the programmer has inserted expected
structures to the call, written at line 9 and line 11 on Figure 4.11, on

all contexts.

Finally, we wrote the body of insert by selecting one of four registered test cases
in turn. The final screenshot is Figure 4.13. Since we incrementally added condi-
tional branches as a test case required it, the resulting body was rather redundant.
Nevertheless, the four test cases made us more confident in the process of definition,
and also made us feel easier to refactor the redundant conditional branches.

4.4.3 Implementing Interpreter for Lambda Calculus of Tree Structure

Specification: the eval method of a lambda-term (either of App, Lam, or Var class)
evaluates itself into a normal form.



34 Chapter 4. Recursive Function Definition in Live Data Structure Programming

FIGURE 4.13: A screenshot when the insert method succeeded in all
the tests.

We made the following three top-level test inputs, namely 〈〈(λx.x) (λy.y) z〉〉.eval(),
〈〈(λx.(λy.y x)) z w〉〉.eval(), and 〈〈(λx.(λx.x)) (a b c)〉〉.eval()9. We also provided
the expected results to those test cases. Then, we implemented the eval and auxil-
iary methods in a breadth-first order; we took one unimplemented method call with
a test case, wrote its body. When there was a further method call without a proper
implementation, we just add an expected structure and continue the implementa-
tion of the caller’s body. Here, for simplicity, we assume that there is no input that
causes free variable capturing during the evaluation.

Figure 4.14 shows a screenshot in the middle of implementation, which success-
fully evaluates 〈〈(λx.x) (λy.y) z〉〉.eval(). In this case, we needed to add 8 expected
structures by following the abovementioned implementation order. When we define
the eval method 〈〈(λx.x) (λy.y) z〉〉.eval(), we wrote 3 method invocations. After
writing the first method invocation (i.e., 〈〈(λx.x) (λy.y)〉〉.eval()) at line 5, without
the proposed feature, we would have to switch the context to the callee, leaving the
incomplete implementation aside. With our proposed feature, however, we were
able to continue on the caller’s side (i.e., lines 6 and 7) with visualized objects. When
writing line 7, we were able to see the structure of t1 and t2 as visualized objects of
〈〈λy.y〉〉 and 〈〈z〉〉, respectively.

As a result, we can complete the definition of the eval methods, including other
necessary methods, by building the expected structures upon 26 method invoca-
tions.

When defining a program such as an interpreter, we need to define evaluation
functions and auxiliary functions every kind of expressions and its combination.
Therefore, in the case of test-driven development using unit test, we need to build
a lot of small test cases. However, in this case, we completed the implementation
by only creating three lambda expressions as the top-level inputs. This is because,
for example, defining the body of 〈〈(λx.x) (λy.y) z〉〉.eval() derives test executions
such as 〈〈z〉〉.eval() and 〈〈λy.y〉〉.apply(〈〈z〉〉).

9We assume that 〈〈t〉〉 is an object that denotes lambda-term.
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FIGURE 4.14: A screenshot after we use just one test case to define the
methods of eval, apply, and subst.

4.4.4 Result

Throughout the case studies, we observed the following benefits and issues:

• Benefit: We felt that we were less interrupted during the implementation. In
other words, we did not become a state that we do not know what to write.
This is probably because the top-down implementation order requires less con-
text switch.

• Benefit: We were able to notice mistakes earlier thanks to the automated test-
ing. Some of the mistakes we made actually failed test cases provided for the
other calling contexts than the currently implementing one. We were able to
notice them immediately.

• Issue: It was not easy to find missing cases when the implementation is not
yet complete. Though it is not a particular issue of Kanon but common to the
test-driven development, some mechanisms to guide exhaustiveness would be
helpful.

• Issue: The visualization is sometimes cluttered with dead objects, especially
with the lambda-calculus interpreter. A garbage collection mechanism for vi-
sualized objects would be useful for pure functional programming.

4.5 Related Work

EG is an Eclipse plug-in for example-centric programming (Edwards, 2004), which
has a feature to attach an assertion or an override to an expression under a specific
execution context. This feature is similar to our proposed features to add an expected
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structure to a function call under a specific execution context, but different in (1)
that EG only supports primitive values whereas we focus on data structures, and (2)
that EG treats assertions and overrides separately whereas our expected structures
are used for overriding as well as testing. Interestingly, the EG paper (Edwards,
2004) does not explicitly discuss need for the overriding feature at defining recursive
functions, even though its running example is a recursive factorial function.

Kanon assumes that the programmer writes a program in a test-driven develop-
ment (Beck, 2003) style. Such a style can be commonly found in live programming
(Victor, 2012; Imai, Masuhara, and Aotani, 2015) as well as in example-centric pro-
gramming (Edwards, 2004).

Vital is an interactive graphical environment for Haskell (Hanna, 2002), which
visualizes data structures including recursive data structures and lazily evaluated
infinite lists. It does not provide the automated testing/overriding features, i.e., it
only visualizes data structures in an actual execution of the source code. It supports
a direct manipulation mechanism, in which manipulation of visualized values by
using a pointing device will change the user program so that it will generate such
manipulated values.
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Chapter 5

Conclusion

This dissertation reports two studies on Kanon: The one is a user experiment for the
initial version of Kanon, the other is development of a feature that supports recursive
functions.

We carried out qualitative user experiment to collect programmers’ opinions
about the implementation of existing Kanon. Through observation and the inter-
view, it was found that, though most of the participants had positive impressions,
Kanon still has room for improvement. Also, we observed interesting programming
behavior with Kanon. When errors occurred, many participants took, when using
Kanon, longer time to notice occurrence of errors partly because of the design of
the existing Kanon. For the reverse task, several participants with Kanon took an
inappropriate strategy to solve the problem.

We propose a set of features for defining recursive functions in a live data-structure
programming environment Kanon as a solution of one of the problems found in
the experiment. With the features, the programmer can enjoy live programming
experience by merely building an expected structure upon a call to an incomplete
recursive function. The expected structure also serves as an automated test case,
guiding the programmer where to write next. We confirmed, through case studies,
that the proposed features can work well when defining typical recursive functions.
The features are implemented as an extension to Kanon, and are publicly availabe at
https://github.com/prg-titech/Kanon.

5.1 Future Work

The feature that this dissertation proposed has room for improvement. In the cur-
rent implementation, Kanon reconstructs the expected structure when the precondi-
tional structure is changed. However, the reconstructing is only a temporary solu-
tion. Kanon should be able to provide users with alternative ways such as partially
testing, in which the user can partially specify expected parts of the structure. Ad-
ditionally, a user study should be carried out to further evaluate the usability of this
feature.

Kanon still has more future improvements found through the experiment.
One of the future work is to support loops. In this dissertation, the author pro-

posed a set of features to support recursive function. However, depending on the
type of data structure, it may be easier to define the structure by loops rather than
recursion. More than half the participants of the experiment actually used loops to
define the reverse method that reverses a doubly-linked list. When they wrote a
code fragment in the loop body by focusing on a certain context, an error occurred
in a context other than the focused context. Therefore, Kanon needs a feature to
make it easier for users to define loops, for example, synthesizing the body of the
loop by letting users input a specification (or behavior) of each context of the loop.

https://github.com/prg-titech/Kanon
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Second, Kanon should present a more improved error report. Though it was
found, through the experiment, that notifying the programmer and error as early
as possible is crucial, the problem is not trivial in a live programming environment
because an incomplete program that the environment treats frequently becomes an
erroneous state. Therefore, the live programming environment needs to present an
appropriate error report not to disturb their programming.

Third, a direct manipulation mechanism is one of the future work of Kanon. This
is based on the fact that, though the visualization of the snapshot view mode helps a
programmer to understand a structure after an execution reaches the cursor position,
the programmer has to convert an operation that he or she considered by seeing the
graph into a statement in their mind. The direct manipulation mechanism of Kanon
allows programmers to define methods just by manipulating the node-link diagram
directly.

Fourth, the automatic layout engine should be more improved. The current au-
tomatic layout engine implemented in Kanon specifies special layout behavior for
some structures, which currently include binary trees and linked list. However, there
is no way to know what kind of structure the user assumes. Therefore, Kanon should
introduce a structure-aware layout algorithm to lay out arbitrary structures.

Finally, Kanon still has room for improvement of feedback performance. Kanon
executes a converted program every the user program is executable. In the case
studies in Section 4.4, the feedback Kanon provided is live. However, when the
length of the list is around 15, the feedback Kanon provided is not live1.

1The feedback under 50 ms is common to live programming environments (Rein et al., 2016).
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