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Abstract
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Master of Science

Translation Between Effect Instances and Multi-prompt Control Operators

by Kazuki IKEMORI

The labeled variations of algebraic effect handlers and control operators are an ex-
tended mechanism for handling different instances of the same computational effects,
such as mutable cells. These mechanisms are supported in several functional program-
ming languages, including Koka, Eff, OCaml, and Racket.

In previous work, it is shown that the expressive power between algebraic effect han-
dlers and delimited control operators is equivalent. This is shown by the macro transla-
tions that convert from a program with one mechanism to the other and the other way
around based on the syntactic structure. Using the relationship, we can develop the the-
ory and implementation of one mechanism in terms of the other. As an example, we can
derive a program transformation of one mechanism from that of the other. As a differ-
ent example, we can simulate one mechanism in terms of the other without rebuilding
the type system and evaluator.

While it is known that unlabeled algebraic effect handlers and delimited control op-
erators are equally expressive, the relationship between labeled versions is not known.
Our goal is to clarify the relationship between algebraic effect handlers with effect in-
stances and delimited control operators with prompt tags. In particular, we show the
equivalence of expressive power between the two calculi. Following the same approach
of unlabeled versions, we define macro translations between effect instances and multi-
prompt control operators and prove the type and meaning preservation properties. In
the process, we define the novel type system of delimited control operators with prompt
tags and prove its type soundness.
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Chapter 1

Introduction

Programmers need mechanisms to perform and handle computational effects such as
exceptions and mutable cells. These mechanisms need to differentiate instances of the
same computational effects.

In functional programming languages, there are several uniform mechanisms for
handling computational effects. One of them is the algebraic effect handlers [Plotkin
and Pretnar, 2009; Pretnar, 2015], which is a generalization of exception handlers in
that the computation can resume after performing an effect. Another mechanism is the
delimited control operators [Felleisen, 1988; Danvy and Filinski, 1990], which have a
longer history than the effect handlers.

When these mechanisms are extended with labels, they can further express different
instances of the same effect. These labels are called effect instances in the context of the
effect handlers [Bauer and Pretnar, 2013; Biernacki et al., 2020; Xie, Cong, et al., 2022],
and prompt tags in the context of control operators [Felleisen, 1988; Danvy and Filinski,
1990; Gunter, Rémy, and Riecke, 1995]. There are several programming languages that
support these mechanisms. For instance, Koka [Xie, Cong, et al., 2022] and an older
version of Eff [Bauer and Pretnar, 2013] support effect handlers with effect instances,
and OCaml [Kiselyov, Shan, and Sabry, 2006] and Racket' support tagged (aka multi-
prompt) control operators.

Our goal is to clarify the relationship between algebraic effect handlers with effect
instances and delimited control operators with prompt tags. In particular, we show the
equivalence of expressive power between these calculi (i.e., those with labels). In the
case of unlabeled algebraic effect handlers and delimited control operators, it is known
that the two mechanisms are equally expressive [Pirég, Polesiuk, and Sieczkowski,
2019]. This is shown by the existence of macro translations [Felleisen, 1991], which
convert between the two mechanisms based on the syntactic structure. Following the
approach of Pirog et al., we define macro translations between the two calculi and prove
the type and meaning preservation properties. By doing this, we can develop the theory
and implementation of one mechanism in terms of the other.

Thttps:/ /docs.racket-lang.org / reference/cont.html



2 Chapter 1. Introduction

FIGURE 1.1: Overview of contributions

In this thesis, we make the following contributions, as depicted in Figure 1.1.

e We formalize two calculi Al;; and Al, that have static effect instances and
prompt tags respectively, and show the equivalence of expressive power between
them through macro translations [-]** and [-]*.

¢ We formalize two calculi /\f:f"f and /\51:71 that have dynamically generated effect
instances and prompt tags respectively, and show the equivalence of expressive
power between them through macro translations [-]St* and [-]5F.

¢ In the process, we define the novel type system of delimited control operators with
prompt tags and prove type soundness.

The rest of the thesis is structured as follows. In Chapter 2, we show examples of alge-
braic effect handlers with effect instances and delimited control operators with prompt
tags. In Chapter 3, we formalize Acore , a calculus that has polymorphism, subtyping,
and a row-based effect system. Then in Chapters 4 and 5, we formalize various exten-
sions of Acore and discuss their relationships. We discuss related work in Chapter 6 and
we conclude the thesis in Chapter 7.

The proofs of our calculi can be found in Appendices A - G.



Chapter 2

Background

2.1 Algebraic Effect Handlers

Algebraic effect handlers [Pretnar, 2015; Plotkin and Pretnar, 2009] are a generalization
of exception handlers. The mechanism consists of operations that cause effects and
handlers that determine the interpretation of operations. When an operation performs
an effect, it is handled by the innermost handler surrounding it. Then, the handler
executes the corresponding operation clause.

As an example, let us consider a reader effect that represents a read-only state.

handle do ) with {x,rr 1;x.x+ 1}

—* ri (r = Az.handle z with {x,r.r 1, x.x + 1})
— handle 1 with {x,r.r 1;x.x + 1}

— x+1 (x=1)

— 2

The reduction goes as follows. First, the operation do () is handled by the surrounding
handler. The handler executes the corresponding operation clause x,r.r 1, which says it
resumes evaluation with the value 1 using the continuation r. The continuation r rep-
resents the rest of the computation from the operation call of the handled expression
to the innermost handler. The value 1 is the current state of the read-only state. Next,
the application 7 1 reduces to handle 1 with {x,r.r 1;x.x + 1}. Then, the handler exe-
cutes the return clause x.x + 1, which specifies the post-processing of the value that the
handled expression reduces to. Therefore, the whole program reduces to 2.

Using effect handlers, one can define many other computational effects, including
exceptions, mutable cells, and non-deterministic effect.

2.2 Delimited Control Operators

Delimited control operators [Gunter, Rémy, and Riecke, 1995; Felleisen, 1988; Filinski,
1994] are a more traditional tool for encoding effects. The mechanism consists of control
operators that capture the current continuations and delimiters that delimit continua-
tions. There are several variants of delimited control operators. Among them, we focus
on the shifty and dollar ((- | -)) operators. The shift( operators captures the continu-
ation up to the innermost dollar operator surrounding it. The dollar operator delimits
the extent of the continuation captured by shift.
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As an example, let us consider the following expression, which again encodes a
reader effect.

(shifto k. k | x.x+1) 1

—* k1 (k=Az(z|x.x+1))
— (1]x.x+1)

— x+1 (x=1)

— 2

The reduction goes as follows. First, the shifty operator captures the continuation k up
to the innermost dollar operator, and executes the body k. Second, the application k 1
reduces to (1 | x. x +1). Then, the dollar operator executes the return clause x.x + 1,
which specifies the post-processing of the value that the handled expression reduces to
since the body of the dollar expression is a value 1. Thus, the whole program reduces
to 2.

2.3 Algebraic Effect Handlers with Effect Instances

Plain algebraic effect handlers are inconvenient to handle the different instances of the
same effect because any operation is handled by the innermost corresponding handler.
In other words, there is no way to handle an operation using an outer handler. Let us
explain the limitation through the following expression, which has two operations and
two different handlers for the same reader effect.

handle handle do () +do () with {x,r.r 1;x.x} with {x,r.r 2;x.x}

—* handler 1 with {x,rr 2;x.x} (r = Az.handle z + do () with {x,r.r 1;x.x})
—  handle handle 1+ do ) with {x,r.r 1;x.x} with {x,r.r 2;x.x}

—* handle r 1 with {x,r.r 2;x.x} (r = Az.handle 1+ z with {x,r.r 1;x.x})

—* handle handle 1+ 1 with {x,r.r 1;x.x} with {x,r.r 2, x.x}

—* 2

In the above reduction steps, both calls do () are handled by the innermost handler,
whose operation clause x,r.r 1 is executed. Hence, the expression is reduced to 2 (=
1+ 1) instead of 3 (= 1 + 2). There is a restriction that the interpretation of operations
is not given by the outer handler.

One solution to the limitation is to extend algebraic effect handlers with effect in-
stances [Bauer and Pretnar, 2013; Biernacki et al., 2020; Xie, Cong, et al., 2022]. This
allows us to associate every operation with a specific handler, which is not necessarily
the innermost one.

Below is an expression that uses effect instances I and I’, which associates the oper-
ations do(I) () and do(!") () with the inner and outer handler, respectively.

handle(!’) handle(I) do(l) O) 4+ do(l') O) with {x,r.r 1;x.x} with {x,r.r 2;x.x}

* handle(!') r 1 with {x,r.r 2;x.x} (r = Az.handle(l) z + do(l') () with {x,r.r 1;x.x})
handle(!') handle(l) 1+ do(l) () with {x,r.r 1;x.x} with {x,r.r 2;x.x}

* r2 (r=Azhandle(!') handle(l) 1 + z with {x,r.r 1;x.x} with {x,r.r 2;x.x})
handle(!’) handle(l) 1 + 2 with {x,r.r 1;x.x} with {x,r.r 2; x.x}

* 3

A
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In the above reduction steps, the operation do(I) () is handled by the inner handler, and
the operation do(!’) () is handled by the outer handler. Hence, the whole expression is
reduced to 3.

2.4 Delimited Control Operators with Prompt Tags

Similar to the plain effect handlers, plain delimited control operators (shiftg/dollar)
are insufficient to write a complex control flow program, because any shift operator
captures the continuation up to the innermost dollar operator. In other words, there is
no way to capture the continuation up to the outer dollar operator. Let us explain the
limitation through the following expression, which has two shifty operators and two
dollar operators.

((shifty k. k + shiftg k. k | x. x) 1 | x. Ay.x) 2
- (k1]x. Ayx)2 (k = Az.(z + shiftg k. k | x. x))
— ({1 +shiftg k. k | x. x) | x. Ay.x) 2
=% (k1| x. Ay.x) 2 (k = Az.(1 + shifty k. k | x. x))
— <(1+1|x.x>|x.)\y.x>2
Ly

In the above reduction steps, both shifty operators capture the continuation up to the
innermost dollar operator and the application k 1 is executed. Hence, the expression is
reduce to 2 (= 1+ 1) instead of 3 (= 1 + 2). There is a restriction that shift, operators
cannot capture the continuation up to the outer dollar operator.

One solution of the limitation is to extend delimited control operators with prompt
tags [Gunter, Rémy, and Riecke, 1995; Kiselyov, Shan, and Sabry, 2006]. The idea is to
associate shiftg operators with the corresponding dollar operators using prompt tags,
just like how we extended algebraic effect handlers with effect instances.

Below is a program that uses an prompt tags ! and I’, which associates the control
operators shifty(l) k. k and shifty(!’) k. k with the inner and outer dollar operators.

((shifty(l) k. k + shifto(l') k. k| x. x); 1 | x. x)p 2
—* (k1| x.x)p2 (k = Az.(z + shifto(I') k. k | x. x);)
— ({1 +shifto(I') k. k | x. x); | x. x)p 2
—* k2 (k=Az.((1+z|x.x); | x.x)p)
-  ((1+2]x.x)]xx)
—* 3

In the above reduction steps, the shifty(l) k. k operator captures the continuation up to
the inner dollar operator, and the shifty(l’) k. k operator captures the continuation up
to the outer dollar operator. Hence, the whole expression is reduced to 3.

2.5 Macro Translation between Algebraic Effect handlers and
Delimited Control Operators

The concept of macro expressibility of Felleisen, 1991 allows us to compare the expres-
sive power between different languages. Intuitively, macro expressibility is defined as
follows. Suppose we have two languages, L and L. Here, L, is an extension of L with
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some additional feature. Now, if there exists a syntax-directed, meaning-preserving
translation from L to L, we say that L, is macro expressible by L. We call the transla-
tion a macro translation, and we view its existence as a witness that the two languages
have the equal expressive power. Thus, we can show the equivalence between two cal-
culi by defining a pair of macro translations between them.

There are several studies that use the macro expressibility to compare the relative ex-
pressiveness of algebraic effect handlers and delimited control operators. Forster et al.,
2016 show that the expressive power between algebraic effect handlers and delimited
control operators is equivalent in an untyped setting. Pir6g, Polesiuk, and Sieczkowski,
2019 extend the results of Forster et al., 2016 to a typed setting.

In this thesis, we extend the macro translations of Pirog et al. with effect instances
and prompt tags. In the following chapters, we formalize individual calculi and discuss
the properties of our macro translations.



Chapter 3

Core Calculus

In this chapter, we present A..re , Which serves as the basis of the effectful calculi dis-
cussed in later chapters. The core calculus has subtyping, polymorphism and row based
effect systems [Leijen, 2014; Leijen, 2017; Xie, Brachthauser, et al., 2020; Hillerstrém and
Lindley, 2016; Convent et al., 2020; Pir6g, Polesiuk, and Sieczkowski, 2019]. Note that
Acore is based on the core language of Pir6g, Polesiuk, and Sieczkowski, 2019. In the
following sections, we first show a syntax of kinds, types and expressions (Sect. 3.1).
Next, we show kinding rules (Sects. 3.2). And then, we show equivalence rules, sub-
typing rules and typing rules (Sects. 3.3-3.5). Lastly, we show the operational semantics
(Sect. 3.6). We highlight the changes in the syntax and typing from Pir6g, Polesiuk, and

Sieczkowski, 2019 with gray background .

3.1 Syntax

Kind

Type

Effect row
Expression
Value

Type variable env

Variable env

Label env

—

Type variables > «, B, . ..

| o=y 0

| Y i k.0
=

| €-p

D= v

\ ee

D= X

| Ax.e

= Q| Awnk
= QT x:0
= Q%1

Expression variables > x,y, ...

value type)
effect type)

effect row type)
type variable)
function type)

empty effect row)
extended effect row)
value)

application)
variable)

(
(
(
(
(
(quantified type)
(
(
(
(
(
(

lambda abstraction)

FIGURE 3.1: Syntax of Acore

Labels > 14, ...
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Kinds, Types and Effect rows. We define the syntax of kinds, types, and effect rows of
Acore in Figure 3. Similar to the core language of Pirog et al., kinds include value types
T, effect types E, and effect row types R. Types include type variables &, function types
0 —, 0, and quantified types Va :: x.0. A function type 01 —, 02 says the type of input
is 01, the type of output is 02, and the body of a function may perform computational
effects p. Following [Biernacki et al., 2020; Xie, Brachthauser, et al., 2020], we define an
effect row as either an empty row ¢, a type variable a with an effect row kind R, or an
extension € - p of an effect row p with an effect €. An effect includes a label, which is a
uniform representation effect instances and prompt tags. Unlike on Pirog et al., an effect
row cannot be extended with a type variable that has kind E. We will discuss the reason
in Section 4.1.4. As a convention, we will use & and p for type variables with a value
type kind.

Expressions and Values. We define the syntax of expressions and values of Acore in
Figure 3. Similar to the core language of Pirog et al., expressions include applications
e e and values v. Values also include variables x and lambda abstractions Ax.e. As a
convention, we will use x and y for variables.

3.2 Kinding Rules

Al Fr1uxk

XK EA

—————— [KVAR
A|Z|—rx::x[ ]
A|lZFr =T AlZFp:R A|Z'_T2::T[KARROW]
A‘Zf"ﬁ—)pl'z::T
Aazx|ZFTaT [KEMPTY]

K Ay .
A|Z|—V061:K.T::T[GEN] AlZFi:R

AlXFe:E AlZFp:=R
Al|ZFe-p=R

[KROW]

FIGURE 3.2: Kinding rules of Acore

We define the kinding rules of Ao in Figure 3.2. We use a kinding judgment of the
form A | £ F 7 :: k. The judgment states that a type 7 has kind x under type variable
environment A and label environment .

Kinding rules are identical to Pirog et al. The KGEN, KVAR, and KARROW rules are
standard. The KEMPTY rule states that an empty effect row has kind R. The KROw rule
states that an extension € - p has kind R, where € has kind E and p has kind R.
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3.3 Equivalence Rules

Al Fo=/0

Aok
AlXFo=co

[EREFL]

ANZrt=1  A|ZFpi=p2 A|ZETB =1
ATt = 0 =1 =0, 7

[EARROW]

Ak |ZFn=1n
AlZEVa:kn =Vakn

[EGEN]

AlZFpir=p2 AlXFeE
AlXFe-pp=€-p2

[EROW]

A|Z|—p15p2 A\Zl—el::E A’Z"ezilE [61175(621
A’Z"€1'€2-p1562'€1~p2

[ESWAP]

AlZFpi=p2 AlZFpr=p;3
AlXFp1=p3

[ETRANS]

FIGURE 3.3: Equivalence rules of Acore

We define the equivalence rules of Ac.r. in Figure 3.3. We use an equivalence judgment
of the form A | £ - ¢ = ¢’. The judgment states that type ¢ and ¢’ are equivalent under
type variable environment A and label environment X.. Note that these rules do not exist
in the calculus of Pirog et al.

The ESWAP rule is the most interesting rule. It checks if effects €; and e, have kind of
R and effect rows p; and p; are equivalent under type variable environment A and label
environment ¥.. The meta function [-| extracts a label from an effect €. It also checks
if labels [e1] and [ey] are distinct. Then, it derives that swapped effects €7 - €3 - p1 and
€2 - €2 - pp are equivalent under type variable environment A and label environment X.
We will discuss the reason why we can only apply the ESWAP rule to effects that have
different heads in Section 4.1.4.

The other rules are standard. The EREFL and ETRANS rules correspond to reflexivity
and transitivity, respectively. The EARROW rule states that two arrow types are equiva-
lent if they have the same input type, output type, and effect row. The EGEN states that
types 71 and 1, are equivalent under type variable environment ¥, « :: x extended with
« :: k. The EROW rule concludes that extensions of effect rows p; and rho; by epsilon
are equivalent if p; and p are equivalent.
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3.4 Subtyping Rules

Al Fo<:/o

AZFrn=0m
A|Z|—Ul<20'2

[SREFL]

A<t A|lZkEpi<ipp A|ZET <7}

SARROW
A|ZET = 0 < —=p, T [ :
Awzk|ZFh < AlZFp:R
SGEN SEMPTY
A|Z|—VIXIIK.T1<IV6¥2:K.T2[ ] A]ZI—L<:p[ ]
AlXEp < AlXFe:E
| P1=: P2 | € [SROW]
AlXbe-pr<i€e-po
AlXEp < AlXEFp <
| 1= P2 | P2 =23 [STRANS]

A’Z"p1<:p3

FIGURE 3.4: Subtyping rules of Acore

We now define the subtyping rules of Ac.re in Figure 3.4. We use a subtyping judgment
of the form A | X + ¢ <: ¢’. The judgment states that types ¢ and ¢’ have subtyping
relation under type variable environment A and label environment ..

The subtyping rules are based on Pirog et al. The SARROW states that their input
types, output types, and effect rows are in the subtyping relation; note that the relation
is contravariant in the input types. The SGEN rule states that the type 7> subsumes the
type 71 under type variable environment A extended with a type variable « :: k. The
SEMPTY rule concludes that the effect row p subsumes all empty effect rows. The SROW
rule concludes that extensions of effect rows p; and p, by epsilon are in the subtyping
relation if p; and p; are in the subtyping relation. The STRANS rule is for transitivity.

One thing to note here is that the SREFL rule has an extra premise compared to the
original rule by Pirog et al. This allow us to derive, for instance, A |2 e-€-p <
€1-€-pusing A | X F e-€-p = € - € - p, which intuitively holds. Without the
additional premise, we cannot derive the above subtyping relation as the original rules
of Pirog et al. do not allow swapping of effects.
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3.5 Typing Rules

A|T| X Fe:t/p

x:terl
A|T|ZFx:T/1

[VAR]

AT |ZFe i1 —,T/p AT |2ZFe:n/p

APP
AT |[ZFere:7/p LAPP]
AlXFm:T AlT,x:mq|ZFe:T
| 1 [ Tx:n|XFe:n/p [ABS]
A|T|ZFAxe:11 —p 2/t
Aawzx|T|ZFe:t/i x € {T,R}
[GEN]

A|T|ZFe:Vaxt/i

AlXFo:x A|T|ZFe:Vaxt/p x € {T,R}
AT |Z2Fe:t{c/a}/p

[INST]

AlZFn<in AlZFpr <ip2 AT |Z2Fe:n/p1
AT |XZFe:n/p2

[SUB]

FIGURE 3.5: Typing rules of Acore

We define the typing rules of Acqr. in Figure 3.5. We use a typing judgment of the form
A|T| Z F e: 1/p. The judgment states that expression e has type T under type
variable environment A, variable environment I', and label environment ¥, and may

perform effects p.

The typing rules are based on Pirog et al. The VAR, APP, ABS, INST, and SUB are
completely standard and almost identical to Pirog et al. The only difference from their
original typing rules is that the kind of the type variable in the GEN and INST rules is
restricted to T or R. Note that the APP rule requires the function, the argument, and the

function’s body to have the same effect.
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3.6 Operational Semantics

Evaluation context

Pure evaluation context F == [0O|eF|Fv
Evaluation context E == OJeE|Ev

Reduction rules

(Ax.e) v — e{v/x} [BETA] E[eﬁjg[e’] [STEP]

FIGURE 3.6: Evaluation contexts and Reduction rules of Acore

We define the operational semantics of Acore in Figure 3.6. The semantics is based
on the call-by-value evaluation strategy, and is associated with an inductive definition
of evaluation contexts. The definition is the completely standard and identical to Pirog
et al’s. As the reduction rules, we define the standard BETA rule for reducing an appli-
cation, as well as the STEP rule to reduce an expression in an evaluation context.
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Chapter 4

Static Effect Instances and Prompt
Tags

In this chapter, we present two extensions of the core calculus and a pair of macro trans-
lations between the two extended calculi. One of the calculus is called AL;; , which
features algebraic effect handlers and effect instances. The other is called AL, , which
features delimited control operators and prompt tags. Note that we treat both effect in-
stances and prompt tags as second-class values (i.e., we cannot pass them to functions
or return them from functions). In the following sections, we first give a formalization
of the two calculi (Sects. 4.1-4.2) We then define the macro translation and prove the
type and meaning preservation properties (Sect. 4.3).

4.1 Al : Algebraic Effect Handlers with Static Effect Instances

e

In this section, we define Aéff , which is a calculus that extends Ac.re With algebraic
effect handlers and effect instances. In the following sections, we define the syntax, the
typing rules, and the operational semantics by extending those of Acore (Sects. 4.1.1-
4.1.3). Next, we explain the reason why the ESWAP rule cannot be applied to all effect
(Sect. 4.1.4). Lastly, we show type soundness (Sect. 4.1.5). Note that Al;; is based on
the calculi of Pirog et al.

4.1.1 Syntax

Kind K = e

] L (label type)
Type o,T n=

] 1 (label)
Effect € = JANTH=D
Label 14 = 1 (static label)
Expression e = .

| do(¢) v (do)

| handle(]) e with {x,r.e;; x.e,}  (handle)

FIGURE 4.1: Syntax of AL;; (extensions)
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Kinds, Types and Effects We define the syntax of kinds, types, and effects of AL,
in Figure 4.1. For brevity, we only show the changes to the A..re syntax. Kinds are
extended with label type L. Types are extended with label types ¢. Effects only take
the form 3, A’y = 1 that is generalized by type variable environment A’. It means
that the types of an operation’s argument and return value are 7y and 7> and it must be
handled by a handler whose label is ¢. Labels are chosen from a set of statically defined
labels .

Expressions We define the syntax of expressions of AL; in Figure 4.1. Expressions
include operations do(¢) v and handlers handle(l) e with {x,r.e;; x.e,}. An operation
do(¢) v is for performing an effect with a label /. It is passed a single argument v and
must be handled by a handler with a label /. A handler handle(l) e with {x, r.ej; x.e, } is
for handling an effect with a static label /. Here, It means that x, r.¢j, is the interpretation
of an operation with a static label  and x.e, is a return clause.
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4.1.2 Kinding, Equivalence, and Typing Rules

’A|Z|—T::K

leX
A|lZFI1:L

[KLABEL]
AN|EF T AN|ZF:T  A|ZEL:L

KIEFF
A|Z|_E|gA/.T1:>T222E [ ]

Ak p=yp

, =T , TH=T :
AN | S I AN | VNN §
A|Z|—E|EA/.T1:>TQEE|KA/.T{:>T2/

[EIEFF]

AT|2Fe:T/p

AT |Z2Fv:6(m)/t AlZES N A|Z|_E|gA/.T1:>T221E[DO]
AT|EFdo(l)v:6(r)/ (AN = 1) 1
ANI|T,x:T,7:T =T |ZFe:w/p A|ZFI:L
AT |2Fe:t/(FANTm=n)p A|Tx:T|ZFe:T/p (HANDLE]

A |T | 2 F handle(l) e with {x,r.e;;x.e,} : T./p

FIGURE 4.2: Kinding, Equivalence, and Typing Rules of AL;; (extensions)

Kinding Rules We define the kinding rules of AL;; in Figure 4.2. The KLABEL rule
states that a static label has kind L. The KIEFF rule is extended with a label from the
kinding rule of the Pirog et al.’s. It states that an effect 3, A’.7y = 1, has kind E, where
both of the 7y and © have kind T and the label ¢ has kind L.

Note that we can define a polymorphic effect using a type variable environment A’.
Let us show an example of a polymorphic effect.

Jpa:Ta=«

This effect signature says that the argument of the operation can be an arbitrary type «,
and that the handler for this effect returns a value of the same type «.
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Equivalence Rules We define the equivalence rules of AL;; in Figure 4.2. The EIEFF
rule is used to determine if two effects are equivalent or not. It states that two effect
types with the same label ¢ are equivalent if the input and output types of the operation
are equivalent.

Typing Rules We define the typing rules of AL;; in Figure 4.2. These rules are based
on Pirog et al. The DO rule takes care of an operation labeled with /. It states that the
argument of the operation has the type 6(71), the operation is interpreted as a value that
has the type 6(12), and the operation introduces the effect 3; A’.7y = 1, indexed by the
label £. The type 6(71) and (1) are instantiated by type variable substitution J. Note
that the second premise of the DO rule ensure the well-formedness of the type variable
substitution . Following Pirog et al., we define the well-formedness of type variable
substitution as follows:

Definition 1 (Well-formedness of type variable substitution).
A|ZFJ: A <= dom(d') =dom(A') A Va € dom(d),A | ZF 6(a) =2 A(a)

The HANDLE rule discharges an effect indexed by the label I. It requires that the ex-
pressions ¢, and e, have the same type 7, and the expression e surrounded by the han-
dler performs the effect (3; A’y = 1) - p. Then, it concludes that the expression
handle(/) e with {x, r.e;; x.e,} has the type T and performs the residual effects p.

4.1.3 Operational Semantics
Evaluation Context
E := -..|handle(l) E with {x,r.e,; x.e,}

Reduction Rules

ER
handle(l) v with {x,r.e;; x.¢,} — e,{v/x} [ERETURN]

1 ¢ [E] v, = Az.handle(l) E[z] with {x,r.e;; x.e;}
handle(l) E[do(l) v] with {x,r.e;; x.e,} — ep{v/x}{v./7}

[EHANDLE]

FIGURE 4.3: Evaluation contexts and reduction rules of AL (extensions)

We define the operational semantics of Al in Figure 4.3. The semantics is based on
Pirog et al. The ERETURN rule states that a handler construct reduces to the return clause
er{v/x} if the handled expression is a value. The EHANDLE rule states that an operation
do(I) v is handled by the innermost handler indexed with the same label I. The premise
I ¢ |E] states that there is no handler indexed by the label ! in the evaluation context E.
Below is the definition of the meta function [-], which extracts labels.

Definition 2 (Label Extraction).
O] == @ [Ee| == [E] [vE] == JE]
[handle(l) E with {x,r.ey;x.e,}| == I, [E]
[e-p] == [e], [p] [FeANm=mn] o= ¢
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4.1.4 Restrictions of The ESWAP Rule and The Syntax of Effect Rows

As we mentioned in Section 3.3, we restrict the ESWAP rule and syntax of effect rows.
We can only apply the ESWAP rule to effect rows with two different labels at the head
in order to maintain type soundness. We explain the problem using the following ex-
pression. To understand why this restriction is necessary, let us observe the following
reduction steps.

handle(!) handle(l) do(l) OO with {x,r.r (x +1); x.x} with {x,r.r 1;x.x}
— r(x+1) (r=Azhandle(/) handle(l) z with {x,r.r (x + 1); x.x} with {x,r.r 1;x.x})
as

AlXFpr=p2 A|lXte - E A|lZtFeE
AlXbe-e-p1=€-€1-p2

[BADESWAP]

The reduction gets stuck because we cannot add a unit value and an integer. This
means we should not accept the expression as a well-typed expression. Now, sup-
pose we have replaced ESWap with BadESwap, which allows swapping of any la-
bels, including the same ones. The rule can be applied to all effect rows where the
two labels at the head are not necessarily different. With BadESwap, the above ex-
pression is judged well-typed. The reasoning goes as follows. First, we can derive
@D |1Fdo(l) O :int/(3;D.0) = int) - (3; @.int = int) by the DO and SUB rules.
Next, we can apply the BADESWAP and SUB rules to it and derive @ | @ | I - do(I) O :
int/(3; @.int = int) - (3; @.() = int). Thus, we can apply the HANDLE rule to it
and obtain the following wrong typing judgement.

@ | @ |1+ handle(l) handle(l) do(l) () with {x,r.r (x+1); x.x} with {x,r.r1;x.x} : int /1

To reject expressions like the above one, we restrict, the ESAWP rule to effect rows with
two different labels. With this restriction, we cannot derive @ | @ | [ # handle(l) do(l) OO
with {x,r.r (x + 1); x.x} because the type of the first input of the effect must be int in
order to apply the HANDLE rule.

Note that we cannot extend effect rows with a type variable that has kind E. The
reason is that we cannot extract labels from type variables that have kind E using [-].

4.1.5 Type Soundness

We prove the type soundness of AL;; by showing the progress and preservation theo-
rems [Wright and Felleisen, 1994]. The details of the proof can be found in AppendixC.

Theorem 1 (Preservation of AL, ).
IfA|T|XFe:t/tande — € then® || X ke :T/u

Theorem 2 (Progress of AL, ).
If@| D | Xk e:t/itheneisavalue or there exists ¢’ such thate — ¢'.

4.2 AL, : Delimited Control Operators with Static Prompt Tags

In this section, we define Aéel , which is a calculus that extends A..re with delimited
control operators and prompt tags. In the following sections, we define the syntax, the
typing rules, and the operational semantics (Sects. 4.2.1-4.2.3). Lastly, we show type
soundness (Sect. 4.2.4). Note that A}, is based on the calculi of Pirog et al.
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4.2.1 Syntax

Kind K = .

| L (label type)
Type o,T =

] 14 (label)
Effect € = N T/p
Label 1 = ! (static label)
Expression e HES

] shifty(¢) k. e (shifty)
| (e | x.e) (dollar)

FIGURE 4.4: Syntax of AL, (extensions)

Kinds, Types, and Effects We define the syntax of kinds, types, and effects of /\fiel in
Figure 4.4. Similar to the Al; syntax, kinds and types are extended with label type L
and label ¢, respectively. Effects only include 3, A". T/p that is also generalized by type
variable environment A’ similar to the AL;; . It means that the T and p are the output
type and effect row of the continuation captured by a shift operator indexed by /. As in
AL;: , labels are chosen from a set of statically defined labels X.

Expressions We define the syntax of expressions of A}, in Figure 4.4. Expressions
include the shift operators shifty(¢) k. e and the dollar operators (e | x. e;);. A shift
operator shifty(¢) k. e captures continuations. The expression e is the body of the shift
operator and function k is a continuation captured by the shift operator. A dollar oper-
ator (e | x. e,); delimits the continuation with label I. The expression e is the body of the
dollar operator and expression x.e, is the return clause.
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4.2.2 Kinding, Equivalence, and Typing Rules

’A|Z|—T::K

lex

— = [KLABEL
A|Z|—l::L[ ]

AN|ZFT:T  AN|ZFp:R  A|ZFL:L
AlXFI N . T/pE

[KMEFF]

AlZFp=p

AN EFT=T AN |ZFEp=p A|ZF/{:L
AlEEF AN . t/p=TFN.T/0

[EMEFF]

AT |2 Fe:0/p

AZET =T A|ZHL:L AN |ZFP <ip
AN |Tk:T =,t|ZFe:t/p) A|ZE (T A T/p)-p' =R
A|T | ZF shiftg() k.e: '/ (3, AN.T/p) - p

[SHIFT)]

A|ZES:N
AT |ZkFe:T/(F A . T/p)-6(p) A|T,x:7|Zke:6(T)/(p)
A|IT|ZF(e|x.e):6(1)/5(p)

[DOLLAR]

FIGURE 4.5: Kinding, Equivalence, Typing rules of AL, (extensions)

Kinding Rules We define the kinding rules of Al in Figure 4.5. The KLABEL rule is
identical to the AL;; . The KMEFF rule is rule is extended with a label from the kinding
rule of the Pirog et al.’s. It states that an effect 3, A’. 7/p has kind E if the type T has
kind T and the effect row has kind R. Asin AL;; , we can define a polymorphic effect
using a type variable environment A'.

Equivalence Rules We define the equivalence rules for Al in Figure 4.5. The EMEFF
rule is used to determine if two effects are equivalent or not similar to the Ak, . It
states that two effect types with the same label ¢ is equivalent if the output type of a
continuation and effect row are equivalent.
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Typing Rules We define the typing rules of A}, in Figure 4.5. The SHIFT rule states
that a shift operator introduces an effect indexed by the label /. The effect has informa-
tion of the output type and effect row of the delimited continuation k. The effect row
p’ represents the effects of the body of a shift operator and has to be subsumed by the
effect row of the continuation k. This is because a shift operator reduces to the body of
itself. The DOLLAR rule states that a dollar operator discharges the effect indexed by the
label I. It requires that the body of a dollar operator introduces the effect 3; A’. T/p and
also requires the tail of an effect row is instantiated by type variable substitution.

4.2.3 Operational Semantics
Evaluation Context
E == ---|(E|x.e)

Reduction Rules

(v|x.e)—ef{v/x} [ERETURN]

1 ¢ [E] ve = Az.(E[z] | x. er);
(E[shifto(l) k. e] | x.e,); — e{v./x}

[EDOLLAR]

FIGURE 4.6: Evaluation contexts and Reduction rules of A},

We define the operational semantics of A}, in Figure 4.6. The ERETURN rule states
that a dollar construct reduces to the return clause x.e, if the body of the dollar expres-
sion is a value. The EDOLLAR rule states that the body of the shift operator shifty(l) k. e
is executed and passed the continuation delimited by the innermost dollar expression.
As in the EHANDLER rule in AL, , the premise | ¢ [E] states that there is no dollar
expression indexed by the label I in the environment context E. We define the meta
function [-] as follows:

Definition 3 (Label Extraction).

] == @ [Ee|l == [E] [vE

] a= [E] [E|x.e)] == L[E]
e-p] == [el.fo] [Fa.t/p] u= ¢

4.2.4 Type Soundness

We prove the type soundness of A}, in a similar way to that of AL;; . The details of the
proof can be found in Appendix B.

Theorem 3 (Preservation of A}, ).
IfA|T|XFe:t/tande — ¢ then® || ZF e :T/1

Theorem 4 (Progress of Al ).
If@|@| Xk e:t/itheneisavalue or there exists ¢’ such thate — ¢'.
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4.3 Translation Between Static Effect Instances and Prompt Tags

In this section, we define [-]*! and [-]'¥, which is a pair of macro translations between
Alse and AL, . They extend the macro translations of Pirog et al. with labels. In the
following sections, we first define the macro translation from A, to AL;; and prove
the type and meaning preservation properties (Sect. 4.3.1). we next define the macro
translation in the opposite direction (i.e., from Al;; to Al.; ) and prove the type and
meaning preservation properties (Sect. 4.3.2). The details of proofs can be found in
Appendix D.

4.3.1 Translation from Static Prompt Tags to Effect Instances

[shifty(¢) k. e]™! = do(l) Ak.[e]™!
[(e] x.e);]"" = handle(l) [e]*! with {x,r.x r;x.[e,]P'}
[[Hg A T/p]]PI = E|g (12 T.(VA/.(IX —>Hp]]PI [[T]]PI) —)HP]]PI [[T]]PI) = N

FIGURE 4.7: Macro Translation from Al ; to AL,
In Figure 4.7, we define [-]?!, a macro translation from A}, to AL;; . The only difference
from the original macro translation is that each translation rule is extended by a label.

First, we explain the translation for the shift operator. A shift operator indexed by
the label 7 is translated to an operation indexed by the same label ¢ because they intro-
duce an effect. After the translation, the body of shift becomes a lambda abstraction that
takes a continuation k.

Next, we explain the translation for the dollar operator. A dollar operator indexed
by the label | is translated to a handler expression indexed by the same label /. The oper-
ation clause x,r.x r means that the delimited continuation r is passed to the operation’s
argument x. And then, the body of a shift operator receives the continuation through
the operation clause of the handler. The return clause of a dollar simply becomes the
return clause of a handler.

In the addition to the translation for expressions, we define a translation for effect
types. An effect type indexed by the label I of Al; is translated to an effect type indexed
by the same label I of AL;; . The input type of the effect VA.(a = o [7] PI) = o [7] P
represents the type of an operation’s argument (i.e., the type of Ak.[e]")). In particular,
(& = opm [7] PI) represents the type of the continuation k, where « is the type of the shift
expression.

We prove the type and meaning preservation properties of the macro translation.
The first theorem states that the translation preserves typability and the second theorem
states that the translation preserves meaning.

Theorem 5 (Translation preserves typability ).
IfFA|T|Zke:t/pthenA | [T]P | 2+ [e]®: [7]*1/[p] P .

Theorem 6 (Translation preserves meaning).
If e — ¢’ then [e]P! —+ [¢/]PL.

It is important to track prompt tags in the type system of AL, in order to naturally
extend the typed macro translation of Pirog et al. with labels. If the type system of A},



22 Chapter 4. Static Effect Instances and Prompt Tags

did not track prompt tags (as the calculus of Kiselyov, Shan, and Sabry, 2006), we would
need to synthesize an appropriate effect and assign it to each translated expression to
track effect instances by the type system of AL;; . In particular, it is hard to assign the
effects of continuations from the point where the operation is performed.

4.3.2 Translation from Static Effect Instances to Prompt Tags

[do(¢) v]'™® = shifty(¢) k. Al [0]™F (Ax.k x h)
[handle(l) e with {x,7.e;; x.,}]'* = ([e]™ | x. Ah.[e,]"F); (Ax.Ar.[en]™)
[ A7 =n]" =3 a:T =R ((VA.[a]" = ([w]f —pa) 2pa) —pa)/B

. 3 1 l
FIGURE 4.8: Macro Translation from Ages to Ay

In Figure 4.8, we define [-]'F, a macro translation from Al; to AL, . Similar to [-]!, we
extend the original macro translation rules with labels.

We first explain the macro translation for operations. An operation indexed by the
label ¢ is translated to a shift operator indexed by the same label ¢. In particular, the
argument of the operation is translated to the body of the shift operator. The meaning
of the operation is determined by the surrounding handler, hence the body of the shift
operator is a lambda abstraction that receives a handler h. The expression Ax.k x I is a
continuation from the point where an operation is performed to the handler surround-
ing the operations.

Next, we explain the macro translation for handlers. A handler expression indexed
by the label [ is translated to the application of a dollar operator and operation clause.
To determine the interpretation of operations appearing in the handled expression, the
dollar operator is applied to a lambda abstraction that represents the operation clause.
The handled expression and return clause of a handler simply become the body and
return clause of a dollar operator, respectively.

We also define a macro translation for effect types. An effect type indexed by the
label I of AL is translated to an effect type indexed by the same label I of AL, . The
type of the effect type VA".[1 ] —, ([©2]™ —4 ) —p a represents the type of the body
of the translated shift operator. The argument types [11]' and []"F —4 a correspond
to the types of [v]'F and Ax.k x h, respectively. While the effect row of a continuation
in AL;; is determined by the surrounding handler, the effect row of a continuation in
A1 is determined by a shift operator that introduces an effect. Thus, we generalize the
effect row of the effect type by the type variable 8 in order to preserve typability.

An interesting fact is that meaning preservation is not as straightforward as the
macro translation [-]F!. This is the case for the macro translation of Pirog et al.’s as
well. Intuitively, we need apply 77-expansion to the body of the expression Ax.k x h.
Below, we explain the problem in detail using a concrete reduction sequence.
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General context C == [O|Ce|eC|Ax.C|(C|x.e); ]| (e]| x.C); | shifty(¢) k. C

e1 — e
Cle1] —i Clez)

[GSTEP]

FIGURE 4.9: General context and General step

[handle(l) do(l) 1 with {x,r.r x; x.x}]® 4.1)
= (shifty(l) k. A\h.h 1 (Axk x h) | x. Ah.x); (Ax.Ar.r x) (4.2)
—  (Arh1 (Axkxh)){v./k} (Ax.Ar.r x) vl = Az.(z | x. Ah.x); (4.3)
=  (Ah1(Ax9lxh)) (Ax.Arr x) (4.4)
= (AxArrx) 1 (Axol x (Ax.Arr x)) (4.5)
= (Arr1) (Axol x (AxArrx)) (4.6)
= (Axolx (AxArrx))1 4.7)
= (Ax.Az.(z | x. Ahx); x (AxArrx) )1 (4.8)
#  (Az(z| x. Ahx); (AxArrx)) 1 (4.9)
= [(Az.handle(l) z with {x,r.r x; x.x}) 1]® (4.10)

The expression 4.1 is translated to the expression 4.2 by [-]'F. Then, it reduces to the ex-
pression 4.8 via reduction rules. The body of the expression 4.8 with gray background
isnotidentical to the expression 4.9 translated from Az.handle(!) z with {x, r.r x; x.x}) 1.
More specifically, the former has an eta redex.

Following Pirog et al., we solve the problem by defining general contexts and GSTEP
in Figure 4.9 to deal with the problem. Using this definition, we can reduce the expres-
sion 4.13 to the expression 4.14. Now, we can obtain (Az.(z | x. Ah.x); (Ax.Ar.r x)) 1 by
applying a-conversion to the expression 4.14. Note that (Az.(z | x. Ah.x); (Ax.Ar.rx)) 1
is translated from (Az.handle(l) z with {x,r.r x; x.x}) 1

[handle(l) do(l) 1 with {x,r.r x; x.x}]' (4.11)
= (shifty(l) k. Ah.h 1 (Ax.k x h) | x. Ah.x); (Ax.Ar.r x) (4.12)
—* (Ax. Az(z | x. Ahx); x (AxArrx) )1 (4.13)
— (Ax.(x | x. Ah.x); (Ax.Arrx)) 1 (4.14)
= (Az(z | x. Ahx); (AxArrx)) 1 (4.15)
= [(Az.handle(l) z with {x,r.r x; x.x}) 1]'F (4.16)

We prove the type and meaning preservation properties as the following theorems.
The first theorem is almost identical to Theorem 5. The second theorem uses the GSTEP
relation instead of the STEP relation.

Theorem 7 (Translation preserves typability).
IFA|T|ZFe:t/pthen A | [T | ZF [e]'® : [t]™/[o]*®.

Theorem 8 (Translation preserves meaning).
If e — ¢’ then [e]'* —F [¢/]'F.
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Chapter 5

Dynamically Generated Effect
Instances and Prompt Tags

In this chapter, we present different extensions of Al;; and A}, and a pair of macro
translations between the two extended calculi. One of the calculi is called /\Z;Z , which

features algebraic effect handlers and effect instances. The other is called /\5;;771 , which
features delimited control operators and prompt tags. As in Al and AL, , we treat
effect instances and prompt tags as second-class values. In the following sections, we
first give a formalization of the two calculi (Sects. 5.1-5.2). Then, we define the macro
translation and prove the type and meaning preservation properties (Sect. 5.3).

5.1 /\f:fz : Algebraic Effect Handlers with Dynamically Gener-
ated Effect Instances

In this section, we define Al;qu which is a calculus that extends Al;; with dynamically
generated effect instances. In the following sections, we define the syntax, the typing
rules, and the operational semantics by extending that of AL;. (Sects. 5.1.1-5.1.3). Next,
we show type soundness (Sect. 5.1.4). Note that we extend AL;; with dynamically
generated effect instances based on the calculus of Biernacki et al., 2020.

5.1.1 Syntax

Effectlabel ¢ = ...
| i (handler label)
Expression e = ...
\ e[/] (label application)
\ handle(y) e with {x,r.e;;x.e,}  (labeled handler)
Value v ou= .
| An.e (label abstraction)

FIGURE 5.1: Syntax of )t?fﬂf (extensions)

We define the syntax of effect labels, expressions, values in Figure 5.1. Effect labels are
extended with type variables that have kind L. Expressions include label abstractions
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An.e, label applications e[¢] and labeled handlers handle(y) e with {x,r.e;;x.e;}. A
label application e[/] is for applying the expression e to the effect label ¢. A labeled
handler handle () e with {x,r.e;; x.e,} introduces the effect label # into the handled
expression e. Values include label abstractions Ar.e. A label abstraction A#.e generalizes
the expression e over the type variable # of kind L.

5.1.2 Typing Rules

AT|ZFe:T/p

An=L|T|ZFe:t/t

A
A|T|X2FAye:Vy: Lt/ [LABS]

A|T|XZFe:VyuLt/t Al|ZF/{:L
AT |ZFell]:t{t/n}/1

[LAPP]

AnuL|T|[ZFe:t/(FyNT=>1)p
AN|T,x:m,r:n =, | ZFe:n/p AT, x:7|ZFe:7/p
A |T | 2 F handle(r) e with {x,r.e;;x.e,} : T /p

[LHANDLE]

FIGURE 5.2: Typing Rules of Afyf (extensions)

We define the typing rules of /\le)rfrf_c in Figure 5.2. These rules are based on the calculus of
Biernacki et al.. The LABS rule states that the expression e can be generalized over the
type variable 7 if it is a pure expression. The LAPP rule states that the expression e can
be applied to the effect label ¢ if it is polymorphic over the effect label. The LHANDLE
is almost the same as the HANDLE rule in Figure 4.2. The only difference from the
HANDLE is that the handled expression e is typed under the type variable environment
A,n i L so that a new effect instance 7 is introduced into type variable environment
A. Note that the operation clause and return clause are typed under the type variable
environment A that does not have the label # :: L. This is necessary for preventing
names from escaping their scope. In particular, it makes eta available only within the
lexical scope of the handled expression e.
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5.1.3 Operational Semantics
Evaluation Context
E == ---|E[{]

Reduction Rules

’Zl— e+—>e’—|2"

l is fresh Y =%1I o =A{l/n}
Y handle(y) e with {x,r.e;; x.e,} — handle(l) §(e) with {x,r.e;; x.e,} %

[EGENLABEL]

FIGURE 5.3: Evaluation contexts and reduction rules of AL (extensions)

We define the operational semantics of )\;’1 in Figure 5.3. We use a reduction judg-
ment of the form X - e — ¢/ 4 X/. The judgment states that under the label environment
¥, we reduce the expression e to the expression ¢’ and generate the new label environ-
ment ¥’. The semantics is based on Biernacki et al., but we extend them with a effect
label environment X to preserve types. We discuss the extended reduction judgement
in Section 5.1.4.

The most interesting rule is EGENLABEL. The rule states that the type variable 7 is
replaced by the label I that is dynamically generated at runtime and the label environ-
ment is extended with the label /. Note that the substitution for 77 does not apply to the
operation clause and return clause as they do not involve 7.

5.1.4 Type Soundness

As we mentioned in Section 5.1.3, we must extend the reduction judgment with effect
label environment ¥ in order to prove type soundness. Intuitively, a well-typed expres-
sion may be judged to an ill-typed expression that escapes a lexical scope handler label
if we do not generate an effect label at runtime. We illustrate the problem using the
following expression which is borrowed from Biernacki et al. Suppose that hjy = x,7.r x
and rj; = x.x.

handle(s) handle(s’) do(y) A_.do(n’) 1 with{h;;r;;} with{h;s; 7} (5.1)

—  (rx){o/r}H{(A_do(y’) 1)/x} (5.2)
v, = Az.handle(r) handle(n') z with{h;s; r;y} with{h;z;r;s} (5.3)

= (Az.handle(y) handle(y’) z with{h;s; r;;} with{his;7;s}) A_do(y’) 1 (5.4)
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The expression 5.1 is well-typed. By applying a reduction rule EHANDLE, We can re-
duce it to the expression 5.4. However, we cannot derive @ | @ | @ I/ A_.do(y’) 1 since
the type variable 71" escapes from its lexical scope. Hence, the expression 5.4 is ill-typed.
To solve this problem, we extend the reduction judgment with effect label environ-
ment .. We apply the EGENLABEL rule to the expression 5.5. Then, we reduce it to the
expression 5.10. Now, we canderive @ | @ | ,I' = A_do(l') 1 : V& :: T.a —, int /1 using
generated labels at runtime. Thus, the reduction preserves the type of the expression.

handle(r) handle(y’) do(n) A_.do(y’) 1 with{hs; 7z} with{h;z;ri4} (5.5)

— handle(l) handle(y’) do(I) A_.do(y’) 1 with{h;s;r;;} with{his; 73} (5.6)
— handle(l) handle(!') do(I) A_.do(l') 1 with{hs;ris} with{hz; s} (5.7)
—  (rx){vc/r}H{(A_do(l') 1)/x} (5.8)
v, = Az.handle(l) handle(l") z with{h;;; 7y} with{h;s;ri;} (5.9)

= (Az.handle(l) handle(l') z with{h;;; r;; } with{h;s;r;s}) A_.do(l') 1 (5.10)

We prove type soundness of )L;'Zf by showing the progress and preservation theo-
rems. The details of the proof can be found in Appendix F.

Theorem 9 (Preservation of Ai;'zf .
KFA|T|XFe:t/tandXFe—¢ AX then® || ZF ¢ :7/1

Theorem 10 (Progress of Al;f”f .
If@|D| Xk e:t/itheneisavalue or there exists ¢’ such that L e — ¢ 4 X"

I . e . .
52 Ag. : Delimited Control Operators with Dynamically Gen-
erated Prompt Tags
In this section, we define /\f;eﬂl which is a calculus that extends Ak, with dynamically
generated prompt tags. In the following sections, we define the syntax, the typing rules,

and the operational semantics by extending that of Al (Sects. 5.2.1-5.2.3). Next, we
show type soundness (Sect. 5.2.4).

5.2.1 Syntax

Effect label 14 =

| i (dollar label)
Expression e = .

| e[/] (label application)

| (e | x.er)y (labeled dollar)
Value v =

| Any.e (label abstraction)

FIGURE 5.4: Syntax of /'\Z}'Z_C (extensions)
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We define the syntax of effect labels, expressions, and values in Figure 5.4. Effect labels,
label abstractions, and label applications are completely identical to A}.; . A labeled
dollar (e | x. e;), introduces the effect label 7 into the body of the dollar operator.

5.2.2 Typing Rules

AT |2 Fe:0/p

An:L|T|ZkFe:t/t
A|T|X2FAne:Vy:Lt/t

[LABS]

A|T|XFe:VyuL/t A|XF{:L
AT |ZFell]:t{l/n}/1

[LAPP]

AlZES N
AnaL|T|ZFe:t'/(3,4.1/p)-6(p) A|Lx:7 |Zte:0(1)/6(p)
A|T|ZF (e|x.e)y:0(T)/6(p)

[LDOLLAR]

FIGURE 5.5: Typing rules of Al; (extensions)

We define the typing rules of AZZ in Figure 5.5. The LABS and LAPP rules are com-
pletely identical to A;’Z_c . The LDOLLAR is almost the same as the DOLLAR rule in
Figure 4.5. The only difference from the DOLLAR is that the body of the dollar operator
e is typed under the type variable environment A, 1 :: L so that a new prompt tag 7 is
introduced into type variable environment A.
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5.2.3 Operational Semantics
Evaluation Context
E == ---|E[{]

Reduction Rules

’Zl— e e —|Z"

S (Ane)ll] = e{t/n} A% ELAPT]

p is fresh ¥ =31 s={l/n}
LE (e|x.ey— ()| x.e)y 1%

[EGENLABEL]

FIGURE 5.6: Evaluation contexts and Reduction rules of Aéel

We define the operational semantics of )\f:f’i in Figure 5.3. We use a reduction judg-

ment of the form % + e — ¢/ - ¥/ like /\ijf . The judgment states that under the label
environment ¥, we reduce the expression e to the expression ¢’ and generate the new
label environment ¥

The most interesting rule is EGENLABEL. The rule states that the type variable 7 is
replaced by the label / that is dynamically generated at runtime and the label environ-
ment is extended with the label I. Note that the substitution for 77 does not apply to the
return clause since it does not include involve 7.

5.24 Type Soundness

We prove type soundness of /\2271 in a similar way to that of /\Z;Z . The details of the
proof can be found in Appendix E.

Theorem 11 (Preservation of Af;e”l .
IfFA|T|XFe:t/tandXZ ke — e AL then® | Q|2 Fe :T/u

Theorem 12 (Progress of )\2;171 .
If@|@|LFe:t/itheneisavalue or there exists ¢’ such that X e — ¢/ 4 ¥/,

5.3 Translation Between Dynamically Generated Effect Instances
and Prompt Tags

In this section, we define [-]5** and [-]5'F, a pair of macro translations between /\f:f’f_c and

/\fizll . The translations extend the macro translations [-]*! and [-]"f with dynamically
generated effect instances and prompt tags. In the following sections, we first define

the macro translation from Ai;e"l to /\lgf and prove the type and meaning preservation
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properties (Sect. 5.3.1). Lastly, we define the macro translation in the opposite direction

(i.e., from A;’Zf to Agjl ) and prove the type and meaning preservation properties (Sect.
5.3.2). The details of these proofs can be found in Appendix G.

5.3.1 Translation from Dynamically Generated Prompt Tags to Effect Instances

[Ay el = Ap[™
e (411%™ = [e]3™ 4]
[(e] x. er>,7]]SPI = handle(r) [e] 5P with {x, r.x r; x.[e,]ST"}

FIGURE 5.7: Macro Translation from /\2?1 to Af:fﬁf

In Figure 5.7, we define [-]SP! which is a macro translation from )\(7;;171 to /\le}'z_c . The macro
translations for label abstractions and applications are identity. The macro translation
for the labeled dollar operator is almost the same as that of unlabeled dollars. The only
difference from the macro translation [-]*! is that a labeled dollar operator is translated
to a handler expression that is labeled with the same type variable 7.

We prove the type and meaning preservation properties of the macro translation.
The first theorem is essentially the same as Theorem 5. The reduction judgement of the
second theorem is extended with effect label environment .. The details of the proof
can be found in Appendix G.

Theorem 13 (Translation preserves typability).
IfFA|T|Zke:t/pthen A | [T |+ [e]SPL: []SP1/ [p]SPL

Theorem 14 (Translation preserves meaning).
IfXFe—e 4% then X F [¢] ST —+ [/]SP 4 2.

5.3.2 Translation from Dynamically Generated Effect Instances to Prompt

Tags
[[An‘e]]SIP — Aq‘[[e]SIP
[e (15" = [e]>" [¢]

[handle(n) e with {x, r.e;; x.e, }]5'F = ([e]°™F | x. Ah.[e,]5"F), (Ax.Ar.[en]5™F)

. 1 l
FIGURE 5.8: Macro Translation from /\e+f}7f to Ageh

In Figure 5.8, we define [-]5'f, a macro translation from )\f:f”f to Afgl . The macro
translations for label abstractions and applications are completely identical to the [-]ST™.
The macro translation for the labeled handler is almost the same as the macro translation
rule of [-]™F. The only difference from the macro translation [-]'F is that a labeled handler
is translated to a dollar operator that is labeled with the same type variable 7.
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We prove the type and meaning preservation properties of the macro translation.
The first theorem is almost identical to Theorem 7. The reduction judgement of the
second theorem is extended with effect label environment X as the . The details of the
proof can be found in Appendix G.

Theorem 15 (Translation preserves typability).
IfA|T|Zke:t/pthenA | [T]5® | T+ [e]S™ : [x]5™ /o] S'P.

Theorem 16 (Translation preserves meaning).
fXtke—e 4% then X F [e] 5P —F [¢/]51F 4 X
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Related Work

6.1 Named Handlers and Effect Instances

Biernacki et al., 2020 propose a calculus with algebraic effect handlers extended with
second-class handler names. The calculus has a special syntax for abstraction and ap-
plication for handler names. It also has lexically scoped, second-class handler names so
that handler names never escape their scope. We build our calculus based on Biernacki
et al.’s calculus, hence the two calculi share a number of key features.

Xie, Cong, et al., 2022 design a simple and flexible calculus with first-class handler
names. Unlike Biernacki et al., their calculus does not have a special syntax and it treats
handler names as first-class values. To address the name escaping problem, their calcu-
lus employs rank-2 polymorphism, a technique used to provide thread safe interfaces
for the runST function in Haskell [Launchbury and Jones, 1995]. Thanks to rank-2 poly-
morphism, the calculus can dynamically generate handler names while maintaining
type soundness. This ability can be used to emulate ML-style references, which is im-
possible in Biernacki et al.’s calculus.

Bauer and Pretnar, 2013 propose the core Eff language, which models an old version
of the Eff language. The formalization includes first-class effect instances, which are
essentially the same as handler names but cannot be generated dynamically.

6.2 Multi-prompt Delimited Control Operators

Gunter, Rémy, and Riecke, 1995 propose a calculus with multi-prompt delimited control
operators. In their calculus, prompt tags are first-class values, but they are not tracked
by the type system. Hence, programs may get stuck by executing a control operator that
has no corresponding delimiter.

Kiselyov, Shan, and Sabry, 2006 argue that a calculus with dynamic bindings, which
they call the DB language, can be translated to a calculus with delimited control opera-
tors, which they call the DC language. The DC language features second-class prompt
tags, and its type system suffers from the same problem as that of Gunter, Rémy, and
Riecke, 1995’s. Therefore, in the progress statement of DC shown below, they impose a
strong assumption that the term M is not a CP-stuck term. The definition of a CP-stuck
term is that if M is a CP-stuck term, then there exists some shift(p) expression in M
that is not surrounded by a reset(p) expression.

Theorem (Progress).
If M is a DC term such that @ by M : T and M is neither a value nor CP-stuck , then
there exists some term M’ such that M — M’.

Kobori, Kameyama, and Kiselyov, 2015 define a syntax-directed translation from
a source language that has delimited control operators shift/reset with answer-type
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modification to a target language that has multi-prompt shift/reset without answer-
type modification. The translation allows us to implement delimited control operators
shift/reset with answer-type modification into the target language that does not have
answer-type modification without modifying type system. However, the type system
of the target language does not track prompt tags since the formulation of it closely fol-
lows the delimcc library [Kiselyov, 2010]. Therefore, the type judgement of the target
language does not give us information on whether every shift operator in a well-typed
expression is surrounded by a reset operator with the corresponding prompt tags.

6.3 Translation Between Delimited Control Operators and Al-
gebraic Effect Handlers

Forster et al., 2016 propose three calculi with mechanisms for expressing user-defined
effects and clarify the relationships between those calculi. Like us, they show the equiv-
alence of expressive power by defining macro translation, but unlike us, they do this
in an untyped setting. They then conjecture that extending their translations to a typed
setting would require certain forms of polymorphism.

Pirég, Polesiuk, and Sieczkowski, 2019 partially prove Forster et al.’s conjecture by
defining typed macro translations between two calculi with algebraic effect handlers
and delimited control operators (shiftg/dollar). They equip the calculi of effect han-
dlers and shiftg/dollar with effect polymorphism, which is the key to type preserva-
tion.

6.4 Implementation of Algebraic Effect Handlers using Multi-
prompt Delimited Control Operators

Kiselyov and Sivaramakrishnan, 2016 present a technique for embedding the Eff lan-
guage with effect instances into OCaml using the delimcc delimited control operators
library [Kiselyov, 2010]. The library has first-class prompt tags and can generate them
dynamically. These allow one to program with different instances of the same effects
asin our AL;; and Af:f’z_c calculi. However, prompt tags (and hence handler names) can
escape their scope, because OCaml does not have an effect system that tracks prompt
tags.
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Chapter 7

Conclusion and Future Work

In this thesis, we studied the relationship between two mechanisms for expressing com-
putational effects, namely algebraic effect handlers with effect instances and delimited
control operators with prompt tags. We first showed the equivalence of expressive
power between calculi with static effect instances and prompt tags. To show this, we
formalized two calculi AL;; and AL, , featuring static effect instances and prompt tags,
and defined the macro translations between these calculi. We next did the same for
calculi Ale;”f and Aéjl , which can dynamically generate effect instances and prompt
tags.

Using the relationship, we can understand one of the two mechanisms via the other
mechanism. For theoreticians, they can apply the results about one mechanism to the
other. As a theoretical application, we can derive the CPS translation for composing our
macro translation and the existing CPS translation for multi-prompt control operators
[Downen and Ariola, 2014], similar to Cong and Asai, 2022. For language implementors,
they can provide for programmers one of two mechanisms in terms of the other, while
preserving types and meaning. In fact, there is an OCaml library of effect instances
implemented using multi-prompt control operators [Kiselyov, Shan, and Sabry, 2006],
although it uses unsafe type coercion.

As future work, we are considering three directions. First, we would like to extend
the results to calculi with first-class effect instances and prompt tags. First-class effect
instances are useful for writing flexible programs because we can pass them to a lambda
abstraction and pack them into ordinary data structures. Following [Xie, Cong, et al.,
2022], we plan to extend our calculus with rank-2 polymorphism to solve the name
escaping problem.

Next, we would like to explore the relationship between shallow handlers [Hiller-
strom and Lindley, 2018] with effect instances and controlp/dollar with prompt tags.
This mechanisms make it easy to implement mutually recursive functions, for exam-
ple Unix pipes and copipes [Hillerstrom and Lindley, 2018]. The relationship between
shallow handlers and controlp/dollar has been discussed in a setting without effect
instances or prompt tags [Pir6g, Polesiuk, and Sieczkowski, 2019]. It is however unclear
if the relationship scales straightforwardly to our setting, because Pirog et al. rely on
generalization over effect types while we do not allow such generalization.

Lastly, we would like to explore the relationship among monads [Moggi, 1989], al-
gebraic effect handlers and delimited control operators in typed settings. Monads have
been a popular tool for representing computational effects. Their expressiveness has
been compared to effect handlers and control operators in an untyped setting [Forster
et al., 2016], and we intend to investigate how to scale the results to a typed setting.
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Appendix A

Core Calculus

Syntax of Terms:

Expressions e = v (value)
| ee (application)
Values v = X (variable)
| Ax.e (lambda abstract)
Syntax of Effect Rows:
0 = ! (empty effect row)
\ €-p (extended effect row)
Syntax of Kinds and Types:
K = T (value type)
| E (effect type)
| R (effect row type)
o,T = o (type variables)
| T —p O (function type)
| Vo k.o (quantified type)
Type variable environment A = Q|Awk
Type environment I == @I, x:0
Label environment Y o= Q%1
Names:
Type variables > «, ,...  Expression variables > x,y,... Labels 3 [,13,...

FIGURE A.1: Syntax of Core Calculus
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AT|XFe:T/p

x:tel
AT |ZFx:1/1

[VAR]

AT |ZFer:m —,T/p AT |E2Fe:n/p

Arr
AT |XFere:T/p Ave]
AZFmaT A|Rx:n\ZFe:m/p[A%]
A|T|ZFAxe: 1 —p 2/t
Aazx|T|Zke:t/t x € {T,R} [GEN]
AT |ZFe:Vakt/t
AlZko:x A|T|XFe:VaukT/p [INST]

AT |ZFe:t{c/a}/p

A|Z|—T1<ST2 A|Z"p1<:p2 A]F\Zi—e:n/pl

SuB
A|r|2|—et’£’2/‘02 [ ]
FIGURE A.2: Typing rules
Al b Tk
aiKk €A leX
—————— [KVAR ————— [KLABEL
A|Z|—tx::K[ ] A]ZI—Z::L[ ]
AlXFh =T AlZFp:R AT
[KARROW]
AlZFn —=,n:T
Aazx|ZFTaT [KEMPTY]

KGEN] AISE R
A|Z|—Vtx::x.r::T[ ] AlZFi:R

A|lSFe=E A|Zkp:R
AlXFe-p=R

[KROW]

FIGURE A.3: Kinding rules
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At o<

A‘Zl_(?'lEU'Z
A|Z|‘0’1<:0’2

[SREFL]

ANETrt <t AlZEpi<ip2 A|ZFET <

SARROW]
A|ZET =y T < T =, T [
Aazk|ZFg<in AlZFp:=R
SGEN SEMPTY
A|Z|—V(X::K.T1<:V06::K.T2[ ] A]ZI—L<:p[ ]
AlXEp < AlXFeE
| I | [SROW]
AlLte-p1<i€e-p2
AlZEp < AlXEpr <t
| 1= P2 | P2~ ps [STRANS]

A‘Zl_p1<2p3

FIGURE A .4: Subtyping rules
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Al Fo=d

AlXtFoxk
AlXto=0

[EREFL]

AZrFg=1 A|ZSFp=p2 A|ZbT=1
1 T > [EARROW]
AMZFET =) G =7 20T

Aok | ZFT =1

EGEN
A\Zl—‘v’lx::K.TlEVa::K.TQ[ ]

AlXFpr=p2 AlXFeE
AlXFe-pr=€-p2

[EROW]

A‘Zl—plEpz A|Z|‘€12:E A|Z|‘€2::E (6117’5[621
AlZber-e-pr=er-€ 02

[ESWAP]

AlZFpi=p2 AlZFpy=

P3
ETRANS
AlXEp1=p3 [ ]

FIGURE A.5: Equivalence rules



Appendix A. Core Calculus 45

Evaluation Context

Pure Evaluation Context F == 0O|eF|Fv
Evaluation Context E == OJeE|Ev

Reduction Rules

[BETA] e e

(Ax.e) v — e{v/x} E[e] = E[¢] [STEP]

FIGURE A.6: Evaluation context and Reduction rules






Appendix B

Aéel : Delimited Control Operators
with Static Prompt Tags

B.1 Syntax and Semantics

Syntax of Terms:

Expressions e = -+ | shifty(¢) k. e (shiftp)
(e| x.e) (dollar)
Syntax of Effects:
Effects € n= J,AN.T/p

Evaluation context
E w= - [(E[x.e)
Prompts Extractor
O] == @ [Ee|] == [E] [vE] == [E] [(E|lx.e}] == L[E]

Reduction Rules

(v|x.e)— e {v/x} [ERETURN]

I ¢[E]  v.=Az(E[z]| x.¢),
(E[shift(l) k. ¢] | x. e,); — e{v./x} [EDOLLAR]

FIGURE B.1: Delimited control operators with static prompt tags
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AT |2 Fe:0/p

A|ZHL{:L AlZHET:T
AN T k:T =,t|ZFe:T/p AN |ZEP <ip AlZE (3 A . T/p)-p' =R
A|T |2k shifto(0) k.e: /(3 A.T/p) 0

[SHIFTy]

AlZE6N
AT |ZFe:T/(FZAN. T/p)-0(p) A|T,x:7T |ZFe:(1)/d(p) [DOLLAR]
A|T|ZF (e|x.¢e):6(1)/6(p)
FIGURE B.2: Typing rules
’A]Z = T::K‘
AN |EFT:T AN |ZFp:R A\ZI—E::L[KMEFF]
AlXEI N .t/p:E
FIGURE B.3: Kinding rules
AlZFp=p
AN | EET=T AN | ZEp=p A|ZFL{:L
[EMEFF]

A’Zl—agA/.T/pEagA/.T//p/

FIGURE B.4: Equivalence
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B.2 Proof of Soundness

Definition 4 (Well-formedness for a substitution).
A=k 6 A dom(s) = dom(A') A Va € dom(A),A | £+ 6(a) = A'(a)

Definition 5 (Substitution composition).

5,001 = {62(c)/a}, where 61 := {o/u}.
Definition 6 (Instantiation relation).

AlZFTuk
AlZFT~T

AlZFVauxt A|XFouk
A|ZFVa:kT~ t{c/a}

[IREFL] [TINST]

Definition 7 (Multi step instatiation relation).

ANZHFT~ AN X1 ~* AN X1 ~*
[EET0 o\ HRER [EZFa—~'n (EF® T st
A|ZFT~" 0 AlXF1~"13
Definition 8 (Concat effect rows).
LXp=p prL=p (e-p)xp' =€ (p*p)
Definition 9 (Prompt extractor).
[F] == - [F[(E | x.e;)1]] == 1,[E]
[ = (0" (B A t/p) 1] == [(Fed.T/p)], [0]
[(FeAN.T/p)] == ¢
Definition 10 (Unhandled operators extractor).
lv] == 0 [FleJ]] == |e] [shifto(¢)k.e] == 1 |(e|x.e)] == 0

Lemma 1 (Multi step instantiation relation has some types).
If A| 2+ T ~* 7 then there exists 1y, A’ and J such that T = VA1), A | 2+ 6 :: A" and
T =6(1).

Proof. By induction on a derivation of A | £ - 7 ~* 7.

Case MIREFL:
Straightforward.

Case MIINST:

A|Z|—T1W*T2 A’Zl‘TzW*Tg,
AlZFT~*13

[MIINST]

ByLlHand A |2+ 1 ~* 1o, weget(1) m = VA .7}, Q) A |+ 6 2 A and (3)

T = 6(1).
BylHand A | 2+ 7 ~* 13, we get (4) o = VA".73, 5) A | £+ &, :: A” and (6)
3 = (Sz(Tg").

Letusdefined = {o1 /a1, -+ ,00/0n,01/B1,- -+ , 00,/ Bm}, where 8y = {o1 /a1, - -+ , 00/ n}
and (52 = {U{/ﬁl,' e /U;In/,Bm}
By the definition of §, we get dom () = ay,- -+ , &y, B1,- -+, Bm = dom(A', A”).
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By the definition of a substitution, (2) and (5), we get (6) A | £ F () == (A, A”) ()
for any ¢ € dom(A’, A”).

By the definition of a substitution and 8 (7j) = VA”.73, there exists 1 such that
13 = VA" .19 and ¢ = 61(10).

Thus, we get 73 = VA, A".19, A|ZF 6 = A, A" and 13 = 6(10).

O

Lemma 2 (Type variable substitution preserves equivalence).
IfAL, A, A |2 =nand A |[ZF6:: A then A, Ay | 2 F6(1y) = 6(m).
Proof. Straightforward. O
Lemma 3 (Type variable substitution preserves subtyping relation).
IfAL, A, A |21 <tpand Ay | ZF 5 A then Ay, Ay | 2 F (1) <: 6(m).
Proof. Straightforward. O
Lemma 4 (Inversion lemma: equivalence).

e IfA|XFi1=pthenp =1

e IfA|XF e-p; =pythenthereexists pb A | po =€ ).
Proof. Straightforward. O

Lemma 5 (Inversion lemma: subtyping relation).

e If A | £ F VAT <: 0 then there exists 7y such that o = VA'.pand A, A" | Z F T <:
T

e If A| X F €-p1 <:p then there exists €, and p; such that p = €; - p, €1 = €3, and
A | P o1 <: p2.

o If A| X+ 1] =, 15 <:0 then there exists T2, 77 and p; such that ¢ = ¥ —,, 13,
A<, A|SFp<iprand A |Z+ 77 <: 15

o If A| X+ 0 <: 1§ —,, 73 then there exists 7{, 7, and p; such that 0 = ] —,, 73,
ANEZFTB <t ,A|Zkp1 <ippandA|ZF T2 <: 1.

Proof. Straightforward. O

Lemma 6 (Heads of effects are same under subtyping).
IfA ’ P (3[ A Tl/pl) pll <: (Elg A T2/p2> -p/zthenA ’ 2T =1,A ‘ 1 =p2
and A | Z + p] <: pb.

Proof. Straightforward. O

Lemma 7 (Swapping effects preserves equivalence).
A|XFpixe-pr::Rand [e] € [p1] thenA | ZF-e-p1-p2 =R A|ZFpr*xe-pr =
€-prxppand A | X e€-p1*xpp =p1*€- P
Proof. By induction on a size of p;.
Case size(p;) = 0:
We get p1 = 1, because of size(p1) = 0. By the definition of [-], we get p1 x€ - p2 =
Lk€-Py =€ -L*Py=E€"pP1*pP2.
Thus, weget A | 2 Fe-pp m RA|XZFprxe-pp=€-prxppand A | X F
€-p1 %P2 = p1 *x € - p2 by EREFL.
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Case size(py) = 1:
Let us define p; = € - 1.

By inversion of A | £ F ey-1*x€e-pp = R, weget(1)A | £ F ¢ =2 E and (2)
AlXFe-p2: R
By inversionof A | EFe-pp =R, weget3)A|XZFe:Eand (4)A|ZFpy R
By [e] & [p1], we get (5) [e] # [eo].
Thus, weget A | EFe-€-p2 =R A|EZFe-€-pp=€-€-prand A | £ F
€-€0-p2 =€ - € - p2 by ESWAP, KROW, (1), (2), (3), (4) and (5).

Case size(py) > 1:
Let us define p; = €9 - po.
By inversion of A | ¥ - €y-po*x€e-p2 :: R, weget(1)A | X+ ¢ = Eand (2)
A|ZFpoxe-p2: R
By LHand (2), weget 3) A | ZFe-poxp2 =R, (4) A | X poxe-pr =€-po*p2
and 5) A | X €-pg*p2 = po*€-pa.
By EROW, (1) and (3), we get (6) A | Z € -€ - po * p2 :: R.
By LH and (6), weget 7) A | 2 Fe-ep-poxp2 =R, (8)A | X Fey-€-poxp2 =
€-€-poxprand (9 A | L e-€p-po*p2=e€p-€-po*pa.
By EROW, (1), (2), (4) and (5), we get (10) A | X F € -po*€-p2 = €g - € - po * p2 and
(1) A | Xt ep-€-po*p2=€p-pPo*E€-pPa.
By (7), ETRANS, (8), (10), (9), (11), we get A | 2 F e-€ep-po*xp2 = R, A | Z F
€0-Pox€-pp=€-€-poxprand A | X Fe-€ey-po*p2=€p-€-po* P2

O

Lemma 8 (Term substitution lemma).
A |T,x:0T |EFe:t/pand A | Ty |[EF € :o/ithenA | Ty, | ZFefe//x}:
T/p

Proof. By induction on a derivationof A | T, x: 0, T | ZFe:1/p.

Case VAR:

y:TEFl,XIO',Fz
AlTy,x:0T | ZFy: 0/t

[VAR]

SubCase x = y:
We get A | Ty | X € :0/1by the assumption of this lemma.

By the definition of the substitution, we get x{e’/x} = ¢'.

Thus, we get A | Ty, T2 | 2 F ¢’ : 0/1 by weakening.
SubCase x # y:

We get y € T'y, I'; by the premise and x # y.

By the definition of the substitution, we get y{e’/x} = y.

Thus, we get A | T1,T2 | 2 F y:0/iby VAR.

Case ABS:
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A|Z|—T12:T A|1"1,x:cf,l"2,y:71|Z|—e:rz/p

ABS
AlT,x:0T |2 Aye: 1 =, 2/t [ ]

By LH,wegetA |1, T,y : 1 | X efe/x}:w/p.

By the definition of the substitution and a-convention, we get (Ay.e){¢’/x} =
Ay.e{e'/x}.

Thus, weget A [T | Z F Ay.e{e'/x} : 7y =, T2/t by ABS.

Case APP, GEN, INST and SUB:
The result follows directly from I.H.

Case SHIFT(:

AL AN |ZFp <ip A|ZFET:T
AN |Tyx:0lk: T =w,7|ZFe:t/p" A[ZE (I A . T/p)-p" =R
A|Ty,x:0,T | ZFshifty(l) k.e: 7'/ (3, A.T/p) 0

[SHIFT)]

By LH,weget A, A [T, Ty, k: 7 =, 7| ZFe{e/x}:1/p.
Weget A | Ty, x:0,T, | 2 F shifty(l) k.e{e’/x} : 7' /(3, A'. T/p) - p’ by SHIFT,.

Case DOLLAR:
ATy, x0T | ZFke:T/(3A.T/p)-5(p)

AlZESAN A|T,x:0Ty:T |Zke:5(T)/6(p)
ATy, x0T | ZF(e|y.e):0(T)/d(p)

[DOLLAR]

By LH,wegetA |1, Iy | Zbe{e/x}: 7'/ (T A.1/p)-d(p)and A | T4, To,y : T/ |
Ybede/x}:6(T)/5(p).
Thus, we get A | Ty, T | 2+ (e{e//x} | y.e,{e'/x}); : 6(T)/6(p) by DOLLAR.

Lemma 9 (Type variable substitution lemma).
1. AN, M |2 Takand Ay | ZF 6 A then A, Ay | 2 6(T) ik

2. UA,N, M [T EZFe:t/pand Ay | ZF 6 AthenA, Ay | () | ZF e
5(t)/4(p)

Proof.
1. By induction on a derivation of A, A/, Ay | 2 F T 1 k.

Case KVAR:
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KK E Al,A/,Az
AN A | EFa

[KVAR]
K

SubCase a € A”:
Letusdefine A’ = By i k1, , & “Bunixgandd = {on/B1, -, 0/, ,0u/Bu}-
By the definition of A; | X 5 A’ we get A | ZF6(a) = A(a).
By A(a) =Kk, wegetAy | ZF6(a)
Thus, we get Ay, Ay | X F 6(a) 2 x by Weakening.
SubCase o ¢ A':
By the definition of a substitution and &« ¢ A’, we get 6(a) = a and
n € A1, As.
Thus, we get A1, Ay | 2 6(a) :: k by VAR.

Case KARROW, KEMPTY, KLABEL and KROw:
Straightforward.

Case KGEN:

A, N, A,a x| EFTT
AN, M | ZFYa kT T

[KGEN]

By LH, we get Ay, Ap,a ik | 2 F (7)) = T
Thus, we get Ay, Ay | 2 F Va :: k.0(T) :: T by KGEN.
Case KMEFF:

AN, AN | ZETaT  ALAN, M AN |SFp:R AL N, A |SHE:L
A1,A/,A2 ‘ P E|g A, T/p < E

[KMEFF]

By LH, we get A, Ay, A” | £ F 5(¢) = L, A, 0, A | £ F 6(7) =: T and
Al,Az,A” | P 5(()) =R

By the definition of a substitution and A’ N A" = @, we get 6(3, A”. 7/p) =
Fs0) A" 6(T)/(p).

Thus, we get A1, Ay | 2+ 6(3¢ A”. T/p) :: E by KMEFF.

2. By induction on a derivation of A1, A", Ay |T |ZFe:T/p.

Case VAR:

x:1t€eTl
AN, N |T |2 x:T/1

[VAR]

Letusdefinel' =xy:1q, -+ ,x:T, -+, Xy : Ty
By the definition of a substitution, we get 6(I') = x1 : 6(11),- -+, x: 0(T), -+ , X :
O(Th).
Thus, we get A1, Ay | T | X+ x: 6(7)/1by VAR.
Case ABS:
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Al,A/,A2|Z|_T1 =T Al,A/,A2|r,x:T1|Z|—€ZT2/p

ABS
AN, M | T2 Axe:T = 12/t [ ]

By LH, we get A1, Ax | 6(T),x:6(m) | Zte:d(12)/6(p).

By Lemma 9, we get A1, Ay | 2 F 6(7q) == T.

Thus, we get A, Ay | T | X+ Ax.e: 6(1y —p T2)/t by ABS.
Case GEN:

The result follows directly from L.H.

Case INST:

AN, N |20k AN, A | T | Zke:Vakt/p
AN, N | T | Zke:t{o/a}/p

[INST]

By LH, we get A1, Ay | 6(T) | 2t e: Va i x.6(T)/(p).
By Lemma 9, we get A, Ay | 2+ 6(0) == k.
By INST, we get Ay, Ay | 6(T) | ZFe:d(t){é(0)/a}/d(p).
By the definition of a substitutionand « ¢ A’, we getd(t){d(c)/a} = d(t{c/a}).
Thus, we get A1, Ay | 6(T) | ZFe:d(t{c/a})/é(p).
Case SUB:

Al,A/,Az ’ T ’ hH |—€2T1/p1
Al,A,,Az | Y- T <D Al,A,,Az | P 01 < 02
Al,A,,Az ’ T ’ hH |‘€2T2/p2

[SuB]

By LH, we get Ay, A | (1) |2 Fe:d(m)/d(p1)-
By Lemma 3, we get Ay, Ay | 2 (1) <: d(12) and Ay, Ay | 2 F 5(p1) <:
6(p2)-
Thus, we get A1, Ay | 6(T) | Z - e: (1) /6(p2) by SUB.
Case SHIFT:
The result follows from I.LH, Lemma 3 and Lemma 9.

Case DOLLAR:

AN, 0 | T | Zke: T/ (3 A T/p) bo(p)
Al,A/,Az | P 5() a A Al,A/,Az | F,x : T | P ey . 50(’1’)/(50(())

DOLLAR
AN, N [ TZE (e] x. e 60(T)/0(p) [ !

First, we prove (1) Ay, Ay | 2 F 506 =2 A”.

By the definition of a substitution composition, we get dom(d 0 dy) = dom(dy) =
dom(A").

We get Ay, Ay | ZF (60dp) () i (A1, Az)(a) for any a € dom(A”), because of
A1, Dy | ZF6(B) = A(B) forany g € A”.

Second, we prove (2) (6 0 dp)(d(a)) = 6(dp(a)) for any a.

We proceed by case analysis on a.
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Let us define A" = &y xq, -+ & K, 0 Ky, A = By oKy, B
Bk, b=/, ,0/0, - ,0n/anyand é = {o7/B1, -, 0 /B, 05/ Bu}-

Casea € A': (608))(6(a)) = (608p)(a) =6(0) =(dp(a)).

Case p € A" (a = B): (6000)(8(B)) = (6000)(¢") = 6(0') = o' = 4(B) =
(do(B))-

Otherwise: (60dp)(d(a)) =a = 6(dp(a)).

By LH, we get (3) A1, A2 | 0(T) | ZFe:d(t')/6((31 A" T/p) - bo(p)) and (4)

A, Ay | 8(T),x:6(T) | Z ke :6(80(T))/8(d0(p))-

Then, we get (5) A1, A, | 6(T) | ZFe:6(T')/6((F A”.t/p)) - (6060)(6(p))

and (6) A1, A2 | 6(T),x : 6(T") | ZF e : (6080)(6(T))/(8060)(6(p)) by

(6060)(6(a)) = 6(do(ax))-

Thus, we get A, A/, Ay | 6(T) | ZF (e | x.e;); : 6(00(7))/8(80(p)) by DOL-

LAR, (1), (2), (5) and (6).

O]

Lemma 10 (Value is pure).
EA|T|XZFov:t/pthenA|T |ZF0:1T/1

Proof. By induction on a derivationof A | T | X+ v :7/p.

Case VAR, ABS, GEN:
Straightforward.

Case APP:
This case is impossible because the term of a conclusion is not a value.

Case INST:

AlZFo:xk AT |Z2Fov:Vazkw/p
AT |ZFov:t{c/a}/p

[INST]

By LH,wegetA |T |ZFov:Va:xt/L
Thus, weget A | T |2 Fv: {c/a}/iby INST.

Case SUB:

A‘Zl—T1<3T2 A|Z|—‘01<Zp2 A\F|Z|—v:rl/p1
A|F|Z|—UZT2/p2

[SUB]

ByLH,wegetA |T' |XFov:7/u
Thus, we get A | T | 2 F v : 7o/t by SUB and SEMPTY.

Case SHIFT) and DOLLAR:
This case is impossible because the term of a conclusion is not a value.
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Lemma 11 (Compose/Decompose an evaluation context).
IfA|T | X+ Ele] : T/p then there exists 0, p’ such that

e AT |Xte:a/p' xp
* [E]=Tp']
e IfA|T|XZFé:0/p *pthenA|T |ZFE[]:T/p

Proof. By induction on a derivation of A | T | £ - Ele] : T/p. We proceed by case
analysis on the E.

Case E = [|:
Let us define (1) ¢ := Tand (2) o’ :=
Then, weget A |T |XFe:o/p *p.
We get [E] = - = [p’] by the definition of [-].
WealsogetA |T |XZte€ :7/pby(1)to(3), forany A |T | X ke :0/p *p.

Case E # []:

SubCase VAR:
This case is impossible because the form of a conclusion is E = [|.

SubCase ABS:
This case is impossible because the form of a conclusion is E = [|.

SubCase APP:
We also proceed by case analysis on the E.

SubSubCase E = Ej ¢j:

A|T|ZF Ele]: 11 =p 12/p AT |EZFe:n/p
A|T|XF Eole]eo:t/p

[APP]

By LH, weget(1) A | T | 2 Fe:o/p *p, (2) [Eo] = [p] and (3)
A|T|ZFEe]:11 =y 2/p,forany A |T |Z ke :0/p *p.
By the definition of [-], we get [E] = [Egeo| = [Eo] = [p'].
Weget A |T | £+ Eple'] eo : T/p by the premise, APP and (3), for any
A|T|ZFe:a/p *p.

SubSubCase E = vy Eg:
This case is similar to the E = Ej ¢p.

SubCase GEN, INST, SUB and SHIFT:
This case is impossible because the form of a conclusion is E = [|.

SubCase DOLLAR:

A|T|ZF Eole]: /(3 A.t/p)-6(p)
AlZES=AN AT, x:7T|Zke:6(T)/(p)
AT [ZE(Eole] | x.e)r:6(T)/5(p)

[DOLLAR]

ByLH, weget(1)) A | T |[ZkFe: T/ x (3 A.1/p)-6(p), 2) [Eo] = [p]
and 3)A | T | 2+ Eple/] : T//(F1 A t/p)-6(p), forany A | T | Z F ¢ :
/" (3 A T/p) - 5(p).
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By the definition of [-] and (2), we get [E] = [(Ey | x. ¢;);| = I,[Eo] =
[0 (31 4% T/p)].
WegetA | T | ZF (Eole'] | x.e); : 6(T)/6(p) by the premise, DOLLAR and
(3), forany A |T | X ke 1 /p" x (3 A.t/p)-6(p).

0

Lemma 12 (Inversion lemma: lambda abstraction).
IfA|T | 2 F Ax.e: 0/p then there exists 73, T, p1 and A’ such that A, A’ |T,x: 1y | X+
e:T/p, A|LEVA T =, o~ Tand A |2 F T <: 0.

Proof. By induction on a derivationof A | T | X F Ax.e: 0/p.

Case VAR, APP, SHIFT; and DOLLAR:
These case cannot actually arise, because the forms of a conclusion aren’t lambda
abstraction.

Case ABS:
Straightforward.

Case GEN:
The result follows directly from L.H.

Case INST:

A|ZFop:x A|T|XZF Axe:Va:x1/p
A|T |2+ Axe:t{oo/a}/p

[ABS]

By LH, weget 1) A A |T,x:1 [ZFe:n/p, QA[ZEVA T —p T~ T
and B)A | X+ T/ <:Va kT

By Lemma 5 and (3), we get (4) T/ =Va = x.pand 5) A, a ik | X 19 <: T.

By Lemma 3 and (5), we get (6) A | X F o{c/a} <: t{o/a}.

By MIINST, (2) and (4), we get (7) A | Z F VA .y =, T ~* T/(= Va :: k.79) ~
{0/a}.

Thus, weget A, A" |T,x: 1 [ZFe:m/p, A | ZE VAT = T~ To{0/a}
and A | 2 F p{o/a} <: t{o/a} by (1), (6) and (7).

Case SUB:

AlXbFo<iod  A|lZFp<ip) A|T|ZFAxe:o/p
AT |2k Axe:0'/p

[SuB]

By LH, weget ) AA |[T,x:m |[ZFe:n/o, QA |ZEVA T =, T~ T
and 3)A | X T < 0.

By STRANS and (3), we get (4) A |2+ 7T/ <: 0.
Thus, we get A,A" |T,x: 1y | X Fe:n/p, AL F VAT =, 1o~ 7 and
AlZFT <:0'by(1),(2) and (4).

]

Lemma 13 (Unhandled shifty operators).
IFA|T |XFe:tT/pthen [e] < size(p).
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Proof. By induction on a derivationof A [T | ZFe: T/p.

Case VAR:
Straightforward.

Case ABS, ArP, GEN and INST:
The result follows directly from I.H.

Case ABS:

AZtrm:=T AT, x:1 |ZFe:m/p
A|T|ZFAxe:1 =) 2/t

[ABS]

By the definition of |- |, we get [Ax.e] = 0 = size(t).
Thus, we get | Ax.e] < size(1).

Case APP:

AT |XFei:m —pT/p AT |ZFe:n/p
AT |X2Feiea:7/p

[APP]

By L.H, we get (1) |e1 ] < size(p) and (2) |e2] < size(p).

We proceed by case analysis on the e;.

SubCase ¢; is value:
Let us definee; = vy and F = v; [].

Then, we get v1 e; = Flep).
By the definition of a |- |, we get (3) |v1 e2| = | Fle2]| = |e2].
Thus, we get |v1 e2| < size(p) by (2) and (3).

SubCase ¢; is not value:
We get e; e; = Fleq], where F = || es.
By the definition of a |- |, we get (4) |e1 e2| = | Fle1]| = |e1].
Thus, we get |e1 e2| < size(p) by (1) and (4).

Case GEN:

Aazx|T|Zke:t/1L
AT |XZFe:Vaxt/L

[GEN]

By L.H, we get |e| < size(1) (= 0).
Thus, we get |e| < size(1).

Case SUB:
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A|Z|—T1<ZT2 A’Z"p1<2p2 A|r|2|—621’1/p1

SuB

AT |EFe:1/p2 [Sus]

By L.H, we get |e| < size(p1).

By the definition of size(-), we get size(p1) < size(pz).

Thus, we get |e| < size(pz).

Case SHIFT(:
A|ZFC:L AN |ZFp <p A|ZFET:T
AN | Tk:7 =, t|ZFe:t/p A|ZF (T, AN.T/0) 0" R
| 7| pPoAER G P PR )

AT | ZF shifty(l) k.e:T'/(FyA.T/p) P

By the definition of |- |, we get |shifty(¢) k.e| = 1.
By the definition of size(-), we get size((3; A". t/p) - p') = 1+ size(p’) > 1. Thus,
we get |shifty(¢) k. e|] <size((3,A.T/p)-p').

Case DOLLAR:
AT |ZFe:T/(FAN.T/p)-5(p)

AlZFE6=A AT, x:7|ZFe:0(1)/d(p)
A|T|ZF (e|x.e):6(1)/6(p)

[DOLLAR]

By the definition of |- |, we get | (e | x.e:);| = 0.
By the definition of size(-), we get size(d(p)) > 0.
Thus, we get | (e | x. e,);] < size(d(p)).

Lemma 14 (Shifty operator performs an effect).
IfA|T | ZF shiftg() k.e: t/pthenp = (3, A. T /p")-p".

Proof. By induction on a derivation of A | T | X I shifty(¢) k.e : T/p.
Case VAR, ABS, APP and DOLLAR:

These cases cannot actually arise, because the forms of a conclusion aren’t a shift
expression.

Case GEN:
This case cannot actually arise, because the effect row of a conclusion have to be
non-empty row by Lemma 13.

Case Inst:

A|lZko:x A|T | ZF shifty(d) k.e:Va::x.7/p

AT | ZF shiftg(d) k.e:t{c/a}/p [INST]
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By LH, we getp = (3, A". 7'/p’) - p".

Case SUB:

A|Z|—T1<ZT2 A|Z|‘p1<:p2 A]F\Zl—shifto(@k.e:ﬁ/m

SuB
A|F|Z|—sh1ft0<€) k.e:Tz/pz [ ]
By LH, we getp; = (3, A'. 7'/p') - p”.
Thus, we get po = (3, A'. T'/p’) - p§ by Lemma 5 and the premise.
Case SHIFT(:
Straightforward.
O

Lemma 15 (Inversion lemma: shifty operator).
IfA|T | XF shifty(¢) k.e: 0/€ - p then there exists 71, T2, T3, p1, and p; such that

* AN |Tk:ti =y m|ZFe:1/p2

AN | ZFpy <:py

AlXFr =T

A | P (E]p A/.Tz/pl) cp2 R

A|Z|‘(EI(A,.T2/p1)'p2 <i€-p

A|Z|—T2W*T3

AlEFm <o
Proof. By induction on a derivation of A | T | X I~ shifty(¢) k.e: o /e - p.

Case VAR, APP, ABS and RESET:
These cases cannot actually arise, because the forms of a conclusion aren’t a shift
expression.

Case GEN:
This case cannot actually arise, because the effect row of a conclusion is an empty
row by Lemma 13.

Case SHIFT:
Straightforward.

Case INST:

A|Zkop:x A|T | Xt shiftg(l) k.e:Va::x.01/€-p
A|T | ZF shiftg() k.e: oq{oop/a}/e-p

[INST]
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By LH,weget(1)AA [ T)k:m —p, 2 | ZFe:1/p2, 2) AN | ZF p2 <:p1,(3)
A ’ Y+ T T, (4) A ’ >+ (Hg A/.Tz/pl) -p2 o R, (5) A ‘ - (35 A/.Tz/pl) 'PZ <:
€-p,6)A |21~ 13,and (7) A | X F 13 <: Va i k.07.

By Lemma 5 and (7), we get (8) 3 = Va : k.79 and (9)A, i x | 2 F 19 <: 03.
By IINST, MIINST, (8) and the premise, we get A | X F 7 ~* 1o{00/a}.

By (7) and Lemma 5, we get (9) A, =1k | 2 F 19 <: 07.

By Lemma 3, we get A | £ - 1o{oo/a} <: o1{oo/a}.

Case SUB:
The result follows directly from I.H, STRANS and Lemma 14.

Lemma 16 (Small step preservation).
IfA|T|XFe:t/pande— e thenA|T|ZFe :7/p

Proof. By induction on a derivationof A [T | X+ e: T/p.

Case VAR and SHIFT:
These case cannot actually arise, since we assumed e — ¢’ and there are no reduc-
tion rules for variables and shifts .

Case GEN, INST and SUB:
The result follows directly from L.H.

Case APP:
The forms of e and ¢’ are e = (Ax.e;) v and ¢’ = e;{v/x} respectively, because of
the () relation.

A|T|ZF Axe;: T =, 1/p AT |Z2Fov:T/p

A’r’ZF(AX.El)U;T/p [APP]

By Lemma 12, there exists 73, T2, 01 and A’ such that (1) A,A" [ T,x : 1y | Z Feg :
T/p1, QA | ZFEVA T —p " pand BG) A |19 <: T/ =, 7.

By Lemma 5 and (3), weget (4) o = 7] =y T, O) A [Z - T <7, (6) A | Z
P <:pand (7)A |ZF 1 <:T.

By Lemma 1, (1) and (4), we get 8) A | X 6 :: A" and (9) 6(T1 —p, T2) = T —y
(= 1).

By Lemma 9, (1) and (8), we get (10) A | T, x: 6(m) | 2 Fe1 : d(m)/d(p1)-

By the definition of a substitution, (9) and (10), we get (11) A | I, x : 7{ | 2t ¢1 :
/0.

By SUB, (6) and (7), we get (12) A | T, x : 7{ | Z e : T/p.

By SUB, (5) and the premise, we get (13) A | T |2+ v : 17/p.

By Lemma 10 and (13), we get (14) A | T |2 v : 7] /L

Thus, we get A | T | 2 F eq{v/x} : T/p by Lemma 8, (12) and (14).

Case RESET: By the definition of the reduction rules, there are two subcases.

SubCase ERETURN:
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A|ZE6N

o .
AT |SFo:T/G A w/po) - 500) ° [T | 2 e 6(10)/6(po)

AT |ZF(v|x.e);:6(10)/6(po)

By Lemma 10, we get A |T | X F v :1'/1.
By Lemma 8, weget A | T | X+ e.{v/x} :6(10)/6(po).

SubCase ERESET:

I ¢ [E] ve = Az.(E[z] | x. &)
(E[shifto(l) k. e] | x.e,); — e{vc/x}

[ERESET]

AlZES=AN AT, x:7 | ZFe:6(10)/5(po)
A ‘ r ‘ P E[Shift0<l> k. 8] : T//(Hl A TO/PO) . (5(p0)
A|T |2 F (E[shifto(l) k. e] | x.e;);:5(10)/(p0)

[RESET]

By Lemma 11 and the premise, we get (1) A | T | X F shifty(l) k. e : o/p[ *
(31 A/. TO/PO) . po.

By Lemma 15 and (1), we get 2) A, A" | T,k : 1 =, 7 | Z Fe: 1 /p}, (3)
AN|ZFEp<ip, A2 =T, GA|ZF (I A . 1/p1) p) =R, (6)
A ’ > F (31 A Tl/pl) p/l <: (31 AN To/po) p6 *(5(p0), (7) A ’ P T{ ¥ Tl//
and ) A | ZF 1 <:o.

By Lemma 1 and (7), we get (9) 7{ = VA".15, (10) A | £ + &1 = A” and (11)
Tll, = 51 (Tz).

By (6) and Lemma 6, we get (12) A | EF 1y = pand A | £ - p1 = po.

By (2), (3), (12) and SuB, we get (13) A, A’ | T,k : 1) =, T | Z e : 10/ po.

By Lemma 9, (4) and (13), we get (14) A | T,k : 7] —5(,,) 0(10) | Z e :
6(0)/6(po)-

By VAR, weget (15) A |T,z: 7] | X Fz: /1

By INST, (9), (10) and (11), we get (16) A |T,z: 7{ |2 Fz: 1/ /1

By SUB, (8) and (16), we get 17) A | T,z: 7 | Z F z 1 0/pi* (31 A 19/ po) -
5(po)-

By Lemma 11 and (17), we get (18) A | I,z : ¢ | 2+ E[z] : T//(3; A 0/ p0) -
5(po)-

By RESET and the premises and (18), we get (19) A | T,z : 7 | £ F (E[z] |
X. €r>l : (5(’1’0)/5(()0)

By ABs and (19), we get (20) A | T' [ £+ Az.(E[z] | x. er)1 1 T —>5(00) 0(T0) /1.
Thus, weget A |T' | 2 e{v./x} : 6(10)/6(po) by Lemma 8, (14) and (20).

O
Lemma 17.
IfA|X2Fp<:p and? € [p] then? € [p'].
Proof. Straightforward. O

Lemma 18 (Prompt tags are captured).
IfA|T | X+ E[shifty(¢) k.e]: T/pthenl € [E]or{ € [p]

[RESET]
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Proof. By Lemma 11, there exists o and p’ such that (1) A | T | X F shifty(¢) k.e : o/p" % p,
where [p'] = [E].

By (1) and Lemma 15, we get (2) A | 2 F (3, A'. 19/ p0) - py < 0’ * p.

By (2), ¢ € [(3¢ A 1/po) - py] and Lemma 17, we get £ € [p’ x p].

Thus, we get{ € [p'| = [E]or ¢ € [p]. O

Lemma 19 (Progress with effects).
IfA| Q| X Fe:t/ptheneisvalue J ¢ st. e — ¢, ore = E[shifty(¢) k. eg], where
¢ ¢ [E]

Proof. By induction on a derivationof A | @ | X Fe: T/p.

Case VAR:
This case is impossible because the variable context I is empty.

Case ABS:
Straightforward.

Case APP:

A|®|Z|‘€1:Tl—>p’r/p A|®|Z|—62:T1/p
A|lD|ZFerer:7/p

[ArP]

,where e = ¢ e5.

We proceed by case analysis on the e.
SubCase ¢; — ef:

eo — €

Eleo] = Eley] 0 1)

,where e; = E[eg| and ¢] = Ele[)].
Thus, we get a following derivation by STEP.

eo — €
Eleg] e2 — El[ep] e2

[STEP]

SubCase ¢; = Ey[shifty(¢) k. e], where ¢ & [Ey]:

We get ¢ & [Eg ez ] because of [Egez] = [Ep].

Let us define E as Ej e>.

Thus, we get e = E[shifty () k. eg], where ¢ ¢ [E].
SubCase ¢; = v7:

We also proceed by case analysis on the e;.

SubSubCase ¢; — ¢):

This case is similar to the e; — ¢/ case.

SubSubCase ¢; = Ey[shift({) k. ey, where ¢ & [Ey|:
This case is similar to the e; = Eg[shifty(¢) k. ep].
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SubSubCase ¢; = v5:
As T is an empty context and vy is well-typed, v; is not a variable.
So, vq is a lambda abstraction.
Let us define v; as Ax.e.
We get (Ax.e) vy — e{vy/x} by applying the BETA.
Thus, we get (Ax.e) v, — e{v2/x} by applying the STEP.

Case GEN, INST and SUB:
We can directly get the conclusion by I.H.

Case SHIFT:

AZFHEC:L AN |ZFp <ipp A|ZFET =T
AN k:T =1 |ZFe 1w/ A|ZH (I A . 1/p0) 0 =R

S
A ’ @ ‘ 2 l_ Shift0<£> k e : T//(Elg A/. T/pO) . p/ [ HIFTO]

Let us define E as [].
Thus, we get e = E[shifto(¢) k. eg] , where ¢ ¢ [E].

Case DOLLAR:

A ’ @ | Z|_€1 . T//(Ell A Tl/p1)~5(p1)
AZFEO=AN Alx:T|ZFe:6(m)/é(p1)
AlD|ZF(er|x.e):6(r1)/6(p1)

[DOLLAR]

By LH, e; is a value, e; — ¢} or e; = Eop[shifty(() k. eg], where ¢ & [Ey].

We proceed by case analysis on the e;.

SubCase ¢; = v:
We get (e | x. e;); — e,{v/x} by applying the RETURN.
Thus, we get (eq | x. ¢,); — e,{v/x}
SubCase ¢; — ef:
We directly get (e1 | x. er); — (e1 | x. er); in a similar way to APP.

SubCase ¢; = Ey[shifty(¢) k. ¢y], where ¢ & [Ey]:

SubSubCase ¢ # I:
Let us define E as (Ey | x. ey);.
We get ¢ ¢ [E| because of [E)| = [(Ep | x.¢;);] =1,[Eo]. Thus, we get
e = E[shifty(¢) k. ey], where ¢ & [E].

SubSubCase ¢ = I:
We get (Eo[shifty(l) k. e] | x. e,); — eo{v:/k} by applying the EDOLLAR
and STEP, where v, = Az.(Eo[z] | x. e);.

O]

Theorem 1 (Preservation).
Q@ |ZFe:t/pande — ¢ then?D | D | X e :T/p
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Proof.

eo — €

Eoleo] = Eole] TV

;where e = Egleg] and ¢/ = Ep[ep).

By Lemma 11, we get 19, po and A’ such that A’ | @ | £ F ey : 19/p0 * p, where
po = [Eol.

By Lemma 16, we get A’ | @ | Z ¢}y : T/ po * p-

Thus, we get@ | @ | X ¢’ : T/p by Lemma 11.

Theorem 2 (Progress).
Q| @|XFe:t/itheneisvalueor 3¢ s.t.e — ¢

Proof. By Lemma 19, ¢ is a value, there exists ¢’ such thate — ¢/, ore = Ey[shifty(¢) k. eg],
where ¢ ¢ [Eo].

Case ¢ is value:
Straightforward.

Casee — ¢
Straightforward.

Case e = Eg[shifty(/) k. eg], where ¢ ¢ [Ep]: This case is impossible, so we prove it by

contradiction.
We assume that e = Ey[shifty(¢) k. eg], where ¢ € [E]. By Lemma 18 and @ | @ |
Y Eo[shifty(¢) k. eg] : T/1, we can get following relationships.

e [Eg|orte |t

¢ is not an element of [¢], because of [i] = -. Thus, we can get ¢ € [Ey|. However,
it is a contradiction to an assumption ¢ ¢ [Eg].

O]
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Aleff : Algebraic Effect Handlers with

Static Effect Instances

C.1 Syntax and Semantics

Syntax of Terms:

Expressions e = <+ | do(l) v (do)
handle(/) e with {x,r.e,; x.e,} (handle)

Syntax of Effects:
Effects € = N =D
Evaluation context
E := ---|handle(l) E with {x,r.e,; x.e,}
Count prompts
(O] == @ [Ee|] == [E| [vE] == [E| [handle(l) E with {x,r.e;;x.e;}]

Reduction rules

ER
handle(l) v with {x,r.e;; x.e,} — e,{v/x} [ERETURN]

1 ¢ [E] v, = Az.handle(p) E[z] with {x,r.e; x.e,}
handle(l) E[do(l) v] with {x, r.e,; x.e;} — e{v/x,0./1}

[EHANDLE]

FIGURE C.1: Algebraic effect handlers with effect instances

= I,[E]
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AT|XFe:T/p

AlT|Z2Fv:6(n)/t  A|ZFI= AN AlX+-FAN1y=1E

Do
A|T|E2Fdo(l)v:6(m)/ (T ANty = 1) -1 [Dol
AN|T,x:m,r:Tm—=,%|ZFe:w/p A|XHI:L
AlT|Z2Fe:t/(FANT=D)- AlTx:t|XFe:T
’ ’ e /< 1 1 2) .p ’ X | er 7’/‘0 [HANDLE]
A |T | 2+ handle(l) e with {x,r.e;;x.6,} : T, /p
FIGURE C.2: Typing rules
‘A]Z H T::K‘
AN |Z|heT AN|E|:T A|lZF{:L
; [KLEFF]
A‘Z"HEA.TlﬁTz:ZE
FIGURE C.3: kinding rules
AlZFp=p
AN |ZFT =1 AN IEZFn=1 A|lZHL{:L
[EIEFF]

A ’ PN oy Nt =mn= = A/.Tl/ = TZ/

FIGURE C.4: Equivalence
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C.2 Proof of Soundness
Definition 11 (Prompt extractor).

[F] == - [F[handle(¢) E with {x,r.ey; x.e,}]] == ¢, [E]
[[] == - [+ (TN =) -1] == £ [p]

Definition 12 (Unhandled operations extractor).
|lv] == 0 |Fle]] == le] |do(¢)v] == 1 |handle({)ewith {x,r.ey;x.e}| ==

Lemma 20 (Type variable substitution preserves equivalence).
IfAL,N, M |ZEFTm=nand Ay |ZF 6 A then Ay, Ay | EF (1) = 0(m).

Proof. Straightforward. O

Lemma 21 (Type variable substitution preserves subtyping relation).
If Al,A/,Az ’ Y1 <:mand A ‘ Y 6t A then A1, A ‘ P (S(Tl) < (5(1’2).

Proof. Straightforward. O
Lemma 22 (Inversion lemma: equivalence).

e fA|XFi=pthenp =1

e If A|XF e-p; = py then there exists p5 A | X F po = € - pb.
Proof. Straightforward. O
Lemma 23 (Inversion lemma: subtyping relation).

e If A| X+ VA'.T <: 0 then there exists 7y such that o = VA'.pand A, A" | 2+ T <:
T

e If A| X F €1 p1 <:p then there exist €; and p; such that p = €, - p2, €1 = €, and
A ’ P 01 <: p2.

o If A |+ 1 =, Ty <:o0 then there exists 17, 75 and p, such that o = 7 —,, 13,
A<t ,A|SFp1<iprand A |ZF T2 <: 75

o If A |+ o <: 1§ —, 75 then there exists 7}, 7; and p; such that o = 7/ —,, 13,
ANEFTB<it,A|ZFp1<ippand A |ZF T2 <: 3.

Proof. Straightforward. O

Lemma 24 (Heads of effects are same under subtyping).
IfA ’ I (HgA/.Tl = Tz) o < (HEA/.T:), = T4) -pzthenA ’ Y =1,A ‘ XHED
wand A | X F p1 <: po.

Proof. Straightforward. O

Lemma 25 (Swapping effects preserves equivalence).
IfA|XFpixe-py::Rand [e] € [p1| thenA | ZFe-p1-p2 =R A|EFpy*e-pp =
€-prxprand A | X Fe-p1xpr = p1%€- o

Proof. Proof of this lemma is the same as Lemma 7.
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Lemma 26 (Term substitution lemma).
IfA|T,x:0T | Zke:t/pand A | Ty |2 e :0/tthenA | Ty, T | ZF efe/x}:
T/p.

Proof. We prove the difference cases only from Lemma 8. We remove the SHIFT; and
DOLLAR cases from Lemma 8 and prove DO and HANDLE cases.

Case Do:

A|F1,x:a,F2|Zl—v:c5(T1)/L A|Z|—(SZ:A, A|Z|—E|gA,.T1:>T22:E
AlT,x:0T | ZFdo(l)v:6(w)/(FANn = n)-t

[Do]

By LH, wegetA | Ty, Ty | 2 Fov{e/x}:6(m)/t
Thus, we get A | T'1,T2 | 2+ do(¢) v{e'/x} : 6()/ (3 A1 = ) - 1t by DO.

Case HANDLE:

AN|Tyx:oTy,y: T, =, [ ZFe /0 A|XHI:L
A | I',x:o,1p ’ Z|—€2T/(5|l A/.T1 :>T2)-p A | Fl,x:a,l"z,yzr | Zl—ey:’l}/p
A |Tq,x:0,T2 | 2+ handle(l) e with {x,r.e;;y.e,} : . /p

[HANDLE]

By LH, weget A | I',Tx | ZFe{e/x} /(T ANt = ) -p, AN | T,Iy:
T, =T | Zhe{e/x} :n/pand A | Ty, I,y T | ZFe{e//x} 1 /p.

Thus, we get A | T'1, T, | £ - handle(l) e{¢’/x} with {y,r.e,{e'/x};r.e,{e'/x}} :
T,/p by HANDLE.

O
Lemma 27 (Type variable substitution lemma).
1. IAN, M| EFTtakand Ay | EF 6 Althen A, Ay |2 6(T) ik

2. AN, A | T|She:t/pand Ay | S F 6 Al then A, Ay | 6(T) | S F e
6(t)/4(p)

Proof. We prove the difference cases only from Lemma 9.
1. We remove the KMEFF case from Lemma 9 and prove a KLEFF case.

Case KLEFF:

Al,A/,AQ,AU’ZFTl =T A1,A/,A2,AN’Z|—T22:T Al,A/,A2’Z|_€::L
Al,A,,Az | P Hg A,/.Tl =17t E

[KIEFF]
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By I.H, we get Al,Az,AN | P 5("[1) b T, Al,Az,AN | 2k 5("[2) o T, and
A, Ay | ZF6(0) L.
Thus, we get Ay, Ay | Z F 350 A”.6(T1) = () = E by KIEFF.

2. We remove the SHIFTg and DOLLAR cases from Lemma 9 and prove DO and HAN-
DLE cases.

Case Do:
Al,AI,Az | P (50 o A//

A1,A/,A2 ‘ T ‘ Yo 50(’[1)/[ Al,A,,Az ’ P 35 A//.Tl =T E
Al,A/,Az ‘ r | P d0<€> 0: (So(Tz)/(Hg A”.Tl = Tz) <l

[DO]

First, we prove (1) A1, Ay | ZF 606y A”.
By the definition of a substitution composition, we get dom(é 0 dy) = dom(dp) =
dom(A").
We get A, Ay | £ F (60dp)(a) =2 A”(a) for any & € dom(A”), because of
A, DNy | ZF6(B) = AY(B) for any B € dom(A).
Second, we prove (2) (d 0 &) (d(a)) = 6(dp () for any a.
We proceed by case analysis on the «.
Let us define A" = aq Ky, -+ & K, -+ 0 Ky, A = By kp, - B
Koo Buiky, b0 ={on/ay,- - ,0/a,- - ,00/ay}and b = {o7/B1,- -, /B, - ,0,/Bn}
Casea € A': (600))(6(a)) = (60y)(a) =6(0) =(dp(a)).
Case € A" (i = B): (6060)(8()) = (6060)(¢”) = 3(0”) = o = 8(B) =
(60(B))-
Otherwise: (80p)(d(a)) =a = (dp(a)).
By LH, we get (3) A1, A2 | 6(T) |2 v :6(do(Ta))/t.
By (2) and (3), we get (4) A1, A2 | 6(T) | Z v :(6000)(6((mm)) /1
By Lemma 27, we get (5) A1, Az | £ = 35 A".6(T1) = 6(T2) = E.
Thus, we get A1, Ay | 6(T) | Z F do(f) v:6(do(12))/6(3¢ A1 = ) -1 by
(1), (2), (4), (5) and Do.
Case HANDLE:

AN, M | T ZFe:t/(FAN m=n)p AANM|Tx:T|ZFe:T/p
A1,A/,A2,A// | F,x tN,r T —>p Tr | hH I—eh : Tr/p Al,A/,Az ’ I L
A, N, Ay | T |+ handle(l) e with {x,r.ej; x.e,} : T /p

[HANDLE]

By LH, we get (1) A1, Ar ’ 5(F) | Y Fe: 5(T)/5((E|1 A,/.Tl = Tz) p), (2)
M, By, A [ 6(T),x 2 0(mr),r 2 0(T2) —sp) O(T) | 2 e i 0(T)/0(p), (3)
A, D | 6(T),x:0(T) |2k e :0(t)/(p), and (4) Ay, Ay | ZF6(1) == L.
Thus, we get A1, Ay | 6(T) | £ + handle(l) e with {x,r.0(e,); x.0(e,)} :
5(t)/6(p) by (1), (2), (3), (4) and HANDLE.

Lemma 28 (Value is pure).
AT |X2Fov:7/pthenA|T|XF0v:T/0
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Proof. We prove the difference cases only from Lemma 10. We remove the SHIFT) and
DOLLAR cases from Lemma 10 and prove DO and HANDLE cases.

Case DO and HANDLE:
This case is impossible because a form of the conclusion is not a value.

Lemma 29 (Compose/Decompose an evaluation context).
IfA|T | X+ Ele] : T/p then there exists 0, p’ such that

e AT |ZFe:o/p xp
* [E]=Tp"]
e IfA|T|ZFe:0/p xpthenA|T | X+ E[e]:1/p

Proof. We prove the difference cases only from Lemma 11. We remove the SHIFT; and
DOLLAR cases from Lemma 11 and prove DO and HANDLE cases.

Case E # []:

Case Do:
This case is impossible because the form of a conclusion is E = [|.

Case HANDLE:

AN|T,x:1,r:T =T | ZFe:T/p A|lXFI:L
A|T|ZFEe]:t/(FAMN0=n)p AlT,x:T|ZFe:7/p
A |T | 2+ handle(l) Egle] with {x,r.e;;x.e,} : T /p

[HANDLE]

ByLH,weget()A |T |ZkFe:0/p' % (3 A1 = 1) -p,(2) [Eo] = [p'] and
B)A|T |ZFEple']:t/pforany A | T |2k :0/p' (3 A1 = 1) - p.
By the definition of [-], we get [E| = [handle(l) Ey with {x,r.ej; x.e,}| =
L[Eol =[p' % (T A1 = 1) - 1].

We get A | T | X - handle(l) Ey[¢'] with {x,r.e;;x.e,} : T./p by the premise,
HANDLE and (3), forany A |T |2 k¢ :0/p' x (3 A1 = 1) - p.

O

Lemma 30 (Inversion lemma: lambda abstraction).
IfA|T |2 F Ax.e: o/p then there exists 71, T, p1 and A’ such that A, A" |T,x: 1y | X+
e:n/p, A|ZEVA T =, " Tand A | 2T <7

Proof. We prove the difference cases only from Lemma 12. We remove the SHIFT) and
DOLLAR cases from Lemma 12 and prove DO and HANDLE cases. Both of them cannot
actually arise, because the form of a conclusion aren’t lambda abstraction. ]

Lemma 31 (Unhandled shifty operators).
IfFA|T |XFe:t/pthen |e]| < size(p).

Proof. We prove the difference cases only from Lemma 13. We remove the SHIFT) and
DOLLAR cases from Lemma 8 and prove DO and HANDLE cases.
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Case Do:

AN, 0 | T ZF0:60(T1)/t
Al,AI,Az ‘ P dp A" Al,A/,Ag ’ P E|g A,/.Tl =T E
Al,A/,Az | r | P d0<£> 0: 50(T2)/(E|g A”.Tl = Tz) -l

[Do]

By the definition of |- |, we get [do(¢) v| = 1. By the definition of size(-), we get
size((3y A”.1 = 1) -1) = 1. Thus, we get |e] <size((I, A".11 = 1) - 1).

Case HANDLE:

AN |T,x:1,r:T =T | ZFe:T/p AlXHI:L
AT |ZFe:t/(FMNT=m)p AlT,x:T|ZFe:T/p
A |T | 2 F handle(l) e with {x,r.e;; x.e,} : T./p

[HANDLE]

By the definition of |- |, we get |handle(l) Ey[e] with {x,r.e;; x.e,} | = 0.
By the definition of size(-), we get size(p) > 0.
Thus, we get |handle(l) e with {x, r.e;; x.e, } | < size(p).

Lemma 32 (Operation performs an effect).
EA|T|Z2Fdo(l)v:T/pthenp = (A1 = 1) -p.

Proof. By induction on a derivationof A | T | £ do(p) v: T/p.

Case VAR, ABS, ArPP and HANDLE:
These cases cannot actually arise, because the form of a conclusion aren’t a do-
operation.

Case GEN:
This case cannot actually arise, because the effect row of a conclusion have to be
non-empty row.

Case INST:

AlZFo:x AT |ZFdo(l)v:Va:kT/p
AT |2Fdo(l)v:t{c/a}/p

[INST]

By LH, wegetp = (3, A1 = 1) - 0.

Case SUB:

AT <in AlZFp <ip2 A|T|ZFdo{(l)v:nr/p1
AT |ZFdo{l)v:1/p2

[SUB]
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By LH, we getp; = (3, Atn = 1) - 0.
Thus, we get po = (3, A1 = 1) - p” by Lemma 23 and the premise.

Case Do:
Straightforward.

Lemma 33 (Inversion lemma: do operation).
IfFA|T |2+ do(l) v:T/e-p then there exist 71, o, T, A’ such that

e AIT|X2Fv:d6(m)/t

AZES:N

A|Z|_5|2A/.T1:>T22:E

AlXE () ~* 1"

AT <7

AlZF (TN =mn)1<€-p.
Proof. By induction on a derivationof A | T | X+ do(¢) v: T/€e-p.

Case ABS, HANDLE, VAR and APP:
These cases cannot actually arise, because the form of a conclusion isn’t a do-
operation.

Case GEN:
This case cannot actually arise, because the effect row of a conclusion is an empty
rOW.

Case INST:

A|Zkopik AT |2Fdo(l)v:VakT/e-p
A|T|E2Fdo(l)v:t{op/a}/€e-p

[INST]

By IH, weget 1)) A | T |2 Fov:d6(m)/, QA | 2ZFd=A,3A|XF
AN =>02E @A XEi(n) ~»* 7, 6)A|X2F 1 <:Va k1 and (6)
A|Z|‘(35A,.T1:>T2)~l<2€~p.

By Lemma 23 and (5), we get (7) 7/ =Va s x.pand 8) A, w ik | X F 19 <: T.
By Lemma MIINST, (7), (8) and the premise, we get (9) A | £ F §(12) ~* wo{0o0/a}.
By Lemma 21 and (8), we get (10) A | £ - o{ov/a} <: T{on/a}.

Case Sub:
The result follows direcly from I.H, STRANS and Lemma 32.

Lemma 34 (Small step preservation).
IfA|T|ZFe:t/pande— e thenA|T|ZFe :1/p

Proof. We prove the difference cases only from Lemma 16. We remove the SHIFT) and
DOLLAR cases from Lemma 8 and prove DO and HANDLE cases.
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Case DoO:
This case cannot actually arise, since there are no reduction rules for an operation.

Case HANDLE:
We proceed by case analysis on a reduction rule.

SubCase ERETURN:

AT |Z2Fov:t/(3 AN T=mn)p AlXHI1:L
AN |T,x:1,r:T =T | ZFe:T/p AT, x:7|ZFe:T/p
A |T | £+ handle(l) v with {x,r.e;;x.e,} : T, /p

[HANDLE]

By Lemma 28, we get A | T | £ v : 7/1. By th premise and Lemma 26, we
getA|T|ZFe{v/x}:w/p.

SubCase EHANDLE:

1 ¢ [E] v, = Az.handle(l) E[z] with {x,r.e;; x.e;}

EHANDLE

handle(!) E[do(l) v] with {x,r.e;; x.e,} — e {v/x,v:/1} [ ]
A|T|ZFE[do(l)v]:7/(FpNi= 1) p A|ZHI:L

AN T,x:1,r:T =T | ZFe:T/p AlT,x:7|ZFe:7/p

H
A |T | 2+ handle(l) E[do(l) v] with {x,r.e;;x.e,} : T /p [HANDLE]

By Lemma 29, we get (1) A |2 F do{l) v:c/p' (3 A1 = 1) -p, and (2)
[E1=Tp"l.

By Lemma 33 and (1), weget Q) A | T | ZFv:6(1)/t, @) A|T |ZF = A,
G)A|SFINT =T E 6)A|SF6(T) w7, (7)A| L+ 1" <: ¢ and
BA|ZF (FANY=1) 1< (AN =mn)p*p

By Lemma 1 and (6), we get (9) 6(12) = VA" .19, (10) A | 2 F &1 :: A” and (11)

" = 51(1’0).

By (8) and Lemma 5, we get (12) A, A’ |Z - =t and 13) A A | ZF 1 =
7.

By VAR and SUB, we get (14) A | T,z : d(2) | 2 z: 6(m)/p' (T Ay =
T) - p.

By INST, (9), (10), (11) and (14), we get (15) A | T,z : 6(m) | Z F z: 77 /p %
(31 A/.Tl = T2) - P.

By SUB, (7) and (15), we get (16) A | I,z : 6(m) | 2k z:0/p' % (3 Ay =
Tz) * P.

By Lemma 29 and (16), we get 17) A | T,z : () | 2 F E[z] : t/(3, A v =
Tz) * P.

By Weakening, the premises and (17), we get (18) A, A’ | T,z : (@), x : .y, 7 :
T =T |Zhe:n/pand (19)A | T,z:6(n),x:T|ZFe T /p.

By HANDLE, (17), (18), (19) and the premise, we get (20) A | T,z : (1) | Z
handle(l) E[z] with {x,r.e;;x.e,} : T, /p.
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By ABs and (20), we get (21) A | T | £ F Az.handle(l) E[z] with {x, r.e;; x.e,;} :
(1) —p T /L.

By Lemma 27, (4), the premise and (21), we get (22) A | I',x : é(1y),r :
d(m) =T | ZFe:T/p.

Thus, we get A | I,x : 6(11),7 : 6(©2) —=p T | Z & ep{v/x,0./7} : T/p by
Lemma 26, (3), (21) and (22).

O

Lemma 35.
IfA|ZFp<:p'and ? € [p] then pl € [p'].
Proof. Straightforward. O
Lemma 36 (Effect instances are captured).
IfA|T|XF E[do(f)v]:t/pthenl € [E|orl € [p].
Proof. By Lemma 29, we get (1) A | T | £+ do(p) v : o /p’ * p, where [p’] = [E].

By (1) and Lemma 33, we get Q) A | ZF (A = 1) -1 <:p' - p.

By (2),p € [(3 A1 = 1) - 1] and Lemma 35, we get 3) p € [p" - p].

Thus, we get £ € [p’] or ¢ € [p]. O

Lemma 37 (Progress with effects).
IfA|@|ZFe:t/ptheneisvalue, J¢' s.t.e — ¢, ore = E[do({) v], where { ¢ [E]

Proof. We prove the difference cases only from Lemma 19. We remove the SHIFT; and
DOLLAR cases from Lemma 19 and prove DO and HANDLE cases.

Case Do:

A|F|Z|_U:50(T1)/l A‘Z"(SQZ:A" A|Z|—3gAN.T1:>T2:IE[DO]

A | I | P d0<€> 0 (50(T2)/(E|g A”.Tl = Tz) -l

Let us define E as [].

Thus, we get e = E[do(¢) v], where ¢ & [E].
Case HANDLE:

AT |Z2Fe:t/(INTm=mn)p AlXEI:L
AN | T,x:m,r:m—=,T | ZFe,: 7/ AlT,x:t|XZFe 7/
| 1 2 —7p r| heT/pP | | re /P [HANDLE]

A | T | 2+ handle(l) e; with {x,r.ej;x.e,} : T /p

By LH, we get (1) e; is a value, (2) ey — €}, or (3) e; = Ep[do(¢) v], where ¢ & [Ey].

We proceed by case analysis on e;.

SubCase ¢; = v:
We get handle(/) v with {x,r.e,; x.e,} — e,{v/x} by ERETURN.
Thus, we get handle(l) v with {x,r.e,; x.e,} — e,{v/x}.
SubCase ¢; — ¢f:
We get handle(l) e; with {x,r.¢;; x.e,} — handle(l) ¢ with {x,r.e;; x.e,} in
a similar way to APP.
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SubCase ¢; = Eg[do(p) v]|, where ¢ & [Ey]:

SubSubCase ¢ # I:
Let us define E as handle(l) Ey with {x,r.e;; x.e, }.
We get ¢ ¢ [E] because of [E|] = [handle(l) Ey with {x,r.e;;x.e,}] =

¢, [Eo].
Thus, we gete = E[do(l) v], where ¢ ¢ [E].
SubSubCase ¢ = I:
We get handle(l) Eo[do(l) v] with {x,r.e;;x.e,} — ey{v./r}{v/x} by
EHANDLE, where v, = Az.handle(l) Ey[z| with {x,r.e;; x.e,}.

O]

Theorem 3 (Preservation).
fD|Q|ZFe:t/pande — € then® | @ | L€ :T/p

Proof. We can prove this lemma by a similar way to Lemma 1 using Lemma 29 and
Lemma 34 instead of Lemma 11 and Lemma 16. O

Theorem 4 (Progress).
fD|D|XFe:1/ptheneisvalueor 3¢ s.t.e — ¢

Proof. We prove the difference cases only from Lemma 1. We remove the "e = Ey[shifty(¢) k. eg],
where ¢ & [Eg]" case from Lemma 1 and prove "e = Ey[shifty(¢) k. eg], where ¢ & [Eg]"
case.

Case ¢ = Eg[do(¢) v], where ¢ & [Ep]:
This case is impossible, so we prove it by contradiction.
We assume that e = Eg[do(¢) v], where ¢ & [Ey].
By Lemma 36 and @ | @ | £ - Ep[do(¢) v] : T/1, we can get following relation-
ships.
¢ € [Ep]orl e [1]
¢ is not an element of [:], because of [/] = -.
Thus, we can get £ € [E].

However, it is a contradiction to an assumption ¢ ¢ [Ey]|.






Appendix D

Macro Translations Between Aéel
and /\leff

D.1 Macro Translation from A} ; to AL,

[+ - x

[Ax.e] P! = Ax.[e]™!

e " = A

[shifty(¢) k. e]™ = do(¢) (Ak.[e]™)

[{e]| x.e)]"" = handle(l) [e]*! with {x,r.x r; x.[e,]*"}

FIGURE D.1: Macro translation of terms

[a]"! _ N

[t =, TP _ [e]™ S [<]"!

Va :: k. 7] = Vo o [T

[e - o1 = [eI™ - [e]"

[B3eN.T/p]™ = Fpa: T(VA (& = ppm []®h) — o™ [7]™Y) = a

FIGURE D.2: Macro translation of types

[2]™ - @
[T, x : 7)™ = [TT%L, x : [7]®!

FIGURE D.3: Macro translation of contexts

79
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[{/a}1™ = {[x]™"/a}

FIGURE D.4: Macro translation of substitutions

" = O

[E ™ = EME”

[o E” = EMET

[(E | x. e, ) ]™" = handle(l) [E]* with {x,r.x 7;x.[e,]*"}

FIGURE D.5: Macro translation of evaluation contexts

————— [MSREFL] _&1—¢€ [MSRED] - — e ep—e
e—e €1 _>*32 e1 —>*€3

[MSTRANS]

FIGURE D.6: Multi-step reductions

e1 — e ey =" e3
e1 —— e3

[S-MSRED]

FIGURE D.7: Strict multi-step reductions
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D.2 Proof of Meaning and Typability Preservation Properties

Lemma 38 (Translation preserves equivalence).
IfA|ZFT=17thenA|XF [7] = [7']*L

Proof. By induction on a derivationof A | X F 7= 7.
Case EREFL:

A|ZI—U K

EREFL
AlSko oL ]

By Lemma 40, we get A | = + [o]* i «
Thus, we get A | Z F [o]*! = [¢o]*L.

Case EARROW, EGEN, ETRANS:
The result follows directly from I.H.

Case EROW:

AlZFp1r=p2 AlXFeE
AlXFe-p1=€-p

[EROW]

By LH, we get (1) A | Z F [o1]* = [[pz]]l’I
By Lemma 40, we get (2) A | = + [e]*! =
Thus, we get A | Z F [e - p1]*! = [e - pz]]PI.

Case ESWAP:
AlXFp = AlXFe = E AlXFe E
| ZFpi=p |Zhe |ZFe [e1] # [e2] (ESWAP]
AlZFer-e-pr=€-€-02
By L.H, we get (1) A | Z  [o1]** = [o2] %
By Lemma 40, we get (2) A | 2+ [e1]®1 : Eand 3) A | £ F [e]*! =:
By the definition of a [-]*!, we get (4) [[e1]*!] # [[e2]*"].
Thus, we get A | Z F [e1 - €2 - p1]F! = [e2 - €1 - p2]*! by ESWAP.
Case EMEFF:
AN |ZFET =1 AN |ZF=1)
; — —— [EMEFF]
AlZEFINT=>n=34A0AN1Hg=>T1
O

Lemma 39 (Translation preserves subtyping relations).
IfA|ZFT<:7 thenA | X [t] <: [T]PL
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Proof. By induction on a derivationof A | £ 7 <: 7'.
Case SREFL:

A’ZF(TlE(TQ
Ao <o

[SREFL]

By Lemma 38, we get A | & + [o7]*! = [o2] P
Thus, we get A | £ + [o1]*! <: [02]*! by SREFL.

Case SARROW, SGEN and STRANS:
The result follows directly from L.H.

Case SEMPTY:

AlZFp=R
AlZFi<:ip

[SEMPTY]

By Lemma 40, we get A |  + [p]*! :: R.
By the definition of a [-]*!, we get [(J*! = ..
Thus, we get A | Z F [(J* <: [o]*! by SEMPTY.

Case SRow:

AlZFp1 <ip2 A|XFeE
AlZFe-p1<i€e-p2

[SROW]

By LH, we get A | Z F [o1]* <: [o2] PL.
By Lemma 40, we get A | © + [e]*! :: E.
Thus, we get A | Z F [e - p1]*! <: [e - p2]*! by SROw.

Lemma 40 (Translation preserves kindings).
IfA|ZFT:xthenA | ZH [t]PL:x.

Proof. By induction of a derivationof A | X - 7 :: k.
Case KVAR:

aKeEAN

——————[KVAR
A|Z|—oc::1<[ ]

By the definition of [-]¥!, we get [a]*! = a.
Thus, we get A | Z F [a]?L :: «.

Case KARROW:
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At T AlZFp:R A|ZFn:T
[KARROW]
A’Zl—Tl—>pT22:T
By LH,wegetA | S+ [t = T,A|ZF [p]! :Rand A |+ []! = T.
Thus, we get A | Z F [11 =, ©]*' = T by KARROW.
Case KGEN:
Aazx|ZFTaT
KGEN
AlZFVauxt:T [KGEN]
By LH,wegetA,a x| ZF [P T.
Thus, we get A | Z F V[a :: x.7]F' :: T by KGEN.
Case KEMPTY:
Straightforward.
Case KRow:
AlXFeE AlXFp:=R
[KROW]
AlXFe-p=R
By LH,weget ) A |ZF [e]P' = EQ)A | ZF [p]*' = R.
Thus, we get A | £+ [e - p]*! :: R.
Case KMEFF:
Straightforward.
O

Lemma 41 (Translation preserves well-formedness of substitutions).
IfA|ZF 6 A thenA|ZF [5]! A

Proof.

Let us define 6 = {o1/aq, -+ ,00/an} and A" = 07 =2 K1,...,04 it ky. By the definition

of A | 2 F ¢ A, wegetdom(d) = dom(A') = ay,..., 0. A | 2 F ()

i A(wg),

for any a; € dom(6), (i.e, A |  F o; :: k;, for any 7). By the definition of [-]*!, we get
[61°Y = {[on]® /a1, - -, [ou]®*/ay}. Then, we get dom([5]*!) = ay,..., 2y = A'. By
Lemma 40, we get A | £  [o;]*! :: x;, for any i (i.e., A | = F [6(a;)]®! 2 A'(a;), for any

a; € dom(A’)). Thus, we get A | Z F [5]F1 :: A

Lemma 42 (Translation of types is commutative).
[6(0)]%t = [6]PX([]*Y), for any type T.

Proof. By induction on the structure of 7.
Let us define 6 = {07 /a1, -+ , 00/ ttn }.

Case T = a:  We proceed by case analysis on a «.

SubCase & (= &;) € dom(8): [6]"'([a;]™") = [6]""(w;) = [oi]™" = [o(ai)]™"-

O]
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SubCase a & dom(5): [5]P1([«]®T) = [6]% (a) = & = [a]PF = [6(a)]PL.

Case otherwise:
The result follows directly from I.H.

Theorem 5 (Translation preserves typability).
IfA|T|ZFe:t/pthenA | [T ZF [e]®: []®1/[o]*".

Proof. By induction on a derivationof A [T | X Fe: 7/p.

Case VAR:

x:tel
VAR
A|F|Z|—x:7/t[ ]

By the definition of [-]*!, we get x : [t]*! € [[]PL. Thus, we get A | [T]*! | ZF x:
[[T]]PI/[[I]]PI'

Case ABS, Arp, GEN:
The result follows directly from I.H.

Case INST:

AlZFo:x AT |X2Fe:Vazxkt/p
AT |X2Fe:t{c/a}/p

[INST]

By Lemma 40, we get A | & - [o]P! :: «

By LH, we get A | [T]?! | =+ [e]®L: Va :: «.[]PL/[o] PL.

By INST, we get A | [T]PY | =+ [e] ! : [<]*{[o]®"/a}/ [p]*

Thus, we get A | [T]®Y | Z F [e]™ : [t{c/a}]?'/[0]*! by Lemma 42.

Case SUB:

Al <mn AlZFp <:p2 AT |ZFe:n/p1

AT |E2Fe:m/p2 [Sus]

By LH, we get A | [T]®' | = + [e]® : [m ]2/ [o1]™"
By Lemma 39, we get A | = F [1]*! <: []® and A | Z F [o1]*T <: [o2] PL.
Thus, we get A | [T]?Y | Z F [e]™ : [w]®'/ [e2] *X

Case SHIFT(:

AZHC=L AN |ZFp <p AT
AN |Tk:T =,t|ZFe:T/p AlZE (3, A.t/p)-p =R
AT |ZFshift() k.e: 7 /(3. A-7/p) - ¢

[SHIFT)]



D.2. Proof of Meaning and Typability Preservation Properties 85

By LH, we get (1) A, A" | [T]* k= [/ —, T]PV [+ [e]': [7]*1/[o']PL

By Lemma 39, we get (2) A, A’ | Z F [o']*! <: [p]*.

By Lemma 40, weget 3) A | 2+ [t/ :: Tand (@) A | ZF [(3, A" T/p) - p']*" = R
By the definition of [-]*, we get (5) [(3; A". T/p)["" = 3y a = T.(VA (¢ —m
[<]®Y) =[] [7]®Y) = a and (6) [shifty(¢) k. e]?! = do(¢) (Ak.[e]h).

By SuB, (1) and (2), we get (7) A, A" | [T]* k= [/ —, T]PV [ =+ [e]' : [7]*'/ [o] "N
By ABs and (7), we get (8) A, A | [T]*' | £+ Ak.[e]™ : [t —, 7] =[] [<]®Y/ .
By GEN and (8), we get (9) A | [T]™" | = = Ak.[e]™ : VA'.[T" = T]*F — e [T]™" /1.
Let us define § = {[t']*'/a}.

By (3), we get (10) A | 2+ 6 = (a :: T). By (5) and (10), we get (11) 6(VA".(a —> e
[TI™Y) = e [T17Y) = VAT —=p T]F = e [T]™

By (9), (11) and (10) and DO, we get (12) A | [T | Z F do(¢) Ak.[e]?': [T']FY /T ::
T.(VA'.(a =y [T]) = pe [T]7) = .

Thus, we get A | [[]*" | Z F do(¢) Ak.[e]™ : [T']"/(Fp a == T.(VA (& —pm
[I*Y) =g [T]™") = &) - [0]*! by SuB, (11) and (12).

Case DOLLAR:
AlZES N

AlT|EZFe:T/(FAN.t/p)-5(p) A|Lx:7T|Zke:5(T)/d(p)
AT |ZF (e|x.e):6(1)/(p)

[DOLLAR]

By LH, we get (1) A | [T]*" | £ = [e]™ : [ZIY/[(3, A" ©/p) - 6(p)]*! and (2)
AT [T 2 e [6(0)]F/ 16 (o).
By Lemma 41, we get (3) A | & F [6]F! = A
By the definition of [-]*, we get (4) [(3; A" 7/p)["" = 3y a =2 T(VA (& = e
] =[] [7]*!) = «.
By VAR and SUB, we get (5) A, & :: T, A" | [T]"), x = (& —pper [T]™1) = ppper [T]7 7
14 —>|Ip]]PI [[T]]PI ‘ YFEx: (OC —)[[p]]PI [[T]]PI) _>[[P]]PI [[T]]PI/[[p]]PI.
By Lemma 27, Lemma 42, (3) and (5), we get (6) A, a :: T | [$(D)]PL, x @ (« —[5(0)]™"
[[(5('[)]]“) _>[[5(P)HPI [[5(1’)]]1)1,7’ )4 _>ﬂ5(P)]]PI |I5(T)]]PI ’ Y Fx: (DC _>ﬂ5(P)]]PI H5(T)]]PI) _>[[5(P)]]PI
[6()I"/ [5(0)I™"
Moreover, we get (7) A,a = T | [6(D)]",x : (& = DO =
[[(S(T)]]PI,V X —>[5(p)HPI [[(S(T)]]PI | XhEr:ia —)[[5(‘0)]]1’1 [[(S(T)]]PI/[[(S(p)HPI
By APP, (6) and (7), we get (8) A, :: T | [§(T)]*L, x : (« = [5(0)]"" [6(0)]*Y) = [5(0)]""
[6(0)]Lr: a — [5(p)]™ [S(OIF |2 F xr: [6(T)]®/[6(p)]PL
Thus, we get A | [T]*! | Z - handle(l) [e]** with {x, r.x r; x.[e,]?'} : [6(T)]®'/[6(p)]*"
by HANDLE, (1), (2) and (8).

O

Lemma 43 (Translated value is also a value).
If v is a value then [v]*! is also a value.
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Proof. Straightforward by the definition of [-]F™. O

Lemma 44 (Translation of expressions is commutative).
[e{v/x}]P' = [e]*{[0]*?/x}, for any expression e.

Proof. By induction on structure of e.

Case ¢ = y: We proceed by case analysis on y.
SubCase x = y: [x]P{[0]*'/x} = x{[0]*/x} = [0]*! = [x{v/x}]*L
SubCase x # y: [y["{[o]"'/x} = y{[o]"'/x} =y = [y{v/x}]"".

Casee = Ay.ep and e = ¢; ey:
The result follows directly from L.H.

Case ¢ = shifty(¢) k. ep:
By the definition of [-]*! and {v/x},
we get [(shifty(¢) k. eo) {v/x}]! = [shifto(¢) k.eo{v/x}]*' = do(p) (Ak.[eo{v/x}]PL.

By LH, we get do(¢) (Ak.[eo{v/x}]*' = do(¢) (Ak.[eo] P [{v/x}]t

By the definition of [-]*T and {v/x},

we get [(shifty(¢) k. eo) [P [{v/x}]®! = [shifty () k. eo] P [{v/x}]*! = do(¥¢) (Ak.[eo]™H) [{v/x}]* =
do(¢) (Ak.[eo] ™" [{v/x}]™").

Thus, we get [(shifty(¢) k. eg){v/x}]*! = [shifty(£) k. eo] P [{v/x}]*L.

Casee = (eg | x.ep):
Straightforward.

Lemma 45 (Translation of evaluation contexts is commutative).
[E[e]]®* = [E]*'[[e]*Y], for any evaluation context E.

Proof. By induction on structure of E.

Case E = [
Straightforward.

Case E=Eyeand E = v Ej:
The result follow directly from I.H.

Case E = (Eg | x.¢,)p:
[Ele]]” = [{Eole] | x.e)]™
handle(l) [Eq[e]]*! with {x,r.x 7; x.e,} (the definition of [-]*1)
handle(l) [Eo]*[[e]*"] with {x,r.x r;x.e,} (I.H.)
= [(Eo | x.e)]"" (the definition of [-]*7)
= [EI""[[e]™"]

Lemma 46 (Translation preserves a prompt extractor).

If ¢ ¢ [E] then ¢ & [[E]®"].
Proof. Straightforward. by the definition of [-]. O
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Lemma 47 (Multi-step reductions).
If E[e] and e —* ¢’ then E[e] —* E[¢/].

Proof. By indcution on a derivation of ey —* ¢j).

Case MREFL:
Straightforward.

Case MRED:
/
=€ [MRED]
e—*e
By the definition of (—), we get the following derivation:

eo — €

¢ = Eoleo] = Eoel] = LOTET

By STEP, we get E[Egeo]] — E[Eo[e}]].
Thus, we get E[Egeo]] —* E[Eo[e]] by MRED.

Case MTRANS:

e1 —" e e3 =" e3
e1 —* e3

[MTRANS]

By L.H, we get E[e;] —* Elez] and E[ez] —* Eles).
Thus, we get E[e1] —* E[es] by MTRABS.

Lemma 48 (Strict Multi-step reductions).
If Ele;] and e; —7 e3 then Ele;] =™ Ees).

Proof.

e1 — e er =" e3
€1 —>+ e3

[S-MSRED]

By the definition of (e — e), we get

/ /
e, — e
L2 [STEP]

e1 = Eo[ei] — Eo[eé] =€

By STEP, we get E[Eg|e}]] — E[Eo[e5]].
By Lemma 47, we get E[ea] —* Eles].
Thus, we get E[e;] —* E[es] by S-MSRED.

Lemma 49 (Translation preserves reductions).
If e — ¢ then [e]?! — [e']FL.

Proof. Case BETA:

e = (Ax.ep) v—ep{v/x} =e

— [BETA]
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[(Ax.eo) v]*" = (Ax.Jeo] V) o)™ (definition of [-]*)
— [Jeo]"H{[v]*/x} (BETA and Lemma 43)
= [eo{v/x}]"" (Lemma 44)

Thus, we get [e]?T —T [¢/]*L.
Case ERETURN:
[ERETURN]

(v|x.e) — e {v/x}

[(v]x.e)]" = handle(l) [o]* with {x,r.x r;x.[e,]f'} (definition of [-]*!)
= [e ][]/ x} (ERETURN and Lemma 43)
= [e{v/x}™ (Lemma 44)

Thus, we get [e]?T —T [¢/]*L.

Case EDOLLAR:

p & [E] ve = Az.(E[z] | x. er);
(E[shifty(l) k. e] | x. e;); — e{v./k}

[EDOLLAR]

By the definition of [-]*!, we get
(1) [oc]®! = [Az.(E[z] | x. ;);]F* = Az.handle(l) [E[z]]*! with {x,r.x 7; x.[e,]P'}
[(E[shifto(l) k. e] | x. er),]™"

= handle(!) [E[shifty(l) k. eo]]*! with {x,r.x 7; x.[e,]""} (definition of [-]*T)

= handle(!) [E]*"[[shifto(l) k. eo]*"] with {x,r.x 7;x.[e;]*'} (Lemma 45)

= handle(!) [E]*'[do(l) (Ak.[eo]™")] with {x,7.x 7;x.[e,]*'}  (definition of [-]*")

= (x 1) {(Ak.[eo]™") /x} {[vc] P/ 7} (EHANDLE, Lemma 46 and (1))
— ((Ak.Jeol™) ) {[oc]™ /7} (
= ((Ak.Jeol™) [oe]™) (
— [eo] ™ {[ve] ™ /k} (
= [eo{ve/K}"™ (

BETA)
substitution)
BETA)
Lemma 44)

Thus, we get [e]?! —* [¢/]F.

Theorem 6 (Translation preserves meaning).
If e — ¢’ then [e]P' —* [¢']FL.

Proof.

eo — €

e = Eleo) > Elelj =& 7]

/

By Lemma 49, we get [eo]** —T [e]F".

Thus, we get [e]™ = [Efeo]["" = [E["'[[eo]™] —* [E]™[[eo]™"] = [Ellec]™ "1™ = [¢']™
by Lemma 45 and 48. O
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D.3 Macro Translation from Al to AL ;

" =

[Ax.e]® = Ax[e]™

fe ] = [T

[do(¢) v]'® = shifty(l) k. Ak [o]™ (Ax.k x 1)
[handle(l) e with {x,r.e;;x.e.} ] = ([e]T | x. Ab[e,]'); (Ax.Ar.[en]™)

FIGURE D.8: Macro translation of expressions

[ =«
[t = 7]'® = [«]™ =[] [<]™®
[Va = 7] = Va:x[r]"
[e - o] = [el" - [ol™
B dm=0]" = FauT =R (VA [a]® = ([L]F —pa) 2pa) 2pa)/B
FIGURE D.9: Macro translation of types
(@] - @
[T, x: 7]'® = [T, x : [7]™®

FIGURE D.10: Macro translation of contexts

[{T/a}]™ {[z]™"/

FIGURE D.11: Macro translation of substitutions

i - O

[E " = [E "

[o E]” = [l e

[handle(l) E with {x,r.e;;x.e.}]"* = ([E]"™" | x. Ah.[e,]); (Ax.Ar.[e,]™T)

FIGURE D.12: Macro translation of terms



90 Appendix D. Macro Translations Between AL, and AL,

General context C == [O|Ce|eC|Ax.C|(C|x.e); | (e]|x.C); | shifty(¢) k.C

FIGURE D.13: General contexts

e1 — e
Cle1] =i Cleo]

[GSTEP]

FIGURE D.14: General step

— [MSGREFL] €1 —*i €2
e—re o =t e [MSGRED]
e1 —Fe e —Fe
Lhi2 2 %% [MSGTRANS]
€1 —)i e3

FIGURE D.15: Multi-step general reductions

e1 —; e en —>l* e

. 2 [S-MSGRED]
€1 —»; €3

FIGURE D.16: Strict multi-step general reductions
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D.4 Proof of Meaning and Typability Preservation Properties

Lemma 50 (Translation preserves equivalence).
IfA|ZFT=17thenA|XF [7]'F = [7']'.

Proof. Proof of this lemma is the same as Lemma 38.

O
Lemma 51 (Translation preserves subtyping relations).
IfA|ZFT<:7 thenA | X [t]® <: [7']'".
Proof. Proof of this lemma is the same as Lemma 39. O

Lemma 52 (Translation preserves kindings).
IfA|ZFT:xthenA | X [7]™ :: x.

Proof. We prove the difference cases only from Lemma 40. We remove the KMEFF case
from Lemma 40 and prove the KIEFF case.

Case KIEFF:

AN |Z|heT AN|E T AlXHL:L
A|Z|—3gA/.T1:>T222E

[KIEFF]

By LH, we get (1) A, A’ | Z | []™ :: Tand 2) A, A | Z | [w]™ = T.
Thus, we get A | Z + [3, A1 = ] :: E by KIEFF.

O
Lemma 53 (Translation preserves well-formedness of substitutions).
IfA|ZF6: A thenA | X [5]F = AL
Proof. Proof of this lemma is the same as Lemma 41. O
Lemma 54 (Translation of types is commutative).
[6(0)]'? = [8]P ([<]'P), for any type .
Proof. Proof of this lemma is the same as Lemma 42. O

Theorem 7 (Translation preserves typability).
IfA|T|ZFe:t/pthen A | [T | ZF [e]'® : [t]™ /o] ™.

Proof. We prove the difference cases only from Theorem 5. We remove the SHIFT; and
DOLLAR cases from Lemma 5 and prove the DO and HANDLE cases.

Case Do:

AlT|Z2F0v:0(t)/t  A|ZFS= AN AL AN =
AT |ZFdo(l)v:6(r)/ (3 ANm =) 1

E Dol
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By LH, we get (1) A | [T]* | Z F [¢]™ : [6(71)]™® /.

By Lemma 53, we get (2) A | Z - [6]'F - A.

By Lemma 52, we get 3) A | = F [3, A"y = ©]'F :: E.

By the deifnition of [-]'F, we get (4) [3, A'.11 = ] = Fya = T, B R. (VA . [T]™ —,
([]® —p &) =g a) =g a)/Pand (5) [do(¢) v]™F = shifty(¢) k. Ah.h [0]'F (Axkxh).
By VAR, we get (7) A,a = T, = R | [T]®, h: VA [y =, (, —pa) =] [ZF
h: VA/.[[Tl — <T2 —)g Dc) —)g IX]]IP/L

By INST and (2), we get (8) A,a :: T, = R | [T, h : VA .[t1 =, (& —p &) —p
D(]]IP | Xth: [[5]]11’([[1'1 — (Tz —>Ig DC) —>/5 D(]]IP)/L

By Weakening and (1), we get (9) A,a :: T, :: R | [[],h : VA [t1 =, (12 —p
w) =g o] | F [0]™: [6(m)]*F /e

By Lemma 54, APP, (8) and (9), we get (10) A, & :: T, B :: R | [T, h : VA .[r1 —,
(o —pa) =g a]® |2+ k0] : [6]"([(r2 —p &) —=pa]F)/u

By VAR, we get (11) A,a = T, B = R | [T,k : [6]*([w —p (VA1 =, (12 =
D() —>5 04) —>ﬁ D(]]PI),h : VA/.[[Tl — (TZ —>ﬁ D() —>/3 DCHIP,X : |I5(T2)]]PI | Y Fk:
[6]% ([, —=p (VAi =, (2 —p &) —p a)]F)/Band (12) A,a == T,B = R |
[T,k = [O17([m2 —p (VAT > (72 —p @) —p &) —p al™), 2 VA [1 —,
(Tz _>ﬁ (X) —)Ig (X]]IP,X : [[5(1’2)]][)1 | Xk x: [[(S(Tz)ﬂPI/IB.

By APP, (11) and (12), we get (13) A, = T, = R | [IT%,k : [6]" ([ —p
(VA1 =, (1 —p ) =g a) —p a]P), 1 VA [t =, (2 —p &) —p a]F,x:
[6(2)]P | 2k x: [6]PH[(VA .1 =, (12 —p &) —p &) —p a]PT/B.

By Weakening, SUB and (7), we get (14) A,a = T, = R | [T)®, k : [6]°([m —p
((VA/.Tl — (Tz _>ﬁ (X) —>5 (X) _>ﬁ (x]]PI),h : VA/.[[Tl — (Tz —)5 D() —),5 D(]]IP,X :
[6()]P | ZF h:VA [t =, (12 —p &) =5 a]F/B.

By APP, (13) and (14), we get (15) A,w == T, = R | [I]",k : [6]"([ma —p
(VA1 =, (2 —=p ) =g a) —p ™), 1 VA [t =, (2 —p &) —p a]F,x:
[6(2)]? | ZFkxh:a/B.

By ABs and (15), we get (16) A, a :: T, = R | [T,k : [6]P ([ —p ((VA'.T1 —,
(o —p &) =g a) =g a]™),h VA [ =, (0 —pa) =g a]P | ZF Axkxh:
[6(m2)]*" —p o/

By Weakening and (10), we get (17) Ao == T,B == R | [T]%,k : [6]" ([t —p
((VA/.Tl — (Tz —>Ig lx) —>Ig IX) —>/5 DC]]PI),h : VA’.[[Tl — (Tz —>‘3 DC) —>‘3 Dé]]IP | P
h [o]™ : [6]™ ([(72 —p &) —p a]'F) /.

By APP, SUB, (16) and (17), we get (18) A,a =: T, :: R | [I]"™,k : [6]"([r2 —p
(VA1 =, (12 =g a) =g o) =g a]™),h: VA1 =, (n =) =pa]T |ZF
h[0]*® (Axkxh):a/B.

By ABs and (18), we get (19) A, a :: T, == R | [T]™, k : [0]P ([12 —p ((VA'.T1 —,
(1o =g ) =g a) =g a]™) | S AL [0]' (Axkx ) : (VA [ty =, (12 —p &) —p
o)) =g/

By the premise, we get (20) A, A’ |2+ 1o = T.

By Lemma 54, Lemma 52, (2) and (20), we get 21) A | = + [6(w)]'™ = T.

By KRow and (3), we get 22) A |+ [T, Aty = w1 = R.

By SEMPTY, weget (23) A,a = T, =R | X1 <: B.
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Thus, we get A | [T]'® | = F shifty(¢) k. Ab.h [0]' (Axkxh) : [§()]*F/[3, A1 =
] - 1 by SHIFTy, (19), (21), (22), (23).

Case HANDLE:

AN|T,x:m,r:T =, |ZFe:/p A|XZHI:L
AT |ZFe:t/(FpANm=>mn)-p A|Lx:T|[ZFe:1/p
A |T | 2 F handle(l) e with {x,r.e;; x.e,} : T./p

[HANDLE]

By LH, we get (1) A | [T]™ | Z F [e]™ : [t]®/[(3; A 11 = ) - p]'F, (2) A, A |
[T)%, x : [m]™®, 7 : [ = o)™ | F [en]™ : [w]™/[p]™ and 3) A | [I]™, x :
[ 12+ [ : [w]™/[o]™

By the definition of [-]'f, weget 4) [(3;A".11 = ©)]** = Jja = T, B :: R. (VA . [t]™F —,
([]™ —p «) —p «) =g «)/p and (5) [handle(l) e with {x,r.e;;x.e,}]"F =
([e]™® | x. Ah.[e,]*®); (Ax.Ar.Je,]'P).

By ABS and (2), we get (6) A, A’ | [T | = F AxAr[e ] : [w]™ =, ([m —»
7]'7) — o] [o]™ /1.

By GEN and (6), we get (7) A | [I]* | = F AxAr.[e, ] : VA [0]™® —, ([ —
Tr]]IP) —>[[PHIP [[Tr]]IP/l.

Let us define § = {[]™/«, [o]™/B}.

Weget 8 A|ZFd:(a::T, B R).

By the definition of 4, (4) and (7), we get (9) A | [T]"™ | = + [¢]™® : [7]"/(3p a ==
T,ﬁ R ((VA/.[[Tl]]IP — ([[TQHIP —>ﬁ a) —)lg oc) —>Ig /x)/,B) . 5(,3)

By Weakening and (3), we get (10) A | [T, x : [t]™F, h : VA" [6]® —, (([22 =
%]") —[e]™® [T]™® | 2+ [e ™ : [w]™/[e]™.

By ABS, SUB and (10), we get (11) A | [T]™F, x : [7]™® | = F AhJe,]® : (VA" .[6]™F —,
(([22 —=p ©I™) =g [w]™) = gope (] /[0

By the definition of 6 and (11), we get (12) A | [T]™,x : [t]'™* | = F Ah.[e,]™F :
S((VA [t]™ =, ([w]™ —p a) —pa) =g a)/6(B).

By DOLLAR, (8), (9) and (12), we get (13) A | [T]*™f | = + ([e]™® | x. Ah.[e,]™F); :
(S((VA/.[[’Q]]IP — (([[TQHIP —>13 Dc) —>/5 DC) —)g zx)/(S(ﬁ)

Thus, we get A | [T]* | = F ([e]'® | x. Ak.[e,]'); (Ax.Ar.[en]®) : [w]™/[o]'F by

APP, SUB, (7) and (13).
O
Lemma 55 (Translated value is also a value).
If v is a value then [0]'F is also a value.
Proof. Straightforward. by the definition of [-]*". O

Lemma 56 (Translation of expressions is commutative).
le{v/x}]™ = [e]™{[v]'® /x}, for any expression e.

Proof. Proof of this lemma is the same as Lemma 44. O
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Lemma 57 (Translation of evaluation contexts is commutative).
[E[e]]™ = [E]*®[[e]™], for any evaluation context E.

Proof. We prove the difference cases only from Lemma 45. We remove the E = (Ej |
x. ey); case from Lemma 45 and prove the E = handle(l) Ey with {x,r.e; x.e, } case.

Case E = handle(l) Ey with {x,r.e;; x.e; }:

[handle(l) Eole] with {x,r.e;; x.e, ]

= ([Eo[e]]™® | x. Ab.[e,]™); (Ax.Ar.[en]™F) (definition of [-]'F)
— [T ([T )M [e I (AxAr.fer]T) (LH)

— [handle(l) Ey with {x,7.e;; x.e, }]'* [[e]""] (definition of [-]'F)

O
Lemma 58 (Translation preserves a prompt extractor).
If ¢ ¢ [E] then ¢ ¢ [[E]™].
Proof. Straightforward. by the definition of [-]. O

Lemma 59 (Multi-step general reductions).
If e = E[eo] and eg — ¢f, then E[eg] — Elef)].

Proof. We can prove this lemma by the same way to Lemma 47 using GSTEP instead of
STEP. O

Lemma 60 (Strict multi-step general reductions).
If e = E[eo] and ey —; ¢} then E[eg] —; E[e()].

Proof. We can prove this lemma by the same way to Lemma 48 using Lemma 59 and
GSTEP instead of Lemma 47 and STEP. O

Lemma 61 (Translation preserves reductions).
If e — ¢ then [e]*' — [¢']PL.

Proof. We prove the difference cases only from Lemma 49. We remove the ERETURN
and EDOLLAR cases from Lemma 49 and prove the ERETURN and EHANDLE cases.

Case ERETURN:

ERETURN
handle(l) v with {x, r.e;; x.e;} — e,{v/x} [ |

[handle(l) v with {x,7.e;; x.e,}]'

= ([0]" | x. Ah.[e,]'"); (Ax.Ar.[e,]'F) (definition of [-]'F)
— (AR[e ") {[0]™®/x} (Ax.Ar.[ex]™')  (ERETURN and Lemma 55)
— [e, ] {[0]"™ /x} { (Ax.Ar.[e,]®) / 1} (BETA)

= [e]"{[e]"" /x} (
= le;{v/x}]" (

Thus, we get [e]™F —; [¢/]'F.

h is not contained in e,)

definition of [-]'F)



D.4. Proof of Meaning and Typability Preservation Properties 95

Case EHANDLE:

1 ¢ [E] v. = Az.handle(l) E[z] with {x,r.e;; x.e;}
handle(l) E[do(p) v| with {x,r.e,; x.e,} — ey{v/x}{v./r}

[EHANDLE]

Let us define v’ = Ay.([E]*F[y] | x'. Ah.[e,]™F);.

Theorem 8 (Translation preserves meaning).
If e — ¢ then [e]*T —T [']P.

Proof.
We can prove this lemma by the same way to Theorem 6 using Lemma 59, 57 and 60
instead of Lemma 49, 45 and 48. O
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Appendix E

/\é?l : Delimited Control Operators

with Dynamically Generated Prompt
Tags

E.1 Syntax and Semantics

Syntax of Terms:

Expression e BES e
| e[!] (label application)
| (e | x.er)y (labeled dollar)
Value v = e
| An.e (label abstraction)
Syntax of Effects:
Effects € n= N . t/p
Syntax of Labels:
Labels 14 = Iy
Names:

Labels > 1,111,132, . ..



g%ppendix E. )\;'71 : Delimited Control Operators with Dynamically Generated Prompt
Tags

Evaluation Context

E == | E[/]
Count Label
a] == @
[Ee|] == [E]
[vE|] == [E]
B[] w= [E]

Reduction Rules

’Zl— e e —|Z"

L (Age)[f] —e{l/n} 1% [EIAPP]

pisfresh X' =%,1 s=A{l/n}
LE (e]|x.e)y— (d(e) | x.e)y 4%

[EGENLABEL]

FIGURE E.1: Delimited control operators with dynamically generated
prompt tags
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A|T|2Fe:T/p

Ay=L|T|XZke:t/t
A|T|ZFAye:Vy:Lt/t

[LABS]

AT |ZFe:Vy:Lt/t AlZF/{:L
AT |ZFell]:t{l/n}/1

[LAPP]

AlZES N
AnaL|T|ZFe:t/(3,4.7/p)-6(p) A|Lx:7 |Zte :06(1)/6(p)
A|T|ZF (e|x.e)y:0(T)/6(p)

[LDOLLAR]

FIGURE E.2: Typing rules
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E.2 Proof of Soundness

Lemma 62 (Term substitution lemma).
A |T,x:0T | 2Fe:t/pand A | Ty |2 e :0/ithenA | Ty, T | ZF efe//x}:
T/p

Proof. We prove the difference cases only from Lemma 8.

Case LABS and LAPP:
Straightforward.

Case LDOLLAR:
A|ZE6N
ATy, x:0Ty: T | ZFe :6(T)/6(p)
AL Tyx: 0T |Zke:T/(3,A.1/p)-(p)
ATIZF (el y-e)y: 6(0)/5(p)

[LDOLLAR]

By LH, weget (1) A,y :: L | I, I | X ef{e'/x} : T//(3; A 1/p) - 6(p) and
AT, Ty, x:T |2k ede/x}:6(1)/6(p).

Thus, weget A | Ty, T2 | ZF (e|y.er), :0(T)/0(p) by LDOLLAR, (1), (2), and
the premise.

O
Lemma 63 (Type variable substitution lemma).

1 IfAL N, M [ EFTixkand Ay | ZF 6 A then A, Ay | ZF 6(T) i x
2. AN, M |T|ZFe:Tt/pand Ay |26 A then A, Ay |6(T) |2 ke
5(t)/6(p)

Proof.

1. The proof of this lemma is same as Lemma 9
2. We prove the difference cases only from Lemma 9.

Case LABS and LAPP:

Straightforward.
Case LDOLLAR:
Al,A/,Az ’ P (SO o A,
AL, AN, Ny, = L|T | Zke:T'/(3,A.t/p)-d(p)
AN, N | Tox T |2k e :60(T)/0(p)

LDOLLAR
A, N, A [T | Zk(e| x.e)y:00(T)/0(p) [ ]

By the same way of DOLLAR, we get Ay, Ay | 5(T) | X+ (d(e) | x.(er))y :
6(00(7)) /(b0 (p))-

O]

Lemma 64 (Value is pure).
FA|T|XZFov:7/pthenA|T|XF0v:1T/1

Proof. We prove the difference cases only from Lemma 10.
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Case LABS:
Straightforward.

Case LAPP and LDOLLAR:
These cases are impossible because the term of the conclusion is not a value.

O]

Lemma 65 (Compose/Decompose an evaluation context).
IfA|T | X F Ele] : T/p then there exists , p’ such that

e AT |ZFe:a/p *p

* [E]=T1¢]

e IfA|T|ZkFeé:0/p'*xpthenA|T |ZFE[]:T/p

Proof. We prove the difference cases only from Lemma 10.

Case E # []:

SubCase LABS:
This case is impossible because the form of the conclusion is E = [].

SubCase LAPP:
The result follows directly from L.H.

O]

Lemma 66 (Inversion lemma: lambda abstraction).
IfA|T | XF Ax.e: o/p then there exists 71, 7o, p1 and A’ such that A, A" [T,x: 1y | Z F
e: /o, A|LEVA 1 =, o~ Tand A [ ZF T <: 0.

Proof. We prove the difference cases only from Lemma 12.

Case LABS, LAPP, and LDOLLAR:
These case cannot actually arise, because the forms of the conclusion aren’t
lambda abstraction.

O]

Lemma 67 (Unhandled shifty operators).
IfA|T|XFe:t/pthen [e] < size(p).

Proof. We prove the difference cases only from Lemma 13.

Case LABS and LAPP:
The result follows directly from L.H.

Case LDOLLAR:

A|ZE6:N
AnuL|T|Zke:t/(3,4.7/p)-6(p) A|Lx:7 |Zte :0(1)/6(p)

A|T|ZF(e|x.e)y:d(t)/6(p)

[LDOLLAR]
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By the definition of |-|, we get [ (e | x. ¢;);,;| = 0. By the definition of size(-),
we get size(d(p)) > 0. Thus, we get | (e | x. er);] < size(d(p)).

O]

Lemma 68 (Shifty operator performs an effect).
IfA|T|XF shiftg(l) k.e:t/pthenp = (I, A.T/0")-p".

Proof. We prove the difference cases only from Lemma 14.

Case LABS, LAPP, and LDOLLAR:
These cases cannot actually arise, because the forms of the conclusion aren’t
a shift expression.

O]

Lemma 69 (Inversion lemma: shifty operator).
IfA|T | X+ shifty(¢) k.e: o /e p then

* AN |Tk:ti —=p | ZFe:12/p2
AN |ZFEpr <1
A|EZF7T:T
AlXZE (FANw/p1) p2:: R
AlZF (F A w/p1) p2<i€-p
AlLET~"13
AlLFrm<io

Proof. We prove the difference cases only from Lemma 15.

Case LArpr,LABS and LDOLLAR:
These cases cannot actually arise, because the forms of the conclusion aren’t
a shift expression.

O

Lemma 70 (Inversion lemma: label abstraction).
IfA|T|XF Ay.e: o/p then there exists 73, p1, and A’ such that A, A",y =L | T | £+
e:n/L,A|ZEY(A,p L)~ T, and A | ZF T <0

Proof. Straightforward by induction on a derivationof A | T | £ - An.e: 0/p. O

Lemma 71 (Small step preservation).
IfA|T|XFe:7/pand X e e AX thenA|T |2 Fe':1/p

Proof. We prove the difference cases only from Lemma 16.

Case LABS:
These case cannot actually arise, since we assumed X - e — ¢ 4 ¥’ and there
are no reduction rules for label abstractions.

Case LAPP:
Straightforward.



E.2. Proof of Soundness 103

Case LDOLLAR:

AlZES N
AnaL|T|[ZFe:t/(3,A0.1/p)-6(0) A|Lx:7T |Zke :0(1)/0(p)

A|T|ZF (e|x.e)y:d(T)/6(p)

pisfresh X' =%,1 o ={l/n}
LE (e|x.ey—(d(e)|x.e) 4%

[EGENLABEL]

By weakining, we get (1) A | ' F 6 = A, @) A,y =L | T | X F e
/(3,0 .71/p)-6(p),and B)A | T, x: 7' | L ke, :6(1)/d(p).

By Lemma 63, we get (4) A | &' F 6 0d = A, 5)A | T
/(3 A8 (1) /8 (p)) - 0'(6(p)), and (6) A | T,x : &'(7) | &'
d'(6(1))/8'(6(p))-

By 11 & ftv(e,) U ftv(d(T)) U ftv(é(p)), we get (6) &'(e;) = e, (7) 8'(6(T)) =
6(t),and (8) &'(6(p)) = 4(p)-

Thus, we get A | T | X/t (6'(e) | x.er); : 6(T)/6(p) by LDOLLAR.

Lemma 72 (Prompt tags are captured).
IfA|T | X2 F E[shiftg(¢) k.e]: T/pthen? € [E|or{ € [p]

Proof. By Lemma 65, we get (1) A | T | £ I shifty(¢) k.e: 0/p’ * p, where [p'] = [E].
By (1) and Lemma 69, we get (2) A | X F (3, A" 19/ po) - py < o’ * p.

By (2), ¢ € [(3/ A" 1/po) - py| and Lemma 17, we get £ € [p’ x p].

Thus, we get £ € [p'] = [E] or ¢ € [p]. O
Lemma 73 (Progress with effects).

IfA|@|ZFe:T/ptheneisvalue, d¢' st. e — ¢ 4%, ore = E[shifty({) k. ey},
where ¢ ¢ [E]

Proof. We prove the difference cases only from Lemma 19.

Case LABS:
Straightforward.

Case LAPP:
We can directly get the conclusion by I.H.

Case LDOLLAR:

AlXEd6N
AneL|T|[ZFe:t/(3,4.7/p)-6(p) A|Lx:7 |Zke :0(1)/0(p)

AT |XZF (e|x.e)y,:0(T)/6(p)

[LDOLLAR]

[LDOLLAR]
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WegetX b (e| x.e.)y — (d(e) | x.¢;); X, whered = {I/n} and ¥ = %, ]
by EGENLABEL.

O

Theorem 9 (Preservation).
IfA|T|XFe:t/pande —» €' thenA|T |XZFe :1/p

Proof.

eo — €
Eoleo] — Eo[ep]

[STEP]

,where e = Egleg| and ¢’ = Ep|e;].
By Lemma 65, there exists 1y, po and A’ such that A’ | @ | £+ eg : 19/ po * p, where pg =
[Eg]. By Lemma 71, we get A" | @ | X & ¢) : T9/po * p. Thus, we get@ | @ | L+ :T/p
by Lemma 65.

O

Theorem 10 (Progress).
IfQ|@|LZFe:t/itheneisvalueor 3e' st. e — ¢ 4%/

Proof. We can prove this lemma by a similar way to Lemma 2 using Lemma 72 instead
of Lemma 18. O
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Appendix F

/\le??f : Algebraic Effect Handlers with
Dynamically Generated Effect
Instances

E1 Syntax and Semantics

Syntax of Terms:

Expression e =

| e[!] (label application)

| handle(r) e with {x,r.e;;x.e,}  (labeled handler)
Value v ou= ...
] An.e (label abstraction)
Syntax of Effects:
Effects € = IANT=D

Syntax of Effect Instances:
Labels 14 = Iy

Names:

Labels > 1,111,132, . ..
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Instances
Evaluation Context
E == ---|E[{]
Count Label
a] == @
[Ee|] == [E]
[vE|] == [E]
[E[{]] == [E]
[handle(l) E with {x,r.e;;x.e,}| == 1, [E]
Reduction Rules
’Z Fe—eée 4Y ‘
SF (Aol e{t/y} dx AT
: ! —
l is fresh ¥Y=%1I o=A{l/n} [EGENLABEL]

Y handle(y) e with {x,r.e;; x.e,} — handle(l) 6(e) with {x,r.e;;x.e,} %

FIGURE F.1: Algebraic effect handlers with effect instances
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A|T|2Fe:T/p

Ay=L|T|XZke:t/t
A|T|ZFAye:Vy:Lt/t

[LABS]

AT |ZFe:Vy:Lt/t AlZF/{:L
AT |ZFell]:t{l/n}/1

[LAPP]

An:L|T|ZFe:t/(3;ANn=m)p
A,A/\F,x:rl,r:T2—>pTr\Zl—eh:‘rr/p AT, x:1|ZFe:7/p

LH
A |T | £+ handle(n) e with {x,r.ej; x.e;} : T, /p [LHANDLE]

FIGURE F.2: Typing rules
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Instances

E2 Proof of Soundness

Lemma 74 (Term substitution lemma).
A |T,x:0T|EFe:t/pand A | Ty |[EF € :0/ithenA | Ty, Ty | ZF efe/x}:
T/p.

Proof. We prove the difference cases only from Lemma 26.

Case LABS and LAPP:
The result follows directly from I.H.

Case LHANDLE:

AT, x:0Ty:t|ZFe:7/p
AL Tyx:ol | Zke:t/(FA 1= 1) p
AN |Tyx:0l,y:m,r: T =T | Zhe:T/p
A|Ty,x:0,Ty | 2+ handle(y) e with {y,r.ey;y.e,} - 7 /p

[LHANDLE]

By LH, we get A,;y == L | T, I | Z F e{e'/x} : 7/(3; ANt = w) - p,
AN | Ty 1,r T = T | 2 ep{e/x} i n/pand A | Ty, T,y : T |
Ytede/x} T /p.

Thus, we getA | I'1, T | £+ handle(n) e{e’/x} with {y,r.e;{¢'/x};r.e.{e//x}}:
T,/p by LHANDLE.

O
Lemma 75 (Type variable substitution lemma).

1 IfAL N, M [ EFTikand A | ZF 6 A then A, Ay | ZF6(T) i x
2. I AL A, A [T |SFe:t/pand Ay | S+ 6 A then Ay, Ay | 6(0) | S F 6(e) :
() /8(p)

Proof. We prove the difference cases only from Lemma 27.

1. The proof of this case is same as Lemma 27.
2. Case LABS and LAPP:
The result follows directly from I.H.

Case LHANDLE:
AN, N | Tox:t|Zke:1/p
Al,A/,Az,ﬂ =L | T | Yhe: T/(Eh] A”.Tl = Tz) Y
AL AN, M, N | Txim,r =T | Zhey 7 /p
A1, N, Ay | T | 2+ handle(y) e with {x,r.e;;x.e,} : T./p

[LHANDLE]

By LH, we get (1) Ay, Ag,np = L | 6(T) | 2 F d(e) : 6(1)/6((F; A .n =
Tz) p), (2) Al,Az,A” | 5(F),x : (5(1’1),1" : (S(Tz) _>t5(p) (S(Tr) | Y (S(Eh) :
(1) /6(p) and (3) A1, Az | 6(T),x:6(T) | X+ d(e) : 6(T)/d(p)-

Thus, we get A1, Ay | 6(T) | £ + handle(r) d(e) with {x,r.5(ey); x.0(es) } :
d(t)/6(p) by (1), (2), (3) and LHANDLE.

O]
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Lemma 76 (Value is pure).
FA|T|2Fov:7t/pthenA|T|ZFv:T/0

Proof. We prove the difference cases only from Lemma 28.

Case LAbs:
Straightforward.

Case LAPP and LHANDLE:
These cases are impossible because the form of the conclusion is not a value.

O]

Lemma 77 (Compose/Decompose an evaluation context).
IfA|T|XF Ele] : T/p then there exists o, p’ such that

e A|T|ZFe:o/p xp

* [E]=[p]

e fA|T|XFe:0/p*pthenA|T |ZFE[e]:T/p

Proof. We prove the difference cases only from Lemma 29.

Case E # []:

SubCase LABS:
This case is impossible because the form of the conclusion is E = [].

SubCase LAPP:
The result follows directly from L.H.

O]

Lemma 78 (Inversion lemma: lambda abstraction).
IfA|T | ZF Ax.e: o/p then there exists 71, T, p1 and A’ such that A, A’ |T,x: 1y | X+
e:n/p, A|LEVA T =), m~*Tand A [ZF T/ <:0.

Proof. We prove the difference cases only from Lemma 30.

Case LABS, LAPP, and LHANDLE:
These cases cannot actually arise, because the forms of the conclusion aren’t
lambda abstraction.

O

Lemma 79 (Unhandled shifty operators).
IfA|T|XZFe:t/pthen [e] < size(p).

Proof. We prove the difference cases only from Lemma 13.

Case LABS and LAPP:
The result follows directly from I.H.

Case LHANDLE:
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AN |T,x:m,r: =, T | Zhe:7/p
AT |ZFe:t/(FyA i =1)p AT, x:7|ZFe:7/p
A |T | 2 F handle(r) e with {x,r.e;;x.e;} : 7. /p

[LHANDLE]

By the definition of |- |, we get | handle(r) e with {x,r.e;; x.e,} | = 0. By the
definition of size(-), we get size(p) > 0. Thus, we get | handle(r) e with {x, r.e;; x.e,} | <

size(p).
0

Lemma 80 (Operation performs an effect).
FA|T|Z2Fdo(l)v:T/pthenp = (A1 = 1) p.

Proof. We prove the difference cases only from Lemma 32.

Case LABS, LAPP and LHANDLE:
These cases cannot actually arise, because the forms of the conclusion aren’t
a do-operation.

O]

Lemma 81 (Inversion lemma: do operation).

IfA|T|ZF do(l)v: /e pthen there exist Ty, o, T, A’ such that
e AT |Z2Fv:d(m)/t

INPAE RN

AlLZFTFI AN =1:E

AlZF () ~* 1"

AEZFT" <1

AZE (T AN =>n) 1<:€-p.

Proof. We prove the difference cases only from Lemma 33.

Case LABS, LArPP, and LHANDLE:
These cases cannot actually arise, because the form of a conclusion isn’t a
do-operation.

O]

Lemma 82 (Inversion lemma: label abstraction).
IfA|T | XF Ay.e: og/p then there exists 73, p1, and A’ such that A, A",y =L | T | Z +
e:n/i,A|LEY(A,p:L)n ~T,andA |2 T <0

Proof. Straightforward by induction on a derivationof A | T | X+ Ay.e: 0/p. ]

Lemma 83 (Small step preservation).
IFA|T|X2Fe:t/pandXbFer—e 4X thenA |T |2 Fe:1/p

Proof. We prove the difference cases only from Lemma 34.
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Case LABS:
These case cannot actually arise, since we assumed X I ¢ — ¢/ 4 ¥/ and there
are no reduction rules for variables and shifts

Case LAPP:
Straightforward.

Case Do:
This case cannot actually arise, since there are no reduction rules for an oper-
ation.

Case LHANDLE:

An:L|T|ZFe:t/(3;A 1 =1) p
AN|T,x:m,r:T =, |ZFe /0 A|Lx:T|ZFe:1T/p
A |T | X+ handle(y) e with {x,r.ey; x.e,} : T./p

[LHANDLE]

lisfresh X' =1%,1 o ={l/n}
Y.+ handle(y) e with {x,r.e;; x.e,} — handle(l) §'(e) with {x,r.e;; x.e,} 41X’

[EGENLABEL

By weakning, we get (1) A,y = L [T | X Fe:1/(3, A1 = 1) p, (2
AN|T,x:m,r:1m =, |Z ey :5/p,and G)A [T, x: 7 | X Fe :1,/p.
By Lemma 75, we get (4) A | T | ' F &'(e) : 8'(1)/d'((3; A1 = 1) - p),
G) AN | T,x:0(1),d'(r:m —p 1) | X F d(en) : 8'(%)/8 (p), and (6)
A|lT,x:T|ZFd ) :8(n)/d(p).

By 17 & ftv(e,) U ftv(e,) U ftv(t,) U ftv(p), we get (7) &'(e;) = e, (8) &' (ep) =
en, (9) 0'(%) = 1, and (10) &' (p) = p.

Thus, we get A | T | £ + handle(l) é(e) with {x,r.e;; x.e,} : T,/p by LHAN-
DLE.

O]

Lemma 84 (Effect instances are captured).
IfA|T|XF E[do(f)v]:t/pthenl € [E]or{ € [p].

Proof. By Lemma 77, we get (1) A | T | X - do(¢) v : o/p’ * p, where [p'] = [E]. By (1)
and Lemma 81, weget ) A | 2+ (T ANy = 1)1 <:p -p. By (2), L € [(Fy ANy =
Tp) - t] and Lemma 35, we get (3) £ € [p’ - p|. Thus, we get £ € [p'] or ¢ € [p]. O

Lemma 85 (Progress with effects).
IfA|Q|XFe:t/ptheneisvalue, ¢’ s.t. EF e — ¢ 4%, ore = E[do({) v], where

¢ ¢ [E]
Proof. We prove the difference cases only from Lemma 19.

Case LABS:
Straightforward.

Case LAPP:
We can directly get the conclusion by I.H.
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Case LHANDLE:

An:zL|T|ZFe:t/(3;Nn=m)p
AN|T,x:m,r:n =, |ZFe:n/p AT, x:T|ZFe:7/p
A |T | £+ handle(y) e with {x,r.ej; x.e,} : T /p

[LHANDLE]

By EGENLABEL, we get X - handle () e with {x, r.e; x.e,} — handle(l) e with {x,r.ej; x.e,} -
Y/, whered = {I/n} and ¥/ = X.

O]

Theorem 11 (Preservation).
IfA|T|XFe:7/pande — € thenA |T | ZFe :T/p

Proof. We can prove this lemma by a similar way to Lemma 3 using Lemma 77 and
Lemma 83 instead of Lemma 29 and Lemma 34. O

Theorem 12 (Progress).
QD |@|XFe:t/ptheneisvalueor 3¢’ s.t.e — ¢

Proof. We can prove this lemma by a similar way to Lemma 4 using Lemma 84 instead
of Lemma 36. O



Appendix G

I+

Macro Translations Between Adel

I+
and Agrst

G.1 Macro Translation from /\fi?l to /\Z}Z

[x]5P"

[Ax.e] ST

[e e[5!
[shifty(¢) k. ]S
[{e | x. e 5"
[A7.e]SPL

[e (115"

[{e] x. er)fy]]spl

[[DCHSPI

[t —p T]]SPI
[Va = x.7] P!
[e - o]

[3e AN 7/p]5™

= x
Ax.[e] ST

_ [e]SP" [

= do(¢) (Ak.[e]5™Y)
handle(l) [e] 5" with {x,r.x r; x.[e,]5T"}
A [e]S™!

- Y

= handle () [e] 5" with {x,r.x r; x.[e,]5"'}

FIGURE G.1: Macro translation of expressions

= 14
= [[T]]SPI o] ®! [[T]]SPI
= Va:k[r]5
[[GHSPI . [[p]]SPI
= EI[ (1O T(VA,(DC —>[[PHSPI IITHSPI) _>[[p]]51’1 HTHSPI) =

FIGURE G.2: Macro translation of types

113
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[[@]] SPI — %)

[[F,x . T]]SPI — [[FHSPI,X . IIT]]SPI

FIGURE G.3: Macro Translation of contexts

[{T/a}]>" = {[z]""/a}

FIGURE G.4: Macro translation of substitutions

[[D]]SPI — 0

[[E EHSPI — [[E]]SPI [[e]]SPI

[ZJ EHSPI — [[U]]SPI [[E]]SPI

[(E | x.e,),]5™ = handle(l) [E]S™ with {x,r.x r; x.[¢,]5*'}

FIGURE G.5: Macro translation of evaluation contexts

——— [MSREFL] €1 €
e—" e

* *
e [MSRED] e1 — e e — €3
1 2

e1 —* e3

[MSTRANS]

FIGURE G.6: Multi-step reductions

e1 — e ey —* e3
e1 —T e3

[S-MSRED]

FIGURE G.7: Strict multi-step reductions
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G.2 Proof of Soundness

Theorem 13 (Translation preserves typability).

IfFA|T|Zke:t/pthen A | [T]5P| Z F [e]SPL: [x]5P1/ o] SPL.

Proof. We only prove the difference cases from Theorem 5.

Case LABS and LAPP:
The result follws from I.H directly.

Case LDOLLAR:

AlXES N

AL |T|ZFe:t/(3,A.7/p)-0(p) A|TL,x:7T|ZFe:6(T)/0(p)

A|T|ZF (e|x.e)y:d(t)/6(p)

[LDOLLAR]

By LH, we get (1) A, ;7 == L | [T]S*T | = F [¢]SP* : [T[SPV/[(3, A ©/p) -

(p)I° and (2) A | [T3F, x « [T']SPH [ £+ [er )37« [8(T)]5T/[6(0) 15

By the same way of DOLLAR, we get (3) A, & :: T | [§(T)[5%!, x & (& —>psp)5m
[[(5(T)]]SPI) —>[[5(p)HSPI [[5(T)]]SPI),1’ by —>[[5(p)ﬂsm [[(S(T)]]SPI | YhFxr: [[(5(T)]]SPI/[[5(p)]]SPI.
Thus, we get A | [T]5*! | = + handle(¢) [¢]S*! with {x,r.x 7;x.[e,]5F'} :

[6(7)]S%1/[6(p)]S*' by LHANDLE, (1), (2) and (3).

Lemma 86 (Translation of expressions is commutative).
[e{v/x}]STT = [e]SP{[0]SP?/x}, for any expression e.
Proof. We only prove the difference cases from Lemma 44.

Case e = A1.ep and e = ¢[/]:
The result follows directly from L.H.

Casee = (e | x.e/)y:
Straightforward.

Lemma 87 (Translation of evaluation contexts is commutative).
[E[e]]ST! = [E]S®[[e]St], for any evaluation context E.

Proof. We only prove the difference cases from Lemma 45.

Case E = Ey [{]:
The result follows directly from I.H.

Lemma 88 (Translation preserves reductions).
If e ¢ then T I [e] ST —T [¢/]SP 4 2.

Proof. We only prove the difference cases from Lemma 49.

O
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Case ELAPP:
Straightforward.
Case EGENLABEL:
1 is fresh Y =Xl o= {l/n}

EGENL
SF (el % ey = (3(e) [ x.e)y Jx (ECENLABEL]

S F[{e | x.e)y ]

= handle(s) [¢]5*" with {x,r.x 7; x.[e,]5"'} (
— handle(l) 6([e]5*") with {x,r.x 7;x.[e,]5"'} (EGEBLABEL)

= handle(l) [6(e)]5*! with {x,7.x r;x.[¢,]5"'}  (definition of [-]S*! and 6) 4 X/
= [{6(e) | x. er)i]>" ( 15%)

Thus, we get £ - [e]SPT —F [e/]SPT 4 2.

definition of [-]5*!)

definition of [-

Theorem 14 (Translation preserves meaning).
If e — ¢’ then T I [¢]STY —+ [¢']SPT 4 2.

Proof.

eo — €
YFe=Ee] — E[ep] =¢ 4%/

[STEP]

By Lemma 88, we get & F [e]ST! —+ [ef]ST! - /. Thus, we get & F [e]SFF =
[[E[eo]]]SPI — [[E]]SPI[HEO]]SPI] G [[E]]SPI[[[EO]]SPI] — [[E[[[e(/)]]SPIH]SPI — IIe/]]SPI 43/ by
Lemma 87 and 48. O]
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G.3 Macro Translation from /\;Z to /\;’71

[x]S™ —

[Ax.e]S™® = Ax.[e]5TF

e e[S — [e]S™ [

[do(¢) v]S™® = shifty(0) k. Ab.h [o]S™® (Ax.k x h)
[handle(l) e with {x,r.e;; x.e,}]5'" = ([]5F | x. Ah.[e,]5"F); (Ax.Ar.[e,]5™F)
[A]* = A

[e (15" = [e]®" 1]

[handle(r) e with {x, r.ep; x.e, }]>" = ([e]5" | x. AR.[e,]5™F), (Ax.Ar.[e,]5F)

FIGURE G.8: Macro translation of expressions

[a]S™P .

[t —, 7|SI? R e

[Va :: x.7]5™P = Va:u[r]5F

[e - o] — ]S - [0S

B =0" = Fa:TA:R ((VA.[a]* =, ([] =) 5pa) 2pa)/B

FIGURE G.9: Macro translation of types

[@HSIP _ O

[[I-'/x . T]]SIP — [[FHSIP,X . [[T]]SIP

FIGURE G.10: Macro translation of contexts

[{T/a}]>" {[7]5 /a}

FIGURE G.11: Macro translation of substitutions
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[[D]]SIP - 0O
[[E e]]SIP — [[E]]SIP [[e]]SIP
[[Z) E]]SIP — [[U]]SIP [[E]]SIP
[handle(l) E with {x,r.e;; x.e,}]5' = ([E]5™® | x. Al.[e,J5'F); (Ax.Ar.[e,]5™F)

FIGURE G.12: Macro translation of evaluation contexts
General Context C == [O|Ce|eC|Ax.C|(C|x.e); ]| (e]x.C); | shifty(¢) k. C
| An.C[C[] | (C|x.er)y
FIGURE G.13: General contexts

e1 +— e
C[el] — C[Ez]

[GSTEP]

FIGURE G.14: General step

————— [MSGREFL] €1 —*i €2
e—7e o > e [MSGRED]

e1 =Y e er —7 es
L - L [MSGTRANS]
€1 —; €3

FIGURE G.15: Multi-step general reductions

e1 —; ez en _>1* e3

- [S-MSGRED]
€1 —; €3

FIGURE G.16: Strict multi-step general reductions
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G.4 Proof of Soundness

Theorem 15 (Translation preserves typability).
IfFA|T|ZFe:t/pthen A | [T | T+ [e]S™P : [x]5™ /o] S™P.

Proof. We prove the difference cases only from Theorem 7.

Case LABS and LAPP:
The result follows from I.H directly.

Case LHANDLE:

An:L|T|ZFe:t/(3yANn=>1)p
AN|T,x:t,rm: =, | ZFe:n/p A|T,x:7|XFe:7/p
A |T | 2 F handle(y) e with {x,r.e;; x.e;} : 7. /p

[LHANDLE]

By LH, we get (1) A,y = L | [T]S™ | & + [e]5 : [x]S™/[(3, A1t =
) - IS, ) A A | [T, x - [m]SF,r @ [ —, 5]5F | & F [e]5F :
[[Tr]]SIP/[LDﬂSIP and (3) A ‘ [[FHSIP,X . [[THSIP ’ 3 - [[er]]SIP . [[Tr]]SIP/[[pﬂSIP.

By the same way of HANDLE and 6 = {[t]™®/«, [0]'*/B}, we get (4) A |
[[FHIP | P /\x.)\r.[[eh]]n’ : VA/.[[Tl]]IP — (([[Tz —p Tr]]IP) _>[[P]]IP [Tr]]lp/l. (5)
AT [ 2 F ([e]™ | x. AR[e ], : (VA [u]® =, (([]™ —p a) —4
o) —p «)/6(B).

Thus, we get A | [I]™ | = - ([e]5" | x. Ah[e,]5"F), (Ax.Ar.[e,]STF) :
[% 15 /[0]5™ by APP, SUB, (4) and (5).

Lemma 89 (Translated value is also a value).
If v is a value then [0]5™? is also a value.

Proof. Straightforward. by the definition of [-]*". O

Lemma 90 (Translation of expressions is commutative).
[e{v/x}]S™® = [e]S™®{[0]S'® /x}, for any expression e.

Proof. We prove the difference cases only from Lemma 56.

Case ¢ = A1.ep, e = ¢o[{] and e = handle(r) e with {x,r.e; x.e, }:
The result follows directly from I.H.

Lemma 91 (Translation of evaluation contexts is commutative).
[E[e]]S™ = [E]S™[[e]S™], for any evaluation context E.

Proof. We prove the difference cases only from Lemma 57.

Case E = Ey [{]:
The result follow directly from I.H.
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O]

Lemma 92 (Translation preserves reductions).
fXte—e 4% thenZ I [e]™F —F [e]PT 4%

Proof. We prove the difference cases only from Lemma 49.

Case ELAPP:
Straightforward.

Case EGENLABEL:

lisfresh X' =%,1 s=A{l/n}
Y+ handle(y) e with {x, r.e;; x.e,} — handle(l) §(e) with {x,r.e;; x.e,} <%/

[EGENLABEL

Y - [handle(y) e with {x,7.e;; x.e, }]5'F

= ([e]5™ | x. Ah.[e,]5™), (Ax.Ar.[en] ) (definition of [-]5F)

— (6([e]5™®) | x. Ah.[e,]5™®); (Ax.Ar.[e,]5"F)  (EGENLABEL and 6 = {I/7})
= ([6(e)]5™ | x. AL.[e,]5"™®); (Ax.Ar.[e,]5'F) (definition of [-]5F)

= [handle(l) 6(e) with {x,r.e; x.e,}]5'f 4L/ (definition of [-]5'F)

Thus, we get ¥ 1 [e]S1F —F [¢/]S™P 4 5.

Theorem 16 (Translation preserves meaning).
IfXtke—e 4% then X F [e] 5P - [¢]5F 4%

Proof.
We can prove this lemma by the same way to Theorem 8 using Lemma 59, 91, and
60. O
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