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Abstract. Context-oriented programming (COP) languages modularize
context-dependent behaviors in multiple classes into layers. These lan-
guages have layer activation mechanisms so that the behaviors in layers
take effect on a particular unit of computation during a particular period
of time. Existing COP languages have different layer activation mecha-
nisms, and each of them has its own advantages. However, since these
mechanisms interfere with each other in terms of extent (time duration)
and scope (a set of units of computations) of activation, combining them
into a single language is not trivial. We propose a generalized layer acti-
vation mechanism based on contexts and subscribers to implement the
different activation mechanisms in existing COP languages in a single
language called ServalCJ. We formalize the operational semantics of Ser-
valCJ as a small calculus and prove priority preservation, i.e., ensuring
that layer prioritization, which resolves the interference between layers,
is preserved during computation. To prove this property, we give a formal
definition of layer priority that is general so that we can discuss the prior-
ities of layers in other COP calculi and implementations. We implement
a ServalCJ compiler, and demonstrate its effectiveness through several
example applications.

Keywords: Contexts and subscribers · ServalCJ · Priorities of layers ·
Priority preservation

1 Introduction

A large number of software systems, such as ubiquitous computing systems,
adaptive user interfaces, and self-adaptive systems, as well as their associated
computations, require the ability to change behavior with respect to context. For
example, for some computations comprising a system, a specific system state that
affects such computations may be considered a context. For the system itself, a
specific state of the external environment can be considered a context. Dynamic
changes in behavior with respect to context changes result in complicated system
structures and behaviors that are difficult to predict with traditional program-
ming abstractions.
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Context-oriented programming (COP) [17] addresses this difficulty in that it
can abstract behavior depending on the same context as a module called a layer,
and it provides layer activation mechanisms so that the behavior in the layer takes
effect on a particular unit of computation during a particular period of time. A
number of COP languages have been developed to date, and they have successfully
modularized such context-dependent behavior [6,8,12,14,21,24,29,32].

However, existing COP languages have different layer activation mechanisms,
making them rather use-case-specific. These layer activation mechanisms have
been developed to specify context changes such that they are triggered by inter-
nal state changes in the program or external events, or are encoded in the appli-
cation frameworks. Programmers must select an appropriate mechanism based
on use cases. Furthermore, existing layer activation mechanisms are hardwired
into the language and thus do not provide means to extend themselves when com-
bined with other mechanisms in other languages. For example, the per-control-
flow activation in ContextJ [6] and JCop [8] is strongly coupled with the current
execution thread. Similarly, the implicit activation mechanism in PyContext [32]
cannot represent per-instance layer activation. This issue is exacerbated by the
fact that different use cases can coexist in the same application. Thus, there is
a natural requirement to generalize existing layer activation mechanisms into a
single mechanism.

This paper aims to propose a generalized model of layer activation mecha-
nisms that covers all existing COP languages, and to develop a COP language
based on that model. To do this, we must solve two problems. First, we must
provide a general model to specify a context and the units of computation to
which it is applied. Generally, a context can be defined as “everything that exists
outside the particular unit of computation on which we are focused.” However,
this definition is too vague when discussing a model on which a particular COP
language is based. Second, when developing a generalized COP language, we
must unify existing COP mechanisms that may interfere with each other. Thus,
we must resolve this interference in order to satisfy programmer expectations.

We tackle these problems by proposing a model based on two concepts: con-
texts, which specify the extent (time duration) of layer activation, and subscribers,
which specify the scope (a set of units of computations) of activation. These con-
cepts reveal that existing layer activation mechanisms can be explained uniformly
using a single model. Furthermore, we define the dynamic semantics of layer acti-
vation in the model that satisfy programmer expectations when different existing
activation mechanisms coexist in the same application. In the proposed model,
the interferences between existing COP mechanisms are resolved by unifying per-
instance and global activations, as well as by determining the priority of active
layers that are activated synchronously as well as asynchronously.

Based on this model, we have designed the ServalCJ language. A context in
ServalCJ is defined as a term of simple temporal logic with a call stack that can
represent the extent of layer activation specified by all existing layer activation
mechanisms (to the best of our knowledge). Each context can also be para-
meterized, which allows us to easily specify the behavioral changes reactively
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triggered by state changes in the system. A subscriber in ServalCJ is the object
on which we focus when considering the context. A set of subscribers can also
be global (i.e., all objects are implicitly subscribed to a specific set of contexts
when created). A context group in ServalCJ specifies a combination of contexts
and subscribers.

We demonstrate the effectiveness of ServalCJ through several example appli-
cations. The first example is a context-aware program editor, where each con-
struct in ServalCJ is explained. We also present a case study of a maze-solving
robot simulator to study the usefulness of ServalCJ. This simulator has different
layer activation scenarios, some of which are supported by existing languages, but
others are not. We demonstrate that such scenarios are represented uniformly
by ServalCJ.

We formalize the dynamic semantics of ServalCJ as a small calculus, Feath-
erweight ServalCJ (FSCJ), to describe how the generalized layer activation is
performed. We formulate the priority preservation property by stating that the
priorities of layers assigned for different layer activation mechanisms are pre-
served during computation, and prove this property. This formulation is general
so that we can discuss the priorities of layers in FSCJ and other COP calculi
such as ContextFJ [18,19] and context holders [4], as well as in other COP imple-
mentations with multiple layer activation mechanisms, such as ContextJS [24].
We also show that FSCJ is parameterized over the priority assignment, i.e., we
can obtain another calculus that conforms to another priority assignment by
changing only some auxiliary definitions and without changing the main part of
the reduction rules.

To study ServalCJ’s feasibility, we implemented a ServalCJ compiler. The
compiler translates ServalCJ programs into standard Java bytecode; thus, they
can be run on standard Java virtual machines. We evaluated method dispatch
performance in ServalCJ by comparing the time of method calls with and without
active layers in ServalCJ against that in plain Java. The results show that our
compiler does not impose a serious overhead on the running application.

The remainder of this paper is organized as follows. In Sect. 2, we introduce
an example of a context-aware program editor and review existing COP mech-
anisms. In Sect. 3, we argue the necessity of a generalized activation mechanism
and explain the challenges in achieving this. In Sect. 4, we present a model of a
unified activation mechanism, and discuss the appropriate dynamic semantics of
layer activation. In Sect. 5, ServalCJ, an instantiation of the model discussed in
Sect. 4, is proposed. In Sect. 6, we present a case study of a maze-solving robot
simulator, compare COP with other implementation techniques, and compare
ServalCJ with existing COP languages. In Sect. 7, we formalize the operational
semantics of ServalCJ, provide a definition of layer priority, and prove the prior-
ity preservation. In Sect. 8, we discuss the implementation of the ServalCJ com-
piler and evaluate its performance. Section 9 discusses related work and Sect. 10
concludes the paper.
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2 Existing COP Mechanisms

In this section, we use an example to explain the commonalities and differences
among existing COP languages.

2.1 Example

CJEdit, first implemented by Appeltauer et al. [7], is a program editor that
enhances the readability of programs by providing different text formatting tech-
niques for code and comments. The code part is rendered in a typewriter format
with syntax highlighting and the comment part is rendered in rich text format
that supports multiple fonts, text sizes, decorations, and alignments. Further-
more, CJEdit provides different GUI components depending on which part of
the code or comments the programmer is currently editing. For example, when
the programmer is editing code, CJEdit displays an outline view of the pro-
gram so that they can easily determine the structure of the program; when the
programmer is editing comments, it displays tools and menus for changing text
fonts, sizes, etc.

We extend the CJEdit program editor to make it is multi-tabbed so that the
programmer can open multiple files simultaneously. As in the original CJEdit,
each tab displays the source code rendered in different text format for code
and comments, and different GUI components are provided depending on the
cursor’s position on the focused tab. A tab displaying an unsaved file shows a
mark indicating that the file has not been saved. If the programmer attempts to
close a tab that displays an unsaved file, a dialog stating that the programmer
is attempting to close an unsaved file is displayed.

We also extend this editor with a couple of features. First, when the editor
is used online, the files are stored in a remote repository. When no networks are
available, an icon is displayed indicating that the system is operating offline and
files are stored on the local disk. Second, we have added a find-name function
to CJEdit that can be used to search for the names of variables, methods, and
classes throughout the entire source code. During the search, the mouse cursor
changes, and a new widget that displays the status bar is added.

2.2 Overview of COP

In the above example, there are a number of behavioral variations that depend
on situations, such as the position of the cursor, rendering of text regions, status
of the opened file (saved or unsaved), and the availability of a network. In the
following, we refer to such situations as contexts. A COP language provides a
modularization mechanism for implementing related context-dependent behavior
into a single layer and a layer activation mechanism for dynamically composing
and decomposing layers with the application.
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Fig. 1. Relationships among layers and classes

Layers. Figure 1 shows how the related context-dependent behavior is modular-
ized into a layer using a class diagram. The diagram uses two layers, EditingCode
and EditingComments, to represent behavioral variations that are executable
only when the cursor is on code or comments, respectively. A COP layer con-
tains a set of partial methods. In Fig. 1, we represent a set of partial methods as
a class stereotyped as <<partial class>>. A partial method is executable only
when the enclosing layer is active, i.e., the layer is composed with the application
and changes the behavior of the class to which it is applied (Fig. 1). For example,
when the EditingCode layer is active, at the TextEditor.showWidgets() call,
the showWidgets partial method declared in EditingCode is called instead of
the original method. In fact, a partial method runs before or after the execution
of the original method when it has a before or after modifier, respectively. If a
partial method has no such modifiers, it is called an around partial method and
runs instead of the original method. Within an around partial method, we can
invoke a special proceed method to execute the original method. As discussed in
Sects. 2.3 and 4.2, multiple layers can be active simultaneously, and in that case,
when proceed is invoked, the partial method in the layer with lower priority is
executed.

Layer Activation. As mentioned above, a layer can be composed and decom-
posed dynamically with the running application. These processes are called layer
activation and layer deactivation, respectively. Each COP language provides dif-
ferent linguistic mechanisms to perform activation and deactivation, and this is
discussed in the following.

2.3 Different Mechanisms for Layer Activation

Whereas most COP languages provide similar mechanisms for layers, for layer acti-
vation, existing COP languages provide a variety of mechanisms. Each mechanism
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differs according to its time period, trigger, and the computations affected by the
layer activation.

Per-Control-Flow Activation. One method to activate layers is to use a with-
block that activates specified layers only within the dynamic scope of the block [6,
8,12]. For example, we can activate the EditingComments layer, which defines
behavioral variations that are executable only when the user is editing comments,
using the with-block.

with (EditingComments) { showWidgets(); }

The trigger of the layer activation is the computation itself, and its effect con-
tinues until the computation leaves the control flow specified by the with-block.
We note that each with-block is implicitly coupled with the currently executing
thread and only that thread is affected by the with-block.

Another feature of the per-control-flow activation is that, in this model, a
programmer is likely aware of the activation order of layers. For example, we can
write the following nested with-blocks.

with(EditingComments) {
with(RenderingCode) { format(..); }

}

This code activates both the EditingComments and RenderingCode layers, and
the inner with-block supersedes the outer one. Thus, if these layers define the
same partial methods, those defined in RenderingCode have priority, i.e., the
before partial methods in RenderingCode are executed first, after partial
methods in RenderingCode are executed last, and around partial methods in
RenderingCode override those defined in other layers.

Imperative Activation. Some COP languages provide imperative activation that
uses imperative operations to activate behavior that indefinitely affects the rest
of the execution [14,15]. For example, in Subjective-C [14], the activation and
deactivation of a layer is written as follows.

[CONTEXT activateContextWithName: @"EditingCode"];
[CONTEXT deactivateContextWithName: @"EditingComments"];

The first line activates the EditingCode layer, and the second line deactivates the
EditingComments layer. The activation continues indefinitely, or until another
imperative operation that explicitly deactivates the layer is executed. In existing
COP languages that support this mechanism, the effect of the activation is global,
i.e., the entire application is affected by the activation. In general, however, we
may consider another variation such that the effect is restricted to within the
execution thread.

Event-Based Activation. In this model, the trigger of layer activation is an event,
and the activation continues until another event that deactivates the layer is
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generated. Unlike activation with an imperative model, this activation can be
per-instance and the event receivers may differ from the event senders.

EventCJ [21] supports this model. In EventCJ, an event is declaratively
defined using AspectJ-like pointcut language.

event MoveOnCode(TextEditor e)
:after call(void TextEditor.onCsrPosChanged())

&& target(e) && if(e.isCursorOnCode())
:sendTo(e);

This event definition specifies that the MoveOnCode event is generated immedi-
ately after the onCsrPosChanged method call declared in the TextEditor class
and only if the isCursorOnCode call on the receiver object of the former call
returns true. The sendTo clause specifies that this event is sent to only e,
the receiver of the onCsrPosChanged call as specified by the target pointcut.
In other words, EventCJ supports per-instance layer activation. If the sendTo
clause is omitted, the event is sent to the entire application. Thus, EventCJ also
supports global layer activation.

Layer switching upon event is specified declaratively using the layer transition
rule.

transition MoveOnCode:
EditingComments ? EditingComments -> EditingCode
| -> EditingCode;

This rule is interpreted as follows. When MoveOnCode is generated, if the Edit-
ingComments layer is active, it is deactivated and EditingCode is activated;
otherwise, no layers are deactivated and EditingCode is activated.

One problem with per-instance activation in EventCJ is that it can only spec-
ify instances that are accessible from the join-point where the event is generated.
If these instances cannot be obtained from the join-point directly, we must either
specify a complex chain of method calls or provide a workaround to access the
receiver instances in the base program.

Implicit Activation. In contrast to the above activation mechanisms, where vari-
ations of context-dependent behavior are explicitly activated, in the implicit acti-
vation model, the trigger and time period of activation are implicitly specified
by a condition. This mechanism is supported by PyContext [32], where the
activation is specified by implementing the active method, which is implicitly
evaluated when the layer activation is tested. We show this in Java-like syntax
as follows.

class TextEditor {
.. boolean isCursorOnCode() { .. } ..
layer EditingCode {

boolean active() {
return isCursorOnCode(); } ..

}
}
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This code fragment illustrates the TextEditor class and EditingCode layer in
the layer-in-class manner [5]. The EditingCode layer implements the active
method that is evaluated whenever, for example, a method that consists of
a set of partial methods is called, and, if active returns true (i.e., if the
isCursorOnCode call returns true), the EditingCode layer becomes active.

In PyContext, only the currently executing thread is affected by the implicit
activation, as in per-control-flow activation.

3 Problem Statements

In this section, we present the expressibility problem in existing COP mecha-
nisms and the interference problem that exists between the mechanisms.

3.1 Expressibility Problem

When we choose one COP language to implement context-dependent behavior,
we sometimes encounter difficulties because each mechanism fits only specific
cases of behavioral changes in the application. For example, in the CJEdit exam-
ple, if we choose the per-control-flow model, it becomes difficult to implement
event-driven behavioral changes triggered by, for example, a change in the posi-
tion of the cursor. On the other hand, if we choose the event-based model, it
is difficult to implement the find-name function, which recursively searches the
name in the entire source code, because the state transition model of the event-
based activation cannot represent the call stack. Furthermore, the set of entities
affected by the layer activation also varies within the application. For example,
the arrangement of widgets and tools in the toolbar and the behavior depending
on the network availability are applied to the entire application, while the status
of opened files can vary for each tab.

We face similar problems in other context-aware applications. For example,
in a multi-tabbed Twitter client, each tab displays the user’s timeline, which is
updated after a followed person posts a tweet. Each tab behaves differently with
respect to contexts, such as tab focus (focused or unfocused) and the content
displayed on the timeline (all tweets from all followed accounts, tweets only from
a specific account, or all tweets that match a search keyword). The trigger of a
context change can be an event, such as clicking a tab, and can be defined implic-
itly relative to timeline content. The effect of behavior changes may also vary.
Each tab can change its behavior dynamically, and its effect is restricted to only
the instances contained within the tab. We can also consider other cases, such
as behavior changes with respect to battery status, which can affect the entire
application. Another example is a pedestrian navigation system that changes
behavior with respect to changes in situation, such as moving from an indoor
to an outdoor environment, which is triggered by an event. In addition, such a
system can change behavior based on changes in computation, such as “during
map download,” which is activated only within the control-flow.
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We also argue that some COP mechanisms provide incomplete abstractions.
For example, EventCJ supports per-instance activation, where we can specify
only instances accessible from the join-point where the event was generated.
Similarly, events in event-based activation in EventCJ are only join-points, and
thus EventCJ does not provide any way to abstract the event sender.

3.2 Interference Problem

Some COP languages support multiple activation mechanisms and thus support
some combination of different behavioral change use cases in the application. For
example, EventCJ supports global activation as well as per-instance activation
so that the effect of the behavioral change is exerted on the entire application.
Similarly, ContextJS [24] supports global activation as well as per-control-flow
activation as pre-defined activation mechanisms. Although these languages allow
us to represent different cases of behavioral changes uniformly to some extent,
the activations that they support are still limited. For example, neither language
supports implicit activations.

A more serious problem with existing approaches is that an activation mech-
anism sometimes interferes with an activation triggered by another mechanism.
There are two interference problems, i.e., between global and per-instance acti-
vations and between synchronous and asynchronous activations.

Global-Per-Instance Interference. We explain the former interference prob-
lem using an example of a mobile application written in EventCJ that uses both
global and per-instance activation mechanisms. Suppose that the layer Battery-
Low, which implements the “energy-saving mode” behavior that uses less precise
computation and fewer resources, is globally active because the battery power of
the executing machine is low. Also suppose that activation on some instances is
controlled in a per-instance manner to allow the user to control the behavioral
changes of these instances manually. For example, the user may require some
objects to produce precise computation results in short periods even when the
battery is on the verge of running out.

In fact, EventCJ does not support such a situation because global activation
always cancels a per-instance deactivation. In EventCJ, the layers activated by
global activation and those activated by per-instance activation are stored in
different arrays, and the partial method dispatch uses both arrays. Thus, the
layer stored in the global activation array is effective even when it is removed
from the per-instance activation array. A similar problem also occurs in Contex-
tJS. Although this may be an implementation issue, this kind of interference is
likely to arise if the different linguistic mechanisms were “piled up” into a single
language.

Synchronous-Asynchronous Interference. Another type of interference
occurs when we unify activation mechanisms from different languages. In the
per-control-flow model, the order of active layers is explicit for the programmer,
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i.e., the inner-most layer always precedes other layers. Although in other models,
such an order is not explicit for the programmer, the order of active layers is also
well-defined to make the execution result universal. For example, in EventCJ,
the most recently activated layer always precedes the others [3]. This semantics
of EventCJ conflict with those of the per-control-flow model in ContextJ. For
example, in the following with-block, the programmer expects the text block
stored in textBlock to be formatted with syntax highlighting.

SyntaxHighlighter sh = ..
with(EditingCode) {

with(RenderingCode) {
// forcing text to be formatted with
// syntax highlighting
sh.format(text); } }

However, the event-based layer activation may not meet this expectation because
an event activating EditingComments may be generated after the activation of
EditingCode and before the call of format, thereby causing the syntax high-
lighting to be switched off.

The source of this conflict is the mixing of the synchronous layer activa-
tion, where the trigger is the computation itself, and the asynchronous layer
activation, where the trigger is the external event. If the layer activation is syn-
chronous with the execution of the application described in the base program,
the programmer is aware of the execution point when the specified layer becomes
active. On the other hand, we cannot foresee when layer activation will be trig-
gered asynchronously by events.

4 Model of Generalized Layer Activation

To address the aforementioned problems, we propose a generalized model of the
existing COP mechanisms and provide the semantics of layer activation to define
activation order uniformly.

4.1 Contexts and Subscribers

To develop the generalized activation model, we coordinate the different layer
activation mechanisms in existing COP languages using the following concepts,
i.e., context, which specifies the time and duration of the layer activation1, and
subscribers, which specifies which computations the activation affects. A number
of layer activations represented by contexts affect a specific set of subscribers.
We combine a set of contexts with a set of subscribers and call this combination
a context group. When an object subscribes to a context group, method dispatch
on the object includes the partial methods in the active layers with respect to
the context group. In other words, when we activate a layer with respect to

1 We use the term “context” to indicate the temporal context.
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Fig. 2. Unified model of COP in an object diagram. We abbreviate insignificant edges,
i.e., every object is a subscriber of the instance cjedit. This is not represented in
the diagram because only specific instances (p1 and p2) provide context-dependent
behavior for cjedit.

a context group, all the objects subscribing to that group will begin searching
partial methods in that layer upon method dispatch. For example, the contexts
that specify when the cursor is on code or comments affect the entire application
with respect to the behavior of the toolbar and menubar; thus, they are grouped
into a single context group. The context specifying when the opened file in a
tab is unsaved affects only a limited subset of instances in the application; thus,
they are grouped into another context group.

We illustrate this model in Fig. 2 using a UML instance diagram. In this
diagram, the instance cjedit of the context group CJEditGroup specifies con-
texts for activating EditingCode, which implements the code-editing functions,
and EditingComments, which implements the comment-editing functions. All
instances in the entire application subscribe to this context group. These con-
texts are parameterized over the objects on which the layer activation depends,
e.g., in cjedit, this parameter is bound to editor, an instance of TextEditor.
When the state of editor changes, the layer activation of all subscribed instances
also changes. Similarly, the instance tabGroup1 of the TabGroup context group
specifies the contexts for activating FileUnsaved, which implements the behav-
ior related to unsaved files. Only the instance tab1 of Tab subscribes to that
context group. The context specified in TabGroup is also parameterized, and this
parameter is bound to f1, an instance of FileHandler.
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Fig. 3. Dynamic subscription and layer activation

Table 1. Existing COP languages categorized in our model

Global Thread Instance

Control-flow ContextJ [6], PyContext [32] ContextErlang [29]

Imperative Subjective-C [14] ContextErlang

Event-based EventCJ [21] EventCJ

Implicit Flute [10] PyContext

We further illustrate the dynamic semantics of this model using the UML
sequence diagram in Fig. 3. When the instance f1 of FileHandler changes its
state according to outside operations such as the “save” and “edit” commands,
it also notifies these changes to the instance tabGroup1 of the context group
TabGroup, which refers to f1. If no instances subscribe to tabGroup1, these
notifications do not trigger any layer activation. After an instance of Tab, i.e.,
tab1, subscribes to tabGroup1, it immediately activates FileUnsaved on tab1
if f1 is not saved after editing. After this subscription, the notifications from f1
triggered by the state changes on f1 trigger the activation and deactivation of
FileUnsaved on tab1.

We show that each existing COP language falls into one specific case of this
model, as illustrated in Table 1. In Table 1 the methods that specify contexts are
categorized into four variants, i.e., per-control-flow, imperative, event-based, and
implicit, that correspond to each layer activation model discussed in Sect. 2.3.
In the table, the methods that specify subscribers are also categorized into three
variants, i.e., global (the “world”), thread (the currently executing thread), and
instance (a limited set of instances). Each cell represents the COP languages that
support the specific combination of these methods. In addition to the languages
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discussed in the previous section, we also list the COP languages mentioned in
Sect. 10. For example, EventCJ supports event-based specification of contexts
that are applicable to both all instances in the application and a limited set of
instances. Some cells indicate that no existing COP languages support such a
combination. For example, implicit activation of a limited set of instances is not
supported by any existing COP language.

4.2 Model of Activation Order

The synchronous-asynchronous interference explained in Sect. 3.2 implies that
we must manage synchronous and asynchronous layer activation separately. To
satisfy programmer expectations, in our model, synchronous layer activation
always precedes asynchronous activation. More precisely, the semantics of layer
activation in our model are defined as follows.

First, we define synchronous and asynchronous layer activation.

– Layer activation is synchronous if and only if its context is specified as a
control-flow and it is statically known that its subscribers contain the thread
that will execute the control-flow. For example, global and per-thread activa-
tion with the per-control-flow model are considered synchronous.

– Layer activation that is not synchronous is asynchronous.

We then define the order of active layers as follows.2 Let L̄S = L1, · · · , Ln be
a sequence of layers that are activated synchronously, and let L̄A = L′

1, · · · , L′
n

be a sequence of layers that are activated asynchronously. We assume that there
are no duplicate layers in a sequence of activated layers. We define the function
actSync that takes a concatenation of sequences of activated layers L̄A; L̄S and
a layer L and returns a new concatenation of the sequences of activated layers.

actSync(L̄A; L̄S , L) = (L̄A \ L); (L̄S \ L)L

This function models synchronous layer activation. If L is not contained in both
L̄A and L̄S , it is added at the head of sequence L̄S , indicating that L has the
highest priority. Otherwise, L is removed from the original position and is moved
to the head of the sequence L̄S .

Similarly, asynchronous layer activation is modeled by the actAsync function.

actAsync(L̄A; L̄S , L) =
{

(L̄A \ L)L; L̄S if L �∈ L̄S

L̄A; L̄S if L ∈ L̄S

If L is not contained in both L̄A and L̄S , it is added at the head of the sequence
L̄A, indicating that L has higher priority than all layers in L̄A but has lower
priority than all layers in L̄S . If L is contained in L̄A, it is moved to the head
2 As illustrated in Sect. 3.2, we believe that this ordering is preferable in many cases.

However, we also acknowledge that it is preferable for programmers to configure
the ordering policy in particular cases. This configuration mechanism is discussed in
Sect. 7.
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of L̄A. If L is contained in L̄S , the order of the active layers does not change,
because this case indicates that L has already been activated with higher priority
than the layers in L̄A.

We define the function deact to model layer deactivation.

deact(L̄A; L̄S , L) = (L̄A \ L); (L̄S \ L)

The above functions are used when we describe the operational semantics
shown in Sect. 7. For example, actSync is always used when the with-block
is applied, and actAsync is always used when event-based activation is applied.
The order of active layers L̄A; L̄S is used when dispatching a partial method. The
search for a partial method begins from the right-most layer of L̄S and proceeds
to the left-most layer of L̄A. If no partial methods are found, the original method
is dispatched.

To address global-per-instance interference, every activation is performed in
a per-instance manner. This means that, when a layer becomes globally active,
that layer is added to the active layers for all instances that have that layer. This
mechanism ensures that global activation does not interfere with per-instance
activation at the cost of activating the layer for all of these instances.

5 COP Language with Contexts and Subscribers

We have designed the COP language ServalCJ to be an instance of the gener-
alized activation model discussed in Sect. 4. ServalCJ provides the following lin-
guistic constructs: activate declaration, which specifies when the layer is active in
terms of contexts that identify the extent of layer activation, and context group
declaration, which modularizes these declarations and specifies the set of sub-
scribers where they are applied. In ServalCJ, a subscriber is the object on which
we focus when considering the context.

ServalCJ is a layer-based COP language that provides a modularization
mechanism for context-dependent behavior using layers. ServalCJ supports the
class-in-layer syntax of layer declarations as well as the layer-in-class syntax [5],
where we can define a set of partial methods and activate/deactivate blocks.
This paper focuses on how layer activation is specified by ServalCJ; how layers
are declared in ServalCJ is beyond the scope of this paper.

We formalize the dynamic semantics of ServalCJ in Sect. 7. While the for-
mal model provides semantics based on primitive linguistic constructs, ServalCJ
provides a more convenient syntax.

5.1 Context Group Declarations

In ServalCJ, a context group is declared using a context group declaration. A
context group groups related specifications of layer activation into one module,
and can be instantiated. Each context group instance contains subscribers, i.e., a
set of instances where the specified layer activation is applied. A context group



Generalized Layer Activation Mechanism for Context-Oriented Programming 137

1 contextgroup EachTabGroup(FileHandler f) {

2 subscriberTypes: Pane, FileHandler;

3 activate FileUnsaved if(!f.isSaved());

4 }

Fig. 4. Context group declaration for CJEdit specifying the layer activation for each
tab

can also declare parameters that can be referred to from the layer activation
specification.

Figure 4 shows an example of layer activation for CJEdit that specifies the
layer activation for each tab. Line 1 specifies the name of the context group and
its parameter. We can replace this parameter with an argument when this con-
text group is instantiated. A context group is instantiated using the standard new
expression. We can also declaratively specify when the instance of context group
is created using the AspectJ pointcut and advice mechanism. For simplicity, we
do not use this mechanism in this paper.

FileHandler file = new FileHandler(..);
EachTabGroup etg = new EachTabGroup(file);
etg.subscribe(file);
Pane pane = new Pane();
etg.subscribe(pane);

An object can dynamically subscribe to the instance of a context group,
thereby becoming one of the subscribers of that context group. This subscription
is performed by calling the subscribe method on the instance of context group.
For example, in the above code fragment, instances of FileHandler and Pane
subscribe to etg, which is an instance of EachTabGroup. The current version
of ServalCJ requires that each context group declares the types of instances
that can subscribe to it (Line 2, Fig. 4). We can also declaratively specify which
instance subscribes to this context group when using the AspectJ pointcut and
advice mechanism. This flexible subscription mechanism addresses the problem
of per-instance activation in EventCJ, where any receivers of an event must be
accessible from the specified join-point.

Line 3 of Fig. 4 declares when the layer FileUnsaved is active, which occurs
whenever the isSaved method call on f returns false. We further discuss the
specification of layer activation in Sect. 5.2.

Global Context Groups. In the aforementioned example, we explicitly specified
which instances subscribe to the context group. In ServalCJ, we can also declare
a context group that affects all instances in the application. Such a group is
called a global context group.

Figure 5 shows an example of a global context group declaration. To make
the context group global, we must provide the global modifier. A global context
group does not contain any specifications for subscribers. Instead, every object is
implicitly considered to have subscribed to the global context group. As for other
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1 global contextgroup CJEditGroup(TextEditor e) {

2 activate EditingCode if(e.isCursorOnCode());

3 activate EditingComments if(e.isCursorOnComments());

4 }

Fig. 5. Example of a global context group

context groups, we can create an instance of the global context group, which
becomes effective only after instance creation. The context group CJEditGroup
in Fig. 5 declares two layer activation rules: (1) the layer EditingCode is active
whenever the isCursorOnCode method call on editor returns true and (2) the
layer EditingComments is active whenever the isCursorOnComments method
call on editor returns true.

5.2 Declaring Layer Activation

In ServalCJ, we define when the layer is active by specifying the name of the
layer and a Boolean term, i.e., when the Boolean term is true, the layer is
active. This specification is performed using an activate declaration, which has
the following syntax.

activate LayerName Context;

This declaration begins with the keyword activate followed by the name of the
layer. Next, we specify a context, which has the boolean type in Java.

In particular, in ServalCJ, a context is declared using a temporal logic term
with call stacks. This term consists of if expressions that specify the condition
under which the context is active, from-to expressions that specify the from-
event and to-event that activate and deactivate the context, respectively, cflow
expressions that specify the control flows where that context is active, named
contexts that are contexts identified by name, and composite contexts that are
contexts combined by using logical-OR, logical-AND, and NOT expressions. We
discuss each of these terms in the following.

Conditional Expressions. The first way to specify layer activation is to use a
conditional (if) expression that corresponds to implicit activation (Sect. 2.3).
To support implicit activation, ServalCJ provides if expressions that specify
the condition under which the context is active. We have provided an example
in Fig. 4, which contains the following activate declaration.

activate FileUnsaved if(!f.isSaved());

Within if expressions, we can use any Boolean-type Java expression. Note that
ServalCJ can represent implicit activation that is applied per-instance. As shown
in Fig. 4, we can create a different instance of EachTabGroup for each tab that
contains distinct instances of Pane and FileHandler. Each instance of EachTab-
Group refers to a distinct instance of FileHandler through the variable f, which



Generalized Layer Activation Mechanism for Context-Oriented Programming 139

1 class TextEditor {

2 event MoveOnCode;

3 event MoveOnComments;

4 void onCursorPositionChanged() {

5 if (isCursorOnCode()) { MoveOnCode(); }

6 else if(isCursorOnComments()) { MoveOnComments(); }

7 }

8 }

Fig. 6. Publishing events in ServalCJ

is referenced from the if expression. Thus, we can control the activation of layers
for each tab independently.

From-to Expressions. A from-to expression specifies the events that activate and
deactivate the context. This expression makes it possible to represent event-based
layer activation. An event in ServalCJ is declared as a member of a class and trig-
gered like a method invocation. For example, in Fig. 6, two events, MoveOnCode
and MoveOnComments, are declared in the class TextEditor. These events are
triggered during the execution of onCursorPositionChanged and if the isCur-
sorOnCode (isCursorOnComments, resp.) call returns true. We can also declare
an event using the AspectJ pointcut language.

Using these events, we can specify when the EditingCode layer becomes
active and inactive as follows.

activate EditingCode
from MoveOnCode to MoveOnComments;

This declaration specifies a from-event that activates EditingCode and a to-event
that deactivates the layer. Here, the EditingCode layer is activated whenever the
MoveOnCode event is triggered and is deactivated whenever the MoveOnComments
event is triggered.

As in the case of implicit activation, we can specify the sender of the event
by referring to the parameter of the enclosing context group.

contextgroup CJEditGroup(TextEditor editor) {
activate EditingCode

from editor.MoveOnCode
to editor.MoveOnComments;

}

This activate declaration specifies that EditingCode is activated when MoveOn-
Code is triggered and is deactivated when MoveOnComments is triggered only
when these events are triggered by editor. Note that we cannot specify an event
sender in EventCJ.

Cflow Expressions. A cflow expression specifies a control-flow in which the layer
is active. This expression makes it possible to represent per-control-flow layer
activation. An example of a cflow expression is as follows.
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activate SearchingName
in cflow(call(void FileHandler.find(*)));

This context declaration specifies that the SearchingName layer is active only
under the control flow specified by the cflow expression, which is the entire
execution of the find method declared in the FileHandler class. Note that
cflow expressions are not a particular case of from-to expressions, because we
cannot represent a control-flow using a from-to expression when the control-flow
under the specified method call contains the same method call specified in the
cflow expression.

Per-Thread Activation. The with-block-based COP languages, such as Con-
textJ, activate layers in a per-thread manner. Note that most useful cases of
ContextJ are easily encoded by a combination of a global context group and
cflow activation. To restrict the effects of layer activation to the currently exe-
cuting thread, we may introduce another modifier, perthread, that limits the set
of subscribers to the subscribers accessed from the thread executing the control
flow.

global contextgroup AContextGroup(..) {
perthread activate ALayer in cflow(..);

}

The perthread modifier does not have any effect when it is used with other
expressions.

Named Contexts. The same contexts are sometimes used in different activate
declarations. To improve the reusability of contexts, ServalCJ provides a named
context, which is a mechanism that provides a name to a context to make it
possible to reference it from several activate declarations. A named context in
ServalCJ is declared using the following syntax.

context ContextName is Context;

This declaration begins with the keyword context followed by the name and
specification of the context. The syntax of the context is the same as that spec-
ified in activate declarations. The name of the context is used in activate decla-
rations and should be enclosed within a when clause. For example, the context
group declaration:

contextgroup Highlighter(SyntaxHighlighter sh) {
context RenderCode is

if(sh.getBlock().isCodeBlock());
activate Highlighting when RenderCode;

}

is identical to the following declaration.
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contextgroup Highlighter(SyntaxHighlighter sh) {
activate Highlighting

if(sh.getBlock().isCodeBlock());
}

ServalCJ also provides a way to compose contexts to represent more com-
plex layer activation. This composition was originally known as composite lay-
ers [22]. To compose contexts, we can use the logical operators || (logical-OR),
&& (logical-AND), and ! (NOT).

6 Case Study

The program editor example described above shows how different COP mecha-
nisms coexist in the same application, thereby justifying the design of the gen-
eralized layer activation mechanism in ServalCJ.

To provide more evidence, we conducted another case study to implement
a maze-solving simulator.3 This application simulates how a line-tracing robot
solves a maze. The following code skeleton illustrates how the robot solves a
maze.4

void run() {
while (!isGoal()) {

followSegment();
printPath();
turn();
simplify();

}
}

The followSegment method performs line-tracing until the robot reaches an
intersection, a corner, or a dead-end (in the following, we refer to these as
intersections). The robot detects an intersection using sensors. The printPath
method prints some debugging information on the LCD attached to the robot.
The turn method selects one path from the outgoing paths at an intersection by
applying a specific rule (e.g., the left-hand rule selects the left-most path) and
controls the motors to make the robot turn accordingly. The simplify method
calculates a potentially optimized path from the start point to the current inter-
section by eliminating dead-ends. The robot repeats these behaviors until it
reaches the goal. After solving the maze, the robot can run the optimized path
from the start point to the goal by simply following the path calculated by
simplify.

3 The simulator source code is available at https://github.com/ServalCJ/mazesimula
tor.git.

4 This case study was inspired by the real maze-solving Pololu 3pi Robot (http://
www.pololu.com/product/975). The simulator’s behavior follows the sample pro-
gram provided by the 3pi Robot distribution.

https://github.com/ServalCJ/mazesimulator.git
https://github.com/ServalCJ/mazesimulator.git
http://www.pololu.com/product/975
http://www.pololu.com/product/975
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(a) Simulator solving a maze (red lines
represent the traced path)

(b) Simulator in debug mode (green
lines overwrite the red lines and rep-
resent the optimized path; the textbox
displays the text-based notation of the
optimized path)

Fig. 7. The maze-solving simulator (the lines indicate paths within the maze; the black
circle represents the goal) (Color figure online)

If the maze contains loops, the robot must remember all visited intersections
and/or segments (i.e., a path from one intersection to one of the neighbors) to
detect such loops. There are several algorithms to solve mazes; some can only
solve mazes that contain no loops, and others can solve mazes with loops.

The simulator emulates the behavior of a maze-solving robot. In this simu-
lator, the maze is modeled as a graph where each node representing an intersec-
tion provides coordinates to indicate its position. The instance robot of Robot
emulates maze-solving in this model, e.g., the followSegment method simply
updates the current position of the robot according to the destination of the
edge that models the segment. The simulator provides three algorithms to solve
the maze, i.e., the left-hand rule, right-hand rule, and Trémaux’s algorithm.5

The selection of these algorithms changes the behavior of turn and possibly
that of simplify.

For the user, this simulator provides a number of functions, i.e., edits a maze,
simulates how the robot solves the maze, and simulates how the robot follows
the optimized path after solving the maze. These functions are exclusive, i.e.,
when we are editing a maze, we cannot run any simulations for solving the maze
or following the optimized path. These functions are switched when the user
finishes editing the maze (or loads a pre-edited maze) and when the robot finishes
solving the maze. The simulator provides GUI tools, such as a menubar and
menu buttons, that are switched automatically when the functions are switched.
During maze-solving, visited intersections and segments are colored to visualize
the traced path (Fig. 7(a)). Furthermore, while the robot is solving the maze,

5 Among them, only the last algorithm can solve mazes with loops.
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the user can select a debug mode to display the currently calculated optimized
path by printing text that represents the optimized path and changing the color
of intersections and segments in the optimized path (Fig. 7(b)).

We implemented this simulator using ServalCJ, and a number of layers were
defined to implement context-dependent behavior:

– EditingMaze provides GUI tools for editing the maze, such as inserting seg-
ments and intersections, saving the maze to a file, opening a maze from a file,
and finishing editing the maze.

– SolvingMaze provides GUI tools for starting the simulation, solving the maze,
stopping the simulation, switching to debug mode, and selecting the algorithm
to solve the maze (the default is the left-hand rule).

– RunningMaze provides GUI tools for starting the simulation, following the
optimized path and stopping the simulation.

– RightHandRule solves the maze using the right-hand rule.
– Tremaux solves the maze using Trémaux’s algorithm.
– Debugging provides a textbox to display the currently calculated optimized

path.
– UnderDebugging changes the color of segments and intersections in the maze

only if they are in the optimized path and debug mode is selected.

All of these layers crosscut multiple classes. Even RightHandRule and Tremaux,
which seem to be related to only a single instance of a robot, affect both a robot
instance and the GUI tools. Note that the debugging feature is divided into two
layers, Debugging and UnderDebugging, because they are applied in slightly
different situations, as will be explained below.

These layers change the behavior of multiple classes. For example, Solving-
Maze and RunningMaze change the appearance of the GUI components and the
behavior of the simulator. The simulator is executed in a different thread from
the GUI components, and the behavior of the run method is switched when the
active layer is changed (Fig. 8).

To specify layer activation, we implemented two context groups. The first con-
text group manages layer activations that are applied globally, and the other con-
text group manages layer activations that are applied only to specific instances.

Figure 9 shows the context group for managing globally activated layers. It
specifies activate declarations for five layers. The activation of the first four layers
is controlled by from-to expressions. The events that activate and deactivate the
layers correspond to the GUI events generated by the operations taken by the
user. The UnderDebugging layer is a composite layer; it is active only when the
Debugging layer is active and the additional condition specified by the named
context Print holds. As Fig. 10 shows, the UnderDebugging layer changes how
the color of visited segments and intersections is set. First, this behavior is
applicable only when the application is in the debug mode. Second, this behavior
is applicable only to the intersections and segments in the shortest path. Thus,
UnderDebugging is activated only in the control flow where the shortest path
is printed (which also calls the setTraced methods on Edge and Node). In this
case, we apply the cflow expression.



144 T. Kamina et al.

layer SolvingMaze {

class Robot {

public void run() {

/* maze solving behavior */

}

}

class View {

public void setMenuBar() { .. }

public void setButtons() { .. }

}

}

layer RunningMaze {

class Robot {

public void run() {

/* running the optimized path */

}

}

class View {

public void setMenuBar() { .. }

public void setButtons() { .. }

}

}

Fig. 8. Example layers in the maze-solving simulator

1 global contextgroup MazeUI() {

2 activate EditingMaze

3 from startEditor to startSolver;

4 activate SolvingMaze from startSolver to solved;

5 activate RunningMaze from solved to neverMatchingEvent;

6 activate Debugging from startDebug to endDebug;

7 context Print is in cflow(call(void Simulator.print()));

8 activate UnderDebugging when Debugging && when Print;

9 }

Fig. 9. Context group for globally activating layers

Figure 11 shows the context group for managing activations that are applica-
ble to a specific robot instance. Although there is only one robot instance in this
application, we apply per-instance activation in this case for future extensibility
(e.g., supporting multiple robots that execute different algorithms). In this case,
we apply conditional (if) expressions rather than from-to expressions to spec-
ify the activate declarations because, in the base program, the value indicating
the algorithm is set to the robot instance when the user selects the algorithm,
which is useful for determining which layer should be activated. Note that the
program structure of the base program may affect how the programmer selects
the activation mechanism.
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layer UnderDebugging {

class Edge { // segments

public void setTraced() {

proceed();

color = Color.GREEN; //the default is RED

src.setTraced();

dst.setTraced();

}

}

class Node { // intersections

public void setTraced() {

proceed();

color = Color.GREEN;

}

}

}

Fig. 10. The UnderDebugging layer

1 contextgroup Algorithm(Robot robot) {

2 activate RightHandRule if(robot.isRightHandRule());

3 activate Tremaux if(robot.isTremaux());

4 }

Fig. 11. Context group applicable to the robot instance

Discussion. We first discuss the appropriateness of applying COP to imple-
ment this simulator.6 First, the variations of context-dependent behavior in this
simulator crosscut multiple classes and are modularized by corresponding lay-
ers in COP. For example, the SolvingMaze and RunningMaze layers change the
behavior in both the simulator and the GUI components. Debugging changes the
appearance of the GUI (showing or hiding the textbox that prints the shortest
path) and the behavior of the simulator (whether the shortest path stored in
the simulator instance is printed). UnderDebugging changes the color of inter-
sections and segments. The algorithms applied to the simulator instance also
change the appearance of the GUI components (e.g., the currently selected algo-
rithm is disabled for selection in the menu). Thus, it is appropriate to use layers
to implement these behavioral variations.

Second, COP supports disciplined changes of context-dependent behavior.
We can apply meta-programming techniques to implement dynamic changes
of behavioral variations. However, in such techniques, it is difficult to mecha-
nize reasoning about some properties among these variations. For example, in
this simulator, the variations of behavior implemented in EditingMaze, Solv-
ingMaze, and RunningMaze should be exclusive. The algorithms executed by
the simulator are also exclusive. The behavior implemented in UnderDebugging

6 The same discussion is also applicable to the program editor example.
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should be applicable only when the system is in debug mode. It is difficult for
meta-programming to mechanically check such properties. On the other hand, by
using COP, we can easily generate a state transition model from the event-driven
layer switching to perform model checking [21]. The exclusiveness of algorithms
can be checked by checking only the exclusiveness of the simulator states that
affect the value of the expressions used in the if expressions (e.g., the value
of the isRightHandRule call). The dependency between UnderDebugging and
Debugging is obtained immediately from the context specification of the activate
declaration.

Finally, COP supports modularization of the specification that determines
when behavior changes occur. If we apply other approaches to implement such
behavior changes (e.g., the state design pattern), the behavior changes may be
hardwired and scattered in the base program. Using the declarative specification
of layer switching in COP languages, e.g., JCop [8] and EventCJ [21], such
behavior changes are specified separately. Although the examples shown in this
paper are written using imperative events for brevity, ServalCJ also supports
declarative events using AspectJ-like pointcut language.

We further compared ServalCJ with existing COP languages. The case study
showed that different activation mechanisms can be used in the same appli-
cation. As discussed in Sect. 2.3, no existing COP language supports such a
variety of activation mechanisms. There are no existing COP languages that
support all event-based, per-control-flow, and implicit activation mechanisms,
while ServalCJ supports all activation mechanisms (the imperative activation
in Subjective-C can also be represented by from-to expressions where the until
clause specifies an event that will never happen). Furthermore, the case study
demonstrated how several combinations of activation mechanisms and sets of
subscribers are used in the same application. In particular, the combination of
global and per-control-flow activation and per-instance and implicit activation
are used in the application. As Table 1 summarizes, existing COP languages do
not support such combinations. Even combining these languages, where we can
apply workarounds to represent such combinations, does not provide a sufficient
solution. For example, when combining Subjective-C and ContextJ, the imper-
ative activation can be used to globally activate and deactivate some layer L at
the beginning and end of a with-block, respectively. In this workaround, it is
the programmer’s responsibility not to forget the deactivation of L. The errors
caused by forgetting this deactivation can be avoided in ServalCJ by declaring a
cflow in a global context group. Furthermore, ServalCJ provides a more expres-
sive mechanism for representing per-instance and event-based activation than
existing languages. In ServalCJ, there are no limitations for objects to dynami-
cally subscribe to the context group, and we can specify the sender of the event.

7 Formal Model of Layer Activation

In this section, we formalize the semantics of layer activation in our model to pre-
cisely describe how generalized layer activation discussed in Sect. 4 is performed.
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We present a formal calculus Featherweight ServalCJ (FSCJ), which unifies dif-
ferent layer activation mechanisms (synchronous and asynchronous activation
mechanisms and global and per-instance activation mechanisms) by combining
two existing COP calculi, i.e., Featherweight EventCJ (FECJ) [3], which provides
per-instance and asynchronous activation, and ContextFJ [18], which provides
global and synchronous activation.

To prove that the activation policy discussed in Sect. 4 is always satisfied in
FSCJ, we formally define the priority of a layer and describe a safety property,
which we refer to as priority preservation. Intuitively, we consider that the pri-
ority of layer L1 is higher than that of layer L2 at the invocation of method C.m if
(1) both L1 and L2 override C.m and (2) if the body of L2.C.m is executed, there
must be an execution of L1.C.m prior to the execution of L2.C.m. The priority
preservation ensures that, if there are multiple layer activation mechanisms (e.g.,
synchronous and asynchronous) and some policy is defined between them (e.g.,
synchronously activated layers always have higher priority than asynchronously
activated layers), this policy is satisfied during computation.

Based on these definitions, we prove priority preservation in FSCJ. Further-
more, we show that these definitions are not specific to FSCJ but are useful for
discussing layer priority in other calculi for COP such as ContextFJ and context
holders [4]. We believe that these definitions are also applicable to discuss the
priorities of layers activated by the imperative activation mechanism and the
dynamic scoping mechanism in ContextJS [24].

We also show that FSCJ is parameterized over the activation policies. The
activation policy determined in Sect. 4 is application specific, and it is desirable
for programmers to configure it for specific cases. FSCJ allows activation policies
to be switched by switching only the definitions of some auxiliary functions with-
out changing the reduction rules. The proof of priority preservation for different
policies is obtained in a straightforward manner.

7.1 The Calculus

Syntax. The abstract syntax of FSCJ is shown in Fig. 12. Metavariable C ranges
over class names; L ranges over layer names; f ranges over field names; m ranges
over method names; � ranges over labels, which include an empty label ε; ι
ranges over instance labels; γ ranges over global labels; v and w range over
values; and x ranges over variables, which include a special variable this. Over-
lines denote sequences: e.g., f stands for a possibly empty sequence f1, · · · , fn.
We also abbreviate a sequence of pairs by writing “Cf” for “C1f1, · · · , Cnfn,”
where n denotes the length of C and f. Similarly, we write “Cf;” as shorthand
for the sequence of declarations “C1f1;. . . Cnfn;” and “this.f=f;” as shorthand
for “this.f1= f1;. . . ; this.fn= fn;”. We use commas and semicolons for con-
catenations. We abbreviate a concatenation LA; LS of asynchronously activated
layers LA and synchronously activated layers LS simply as a sequence of layers
L when such distinction is not important. It is assumed that sequences of field
declarations, parameter names, layer names, and method declarations contain
no duplicate names.
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CL ::= class C � C { C f; K M } (classes)
K (=:: constructors)

C(C f){ super(f); this.f = f; }
M ::= C m(C x){ return e; } (methods)

e,d ::= x | e�.f | e�.m(e�) | new C(e) (expressions)
| proceed(e) | with L e
| v | v<C,L,L>.m(v) | {e}

t ::= ↑ L |↓ L (activation rules)
� ::= ι | γ (event labels)
p ::= v �→ new C(v)<L> (partial stores)
μ ::= p (stores)
st ::= · | st � L (stack)

Fig. 12. FSCJ: abstract syntax

A class declaration CL consists of its name, its superclass name, field decla-
rations C f, a constructor K, and method definitions M. A constructor K is trivial;
it only sets the initial values to the corresponding fields. A method M takes argu-
ments x and returns the value of expression e. An expression can be a variable,
field access, method invocation, object instantiation, synchronous layer activa-
tion with, proceed call, and special runtime expressions, such as a location v,
{e}, and v<C,L,L>.m(v). These runtime expressions are explained in the fol-
lowing. Note that FSCJ is a functional calculus; thus, all constructs (including
with) return values.

A value v is a location. A store μ is a sequence of pairs of a location and
an object. We write this pair as v �→ new C(v)<L>, which is read as “object
new C(v)<L> is stored at location v.” This store is used to destructively update
the set of layers associated with each object during computation. The runtime
expression {e} appears only as a subterm of with under reduction. A stack st
remembers a sequence of layers L before the reduction of with starts so that the
computation can restore that sequence after it finishes the reduction of with.
The runtime expression new C(v)<C,L

′
,L>.m(e), where L

′ is assumed to be a
prefix of L, means that m is going to be invoked on new C(v). The annotation
<C,L

′
,L> indicates the cursor where method lookup should start. As explained

in the following, this form allow us to give the semantics of proceed by simple
substitution-based reduction.

A label attached to an expression denotes an event receiver that simplifies
the asynchronous layer activation; eι represents a situation in which an event
(that activates some layer) is received by e, and eγ represents a situation in
which an event that globally activates some layer is sent by e. To represent an
expression that does not receive or send any events, we introduce an empty label
ε. Typically, we write e to mean eε.

As in ContextFJ, the calculus does not provide syntax for layers because
the syntactical details of layers, such as the difference between class-in-layer
and layer-in-class styles [5], are not relevant. Partial methods are registered in
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a partial method table PT that maps a triple C, L, and m of class, layer, and
method names, respectively, to a method definition. The calculus also provides
an activation rule table TT that maps a label to an activation rule that is either
an activation ↑ L (activating L) or a deactivation ↓ L (deactivating L). Note that
TT(ε) = ∅ (no layers are activated and deactivated).

FSCJ supports the multiple layer activation mechanisms described in
Sect. 5.2. Intuitively, asynchronous layer activation triggered by the activation
rules in TT corresponds to layer activation using conditionals and from-to expres-
sions in ServalCJ. Synchronous layer activation represented by the with expres-
sions in FSCJ corresponds to layer activation using cflow in ServalCJ. A value
with a label v� corresponds to a subscriber in ServalCJ, and the global label γ
indicates the global layer activation.

A program (CT,PT,TT, e) consists of a class table CT (that maps a class
name to a class definition), a partial method table PT, an activation rule table
TT, and an expression e that corresponds to the body of the main method. We
assume CT, PT, and TT are fixed and satisfy the following sanity conditions:

1. CT(C) = class C... for any C ∈ dom(CT).
2. Object �∈ dom(CT).
3. For every class name C (except Object) appearing anywhere in CT, we have

C ∈ dom(CT).
4. There are no cycles in the transitive closure of � (extends).
5. PT (m,C,L) = ... m(...){...} for any (m, C, L) ∈ dom(PT).
6. TT(�) = t for every label � that appears in e, CT, and PT.

Auxiliary Functions. The operational semantics of FSCJ use auxiliary func-
tions to look up field and method definitions. These lookup functions are
defined in Fig. 13. The function fields(C) returns a sequence C f of pairs of a
field name and its type declared in class C and its superclasses. The function
mbody(m,C,L1,L2) returns a pair x.e of parameters and the body of method m in
class C when the search starts from L1. The other layer names L2 keep track of
the layers that are active when the search initially started. It also returns the
information where the method has been found. This information will be used
in the reduction rules to handle proceed. The method definition is searched for
in class C in all activated layers and then in the base definition. If no method
definition is found, then the search continues to C’s superclass. Note that in MB-
Super, which shows a case whereby the search proceeds to C’s superclass D, L
is copied to the third argument in the premise in order to consider all activated
layers.

Operational Semantics. The operational semantics are given by a reduction
relation of the form e | μ | L | st −→ e′ | μ′ | L′ | st′, which is read as “expression
e under a store μ, globally activated layers L, and a stack st reduces to e′ under
μ′, L′, and st′.” We assume that neither μ nor μ′ contain duplicate names.
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fields(C)=C f

fields(Object) = • (F-Object)

class C � D { C f; ... } fields(D) = D g

fields(C) = D g,C f
(F-Class)

mbody(m,C,L
′
,L)=x.e in D,L

′′

class C � D { ... C0 m(C x){ return e; } ... }
mbody(m,C, •,L) = x.e in C, • (MB-Class)

PT (m,C,L0) = C0 m(C x){ return e; }
mbody(m,C, (L

′
;L0),L) = x.e in C, (L

′
;L0)

(MB-Layer)

PT (m,C,L0) undefined mbody(m,C,L
′
,L) = x.e in D,L

′′

mbody(m,C, (L
′
;L0),L) = x.e in D,L

′′

(MB-NextLayer)

class C � D { ... M } m �∈ M mbody(m,D,L,L) = x.e in E,L
′

mbody(m,C, •,L) = x.e in E,L
′

(MB-Super)

Fig. 13. FSCJ: lookup functions

The reduction rules for layer activation and deactivation are shown in Fig. 14.
The rule R-LabelActI represents the reduction that occurs when a value v
receives an event denoted by label ι. This rule obtains the corresponding layer
activation rule stored in TTand calculates the order of active layers by applying
actAsync. The store μ is updated by inserting the location of the instance with
new active layers. The layer deactivation is provided by R-LabelDeactI, which
is obtained by replacing ↑ and actAsync in R-LabelActI with ↓ and deact,
respectively.

Similarly, the rule R-LabelActG represents the reduction that occurs when
a value v sends an event denoted by label γ, which triggers the global layer
activation. This rule updates the sequence of globally activated layers L. It also
applies actAsync to all the elements in μ using the auxiliary function actAsyncμ,
which is defined as follows.

μ′ = {v �→ new C(v)<L
′
> | v �→ new C(v)<L> ∈ μ, L

′ = actAsync(L, L)}
actAsyncμ(L, L) = μ′
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e | μ | L | st−→ e′ | μ′ | L′ | st′

TT (ι) =↑ L μ(v) = new C(v)<L
′
>

actAsync(L
′
, L) = L

′′
μ′ = (v �→ new C(v)<L

′′
>, μ)

vι | μ | L | st−→ v | μ′ | L | st
(R-LabelActI)

TT (ι) =↓ L μ(v) = new C(v)<L
′
>

deact(L
′
, L) = L

′′
μ′ = (v �→ new C(v)<L

′′
>, μ)

vι | μ | L | st−→ v | μ′ | L | st
(R-LabelDeactI)

TT (γ) =↑ L actAsyncμ(μ, L) = μ′

actAsync(L, L) = L
′

actAsyncst(st, L) = st′

vγ | μ | L | st−→ v | μ′ | L′ | st′ (R-LabelActG)

TT (γ) =↓ L deactμ(μ, L) = μ′

deact(L, L) = L
′

deactst(st, L) = st′

vγ | μ | L | st−→ v | μ′ | L′ | st′ (R-LabelDeactG)

actSync(L, L) = L
′

with L e | μ | L | st−→ { e} | μ | L′ | st � L
(R-ActSync)

e | μ | L | st−→ e′ | μ′ | L′ | st′
{e} | μ | L | st−→ { e′} | μ′ | L′ | st′ (R-ActSyncCont)

{v} | μ | L | st � L
′ −→ v | μ | L′ | st (R-ActSyncFin)

Fig. 14. FSCJ: reduction rules (1)

i.e., for each sequence of active layers Li in the range of μ is updated by applying
actAsync(Li, L). Similarly, R-LabelActG applies actAsync to the stack st using
the following auxiliary function.

actAsyncst(·) = ·

actAsyncst(st) = st′ actAsync(L) = L
′

actAsyncst(st 	 L) = st′ 	 L
′

The rule R-LabelDeactG defines the global layer deactivation. This rule
is obtained by replacing actAsync in R-LabelActG with deact. The auxiliary
functions deactμ and deactst are defined as follows.
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μ′ = {v �→ new C(v)<L
′
> | v �→ new C(v)<L> ∈ μ, L

′ = deact(L, L)}
deactμ(L, L) = μ′

deactst(·) = ·

deactst(st) = st′ deact(L) = L
′

deactst(st 	 L) = st′ 	 L
′

Note that there is a subtle problem here; that the global layer deactivation
can deactivate a layer that has been activated by with, which may contradict our
proposal that synchronous layer activation dominates asynchronous layer acti-
vation, because, in FSCJ (and in the implementation of ServalCJ), there is no
runtime information that retains the synchronously activated layers (the stack
does not remember the layer activated by synchronous activation but remem-
bers the layers activated prior to synchronous activation). This problem can be
resolved if we manage the synchronous layer activation separately, similar to
context holders [4].

The R-ActSync rule defines synchronous layer activation. The actSync
function places L on top of the sequence of activated layers L

′ and ensures it
is activated during the evaluation of body e, which is reduced to the runtime
expression {e}. Stack st is updated so that it can pop L, i.e., the globally acti-
vated layers before the evaluation of with, when the evaluation of the body e
is finished. The reduction rules for this runtime expression are given as rules
R-ActSyncCont and R-ActSyncFin, and the R-ActSyncFin rule ensures
that the pop operation can be applied only when the expression is in the form
of {v}, i.e., it preserves the push-pop correspondence in the nested with-blocks.

The reduction rules for field access, method invocation, and instance creation
are shown in Fig. 15. The rule R-Field for field access is straightforward, i.e.,
fields tells which argument to new C(..) corresponds to fi. The next three rules
are for method invocation. In the method lookup, we must include layers that
are activated globally and synchronously in the search sequence, as shown in the
R-Invk, R-InvkB and R-InvkP rules. The cursor for the method lookup is
set as a concatenation of the asynchronously activated layers in a per-instance
manner L

′′
A and globally and synchronously activated layers LS . The auxiliary

definition o represents concatenation of the asynchronously activated layers and
synchronously activated layers, and is defined as follows.

o(LA, LS) = LA; LS

This definition, along with actSync and actAsync, can be parameterized. As
discussed in Sect. 7.4, giving different definitions for them results in another cal-
culus that conforms to another activation policy, e.g., asynchronously activated
layers always supersede synchronously activated layers.

The R-New rule explains the reduction of an instance creation. Note that
globally and asynchronously activated layers LA are prospectively activated in
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e | μ | L | st −→ e′ | μ′ | L′ | st′

μ(v) = new C(w)<L
′
> fields(C) = C f

v.fi | μ | L | st −→ wi | μ | L | st (R-Field)

μ(v0) = new C(w)<L
′′
A> L

′′
= o(L

′′
A,LS) L = o(LA,LS)

v0<C,L
′′
,L

′′
>.m(v) | μ | L | st −→ e | μ′ | L′ | st′

v0.m(v) | μ | L | st −→ e | μ′ | L′ | st′ (R-Invk)

mbody(m,C,L
′′
,L

′
) = x.e in C′, •

v<C,L
′′
,L

′
>.m(w) | μ | L | st −→ [v/this,w/x]e | μ | L | st (R-InvkB)

mbody(m,C,L
′′
,L

′
) = x.e in C′, (L

′′′
;L0)

v<C,L
′′
,L

′
>.m(w) | μ | L | st −→ [v/this,w/x, v<C′,L

′′′
,L

′
>.m/proceed]e | μ | L | st

(R-InvkP)

w �∈ dom(μ) L = o(LA,LS)

new C(v) | μ | L | st −→ w | (w �→ new C(v)<LA>, μ) | L | st (R-New)

Fig. 15. FSCJ: reduction rules (2)

the new instance. Also note that each instance new C(v)<L> only has asynchro-
nously activated layers.

Finally, we provide a straightforward congruence rule that reduces a subex-
pression with a label.

e | μ | L | st −→ e′ | μ′ | L′ | st′

G[e�] | μ | L | st −→ G[e′�] | μ′ | L′ | st′
(RC-Label)

G[·] forms evaluation contexts, which is defined as follows.

G ::= [] | G.m(e�) | v�.m(w�,G,e�) | G.f | new C(v,G,e)

We write G[e�] for the ordinary expression obtained by replacing the hole in G
with e�. As in FECJ, FSCJ requires the receiver and all arguments on the left
of the redex to be values.

Example. In the piece of code in Sect. 3.2, the layers activated by synchronous
layer activation are pushed to list L̄S , and the layer activated by an event is
pushed to list L̄A. Thus, the resulting order of the active layers is as follows.

EditingComments;EditingCode,RenderingCode
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Thus, the priority of the EditingCode layer is higher than that of the Editing-
Comments layer, ensuring that syntax highlighting is always applied when the
sh.format(textBlock) method call is executed.

Since FSCJ does not provide layer-introduced base methods (i.e., methods
defined in layers but not defined in base classes) [19], the type system of FSCJ
is trivial. It is a straightforward adaptation of the type system of (an earlier
version) of ContextFJ [18]. The type soundness of FSCJ is also obtained by
straightforward adaptation of the proof of type soundness in ContextFJ, which
is also a straightforward adaptation of the proof of type soundness in Feather-
weight Java [20]. In this paper, we omit the type system and type soundness for
simplicity.

7.2 Definition of Priority

In the previous example, the priorities of layers are as expected with respect to
the activation policy discussed in Sect. 4. A formal study is a promising approach
to ensure that this activation policy is preserved during computation.

In this section, we formally provide a definition of layer priority. To make the
definition general and language-independent, we do not define priority in terms
of language-specific features, such as the ordering of activated layers. Instead,
we consider the history of activation and deactivation to define priority. To
describe such a history, we first define a trace of the execution. Let e0 −→∗ en

be the transitive closure of the smallstep reduction of some COP calculus.7 A
trace t is a sequence e′

0|Λ0, · · · , e′
n|Λn of a pair of an expression and a set of

activated layers8, where each e′
i is the redex in ei replaced with a subexpression

in ei+1 in one reduction step. Each Λi is a set of activated layers of a particular
computation unit on which we focus when ei is to be evaluated. For example,
for a trace of the application in ContextFJ, each Λi is a set of activated layers
in the runtime environment where ei is to be evaluated. Similarly, for a trace of
value v in FSCJ, each Λi is a set of activated layers associated with μ(v) in the
runtime environment where ei is to be evaluated. We also define an activation
sequence for t, written act(t), which is a sequence α0, · · · , αn−1, where each αi

is either φ (no layers are activated and deactivated), ↑ L (L is activated), or ↓ L
(L is deactivated). We assume that a trace t satisfies the following conditions.

Λi = Λi+1 if αi = φ, αi ∈ act(t)
Λi ∪ {L} = Λi+1 if αi =↑ L, αi ∈ act(t)
Λi \ {L} = Λi+1 if αi =↓ L, αi ∈ act(t)

7 While we consider the definitions that are independent from the activation mecha-
nisms, we still assume that layers and constructs of the host language are based on
ContextFJ-like calculi, e.g., we assume the existence of mbody and substitution-based
reduction for proceed.

8 To speak of the layer priority, we focus on which partial method executes first rather
than the ordering of the activated layers.
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In other words, at most one layer is added to (removed from) Λi to obtain Λi+1,
and each αi is constructed by taking the difference between Λi and Λi+1. Note
that each act does not correspond to each activation operation in the reduction
steps. It represents an observed activation when focusing on the set of activated
layers. For example, an activation operation that does not change the set of
activated layers (i.e., an operation activating an already activated layer) is not
captured in the trace.

Example. Let (CT,PT,TT, new C()γ .m(withL′new C())) be a well-typed FSCJ
program where TT(γ) =↑ L. We have the following reduction steps for this pro-
gram (each subexpression with an underline is replaced with another expression
in each reduction step).

new C()γ
.m(with L′new C())

−→ vγ .m(with L′new C()) where μ(v) = new C()
−→ v.m(with L′new C())
−→ v.m({new C()})
−→ v.m({v′}) where μ(v′) = new C()
−→ v.m(v′)
−→ · · ·

By listing each underlined subexpression, we have the trace t of the value v and
its activation sequence as follows.9

t = new C()γ | ∅, vγ | ∅, with L′new C() | {L}, new C() | {L, L′},
{v′} | {L, L′}, v.m(v′) | {L}, · · ·

act(t) = φ, ↑ L, ↑ L′, φ, ↓ L, φ, · · ·

A trace contains a history of layer activation, as well as a history of field
accesses and method invocations, including partial method invocations (of the
form v<C,L, L

′
>.m(..)) for each value. We can define the relation between lay-

ers at an execution point, i.e., the relation by which “the priority of layer L
is higher than the priority of L′ at em,” in terms of the positions of the par-
tial method invocations in the trace. Note that, if multiple occurrences of the
same value v exist in the expression ei in the reduction steps, each such value
is uniquely renamed to make each value identical in the trace. This renaming
prevents us from mixing multiple calls of the same method in the same expres-
sion. For example, assuming the expression v<C,L,L

′
>.m(v.m(v′)), the under-

lined expression is reduced to v < C, L
′′
, L

′′
> .m(..) = em′ , which is added to the

trace. Then, it becomes difficult to determine which method call, i.e., the outer
or inner call of m, was evaluated to produce em′ . To avoid this, the inner v is
renamed as another value, e.g., v1, in the trace.

9 All Λi are empty before v is created.
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Definition 1. Suppose we have a trace t = e0 | Λ0, · · · , en | Λn and an
expression em = v.m(..) in t where v is a value of type C. Assume that
L, L′ ∈ Λm and both L and L′ provide a partial method m that overrides
the method m in C. We say that L’s priority is higher than the priority
of L′ at em iff, if mbody(m, C, · · · ) = y.e′inD, (· · · ; L′) for some y, e′, and D
on the reduction of v < C, .. > .m(..) = eo′ where m < o′ and ∀i′ such that
m < i′ < o′, αi′ �=↑ L′, then there is some o such that m < o < o′ and
mbody(m, C, · · · ) = x.e in E, (· · · ; L) for some x, e and E on the reduction of
v < C, .. > .m(..) = eo.

While existing COP calculi express the precedence of layers in terms of layer
ordering, this definition of priority is applicable to other COP models that do not
incorporate the notion of ordering (e.g., a (imaginary) COP model where layer
priorities are defined statically). Of course, this definition of priority is applicable
to existing COP calculi. For example, ContextFJ [18] applies the semantics that
the most recently activated layer has the highest priority, which is expressed by
the following example (we write {Li} when we regard a sequence L as a set).

Example. Let (CT,PT, e0) be a well-typed ContextFJ program and • �
e0 −→∗ en be a transitive closure of reduction steps in ContextFJ. Let
t = e0 | {L0}, · · · , en | {Ln}, where each Li is an environment in which reduc-
tion of ei is performed, be a trace of the application in ContextFJ (rather than
applying the original ContextFJ dynamic semantics, we apply FSCJ-like seman-
tics; i.e., a with expression is reduced using R-ActSync in FSCJ), and both
↑ L = αi and ↑ L′ = αj ∈ act(t) are the most recent activations of L and L′

from the method invocation em = v.m(..), respectively. It is easy to show that,
if i < j, the priority of L is higher than the priority of L′ at em.

In the calculus that supports multiple activation mechanisms, such as FSCJ
and context holders [4], it is desirable to discuss the priorities of layers acti-
vated by different activation mechanisms. For this purpose, we distinguish the
different categories of activation mechanisms, and extend the definition of a
trace to express the activation sequence with multiple activation mechanisms.
A trace t with multiple activation mechanisms Xj (1 < j < m) is a sequence
e0 | {Λ01, · · · , Λ0m}, · · · , en | {Λn1, · · · , Λnm} of a pair of an expression and a
set of sets of activated layers where each Λij is a set of activated layers at ei

that are activated by Xj .

7.3 Property

We show that the activation policy discussed in Sect. 4 holds in FSCJ, which is
represented by the following priority preservation theorem.

Theorem 1 (priority preservation). For all em = v.m(..) in a trace t = e0 |
{{LS0}, {LA0}}, · · · , en | {{LSn}, {LAn}} of v in FSCJ, ∀L, L′ where L ∈ {LSm}
and L′ ∈ {LAm}, L’s priority is higher than that of L′ at em.
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Proof. By the definitions of actSync and actAsync, and the fact that trace t
is constructed from a transitive closure of reduction steps in FSCJ, there is
a store μ in the runtime environment where an expression that has em as a
subexpression to be evaluated, and μ(v) = new C(..)<L> where L = LAm; LSm.
Since L ∈ {LSm} and L′ ∈ {LAm}, we can also write L = L

′; L′; L′′′; L; L′′. We
prove this theorem by induction on the length of L′′′.

Base case: L = L
′; L′; L; L′′.

By the definition of priority, we only consider the case where both PT(m, C, L)
and PT(m, C, L′) are defined. Then, mbody(m, C, L′; L′, L) = y.e′ in D, (L; L′) for
some y, e′, and D. By the definition of mbody and R-InvkP, there must be
ep = v < C, L0, L > .m(..) for some L0 = L

′; L′; · · · and L = L0; · · · and p < o′

and mbody(m, C, L0, L) = y′.e′′in E, (· · · ; L′′). Without loss of generality, we can
let L0 = L

′; L′; L. Then, by the definition of mbody , L′′ = L, finishes the case.

Case: L = L
′; L′; L′′′; L; L′′.

Let L
′′′ = L1; L′′′.

By the hypothesis of the induction, the priority of L′′′ is higher than L’. The
base case tells us that L’s priority is higher than the priority of L′′′. It is obvious
that this priority relation has transitivity; thus, L’s priority is higher than L′’s,
which finishes the case. 
�

7.4 Changing the Activation Policy

In Sect. 4, we determined the activation policy, i.e., synchronously activated lay-
ers always have higher priorities than asynchronously activated layers. Although
this policy seems preferable in many cases, there may be other cases in which
asynchronous layer activation should supersede synchronous layer activation. For
example, some urgent behavior triggered by an external event should supersede
the currently executing synchronously activated behavior.

This section demonstrates that the activation policy in FSCJ is configurable.
By changing the auxiliary definitions used in the reduction rules, we obtain a
calculus that conforms to another activation policy, i.e., asynchronously acti-
vated layers always have higher priorities than synchronously activated layers,
without changing the reduction rules.

The auxiliary functions that we need to change when switching the activation
policies are actSync and actAsync, which are defined in Sect. 4.2. Assume that
their definitions are overridden as follows.

actSync(L̄S ; L̄A, L) =
{

(L̄S \ L)L; L̄A if L �∈ L̄A

L̄S ; L̄A if L ∈ L̄A

actAsync(L̄S ; L̄A, L) = (L̄S \ L); (L̄A \ L)L

We also override the auxiliary function o that is used in rules R-Invk and R-
New.

o(LA, LS) = LS ; LA
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The calculus obtained by applying these auxiliary functions conforms to
another activation policy. In fact, the proof is obtained immediately by switching
{LSm} and {LAm} in Theorem 1.

8 Implementation

The ServalCJ compiler is built on top of the AspectBench Compiler (abc) [9]
by extending the front-end. The compiler eventually generates bytecode that is
executable on the standard Java virtual machine by first translating a ServalCJ
program into an AspectJ program, and then by having the AspectJ compiler
generate bytecode.10

8.1 Overview of Translation

The translation processes manipulate the following four constructs separately:
partial and base methods, conditional layer activation, global layer activation,
and events. The main differences between the ServalCJ and EventCJ compilers
are the implementations of layer activation using conditional expressions and
global layer activation.

We first explain how layers are translated. The translation is similar to that
performed in the EventCJ compiler [21]. A layer is translated into an inner class,
and each partial method in that layer is translated into a method in that inner
class. The body of the base method for that partial method is translated to code
that first obtains the list of instances of active layers (i.e., instances of the inner
classes) and then calls the instance method at the tail position of the list. The
proceed call is translated to code that calls the method on the instance at the
preceding position in the list. Every class extended by partial methods will have
a new field, lm, to store a list of active layers.

The conditional expressions are evaluated just before a partial method call.
The ServalCJ compiler inserts checking code at the beginning of the layered
method. The checking code (1) tests whether the instance executing the method
subscribes to some context groups and (2) collects a list of context groups where
the instance subscribes. For each context group, the checking code evaluates
a conditional expression (associated with that context group). If any of the
conditions hold and the corresponding layer is inactive, the code activates the
layer. On the other hand, if they do not hold and the corresponding layer is
active, the code deactivates the layer.

ServalCJ implements global layer activation using the per-instance layer acti-
vation mechanism. It places globally active layers in the list of active layers in
every instance. To do so, the runtime manages a list of all instances in a pro-
gram.11 When a global layer is activated, that layer is added to the lm field of
10 The source code of the compiler is available at https://github.com/ServalCJ/pl.git.

Per-thread activation is currently not implemented.
11 Precisely, only instances that have globally activated layers are added to the list to

reduce the performance degradation.

https://github.com/ServalCJ/pl.git
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every instance in the list. The runtime also manages a list of globally activated
layers (that correspond to the global active layers L that appear in the reduction
relation in Appendix 7). This is used as an initial value of the list of active layers
for a newly created instance.

Events in ServalCJ are translated into pointcuts in AspectJ. As in EventCJ,
for each join point, the compiler inserts the advice code to update the lm field
of each subscriber and the list of globally activated layers to perform layer acti-
vation and deactivation. Cflow expressions are also implemented in a similar
manner, except that, in this case the advice code counts the number of method
calls to handle recursive calls appropriately. For layer activations with multiple
contexts using the && and || operators, the compiler resolves which layers should
be active on each join-point specified by the pointcuts.

8.2 Microbenchmarks

In this section, we evaluate the performance of method dispatch in ServalCJ
by comparing the duration of method calls with and without active layers in
ServalCJ with the duration of method calls in plain Java. To evaluate the over-
head imposed on the compiled program, we conducted two experiments. The
first experiment was performed to verify that ServalCJ does not degrade the
execution performance significantly when we do not use the ServalCJ specific
features that impose additional overhead. The objective of the second experi-
ment was to measure the overhead of layered method calls with implicit and
global activations.

We used JGFMethodBench in the Java Grande Forum Benchmark Suite [11]
version 2 as the benchmark. We extended this benchmark to evaluate the layered
method. For example, each target method in the program was extended using
an around partial method that contained only the proceed call. All experiments
were performed using the Oracle Java HotSpot VM 1.7.0 65 running on an Intel
Core i5-4440 (4 cores, 3.10 GHz) with Linux kernel version 2.6.32. To prohibit
the JIT compiler from eliminating the entire target method call, which is always
performed in the server VM (the default setting of the Java HotSpot VM) and
prohibits measuring overhead with respect to method calls, we used the client
VM setting. This avoids such elimination in the benchmark.

Figure 16 summarizes the method dispatch time in Java and ServalCJ with-
out active layers. The benchmark program measured the execution time of eight
types of method calls. The labels “same” and “other” indicate that the caller
and callee methods belong to the same or another instance/class, respectively.
“Instance” indicates that the method is an instance method, and “class” indi-
cates that it is a class method. “Synchronized” and “ofAbstract” indicate that
the method is either synchronized or abstract, respectively. In the ServalCJ ver-
sion, we defined a layer with a partial method for the instance methods that is
inactive during measurement. We did not provide any partial methods for the
class methods because ServalCJ does not currently support this.

Figure 16 shows that, when no layers are active, the performance of method
calls in ServalCJ is comparable to that of plain Java if implicit activation is
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Fig. 16. Execution time of a method call in ServalCJ and Java (shorter is better). We
ran the benchmarks 10 times; the range of error was approximately 0.007 % – 1 %.

not used. The primary reason for this is that, in this case, ServalCJ does not
impose overhead on the program except, with the exception of the overhead
incurred when it checks the number of currently active layers. The method call
is approximately two times slower if we use implicit activation where the con-
ditional expression in if is always evaluated just prior to the call of the partial
method; this overhead is also comparable to other COP languages.

Figure 17 shows the results of measuring the method dispatch time in Ser-
valCJ with 1 to 15 active layers. In this experiment, we defined 15 identical layers,
each of which declared an around partial method that contained only one single
proceed call for the “same:instance” method. As can be seen, each additional
active layer adds an approximately constant amount of time to the execution
time of a call, and thus the overhead is linear with the number of layers. This
result is similar to the performance of EventCJ [21] and ContextJ [6].

Finally, we show the execution time of global activation. As explained above,
global activation manipulates all instances of classes that have layers controlled
by the global context group; thus, the number of such instances affects the
execution time of the global activation. The execution time of global activation
is measured similarly to the method used in the JGFMethodBench to measure
the execution time of a method call. We repeatedly generated an event that
activates a layer and an event that deactivates the layer within a loop (we assume
that both layer activation and deactivation take the same amount of time). We
repeated this experiment while changing the number of target instances.



Generalized Layer Activation Mechanism for Context-Oriented Programming 161

Fig. 17. Execution time of a method call in ServalCJ when increasing the number of
active layers. We ran the benchmarks 10 times; the range of error was approximately
0.04 % – 0.1 %.

Figure 18 shows the results. We can observe that each additional target
instance adds a constant amount of time to the execution time of an activa-
tion. In the case of a large number of target instances, the layer activation may
take more than 1 ms. This overhead will not produce a severe problem if the
number of instances with layers is not very large, or if the layer activation does
not occur frequently. We consider that most COP applications satisfy these con-
ditions. For example, the environment or a user’s current task does not change
frequently within a very short period.

Fig. 18. Execution time of a global activation in ServalCJ when increasing the number
of target instances. We ran the benchmarks 10 times; the range of error was approxi-
mately 0.01 % – 0.08 %.
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8.3 Performance Evaluation with a Maze-Solving Simulator

We evaluated the performance impact of ServalCJ on a real application by esti-
mating the amount of overhead generated in the maze-solving robot simulator.
As the microbenchmark results in the previous section show, the amount of
overhead depends on several parameters such as the number of active layers.
Therefore, we measured those parameters in the application and applied them
to the microbenchmark results.

First, we measured the number of active layers, which was at most four. As
discussed in Sect. 6, there are seven layers. Among these seven layers, Editing-
Maze, SolvingMaze and RunningMaze are exclusive, and among the other four,
RightHandRule and Tremaux are exclusive. Thus, the number of active layers
is four when the debugging mode is selected (the Debugging layer contains a
control-flow that activates UnderDebugging).

We then estimated the number of subscribers for global activation. As illus-
trated in Fig. 9, the context group MazeUI is declared as global. This context
group has five activate declarations. Among them, UnderDebugging changes the
behavior of the instances of classes Edge (segment) and Node (intersection), and
the other four activate declarations change the behavior of Robot and View
(Fig. 8). While each instance of the latter two classes are singletons, the number
of instances of the former two classes depends on the size of the maze. When
we used the maze-solving robot in our classroom, the amount of Edge and Node
instances for the most complicated maze were 43 and 39, respectively. Thus, the
total number of subscribers for global activation was 84 (including two singleton
instances). According to the microbenchmarks, the overhead of each global layer
(de)activation in this case should be less than 3.0µs.

To determine the actual overhead of global activation in the maze-solving
simulator, we measured the total execution time of global activation using a
profiler. We conducted this experiment because, even though we believe that
layer (de)activation does not occur very often, the simulator example provides
a worse case whereby the UnderDebugging layer is activated periodically within
the loop statement when solving the maze. Our experiment (de)activated the
five layers in Fig. 9. We consider that the overhead was dominated by the cost of
(de)activation of UnderDebugging, which is (de)activated periodically.12 To mea-
sure the worst case, profiling was performed in a setting wherein the Debugging
layer was always active, implying that activation and deactivation of UnderDe-
bugging always occurred when refreshing the display. Since each layer activation
code was compiled into an advice of AspectJ, we measured the execution time of
each method compiled from those advices. We used the profiler included in the
Oracle NetBeans IDE 8.01. The total execution time of global layer activation
was approximately 25.7 ms, while that of the application was 5,870 ms (both are
CPU times). Thus, the overhead was 0.4 %, which should be acceptable in most
cases.

12 By “overhead,” we mean the overhead against the mechanism where the global
activation time is constant with respect to the number of instances.
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9 Related Work

COP Related Mechanisms. ContextJS [24] supports user-definable activation
mechanisms using the meta-programming features in JavaScript. This is suffi-
ciently powerful to realize any type of layer activation. However, it is nearly
impossible to reason about it mechanically because that constitutes meta-
programming. Due to its ability to change behavior dynamically, context-aware
applications are occasionally error-prone, and providing control of layer activa-
tion to the programmer may easily lead to poor application design. Thus, it is
preferable to support a more disciplined layer activation mechanism implemented
in the programming language.

There are several linguistic mechanisms similar to conditionals in ServalCJ.
In LEAD/LEAD++ [1,2], a method consists of a number of implementations
with a condition, and only the implementation where this condition holds is
selected for execution. The condition changes with respect to the states of the
so-called metaobjects, and the programmer can change these states. Tanter et al.
proposed context-aware aspects [30], i.e., aspects whose behaviors depend on
contexts. This concept is realized as a framework where a context is defined as
a pointcut. This is similar to AspectJ’s if pointcut, but it can also restrict the
past contexts. Contexts are composable, because they are realized as pointcuts.

Context traits [16] mix the mechanism of trait composition with COP. Con-
text traits take a different approach from that of layer-based COP in that the
order of layers is resolved by the programmer. They provide primitive layer acti-
vation mechanisms; however, only global activation is supported.

Related Mechanisms Beyond COP. There are also language mechanisms beyond
COP, such as aspect-oriented programming (AOP) and event-based program-
ming mechanisms. Generally, there are two major differences between them:
(1) while COP emphasizes on changing the behavior of multiple modules simul-
taneously, many of the other mechanisms are essentially intended to change the
behavior of each module, and (2) while COP separates context changes from
the execution of behavior that depends on contexts, the other mechanisms focus
on control of the execution points where such behavior is executed. We further
discuss the similarities and differences between our approach and each of the
related mechanisms in the following.

A ServalCJ’s event is equivalent to a join-point in AOP. In this sense, Ser-
valCJ’s layer activation mechanism is similar to typical AspectJ pointcuts [23]
because it provides declarative events using a pointcut language. However,
ServalCJ’s events can also be conditional. Although layer activation using a
conditional expression can be encoded in an AspectJ pointcut, e.g., “call(*
*.*(..)) && if(..),” this may lead to serious performance degradation.

EventJava [13] is an extension of Java that integrates events with methods.
In EventJava, events are broadcast as in the case of global layer activation in
ServalCJ. Dynamic subscription of event receivers in event-based languages was
proposed in Ptolemy [28]. ServalCJ integrates such event-based mechanisms with
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dynamic activation of layers in COP. However, a more complex event composition
mechanism [25,26] is currently not supported by the event model in ServalCJ.

Method slots [33] unify event-based programming and AOP by extending
the “slots” in Self [31] to hold multiple function closures for each method slot.
We can add function closures to each method slot dynamically. Unlike COP
mechanisms, this addition is performed in a per-method manner.

To represent context-dependent behavior, other approaches can be taken
by representing contexts as objects that are explicitly (or indirectly through
dependency injections like Scala’s cake pattern [27]) passed to a method. Even
though the obliviousness of the layer activation in our approach may make it
difficult to predict the base program behavior, it has its own advantage in that
it can modularize dynamic behavior changes. The reasoning about properties
of context-dependent behaviors described in the discussion part of Sect. 6 may
alleviate this disadvantage.

10 Conclusions

This paper has summarized the differences and commonalities of existing COP
languages and proposed a unified model of COP mechanisms and a new COP
language, ServalCJ, based on the proposed model. The model represents contexts
that specify the duration of layer activation and a set of subscribers that specifies
which targets the activation affects. The order of active layers is defined such that
synchronous layer activation always has higher priority than asynchronous layer
activation. ServalCJ implements this model by providing context groups that
can be used to define layer activation based on contexts. ServalCJ covers all the
use cases that can be implemented by existing COP mechanisms as well as some
other cases that existing COP mechanisms cannot address. The feasibility of the
proposed approach has been validated through implementation of a ServalCJ
compiler and a performance evaluation.
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W., Südholt, M. (eds.) SC 2006. LNCS, vol. 4089, pp. 227–242. Springer, Heidelberg
(2006). doi:10.1007/11821946 15

31. Ungar, D., Smith, R.B.: Self: the power of simplicity. In: OOPSLA 1987, pp. 227–
241 (1987)
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