
Contextual Effect Polymorphism Meets
Bidirectional Effects (Extended Abstract)

Kazuki Niimi
Tokyo Institute of Technology

Tokyo, Japan
niimi.k.ab@prg.is.titech.ac.jp

Youyou Cong
Hidehiko Masuhara

Tokyo Institute of Technology
Tokyo, Japan

cong@c.titech.ac.jp,masuhara@acm.org

Jonathan Immanuel
Brachthäuser

EPFL
Lausanne, Switzerland

jonathan.brachthauser@epfl.ch

1 Introduction
Algebraic effects and handlers [4, 5] offer a uniform and mod-
ular way to support user-defined effects. In the past decade,
researchers have been exploring the design space of effect
handler calculi, to make good balance between expressive-
ness, efficiency, and ease of reasoning [2, 7, 8]. There is also a
line of work on the applications of effect handlers in specific
domains, giving rise to specially-designed syntax, semantics,
and implementations [1, 3, 9].

This paper presents an extension of the Effekt language [2]
with bidirectional effects [9]. Effekt is a research language
with native support for effect handlers, based on a unique
mechanism called contextual effect polymorphism. Specifi-
cally, Effekt treats the latent effects of a function as a re-
quirement on its calling context, which makes reasoning of
effect-polymorphic functions easier. Bidirectional effects are
a variant of effects that can express bidirectional control flow.
More precisely, where traditional effect handlers allow con-
trol flow to be transferred from the call of an effect operation
to the handler, bidirectional effects now symmetrically al-
low control flow to be transferred in the other direction. We
study the combination of contextual effect polymorphism
and bidirectional effects both from a theoretical point of view
and from an implementation perspective.

Our specific contributions can be summarized as follows.
• We formalize a bidirectional-effects extension of System Ξ,
the core language of the Effekt language, and prove its
type soundness.

• We implement extended System Ξ by extending the
Effekt compiler and runtime system.

• We present two example programs written in extended
Effekt that make use of bidirectional effects.

2 Background
We start by briefly reviewing relevant concepts.

2.1 Contextual Effect Polymorphism
Effekt [2] is a language with native support for effect han-
dlers, exploring a programmer-centric approach to effect

TyDe ’21, August 22, 2021, Online
2021. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

polymorphism. Unlike traditional languages, where one has
to explicitly declare effect-polymorphic functions through
effect abstraction (as in ∀𝜖.𝐴 → 𝐵/𝜖), Effekt allows one to
use functions effect-polymorphically without requiring such
explicit abstraction. This is achieved by employing a contex-
tual reading of function effects: a function with latent effects
𝜖 is understood as requiring its calling context to handle 𝜖 .
The contextual reading, however, poses a challenge to ef-
fect safety, because it invalidates the traditional reasoning
about the purity of programs. For this reason, Effekt does
not support first-class functions. More precisely, Effekt treats
functions as blocks, which can be passed to, but cannot be
returned from, a function.

2.2 Bidirectional Effects
Bidirectional effects [9] are a variation of algebraic effects
that can express bidirectional control flow. Unlike ordinary
algebraic effects, where one can only transfer control from
an initiating effect to a handler, bidirectional effects addi-
tionally allow one to transfer control from a handler back
to the initiating effect. More specifically, one can handle an
effect performed at the handler site in the context where
the initiating effect was performed. This ability is useful
for implementing examples like generators with concurrent
modification of data structures, or async-await with asyn-
chronously raised exceptions.

To ensure effect safety, operations of bidirectional effects
are decorated with an extra effect annotation, telling us what
effects will be performed by their handlers. For instance, the
effect operation

effect Yield(a: Int): Unit / { Cleanup }

models a generator, yielding values of type Int. Annotating
the effect operation with an extra effect Cleanup allows the
handler for Yield to signal a cleanup at the call site of Yield.
To properly handle effects performed by handlers, the

argument of resumptions captured by bidirectional effect
handlers is evaluated after 𝛽-reduction. For instance, the
following program

def iter(lst: List[Int]): List[Int] / { Yield } = ...
// performs Yield and handles Cleanup

def main() = {

TyDe ’21, August 22, 2021, Online Niimi, Cong, Masuhara, and Brachthäuser

val lst = [0, 6, 4, 2, 8, 9]
val lst2 = try { iter(lst) }
with Yield { x =>

resume { if (x > 5) do Cleanup() else () }}
println(lst2) }

uses a generator iter and drops numbers greater than 5.
Calling the resumption resume with the block { if (x >

5) do Cleanup() else () } allows the handler to perform
Cleanup back to function iter, where it needs to be handled.

3 Formalization
We now describe how to extend Effekt with bidirectional
effects, and how to adopt its core language System Ξ [2]
to the extended setting. Roughly speaking, the necessary
changes include (i) augmenting the type of operations with
an effect component, and (ii) allowing resumptions to be
passed a block (instead of a value, which cannot be a func-
tion). Note that a block passed to a resumption represents
a thunked computation. We need the thunking because we
wish to delay the evaluation of resumption arguments.

3.1 Extended Effekt
Figure 1 presents the specification of extended Effekt. A key
addition is 𝜀 in the effect signature, which represents the set
of effects to be performd by the handler of an operation. This
extra component appears both in the syntax of effect decla-
rations and in the typing rules of effect-related constructs.
As in Brachthäuser et al. [2], a typing judgment carries three
environments: Γ for values, Δ for blocks, and Σ for effects. To
keep track of the effects that go backwards, we modify the
typing rule [EffectCall] for operation calls. Specifically,
we take a union of effects in the conclusion, including the
operation 𝐹 that is being called, and the effects 𝜀 that will
potentially be performed by the handler. To allow bidirec-
tional control-flow transfers, we also modify the typing rule
[Try] for handlers. Here, we make the continuation resume

receive a block (essentially a function) of type (() −→ 𝜏0/𝜀1)
as an argument. Conceptually, this block is evaluated at the
call site of the effect operation.

3.2 Extended System Ξ

Figure 2 defines the syntax of extended System Ξ, the core
language of Effekt with bidirectional effects. The modifica-
tions are mainly made in order to allow resumptions to be
called on blocks. In the typing rules [Cap] and [Handle],
we find that the parameter type of 𝑘 (resume in Effekt) is
a block type 𝜎 , instead of a value type 𝜏 as in the original
System Ξ. In the reduction rule (cap), we see that a block 𝑓

passed to a resumption 𝑘 is evaluated in the captured evalu-
ation context 𝐻𝑙 . Note that the parameters 𝐹 of a block call
𝑓 (𝐹) are specified by the translation of an effect call, namely
SJdo 𝐹 (𝑒1)K.

� �
Syntax:

Statements
𝑠 ::= ...

effect 𝐹 (𝑥 : 𝜏) : 𝜏 /𝜀 ; 𝑠 effect declaration

Syntax of Types:

Effect Environments Σ ::= ∅ | Σ, 𝐹 : 𝜏 −→ 𝜏 /𝜀

Typing rules:

Γ |Δ|Σ, 𝐹 : 𝜏1 −→ 𝜏0 /𝜀1 ⊢ 𝑠2 : 𝜏2 |𝜀2
[Effect]

Γ |Δ|Σ ⊢ effect 𝐹 (𝑥1 : 𝜏1) : 𝜏0 /𝜀1 ; 𝑠2 : 𝜏2 |𝜀2

Σ(𝐹) = 𝜏1 −→ 𝜏0 /𝜀 Γ ⊢ 𝑒1 : 𝜏1
[EffectCall]

Γ |Δ|Σ ⊢ do 𝐹 (𝑒1) : 𝜏0 |{𝐹 } ∪ 𝜀

Σ(𝐹) = 𝜏1 −→ 𝜏0 /𝜀1 Γ |Δ|Σ ⊢ 𝑠 : 𝜏 |𝜀

Γ, 𝑥1 : 𝜏1 |Δ, resume : (() −→ 𝜏0/𝜀1) −→ 𝜏/𝜙 |Σ ⊢ 𝑠 ′ : 𝜏 |𝜀0
Γ |Δ|Σ ⊢ try {𝑠} with 𝐹 {(𝑥1 : 𝜏1) ⇒ 𝑠 ′} : 𝜏 | (𝜀\{𝐹 }) ∪ 𝜀0

[Try]� �
Figure 1. Extended Effekt (modifications in gray)

We prove the soundness of extended System Ξ by showing
the following two theorems.

Theorem 3.1 (Progress). If ∅ | ∅ | ∅ ⊢ 𝑠 : 𝜏 , then 𝑠 is a value
𝑣 or 𝑠 ↦→ 𝑠 ′.

Theorem 3.2 (Preservation). If ∅ | ∅ | ∅ ⊢ 𝑠 : 𝜏 and 𝑠 ↦→ 𝑠 ′,
then ∅ | ∅ | ∅ ⊢ 𝑠 ′ : 𝜏 .

4 Examples
We modified the Effekt compiler and runtime1 according to
the formalization discussed in the previous section. Here, we
present two examples written in extended Effekt.

4.1 Client-server Communication
Bidirectional communication commonly occurs in client-
server systems. As a concrete example, let us consider a chat
system, where the user can post messages and add reactions.
In Figure 3, we define two effects necessary for implementing
the chat system. The Message effect includes operations for
sending data to the server, and the Response effect has an op-
eration for responding to the client’s action. We see that the
operations message and reaction have Response as their
effect, because each action has a corresponding response
from the server. Together with these effects, we define the
1https://github.com/effekt-lang/effekt

https://github.com/effekt-lang/effekt

Contextual Effect Polymorphism Meets
Bidirectional Effects (Extended Abstract) TyDe ’21, August 22, 2021, Online� �

Typing rules:

Ξ = Ξ1, 𝑙 : 𝜏,Ξ2 Γ, 𝑥1 : 𝜏1 |Δ, 𝑘 : (𝜎 → 𝜏0) → 𝜏 |Ξ1 ⊢ 𝑠 : 𝜏

Γ |Δ |Ξ ⊢ cap𝑙 {(𝑥1 : 𝜏1, 𝑘 : (𝜎 → 𝜏0) → 𝜏) ⇒ 𝑠 } : (𝜏1, 𝜎) → 𝜏0

[Cap]

Γ | Δ, 𝐹 : (𝜏1, 𝜎) → 𝜏0 | Ξ ⊢ 𝑠 : 𝜏

Γ, 𝑥 : 𝜏1 | Δ, 𝑘 : (𝜎 → 𝜏0) → 𝜏 | Ξ ⊢ 𝑠′ : 𝜏
[Handle]

Γ | Δ | Ξ ⊢ handle {𝐹 ⇒ 𝑠 } with {(𝑥, 𝑘) ⇒ 𝑠′ } : 𝜏

Reduction Rules:

(cap) #𝑙 · 𝐻𝑙 · (cap𝑙 {(𝑥, 𝑘) ⇒ 𝑠})(𝑣, 𝐹) →

𝑠 [𝑥 ↦→ 𝑣, 𝑘 ↦→ { 𝑓 ⇒ #𝑙 · 𝐻𝑙 · 𝑓 (𝐹) }]

Translation of Effect Types:

T J𝐹K = (𝜏1 , 𝐹1, ..., 𝐹𝑛) → 𝜏0

where Σ(𝐹) = 𝜏1 → 𝜏0 /𝐹1, ..., 𝐹𝑛

Translation of Statements:

SJeffect 𝐹 (𝑥1 : 𝜏1) : 𝜏0 /𝜀1 ; 𝑠K = SJ𝑠K

SJdo 𝐹 (𝑒1)K = 𝐹 (𝑒1, 𝐹1, ..., 𝐹𝑛)

where 𝐹 : 𝜏1 → 𝜏0/{𝐹1, ..., 𝐹𝑛}� �
Figure 2. Typing, reduction, and translation of System Ξ+

client and server functions. The former sends a message
while raising the Message effect, which is to be handled by
the latter. In the course of handling, server performs the
Response effect, which is listed in the signature of message.
The behavior of the chat system is depicted in Figure 4.

effect Message {
def message(msg: String): Int / { Response }
def reaction(id: Int): Unit / { Response } }

effect Response {
def response(msg: String): Unit }

def client(): Unit / { Message } = { ... }
def server() : Unit = try { ... } with Message {

... resume { ... do Response("Hi␣back") ... } ... }

Figure 3. Implementation of chat system

server()

Message
client()

do message("Hi")
Response

Figure 4. Behavior of chat system

4.2 Token Ring
Bidirectional effects are also useful for implementing a token-
ring network [6]. As shown in Figure 6 (left), a token-ring
network consists of multiple hosts that send around a token
in one direction. We implement such a network by declaring
two effects (Figure 5): Token, which transfers data Frame,
and Terminate, which represents the last node. A token
ring can now be described in terms of two functions node
and tokenRing. The former either calls the next node or
performs the Terminate effect if the current node is the last
one. The latter handles the Terminate effect performd by
node and itself performs the Token effect back to the last
node. Figure 6 (middle and right) shows how these functions
make Token flow through nodes.

record Frame(...)
effect Token(data: Option[Frame]): Unit

effect Terminate(): Unit / { Token }

Figure 5. Implementation of token ring

node 0

node 1

node 2

Empty token

Token with data

To
ken

 w
ith

 d
ata

tokenRing

node 0

node 1

node 4

...

Term
in

ate

tokenRing

node 0

node 1

node 4

To
ken Token

Token

...

2. Get last node 3. Let the token flow1. Token ring

Figure 6. Behavior of token ring

5 Conclusion and Future Work
We extended the Effekt language with bidirectional alge-
braic effects. Specifically, we proved the soundness of the
extended core language, and presented two examples written
in extended Effekt.
While the soundness theorems in Section 3 were estab-

lished in pencil-and-paper proofs, we fully mechanized a
variation of the extended language in Coq. A mechanization
of the calculus as presented here is under way.

TyDe ’21, August 22, 2021, Online Niimi, Cong, Masuhara, and Brachthäuser

References
[1] Danel Ahman and Matija Pretnar. 2021. Asynchronous Effects. Proc.

ACM Program. Lang. 5, POPL, Article 24 (Jan. 2021), 28 pages. https:
//doi.org/10.1145/3434305

[2] Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Oster-
mann. 2020. Effects as Capabilities: Effect Handlers and Lightweight
Effect Polymorphism. Proc. ACM Program. Lang. 4, OOPSLA, Article
126 (Nov. 2020), 30 pages. https://doi.org/10.1145/3428194

[3] Stephen Dolan, Spiros Eliopoulos, Daniel Hillerström, Anil Mad-
havapeddy, K. C. Sivaramakrishnan, and Leo White. 2018. Concurrent
System Programming with Effect Handlers. In Trends in Functional Pro-
gramming, Meng Wang and Scott Owens (Eds.). Springer International
Publishing, Cham, 98–117.

[4] Gordon Plotkin and Matija Pretnar. 2013. Handling Algebraic Effects.
Logical Methods in Computer Science 9, 4 (Dec 2013), 1 – 36. https:
//doi.org/10.2168/lmcs-9(4:23)2013

[5] Matija Pretnar. 2015. An Introduction to Algebraic Effects and Handlers.
Invited tutorial paper. Electronic Notes in Theoretical Computer Science
319 (2015), 19 – 35. https://doi.org/10.1016/j.entcs.2015.12.003 The
31st Conference on the Mathematical Foundations of Programming
Semantics (MFPS XXXI).

[6] Norman C Strole. 1987. The IBM token-ring network—A Functional
Overview. IEEE Network 1, 1 (1987), 23–30.

[7] Ningning Xie, Jonathan Immanuel Brachthäuser, Daniel Hillerström,
Philipp Schuster, and Daan Leijen. 2020. Effect Handlers, Evidently.
Proc. ACM Program. Lang. 4, ICFP, Article 99 (Aug. 2020), 29 pages.
https://doi.org/10.1145/3408981

[8] Yizhou Zhang and Andrew C. Myers. 2019. Abstraction-Safe Effect
Handlers via Tunneling. Proc. ACM Program. Lang. 3, POPL, Article 5
(Jan. 2019), 29 pages. https://doi.org/10.1145/3290318

[9] Yizhou Zhang, Guido Salvaneschi, and Andrew C. Myers. 2020. Han-
dling Bidirectional Control Flow. Proc. ACM Program. Lang. 4, OOPSLA,
Article 139 (Nov. 2020), 30 pages. https://doi.org/10.1145/3428207

https://doi.org/10.1145/3434305
https://doi.org/10.1145/3434305
https://doi.org/10.1145/3428194
https://doi.org/10.2168/lmcs-9(4:23)2013
https://doi.org/10.2168/lmcs-9(4:23)2013
https://doi.org/10.1016/j.entcs.2015.12.003
https://doi.org/10.1145/3408981
https://doi.org/10.1145/3290318
https://doi.org/10.1145/3428207

	1 Introduction
	2 Background
	2.1 Contextual Effect Polymorphism
	2.2 Bidirectional Effects

	3 Formalization
	3.1 Extended Effekt
	3.2 Extended System

	4 Examples
	4.1 Client-server Communication
	4.2 Token Ring

	5 Conclusion and Future Work
	References

