
A Per-type Instantiation Mechanism for Generic Aspects

Manabu Toyama
University of Tokyo

touyama@graco.c.u-tokyo.ac.jp

Tomoyuki Aotani
Japan Advanced Institute of Science

and Technology
aotani@jaist.ac.jp

Hidehiko Masuhara
University of Tokyo
masuhara@acm.org

Abstract
We propose a per-type instantiation mechanism for generic
aspects. Though AspectJ supports generic aspects, which de-
clare type parameters, we cannot declare aspects that are
parametrized over both field types and return types of ap-
plied join points without manually concretizing the type pa-
rameters. Our mechanism creates automatically an instance
of a generic aspect for each type of the applied join points.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features

General Terms Design, Languages

Keywords Aspect-oriented programming, generic aspects,
aspect instantiation

1. Introduction
This paper considers variability of aspects with respect to
types. In other words, by making aspects more type-generic,
we expect to support aspects compositional with a wider
variety of base programs.

We enable aspects that are parametrized over types of ad-
vice and fields in aspects. An example is the Flyweight [4]
(a variant of caching) aspect in Figure 11, which minimizes
memory use and improves the performance of the program
by reusing previously created objects.

The example demonstrates three advantages of our ap-
proach. First, the aspect is non-abstract. Therefore the pro-
grammers can apply the aspect by merely placing the as-
pect definition in the build path. Second, the aspect can be
applied to join points more than one type. Third, the re-
turn type of the around advice and the type of the field are

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
VariComp’12, March 26, 2012, Potsdam, Germany.
Copyright c⃝ 2012 ACM 978-1-4503-1101-4/12/03. . . $10.00

1 We explain this aspect in detail in Sections 2 and 3.

1 aspect Flyweight<V> {

2 Map<Object, V> constructedObjects;

3 V around(Object o):

4 call(Course+.new(*)) && args(o) {

5 if (constructedObjects.containsKey(o))

6 return constructedObjects.get(o);

7 V newObject = proceed(o);

8 constructedObjects.put(o, newObject);

9 return newObject;

10 }

11 }

Figure 1. A generic and concrete Flyweight aspect

parametrized with V, which is declared by the enclosing as-
pect Flyweight. Therefore type safety is guaranteed.

AspectJ and its extensions cannot support such an aspect.
For example, generics in AspectJ [1], though able to define
aspects with parameter types, require the programmer to
manually instantiate type parameters. It is not easy to do
so when the advice is applied to many join points with
different types. Moreover, expressiveness of pointcuts are
restricted. Pointcuts which specify join points of more than
one return type cause type errors. StrongAspectJ [3] supports
type parameters only in advice declarations.

We overcome these limitations by introducing a per-type

instantiation mechanism, which automatically creates
an aspect instance for each type of applicable join points.
The rationale behind the approach is that these aspects are
type-safe only if the values at the join points of different
types are not mixed together.

The contributions of this paper are as follows:

• We point out that AspectJ and StrongAspectJ cannot
parametrize an aspect over both field types and return
types of advice unless the programmers manually instan-
tiate type parameters. It is not easy to do so in general
because the programmers have to exhaustively enumer-
ate all the types of join points where advice is applied. In
other words, generic aspects in AspectJ do not allow the
programmers to use expressive pointcuts [2, 10].

25

1 class Course {

2 Course(Integer id) {/* database access */}

3 ...

4 }

Figure 2. A Course class definition

• We propose a per-type instantiation mechanism for con-
crete generic aspects (i.e., non-abstract generic aspects).
This mechanism creates an aspect instance for each type
of the applicable join points.

• We describe a weaving strategy for concrete generic as-
pects.

The problem is explained in Section 2. Section 3 proposes
the per-type instantiation mechanism. Section 4 explains the
weaving strategy for concrete generic aspects. Section 5
discusses the instanciation policy. After discussing related
work in Section 6, Section 7 concludes the paper and lists
future work.

2. Motivation
AspectJ cannot support aspects parametrized over both field
types and return types of the applied join points, without
manually instantiating type parameters. We show an aspect
that implements the Flyweight pattern [4] as an example of
such aspects. The pattern minimizes memory use and im-
proves the performance of the program by reusing previ-
ously created objects.

2.1 Example: Flyweight Pattern
Suppose we want to optimize a course registration system
in which the constructor of the Course class obtains infor-
mation from a database (see Figure 2). As we found many
construction of courses with the same ID, we apply the Fly-
weight pattern to reduce the number of database accesses.

Figure 3 shows a generic aspect that implements the Fly-
weight pattern. constructedObjects holds constructed
objects (line 2), and the around advice takes over constructor
calls (lines 3–10). The advice first checks whether an object
has ever been created that takes the same constructor param-
eters (line 5). If so, the advice returns the previously created
object (line 6). Otherwise, it creates a new object by calling
proceed, stores the object with the given arguments into
constructedObjects, and then returns the object (lines
7–9).

Note that generic aspects in AspectJ must be abstract.
Therefore we need to declare a concrete aspect that extends
Flyweight<V> (Figure 4) in order to implement the fly-
weight pattern for the Course class.

2.2 Problem
Manual type instantiation is not easy in general because the
programmers have to exhaustively enumerate all the types of

1 abstract aspect Flyweight<V> {

2 Map<Object, V> constructedObjects;

3 V around(Object o):

4 call(V.new(*)) && args(o) {

5 if (constructedObjects.containsKey(o))

6 return constructedObjects.get(o);

7 V newObject = proceed(o);

8 constructedObjects.put(o, newObject);

9 return newObject;

10 }

11 }

Figure 3. A generic Flyweight aspect in AspectJ 5

1 aspect CourseFlyweight

2 extends Flyweight<Course> {}

Figure 4. A concrete aspect extending Flyweight

join points where advice is applied. In other words, generic
aspects in AspectJ do not allow the programmers to use
expressive pointcuts [2, 10] if the return type of the advice is
parametrized.

Suppose the Course class has many subclasses and
we want to implement the Flyweight pattern for all sub-
classes of the Course class. It never helps us to replace
call(V.new(*)) within Flyweight<T> (line 4 in Fig-
ure 3) with call(V+.new(*)), i.e.,

V around(...): call(V+.new(*)) && args(o){...}

This is because the return types of the matched join points
and advice do not follow AspectJ’s typing rule; the return
type of around advice must be a subtype of the return types
of the join points where it is applied.

3. Our Approach
To cope with the problem described above, we propose a per-
type instantiation mechanism for concrete generic aspects.
Our approach is based on dynamic aspect instance creation
rather than static code generation; the mechanism creates an
instance for each type of the applied join points. One of its
advantages is easy integration with the weaving mechanism
in AspectJ. The compiler/weaver does not need to know
which types the generic aspect will be concretized, as in
AspectJ. Therefore, our weaving algorithm is a small and
straightforward extension of AspectJ’s weaving algorithm.

In our approach, we can define the generic Flyweight
aspect, as shown in Figure 1 without relying on abstract
aspects and abstract pointcuts.

The approach introduces instance advice and static advice
for concrete generic aspects, which are explained in Sections
3.3 and 3.4.

26

3.1 Instantiation Mechanism in AspectJ
We explain instantiation mechanisms in AspectJ before we
explain the per-type instantiation mechanism. In AspectJ,
the way an aspect is instantiated is specified at the as-
pect declaration. Aspect instances are automatically created.
When a piece of advice is run, an aspect instance is automat-
ically selected.

In the case of the pertarget A aspect shown below, an
instance is created at a join point that is specified by the
pointcut pc(), and associated with the target object of the
join point. When a piece of advice of the A aspect is run, an
aspect instance that is associated with the target object of the
join point is selected.

aspect A pertarget(pc()) {...}

3.2 Per-type Instantiation Mechanism
Our mechanism creates an instance of a generic aspect for
each type. When a piece of instance advice is about to run at
a join point, the mechanism selects an instance according to
the types of the join point2.

Instance Creation An instance of a concrete generic as-
pect is created for each type before the instance is selected.
If a type parameter of the aspect has an upper bound, an in-
stance is created for each subtype of the upper bound. If the
aspect has more than one parameter, an instance is created
for each combination of types.

Instance Selection When a piece of advice runs, the mech-
anism automatically selects an aspect instance according to
the types of the join point. The mechanism first identifies po-
sitions of the type parameters in the advice signature. It then
obtains the types of the join point that correspond to the type
parameters. Finally, it selects an aspect instance created for
these types.

When the advice in Figure 1 is applied to a constructor
call of the Course class, the mechanism confirms that the
type parameter V of the Flyweight aspect is used as the re-
turn type of the advice. Since the return type of a constructor
call of the Course class is Course, the mechanism selects
the Flyweight<Course> instance.

3.3 Instance Advice
The difference between instance advice and advice in As-
pectJ is that the signature of the instance advice must use all
type parameter types of the aspect. As mentioned in Section
3.2, instance selection depends on the positions of the type
parameters in the advice signature. Therefore, the mecha-
nism cannot select an instance if all type parameters are not
used in the signature of the instance advice. In such a case,
the mechanism rejects an instance advice.

2 By types of a join point, we mean the return type and the argument types
of the join point

1 aspect Flyweight<V> {

2 static before(Object o):

3 call(Course+.new(*))

4 && args(o) {

5 if (o == null)

6 throw ...

7 }

8 ...

9 }

Figure 5. An example of static advice

3.4 Static Advice
We introduce static advice in order to declare advice in-
dependent of type parameters in a concrete generic aspect.
There are cases where modularity is improved by declaring
advice independent of type parameters in generic aspects.
Static advice can be used to declare such advice. Static ad-
vice is not related to instances and cannot use the instance
fields, instance methods, and type parameters of the aspect.

Suppose we want to define before advice that checks
whether an argument of the constructor calls is null in
the Flyweight<V> aspect. We cannot declare this advice
as instance advice in the Flyweight<V> aspect because
this advice is independent of the type parameter of the
Flyweight<V> aspect. We can declare such advice in the
Flyweight<V> aspect by using static advice (Figure 5).

4. Implementation
In this section, we explain the implementation strategy of
our mechanism mentioned in Section 3.

In AspectJ, an aspect instance is selected by the aspectOf
method when a piece of advice is run. This method is added
automatically by a compiler, and the parameter types of this
method depend on an instantiation model of the aspect. In
our approach, this method receives Class objects, and re-
turns an aspect instance whose type is parameterized with
the types indicated by these Class objects.

When weaving advice in concrete generic aspects, a
weaver first identifies the positions of the type parameters
in the advice signature. It then obtains the types of the join
point corresponding to the type parameters. If a type pa-
rameter has an upper bound and the type corresponding to
the type parameter is not a subtype of that upper bound,
the weaver reports an error. Otherwise, the weaver inserts
code such that an instance of the aspect is obtained by the
aspectOf method and that method that the advice is trans-
lated into is invoked.

In the case where a piece of advice in the Flyweight<V>
aspect is woven into a constructor call of the Course class,
the base code

new Course(...)

27

1 aspect Flyweight<V> {

2 private static

3 Map<Class<?>, Flyweight<?>> map;

4 public static <T>

5 Flyweight<T> aspectOf(Class<T> c) {

6 if (map.containsKey(c)))

7 return (Flyweight<T>)map.get(c);

8 Flyweight<T> newInstance

9 = new Flyweight<T>();

10 map.put(c, newInstance);

11 return newInstance;

12 }

13 ... // original definition

14 }

Figure 6. aspectOf method of Flyweight<V> aspect

is translated into

Flyweight.aspectOf(Course.class).advice1(...)

(advice1 is the name of the method that the advice is
translated into)

4.1 aspectOf method definitions
In our approach, the compiler adds not only an aspectOf

method but also a Map field to hold instances of the aspect.
The keys of the Map field are Class objects and the values
are instances of the aspect. If an aspect has multiple type
parameters, the keys of the Map field are lists of Class

objects.
Figure 6 shows the aspectOf method definition of the

Flyweight<V> aspect. The map field holds instances of the
Flyweight<V> aspect (lines 2–3). The aspectOf method
first checks whether an instance associated with the given
argument is created (line 6). If so, the method returns the
instance (line 7). Otherwise, a new instance is created and
associated with the given Class object in map, then the
method returns the instance (lines 8–11).

Figure 7 shows an example of an aspectOf method of an
aspect with multiple type parameters. Such an aspect differs
from an aspect with one type parameter in that the key of the
map is a List object and the aspectOf method creates an
List object with the given Class objects as the key (lines
6–9).

5. Discussion
In this section, we discuss cases where a type parameter of
an aspect is used as an advice parameter type.

The advice of the A<T> aspect in Figure 8 is applied to
constructor calls of the BufferedOutputStream class. We
discuss which instance should be selected for a constructor
call whose argument is a FileOutputStream object.

new BufferedOutputStream(

new FileOutputStream(...))

1 aspect A<V1, ..., Vn> {

2 private static

3 Map<List, A<?, ..., ?>> map;

4 public static <T1, ..., Tn> A<T1, ..., Tn>

5 aspectOf(Class<T1> c1, ..., Class<Tn> cn) {

6 List l = new ArrayList();

7 l.add(c1);

8 ...

9 l.add(cn);

10 if (map.containsKey(l)))

11 return (A<T1, ..., Tn>)map.get(l);

12 A<T1, ..., Tn> newInstance

13 = new A<T1, ..., Tn>();

14 map.put(l, newInstance);

15 return newInstance;

16 }

17 ...

18 }

Figure 7. An aspectOf method of an aspect with multiple
type parameters

1 aspect A<T> {

2 before(T t):

3 call(BufferedOutputStream.new(OutputStream))

4 && args(t) {...}

5 }

Figure 8. Using a type parameter as the parameter type of
advice

If an instance is selected according to static types (the
same as for the case of return types), an instance of type
A<OutputStream> is selected.

However, advice parameter types indicate dynamic types
of arguments. For example, the advice shown below is ex-
ecuted if a dynamic type of an argument is a subtype of
FileOutputStream.

before(FileOutputStream t):

call(BufferedOutputStream.new(OutputStream))

&& args(t) {...}

From this point of view, an instance should be selected
according to dynamic types. In this case, an instance of type
A<FileOutputStream> is selected.

Our tentative choice is that the programmer can choose
static types or dynamic types. In the case of the aspect shown
below, an instance of type A<OutputStream> is selected.

aspect A<static T> {

before(T t):

call(BufferedOutputStream.new(OutputStream))

&& args(t) {...}}

28

In the case of the aspect shown below, an instance of type
A<FileOutputStream> is selected.

aspect A<dynamic T> {

before(T t):

call(BufferedOutputStream.new(OutputStream))

&& args(t) {...}}

6. Related Work
As mentioned in Section 1, generics are introduced in As-
pectJ [1] and StrongAspectJ [3].

Several studies introduce generic advice similar to that
in StrongAspectJ. Jagadeesan et al. introduced generic ad-
vice in AFGJ [8], which is an extension of Featherweight
Generic Java [7]. Lohmann et al. introduced generic advice
in AspectC++ [9].

Eos [11] and Association aspects [12] extend the instan-
tiation mechanism of AspectJ. These mechanisms associate
an instance of an aspect with values. Our mechanism asso-
ciates an instance of an aspect with types.

AspectJ has a pertypewithin instance model. In this
model, an instance of an aspect is selected according to the
type that a join point is within. In our approach, an instance
of an aspect is selected according to the types of join points.

Hannemann and Kiczales showed that implementing de-
sign patterns in AspectJ improves modurality [5]. They im-
plemented the Flyweight pattern using an aspect as a fac-
tory; therefore, with their approach it is difficult to add a
Flyweight pattern to a system. With our approach, it is easy
to add a Flyweight pattern to a system.

There is an exception to the rule mentioned in Section 2.2.
When the return type of around advice is Object, the advice
is not rejected regardless of the return type of the join points.
This exception allows advice to be applied to join points of
different types but breaks type safety. Our approach allows
advice to be applied into join points of different types while
preserving type safety.

7. Conclusion and Future Work
This paper proposed a per-type instantiation mechanism for
generic aspects. This mechanism allows the concrete generic
aspects by creating an instance of a generic aspect for each
type. When a piece of advice is executed, the mechanism
(creates if necessary and) selects an instance according to
the types of the join points.

We are currently finalising the language design and gath-
ering more use cases to evaluate possible design choices.

We then implement our mechanism by extending ajc [6].
The only difference between the syntax of our approach
and that of AspectJ is that concrete generic aspects and
static advice are allowed, and the only difference between
our weaving strategy and AspectJ’s weaving strategy is that
mentioned in Section 4. Therefore, we presume that the
extension is straightforward.

Formal discussion on type safety is also future work. We
plan to do this by extending Featherweight Java [7].

References
[1] The AspectJ 5 Development Kit Developer’s Notebook.

http://www.eclipse.org/aspectj/doc/released/

adk15notebook/, 2005.

[2] T. Aotani and H. Masuhara. SCoPE: an AspectJ compiler for
supporting user-defined analysis-based pointcuts. In Proceed-
ings of the 6th International Conference on Aspect-oriented
Software Sevelopment (AOSD’07), pages 161–172, 2007.

[3] B. D. Fraine, M. Südholt, and V. Jonckers. StrongAspectJ:
flexible and safe pointcut/advice bindings. In Proceedings of
the 7th International Conference on Aspect-Oriented Software
Development (AOSD’08), pages 60–71, 2008.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign patterns: elements of reusable object-oriented software.
Addison-Wesley, 1995.

[5] J. Hannemann and G. Kiczales. Design pattern implemen-
tation in Java and AspectJ. In Proceedings of the 17th ACM
SIGPLAN Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA’02), pages 161–
173, 2002.

[6] E. Hilsdale and J. Hugunin. Advice weaving in AspectJ. In
Proceedings of the 3rd International Conference on Aspect-
Oriented Software Development (AOSD’04), pages 26–35,
2004.

[7] A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java:
a minimal core calculus for Java and GJ. In Proceedings
of the 14th ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOP-
SLA’99), pages 132–146, 1999.

[8] R. Jagadeesan, A. Jeffrey, and J. Riely. Typed parametric poly-
morphism for aspects. Science of Computer Programming, 63
(3):267–296, 2006.

[9] D. Lohmann, G. Blaschke, and O. Spinczyk. Generic Advice:
On the combination of AOP with generative programming in
AspectC++. In Proceedings of the Third International Confer-
ence on Generative Programming and Component Engineer-
ing (GPCE2004), pages 55–74, 2004.

[10] K. Ostermann, M. Mezini, and C. Bockisch. Expressive
pointcuts for increased modularity. In Proceedings of the
19th European Conference on Object-Oriented Programming
(ECOOP’05), pages 214–240, 2005.

[11] H. Rajan and K. Sullivan. Eos: instance-level aspects for in-
tegrated system design. In Proceedings of the 9th European
Software Engineering Conference held jointly with 11th ACM
SIGSOFT International Symposium on Foundations of Soft-
ware Engineering (ESEC/FSE’03), pages 297–306, 2003.

[12] K. Sakurai, H. Masuhara, N. Ubayashi, S. Matsuura, and
S. Komiya. Design and implementation of an aspect instanti-
ation mechanism. Transactions on Aspect-Oriented Software
Development, 3880:259–292, 2006.

29

