
A Value Profiler
for Assisting Object-Oriented Program Specialization

Takahiro Kamio
∗

Graduate School of Arts and Sciences
University of Tokyo

Hidehiko Masuhara
Graduate School of Arts and Sciences

University of Tokyo

masuhara@acm.org

ABSTRACT
We present a value profiler for object-oriented programs that
counts frequencies parameters to method calls. It is aimed at
identifying methods that can be optimized by program spe-
cialization techniques. By adding timestamps to objects,
the profiler accurately tests equality over mutable objects
on a per-method basis. Our experiments with a 64602 lines
of Java program showed that the profile report can reduce
effort at manually finding the target methods of optimiza-
tion, which speeded the overall execution time up more than
10%.

1. INTRODUCTION
This paper proposes a tool to help improving runtime per-

formance of generic programs. Modern programming lan-
guages and programming techniques encourange to build
generic programs for faster development and eaiser main-
tenance. Such languages and techniques include object-
oriented languages, design patterns, component frameworks,
and so forth. The basic idea of those languages and tech-
niques is to extract common parts from similar systems, and
to parameterize them so that they can be used in specific
contexts.
Such generic programs are, however, less efficient in terms

of runtime performance since they usually have to check pa-
rameters at runtime. For example, a generic GUI compo-
nent (e.g., a button on a screen) can take many parameters
to control its appearance (e.g., the background color and
the thickness of the border). Even such parameters are not
changed during executions of some programs, they have to
be checked for each time the component is drawn on a screen.
In order to improve the efficiency of generic programs, sev-

eral program specialization techniques are proposed, includ-
ing partial evaluation[5, 10, 13, 18], data specialization[4,
12], and memoization[14]. A common idea behind those
techniques is to replace a code fragment that frequently runs
with the same parameters with a specialized code fragment
that directly yields the result.
One of the difficulties of those techniques is to accurately

specify a target code fragment in a program. This is be-
cause those techniques are effective to only the code taking

∗The first author is currently with Fuji Re-
search Institute Corporation, reachable at
takahiro kamio@fuji-ric.co.jp.

the same parameters every time or sufficiently many times,
and could even degrade performance when applied to in-
appropriate code. However, the values of parameters and
their variations are runtime properties, and thus difficult to
be reasoned about from a program text.
This paper presents a value profiler for object-oriented

programs. Value profiling[1, 2, 20] is a technique to find
out instructions that are frequently executed with the same
values in an execution of a program. It is useful for apply-
ing instruction-level optimizations[16] and for specializing
in a C-like programming language[15]. Our value profiler is
different from the existing ones in that it profiles informa-
tion at method call level, and it targets to object-oriented
programs.
Our value profiler monitors an execution of a Java pro-

gram, and shows a list of methods that are frequently exe-
cuted with the same parameters. The report from our pro-
filer is intended to be used with the report from the time
profiler, which shows elapsed times of methods. Since the
parameter values to a method mostly determines the behav-
ior of the method1, the profiler reports are useful for finding
methods that can be optimized by specialization techniques.
From our experiments to profile an execution of a Java pro-
gram consisting of 1513 methods, the profiling report is es-
timated to be useful to find out the methods that can be
optimized by memoization techniques. In fact, optimizing
the methods improved performance of the program more
than ten percent. Currently, we merely used the profiling
report for manual optimizations, but it could be a good basis
for building an automated system.
One of the main contributions of our profiler is that its

ability to accurately handle object values. In object-oriented
languages like Java, a value in an object field can be changed
by an assignment operation. As a result, even when a single
object is used as a parameter to method calls, the method
could behave differently if the object had different values in
its field. Our proposed profiling technique can distinguish
objects that have different values in their fields by using
timestamps.
The rest of the paper is organized as follows. Section 2 in-

troduces an example program to be profiled and presents an
optimization technique to the program. Section 3 presents a
basic framework of our profiler and the definitions of equal-

1Values in global variables can also determine the behavior.
Although our current profiler ignores global variables, it can
straightforwardly profile global variables by regarding them
as implicit parameters to every method.

masuhara
In Proceedings of Workshop on New Approaches to Software Construction (WNASC 2004), Tokyo, September 2004.

class ASTObject{

ASTObject parent;

SourceLocation srcLoc;

TypeDec getBytecodeTypeDec(){

if(getParent() instanceof TypeDec)

return (TypeDec)getParent();

else return getParent().getBytecodeTypeDec();

}

int getSourceLine(){ return srcLoc.getLine(); }

ASTObject getParent(){ return parent; }

...

}

class TypeDec extends ASTObject{ ... }

class SourceLocation {

int lineNumber;

int getLine() { return lineNumber; }

...

}

Figure 1: An Excerpt of AspectJ Compiler

ity over objects, which play crucial roles in the profiler. Sec-
tion 4 presents implementation of the profiler. Section 5
evaluates the effectiveness and efficiency of the profiler by
applying it to a practical software system. Section 6 dis-
cusses related work. Section 7 concludes the paper.

2. AN EXAMPLE TARGET PROGRAM AND
OPTIMIZATION

2.1 Target Program
We chose the source code of the AspectJ compiler version

1.0.6 as a target of profiling and optimization. The compiler,
consisting of 64602 lines of Java code, is widely used for
developing various applications including commercial ones,
is written in a reusable manner by exploiting the design
patterns. Figure 1 is an excerpt of ASTObject class in the
compiler, which is the common superclass for all classes of
abstract syntax tree nodes. Each ASTObject object has a
link to its parent node in an abstract syntax tree in parent

field, and has information about the source code location in
srcLoc field2 The getBytecodeTypeDec method returns an
enclosing type (e.g., class or interface) declaration of a node
by recursively following the parent field until it finds a node
of type TypeDec. The getSourceLine method returns the
line number in the source program that corresponds to the
ASTObject node.

2.2 Memoization of a Method
Method getBytecodeTypeDec can be optimized by the

memoization technique[14]. Figure 2 shows the memoizing
version of the ASTObject. It defines a hash table in class
variable cache for recording a pair of the parameter and
the result of the method3. When the method is called, it

2The srcLoc field and related methods are added by the
authors for the explanation purposes.
3Since the return value of the method depends only on the
receiver object, we can use an instance variable instead of a

class ASTObject{

ASTObject parent;

SourceLocation srcLoc;

// a map to record the parameter-result pairs

static HashMap cache=new HashMap();

TypeDec getBytecodeTypeDec(){

if(cache.containsKey(this))

// return the recorded result if the cache

// contains the value for this.

return (TypeDec)cache.get(this);

else {

// perform original computation otherwise

TypeDec r;

if(getParent() instanceof TypeDec)

r = (TypeDec)getParent();

else r = getParent().getBytecodeTypeDec();

cache.put(this,r); // record the pair

return r;

}

}

...

}

Figure 2: getBytecodeTypeDec with Memoization

looks in cache for the return value of the parameter (i.e.,
the receiver object), and returns the result if there is. If
there is not, it performs original computation, records the
parameter and the result, and returns the result.
When the compiler runs with the memoizing version of

getBytecodeTypeDec in the figure, it is 12.9% faster than
one with the original version as we will see in Section 5.2.
The method getBytecodeTypeDec satisfies conditions that

make memoization safe and effective. The method always
returns the same result for the same parameter (i.e., the
same receiver) because there is no code in the program that
modifies the parent field after constructed an ASTObject

node. The method takes the same parameters for sufficiently
many times as will see in Section 5. As we discussed earlier,
the latter condition can not be confirmed without running
the program.

3. PROFILER

3.1 Framework of Value Profiler
We propose a value profiler for object-oriented programs,

which monitors a program execution to show how frequently
methods4 in the program are called with the same set of
parameters.
Figure 3 shows the framework of the profiler. The follow-

ing three steps in the profiler generate the report:

1. It monitors an execution of a target program. When
the program calls a method, it records the parameter

global hash table in this case.
4Precisely, the profiler also reports on constructor execu-
tions. As they can be treated as in the same manner as
method calls, we do not explicitly mention about construc-
tors in the rest of the paper.

...
getLexType() {

...
}
...
addMRef(NType,Str,Str){

...
}
...

method #call freqs.
getLexType 410 10 10 3...
addMRef 13 54 38 8
: : :

addMRef
702 556 "getX" ""
842 803 "print" "I"
702 556 "setX" "I"
702 556 "getY" ""
842 803 "write" "B"
: : : :

getLexType
397
204
52
397
397
:

val. #
(702,556) 7
(842,803) 4
: :

record

record

ex
ec

ut
io

n

count
val.#
397 41
204 41
52 12
:

count

show

target program

profile report

recorded parameters

Figure 3: Framework of the Profiler

values into a parameter table of the method. The val-
ues include the value of the receiver object when it is
a call to an instance method.

2. After finished execution of the target program, it counts
the number of the same parameter values for each
method. In other words, for each method, it forms
all equivalence classes of parameter values, and then
counts the sizes of the classes. This process may ignore
parameter values at some positions, which is explained
below.

3. It shows the methods with the frequencies of the same
parameters. The frequencies are the sorted percents of
the number of same parameter values counted in the
previous step.

Figure 4 shows a part of the profile report on an execution
of AspectJ compiler. Each row corresponds to a method in
the target program, consisting of the method signature, the
number of calls, and the frequencies of the same parame-
ters. The underlined types in the signature denote that the
parameters in those positions are used for counting the fre-
quencies of the same parameter sets. A parameter frequency
is the relative number of calls to the method that take the
same parameter values with respect to the underlined pa-
rameter positions. For example, the first row shows that,
among 410 calls to ASTObject.getLexType, 10 percent of
the calls were performed on one receiver object, another 10
percent were on another object, another 3 percent were on
yet another object, and so on.
The profiler ignores values at some parameter positions

when a method does not have sufficiently high parameter
frequencies. In other words, when it finds that the values at
some parameter positions to a method that are always dif-
ferent, it tries to count parameter frequencies by excluding
the values at those parameter positions. Since some special-
ization techniques can improve performance even with some
stable parameters, this feature will extend optimization op-
portunities. In an execution of the target program, the pa-
rameter values to CP.addMRef are always different when we
compare all four parameter positions. If we ignore the last
two parameter positions, it turns out that there are only
three pairs of values for the first parameter positions.

3.2 Equality between Object Values

We proposed a technique to test equality between object
values so that the profiler can count the parameter frequen-
cies even when a method takes mutable objects as its pa-
rameter. As mentioned above, a parameter frequency is the
number of calls that take the same set of parameters to a
method. It is thus important to have an adequate equality
definition for profilers to generate useful reports.
Here we discuss four definitions to test equality between

object values, namely (R) referential equality, (S) structural
equality, (MT+R) modification time and referential equal-
ity, and (MT+R/M) per-method modification time and ref-
erential equality, which is our proposed one. Table 1 shows
the properties of those definitions. There are two efficiency-
related properties: how much memory space is required for
recording one parameter at a call, and how much additional
memory space is required for each object. There are also two
precision-related properties: whether it can detect modifica-
tions on object fields, and whether it can ignore modifica-
tions on fields that are not accessed by a method. To sum-
marize, our proposed definition realizes more precise equal-
ity with reasonable amount of memory requirements.
The properties of those definitions are discussed by using

the following scenario.

An Example Scenario: Assume that a code
fragment runs with an object graph shown in Fig-
ure 5. The code calls methods getSourceLine

and getBytecodeTypeDec to object ast before
and after assignment to field lineNumber in ob-
ject srcLoc, which is referenced from ast.

This example suggests an intuitive definition of equality; ob-
ject values should be equal each other when fields that are
accessed through the objects have equal values. For method
getSourceLine, values of object ast are different before and
after the assignment even though the fields of ast are not
changed. This is because the field lineNumber of object
srcLoc, which is accessed through object ast, gives differ-
ent values. Conversely, for method getBytecodeTypeDec,
values of object ast are equal because the fields accessed by
getBytecodeTypeDec give the same value.
Below, we present the four equality definitions and how

they distinguish the parameters in the example scenario.
The definitions are given as the conditions to make values
of o1 and o2 to be equal in a situation when a program calls
method m with a parameter o1, and then calls m with a

method signature # calls param. freqs.
ASTObject.getLexType() 410 10, 10, 3, . . .
ASTObject.getBytecodeTypeDec() 275 25, 4, 3, . . .
JComp.beginSection(String,boolean) 32 75, 25
CP.addMRef(NType,String,String) 13 54, 38, 8
NType.getLegalString() 10 40, 20, . . .

Figure 4: Excerpted Profiler Report on an Execution of AspectJ Compiler (some method signatures are
abbreviated)

Table 1: Properties of Equality Definitions (M denotes the number of the methods in a program. K denotes
size of an object graph)

property \ equality definition R S MT+R MT+R/M
required memory for recording one parameter value (words) 1 K 2 2
additional memory to each object (words) 0 0 1 ≤ M
can detect field updates no yes yes yes
can ignore unaccessed fields no no no yes

l1 = ast.getSourceLine();

t1 = ast.getBytecodeTypeDec();

ast.srcLoc.lineNumber = -1;

l2 = ast.getSourceLine();

t2 = ast.getBytecodeTypeDec();

ASTObj e c t
Sour c e Li ne

Type De c

a s t

pa r e nt

s r c Loc

Figure 5: An Example Scenario that Manipulates
an ASTObject Graph

parameter o2. Note that o1 and o2 can be the same object.

3.2.1 Referential Equality
Values of objects o1 and o2 are referentially equal if and

only if o1 and o2 have the same reference. It can be easily
implemented by merely recording a reference to each param-
eter at method calls, and by comparing recorded references
when counting frequencies.
An obvious problem of the referential equality is that it

does not distinguish the values in object fields. In the exam-
ple scenario, the receiver objects of the calls to getSourceLine
have referentially equal values though the calls return dif-
ferent values.

3.2.2 Structural Equality
Values of o1 and o2 are structurally equal if and only if

either of the following holds: (1) o1 and o2 are equal prim-
itive values, or (2) o1 and o2 belong to the same class and
have structurally equal values in each field.
Though it is powerful, this definition has two problems.

First, a naive implementation for structural equality is not
memory efficient. Since the profiler needs to compare values
that are used at different time in an execution, it has to make
a copy of all reachable objects from a parameter value at a
method call, and has to compare recorded object graphs
when counting frequencies. Since an object graph can be

large, making a copy of an object graph is not acceptable in
many applications.
Second, structural equality is too sensitive to the changes

in object fields. In the example scenario, the receiver ob-
jects of the calls to getBytecodeTypeDec are not structurally
equal due to the change in a field that is not accessed during
getBytecodeTypeDec. The problem can be generalized as
follows. Suppose an object has two kinds of fields, namely,
unstable (i.e., frequently modified) fields and stable (i.e.,
rarely modified) fields. A method that accesses only the
stable fields can be a good candidate for program special-
ization. However, the profiler that uses structural equality
can not detect such a method because it regards that the
method always takes different parameter values due to the
modifications to the unstable fields. As practical programs
tend to allocate various kinds of information into one object,
this problem could frequently happen.

3.2.3 Modification Time and Referential Equality
By improving referential equality definitions, we can im-

plement approximation of structural equality more efficiently.
We first define the modification time of an object. The

modification time of an object o is the latest time when
an assignment operation to a field of o is executed. The
modification time of the object graph from o is the latest
modification time in objects reachable from o.
Values of objects o1 and o2 are modification time and

referentially equal if and only if o1 and o2 have the same
reference and the object graphs reachable from o1 and o2,
respectively, have the same modification time.
The modification time and reference equality approximates

the structural equality. When all objects that are reachable
from an object are not changed from time t1 to t2, the values
of the object at t1 and t2 are modification time and refer-
entially equal and also structurally equal. When two values
are not structurally equal, they are not modification time
and referentially equal as well. (On the other hand, values
that are not modification time and referentially equal can
be structurally equal.) In the example scenario, object ast
does not give modification time and referentially equal val-

ues before and after the assignment because the assignment
changes the modification time of the object graph from ob-
ject ast.
The modification time and referential equality can be im-

plemented (1) by adding a timestamp field to every object,
(2) by updating the timestamp of an object when a field
of the object is modified, and (3) by recording a reference
to a parameter value and a modification time of the object
graph for each parameter of a method call. When counting
frequencies, the profiler only needs to compare the pairs of
reference and timestamp to test the equality.
Note that the modification time and referential equality

does not solve the second problem in structural equality,
which is too sensitive to field assignments. The next defini-
tion solves this.

3.2.4 Per-Method Modification Time and Reference
Equality

We propose an equality definition called per-method mod-
ification time and reference equality, which compares differ-
ent set of fields in object graphs on a per method basis. In-
tuitively, two parameters o1 and o2 to method m are equal
when they have the same values in the fields that are ac-
cessed during execution of m and methods called from m.
First, we define the reference field set of a method

m as a minimal set of field signatures that contains
all fields that can be referenced during any execu-
tion of m. For example, the reference field set of
getBytecodeTypeDec in Figure 1 is {ASTObject.parent},
and the reference field set of getSourceLine is
{ASTObject.srcLoc, SourceLocation.lineNumber}. Note
that the reference field set can contain a field that are not
directly referenced by the method itself.
Next, we extend the notion of modification time to each

method. The modification time of an object with respect
to m is the latest modification time when an assignment
operation is executed to a field in the reference field set of
m. The modification time of an object graph from o with
respect to m is the latest modification time with respect to
m among objects that are reachable from o by only following
the fields in the reference field set of m.
The values of objects o1 and o2 are modification time and

referentially equal with respect to m when o1 and o2 have
the same reference, and the object graphs from o1 and o2

have the same the modification time with respect to m.
This definition effectively ignores the changes in the fields

that are not accessed by a method. In the example scenario,
the values of object ast before and after the assignment
are modification time and referentially equal with respect to
getBytecodeTypeDec but not with respect to getSourceLine.
This is because the assignment to the field lineNumber of the
object srcLoc updates the modification time with respect to
getSourceLine, but not with respect to getBytecodeTypeDec.
In other words, the equality gives more accurate results by
ignoring the assignments to field SourceLocation.lineNumber

that are not accessed by getBytecodeTypeDec.
The equality for a particular method can be straightfor-

wardly implemented by merely restricting the timestamp
manipulations to the fields in the reference field set of the
method. The next section presents a more efficient imple-
mentation that can test equality of values with respect to
any method in a target program.

A
S

T
O

bject.parent
A

S
T

O
bject.srcL

oc
SourceL

ocation.lineN
um

ber

{ASTObject.getLine}

{ASTObject.getByteCodeTypeDec,
ASTObject.getParent}

X X

 X

tim
estam

p index

0

1

set of methods

field

Figure 6: Compressed Timestamp Indices

4. IMPLEMENTATION

4.1 Overview
The profiler is implemented as an aspect in an aspect-

oriented programming language AspectJ[11]. The AspectJ
compiler, or weaver, takes a target program and the profiler
definition as source code, and generates Java bytecode in
which profiling code is inserted. Thanks to the AspectJ com-
piler, the profiler definition is compact (merely 1102 lines)
and the compiled code runs on standard Java virtual ma-
chines.
The profiler runs a target program twice. The first run

is for constructing the reference field sets of the methods.
The profiler records the following two kinds of events in the
target program:

• a call to method m from method m′, and

• a reference to field f in method m.

After finished execution of the target program, the profiler
can build a reference field set for each method. We chose to
collect information by dynamic monitoring mainly for the
ease of implementation. Future work is to employ static
analysis here, which could give more robust information.
The second run is for recording the parameters of method

calls. The profiler monitors the following two kinds of events
in the target program, whose details are explained later.

• When the target program calls method m with param-
eters o1, . . . , on, the profiler records the references to
oi and the modification time of an object graph from
oi with respect to m for all i = 1 . . . n.

• When the target program assigns a value to a field f
of an object o, the profiler advances the current time
t, and updates the timestamps of o with t.

4.2 Implementation of Per-Method Modifica-
tion Time and Reference Equality

We implemented the profiler so that it will gather infor-
mation on all the methods by two runs, and it will require
a reasonable amount of memory.
As we have seen, an object may have a different modifi-

cation time with respect to an interested method. A naive
profiler implementation would execute a target program for
each method in the program in order to calculate parameter

frequencies of the method. Another naive profiler imple-
mentation would associate a vector of time-stamps to each
object, so that the profiler can access modification times
with respect to all the methods in one execution of the pro-
gram. For a target program with M methods, the former
implementation should run the program for M times, and
the latter should add M words to each object. Both are
unacceptable for programs with large number of methods.
Our implementation runs the target program only once5

by associating M ′ words to each object where M ′ is the
number of different reference field sets, which is significantly
smaller than M . This implementation can be considered
as an improvement of the latter naive implementation by
sharing a timestamp by the methods that have the same
reference field set. In the case of AspectJ compiler, this
reduces the length of time-stamp vectors by more than the
factor of 90%.
The implementation can be explained by the table shown

in Figure 6. Each column except for the rightmost one
corresponds to a field declaration in the program. Each
row corresponds to a reference field set. On the left side
of each row, the methods that share the reference field set
are written. The rightmost column has the indices numbers
for timestamps. For example, the second row denotes that
ASTObject.getBytecodeTypeDec and ASTObject.getParent

have the same reference field set {ASTObject.parent}, and
shares the timestamp index for the reference field set.
The profiler manipulates timestamps with the table in the

following ways. To each object, it associates a vector of M ′

timestamps where M ′ is the height of the table. When a
value is assigned to a field f of an object o, it loops over the
column for f . It then updates ith timestamp entry of o for
all i that ith row of the column is checked. When a method
m is called with an object o as a parameter, it first identifies
the row in the table that has m on its left side to get the
timestamp index for m. It then computes the modification
time of the object graph from o with respect to m by using
the timestamp entries at the obtained index.
The vector of timestamps is realized by using the inter-

type declaration mechanism in AspectJ. The table is realized
by (1) a hash table that maps a method signature to an
index, and (2) a hash table that maps a field signature to a
bit vector.

5. EVALUATION
The efficiency and effectiveness of the profiler is evaluated

by profiling an execution of a practical application program.
In the following evaluation, we executed AspectJ 1.0.6 com-
piler consisting of 64602 lines of Java code to compile a 75
lines Java program6.

5.1 Profiler Efficiency
Two of the implementations of the profiler with per-method

modification time and referential equality discussed in Sec-
tion 4.2 are compared by measuring profiler execution time.
The two implementations are (A) to associate one time-
stamp field to each object and repeatedly execute the target

5Excluding the run for building the reference field sets.
6The AspectJ compiler can compile Java programs as the
language is a superset of Java. By profiling compilation of a
Java program, we measured only the Java compiler part of
the compiler; i.e., the part for the AspectJ specific features
are practically excluded from the experiments.

Table 2: Execution Times of Profilers(sec.)

implementation user + sys
A: 1 timestamp/object, M runs 2.07 × 105

B: M ′ timestamps/object, 1 run 3.46 × 102

unprofiled 1.82 × 100

program for all the methods in the target program, and
(B) to associate a vector of time-stamps to each object and
execute the target program twice (once for gathering the
reference field sets and once for recording parameters). As
a reference, we also measured execution time of unprofiled
(i.e., original) program.
The benchmark tests are executed on a Vine Linux 2.6

machine system an 1.9GHz Pentium 4 processor and 512MB
memory. The profiler and the target programs are compiled
and executed by AspectJ 1.1.1 and Java2 SDK 1.4.1. The
execution times are measured by summing the system and
the user times reported by the time command.
Table 2 shows the results. The implementation B is faster

than A by the three orders of magnitude, even though it re-
quires more memory to keep a vector of timestamps for each
object. Compared to the execution time of the unprofiled
program, it is slower by the the two orders of magnitude,
but it remains within the practical range, compared to the
implementation A, which took more than two days for pro-
filing.

5.2 Profiler Effectiveness
We estimated effectiveness of the profiler compiler at ap-

plying the memoization technique to the methods in the
AspectJ compiler.

5.2.1 Manual Application of Memoization
We first manually optimized AspectJ compiler by apply-

ing memoization without using the value profiling. The op-
timized methods are selected in the following steps:

1. First, the method execution times in the target pro-
gram were measured by running the program on a Java
virtual machine with -Xrunhprof option in the “sam-
ples” mode.

2. We then examined each method in the program from
the one has longest execution time.

3. We rejected the method when (1) it is too trivial (like
getter methods), or when (2) it is too complicated to
memoize (like the ones relying on many state modifi-
cations).

4. Otherwise, we modified the method into a memoizing
version. We then measure the overall execution time of
the program to see how much the memoization speeded
it up. If the execution time was not improved, the
method was rejected.

5. We repeat the above two steps until we found a suffi-
ciently many methods.

The result of the manual optimization is summarized in Ta-
ble 3. The leftmost column shows the signatures of the se-
lected methods. The middle two columns show the relative

execution times of the methods, and the speedup factors of
the memoized version. The right two columns are explained
in Section 5.2.2.
All execution times are measured by averaging the execu-

tion time of a loop that repeats the the body of the main

method for 1000 times. Those times are measured by calling
System.currentTimeMillis method in Java. Some meth-
ods show the greater speedup factor than its relative exe-
cution time. This is because (1) the speedup factor is com-
puted by the execution time of the main method whereas the
relative execution times accounts for the startup times of the
virtual machine, and (2) the memoization can prevent the
method executions invoked by the optimized method, which
is not included in the relative execution time. The programs
are executed on a Windows XP Professional system7 with
a 2.8GHz Pentium4 and 2GB memory running Java2 SDK
1.4.1.

5.2.2 Estimation of Effectiveness
Based on the results of optimizations, we estimated the

effectiveness of the profiler by calculating how much efforts
on manual optimization can be reduced when we performed
the optimization procedure with a report from the value
profiler.
The optimization procedure with a report from the value

profiler adds the following step before step 3 in Section 5.1.

before 3. When the sum of the top n parameter frequencies of
the method is less than threshold T , the method is
rejected.

This will effectively rejects the methods that do not take
the same parameters for sufficient number of times. The
rightmost column of Table3 shows the sum of the top 3
parameter frequencies. As we can see, there are no methods
whose numbers are close to zero.
For the top 56 methods, 13 methods will be rejected by

the value profiler report when we set n = 3, T = 20%. In
other words, the value profiler reduced the efforts of manual
optimization more than 20%. When we plot the methods by
their relative execution time and top 3 parameter frequencies
in a graph in Figure 7, we can see many rejected methods
(plotted by the crosses) locate lower or left part of the graph,
compared to the optimized methods (plotted by the circles).
It is not possible to derive a general conclusion from this

estimation. The results of our profiler were also useful when
optimizing methods because they give us more information
how methods are called.

6. RELATED WORK
Time profiling, which measures execution times of individ-

ual methods in a program, is a common technique for opti-
mizing large programs. It gives hotspots in a program that
could be further optimized manually or automatically. Just-
In-Time and HotSpot compilers for Java are well-known
commercial examples that use runtime time profilers.
Relatively fewer attempts have done for profiling further

information than execution times. Profiling on types of val-
ues is useful for optimizing method dispatching in object-
oriented programs[3, 7]. Value profiling[1, 2, 16, 20] counts
7Although the benchmark is executed on a different plat-
form from the one used in Section 5.1, both two platforms
yielded the similar results. We used Windows XP platform
here for merely availability reasons in our environment.

0

20

40

60

80

100

0 0.5 1 1.5 2 2.5 3 3.5

T
op

 3
 P

ra
m

et
er

 F
re

qu
en

ci
es

 [%
]

Relative Execution Times[%]

Figure 7: Execution Time and Parameter Frequen-
cies of All Methods

frequencies of parameter values to machine instructions in
a program execution. The value profilers are mainly used
for instruction-level optimizations. Calpa[15] has a value
profiler for automatically selecting targets of runtime spe-
cialization in DyC[9]. Though it targets a C-like language,
the profiler can gather information on reference values with
the aid of the points-to analysis, which shall be compared
with our approach in future. Shaham showed a profiler on
access times of objects is useful for optimizing memory us-
age in object-oriented programming languages with garbage
collection[19]. The profiler records access time of individual
objects by associating timestamps to each object, and re-
ports the objects that are not used but not yet reclaimed by
the garbage collector. The profiler manipulates timestamps
through a customized Java virtual machine.
Programming techniques are also useful to find out the

targets of program specialization. Schultz presented the spe-
cialization patterns in object-oriented programs that suggest
the targets of partial evaluation[17]. As this technique relies
solely on the structure of the program, it does not need to
run programs for gathering information. The approach is
shown to be useful to small scale programs.

7. CONCLUSION
We proposed a value profiler for object-oriented programs

in order to assist in applying specialization techniques, such
as memoization and partial evaluation. The profiler records
parameter values of all method calls in a program execu-
tion, and shows the methods that are frequently called with
the same parameter values. The per-method modification
time and referential equality and its implementation accu-
rately compares values of mutable objects which reasonable
amount of memory.
Application of our profiler to a real-world application pro-

gram showed that the execution time of the profiler is ac-
ceptable, and that the profile report can be estimated to
reduce the effort of manual optimization by more than the
factor of 20%.
Our future plan is to apply the profiler to many programs

so as to have better criteria for measuring methods in target
programs. In particular, combining results of static analy-
sis would be promising to predict usefulness of methods in

Table 3: Optimized Methods and Their Profile Results

method signature %exec.
time

%
speedup

#calls param.
freqs.

ASTConnection.makeTypeD(String) 0.71 0.0 184 98.5
JarClassMgr.makeSubPkgMgr(String) 0.36 2.0 121 40.5
ASTObject.getBytecodeTypeDec() 0.27 12.9 275 34.2
ASTObject.getLexType() 0.18 13.3 410 23.9
CP.addUtf8(String) 0.18 2.1 124 98.4

terms of specialization techniques.

8. REFERENCES
[1] B. Calder, P. Feller, and A. Eustace. Value profiling

and optimization. Journal of Instruction Level
Parallelism, March 1999.

[2] Brad Calder, Peter Feller, and Alan Eustace. Value
profiling. In International Symposium on
Microarchitecture, pages 259–269, 1997.

[3] Craig Chambers and David Ungar. Iterative type
analysis and extended message splitting: Optimizing
dynamically-type object-oriented programs. In
Proceedings of Conference on Programming Language
Design and Implementation (PLDI). ACM, June 1990.

[4] Sandrine Chirokoff and Charles Consel. Combining
program and data specialization. In Olivier Danvy,
editor, Workshop on Partial Evaluation and
Semantics-Based Program Manipulation, volume
NS-99-1 of BRICS Notes Series, pages 45–59, San
Antonio, Texas, January 1999. ACM SIGPLAN.

[5] Charles Consel and François Noël. A general approach
for run-time specialization and its application to C. In
Conference Record of Symposium on Principles of
Programming Languages (POPL96), pages 145–170,
St. Petersburg Beach, Florida, January 1996. ACM
SIGPLAN-SIGACT.

[6] Olivier Danvy and Andrzej Filinski, editors. Second
Symposium on Programs as Data Objects (PADO II),
volume 2053 of Lecture Notes in Computer Science,
Aarhus, Denmark, May 2001. Springer-Verlag.

[7] Jeffrey Dean, Craig Chambers, and David Grove.
Selective specialization for object-oriented languages.
pages 93–102.

[8] Erich Gamma, Richrad Helm, Ralph Johnson, and
John Vlissides. Design Patterns. Addison-Wesley,
1995.

[9] Brian Grant, Matthai Philipose, Markus Mock, Craig
Chambers, and Susan J. Eggers. An evaluation of
staged run-time optimization in DyC. In Proceedings
of Conference on Programming Language Design and
Implementation (PLDI), 1999.

[10] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft.
Partial Evaluation and Automatic Program
Generation. Prentice Hall, 1993.

[11] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik
Kersten, Jeffrey Palm, and William G. Griswold. An
overview of AspectJ. In ECOOP 2001, pages 327–353,
2001.

[12] Todd B. Knoblock and Erik Ruf. Data specialization.
In Proceedings of Conference on Programming

Language Design and Implementation (PLDI’96),
volume 31(5) of ACM SIGPLAN Notices, pages
215–225, Philadelphia, PA, May 1996. ACM.

[13] Hidehiko Masuhara and Akinori Yonezawa. Run-time
bytecode specialization: A portable approach to
generating optimized specialized code. In Danvy and
Filinski [6], pages 138–154.

[14] David Michie. Memo functions and machine learning.
Nature, 218(1):19–22, April 1968.

[15] Markus Mock, Craig Chambers, and Susan J. Eggers.
Calpa: A tool for automating selective dynamic
compilation. In 33rd Annual Symposium on
Microarchitecture, December 2000.

[16] Robert Muth, Scott A. Watterson, and Saumya K.
Debray. Code specialization based on value profiles. In
Static Analysis Symposium, pages 340–359, 2000.

[17] U. P. Schultz, Julia L. Lawall, and Charles Consel.
Specialization patterns. In ASE’00, 2000.

[18] Ulrik Schultz. Partial evaluation for class-based
object-oriented languages. In Danvy and Filinski [6],
pages 173–197.

[19] Ran Shaham, Elliot K. Kolodner, and Mooly Sagiv.
Heap profiling for space-efficient java. In Programming
Languages Design and Implementation (PLDI ’01),
ACM SIGPLAN Notices, Snowbird, Utah, USA, June
2001. ACM.

[20] Scott Watterson and Saumya Debray. Goal-directed
value profiling. In Proc. 10th International Conference
on Compiler Construction (CC2001), April 2001.

