
1

Is Join Point a Point?

a pointcut and advice mechanism

for making aspects more reusable

Hidehiko Masuhara
University of Tokyo

joint work with Yusuke Endoh and Aki Yonezawa

2

A secret of AspectJ

• AspectJ is based on join points

• A sceret of AspectJ:

join points are not points, but regions

– makes aspects hard to maintain

• We propose an AOPL
in which join points are points

t

tregions

points

3

enables modularization of

crosscutting concerns [Kiczales et al.1997]

– e.g., logging, security, error handling

offers a mechanism:

join points, pointcut & adviceFigureElement

moveBy(int,int)

Point

getX()

getY()

setX(int)

setY(int)

Figure

Display

update(FigureElement)

elements

d
is

p
la

y

Line

getP1()

getP2()

setP1(Point)

setP2(Point)

Logging

after() returning(Str m):

call(readLine) {

Logger.log(m);

}

base program aspects

Aspect-oriented programming

4

Join point, pointcut & advice

in AspectJ

Base: reads user’s inputs in several modules

Logging: record all inputs from the console

• Join points=actions like method calls, execs...

• Pointcut: selects jps

• Advice: runs on selected jps

after() returning(String x) :

call(String *.readLine()) {

Logger.log(x);

}

ConsoleMain

readLine

A

readLine
doSome

“john”

“1”

6

Aspect maintainability: most changes

are adapted by pointcuts

Changes in aspect spec./base prog.

modifications to pointcuts

to cope with changes

after() returning(String x) :

call(String *.readLine()) {

Logger.log(x);

}

after() returning(String x) :

call(String *.readLine())

|| call(String *.getenv()) {

Logger.log(x);

}

after() returning(String x) :

(call(String *.readLine())

|| call(String *.getenv()))

&& !within(LogBrowser) {

Logger.log(x);

}

after() returning(String x) :

(call(String *.readLn())

|| call(String *.getenv()))

&& !within(LogBrowser) {

Logger.log(x);

}

• log getenv as well

• exclude calls from

LogBrowser

• rename readLine to

readLn

• log onSubmit as well

???

7

Aspect maintainability: some changes can

not be adapted by pointcuts

Logging inputs from console & GUI widgets

needs two advice decls.

i.e., can not be adapted

by pointcuts

ConsoleMain

readLine

A

onSubmit(“1”)

Field

provide inputs thru

callback methods

“john”

after() returning(String x) :

call(String *.readLine()) {

Logger.log(x);

}

before(String x):

exec(* *.onSubmit(String)) && args(x) {

Logger.log(x);

}

advice specifiers

(not pointcuts)

8

Another example: returning null

vs. throwing exceptions

r = find(...);

if (r==null)

handle not found case

process the result

after()returning(Result r):

call(find)&&if(r==null) {

Logger.log();

}

try {r = find(...);}

catch (NotFound e) {

handle not found case

}

process the result

after()throwing(NotFound):

call(find) {

Logger.log();

}

9

Problem summary & analysis

• Generalization: can not advise
“beginnings of X and ends of Y” by one decl.
– active / passive parameter passing

– returning error values / throwing exceptions

– direct style / continuation passing style (in FPL)

• Reasons:
– join points are regions

w/ entry and exit

– pointcuts select only join points

– advice decls. specify entry or exit

ConsoleMain

10

Proposal: AOP mechanism based on

point-in-time join points

• Overview

• Aspect maintainability

with point-in-time join points

• Design issues of pointcuts and advice

• Formalization

11

AOP mechanism based on

point-in-time join points

• A join point is a point in time

• New join points that represent ends of actions

• New pointcuts that select new join points

advice(String x) :

return(String *.readLine())

&& args(x) {

Logger.log(x); proceed x;

}

ConsoleMain

readLine
call jp

return jp
“john”

12

Aspect maintainability with

point-in-time join points:

logging readLine & onSubmit
• One advice decl. can log both

– return values from readLine

– parameters to onSubmit

advice(String x) :

(return(String *.readLine())

|| call(void *.onSubmit(String x)))

&& args(x) {

Logger.log(x); proceed x;

}

ConsoleMain

readLine

A

onSubmit(“1”)

Field

“john”

13

Aspect maintainability with

point-in-time join points:
returning null vs. throwing exceptions

r = find(...);

if (r==null)

handle not found case

do with the result

try {r = find(...);}

catch (NotFound e) {

handle not found case

}

do with the result

advice(): (return(find) &&

args(r) && if(r==null)) ||

throw(find,NotFound) {

Logger.log();proceed;

}

one advice decl.

for two

14

Design issues of pointcuts & advice

with point-in-time join points

• Designed to support most features in AspectJ

– run code before or after a jp

– replace parameters to a jp

– replace a return value from a jp

– skip execution of a jp

• ...but difficult to support some:

– repeat execution of a jp

– run code before and after a jp

after() returning(String x) :

call(String *.readLine()) {

Logger.log(x);

}

advice(String x) :

return(String *.readLine())

&& args(x) {

Logger.log(x); proceed x;

}

region-in-time
(AspectJ)

point-in-time (ours)

void around(String x) :

call(*.onSubmit(String))

&& args(x) {

proceed(x.lower());

} region-in-time

advice(String x) :

call(*.onSubmit(String))

&& args(x) {

proceed x.lower();

} point-in-time

String around() :

call(readLine()) {

return proceed().lower();

} region-in-time

advice(String x) :

return(readLine())

&& args(x) {

proceed x.lower() ;

} point-in-time

String around() :

call(readLine()) {

return “dummy”;

} region-in-time

advice() : call(readLine()) {

skip “dummy”;

} point-in-time

introduced a special

form proceed to pass

new params to jp
proceed to a return jp

can replace return valuesintroduced another form

to skip to the caller

convert parameters to

onSubmit into lowercase

15

Design issues of pointcuts & advice

with point-in-time join points

• Designed to support most features in AspectJ

– run code before or after a jp

– replace parameters to a jp

– replace a return value from a jp

– skip execution of a jp

• ...but difficult to support some:

– repeat execution of a jp

– run code before and after a jp

String around():

call(*.readLine()) {

return proceed()+proceed();

} region-in-time

void around():

call(*.onSubmit()) {

int start=getTime();

proceed();

print(getTime()-start);

} region-in-time

proceed won’t come back in point-in-time

16

Formalization of pointcut & advice

based on point-in-time join points

Writing a denotational semantics

• of an untyped FPL + pointcut&advice

• by using a continuation passing style (CPS)

– a return = application to a continuation

• simpler in terms of advice exec.

– no longer has specifiers like “before”

• suitable to explore advanced features

– e.g., advising exceptions

17

Semantics of advice execution:

a sample session

An expression:

let f(x)=x+x in f(1)

with advice:

advice(x):call(f){

proceed x+1;

}

advice(x):return(f){

proceed x/2;

}

Execution trace:

1. creates a jp “call f with 1”

2. matches pointcut “call(f)”

3. evaluates “proceed x+1”

4. calls f with 2

5. creates a jp
“return from f with 4”

6. matches pointcut
“return(f)”

7. evaluates “proceed x/2”

8. yields 2

18

Semantics of advice execution:

function call w/o advice

• semantic function

E : Exp→ Env →Ctn →Ans

Ctn = Val →Ans
E [(E0 E1)]ρκ = E [E0]ρ

(λf. E [E1] ρ (λv. f (λv’.κ v’) v))

a function is denoted by a term of type

Ctn → Val → Ans

call
return

19

Semantics of advice execution:

function call with advice

• semantic function

E : Exp→ Env →Ctn →Ans

Ctn = Val →Ans
E [(E0 E1)]ρκ = E [E0]ρ

(λf. E [E1] ρ (λv. f (λv’.κ v’) v))W A κ’ v

λv’. W A ’ κ v’

weaver advice

decls.

jp

“call f”

jp “return f”

can treat call & return

jps uniformly

20

Semantics of advice execution:

weaver

• W : Adv→Jp →Ctn →Ctn

W [advice(x): p {E}] θκv =

if p matchesθ
then E [E] [v/x] κ

elseκ v

21

Semantics of advanced features

(ongoing)

• Uniform representation of
exception throwing mechanisms

– represents exception handlers as continuations

– creates “throw” join point at throwing exceptions

• Support for history sensitive pointcuts
– similar approach to tracecuts [Walker00]

– would subsume cflow

• Interaction with tail call elimination
– crucial in FPL

– folding eta-expanded continuations

22

Related work: extension to

pointcuts and advice

• Poincuts that capture return values:

dflow [APLAS’03], Arachne [Douence’05]

– based on region-in-time join points

• Fine grained jps:

LoopsAJ[Harbulot’05], Eos-T[Rajan’05],

bugdel[Usui’05]

– based on region-in-time join points

23

Related work: semantic models

•Aspect
SandBox
[Wand’02]

– region-in-time,
denotational
& direct style

– semantic
function for
each of
before/after/
around

• MiniMAO [Clifton’05]

– operational + static semantics

– region-in-time, around only

• MiniAML & AspectML
[Walker’03]

– backend (MiniAML):
calclus of labeled terms;
labels = point-in-time

join points

– frontend (AspectML):
region-in-time join points

24

Final remarks:

a pointcut & advice mechanism

based on point-in-time join points
• Design

– can uniformly treat beginnings and ends of actions

– some missing features (eg repeating jps)

• Semantics
– in a continuation passing style

– uniformly treat calls and returns

– advanced features (eg exception, cflow, TCE)

• Implementation
– development of a compilation model

• Evaluation
– assesment of aspect maintainability

fu
tu

re
 w

o
rk

