
Is Join Point a Point?

—a pointcut and advice mechanism for making aspects more reusable—

Yusuke Endoh† Hidehiko Masuhara‡ Akinori Yonezawa†
†Department of Computer Science, University of Tokyo

{mame,yonezawa}@yl.is.s.u-tokyo.ac.jp
‡Graduate School of Arts and Sciences, University of Tokyo

masuhara@acm.org

Abstract. We propose a new pointcut and advice mechanism for aspect-oriented lan-
guages based on the point-in-time join points. Unlike existing pointcut and advice
mechanisms, the proposed one regards ends of actions as independent join points from
the beginnings of actions, which contributes to more reusable and more robust as-
pects. This paper gives an overview of an AOP language based on the mechanism, and
discusses its formalization and extension.

1 Introduction

Aspect-oriented programming (AOP) is a program-
ming paradigm for modularizing crosscutting con-
cerns, such as logging and security, whose implemen-
tations tend to involve with many modules in tradi-
tional module mechanisms[7].
One of the key mechanisms in common AOP lan-

guages[1, 2, 5, 6, 8–10] are the pointcut and advice
mechanisms, which are to modularize crosscutting
concerns in terms of program behavior. For example,
a logging concern is to record all return values from
readLine method in Console class during execution
of an application program. The pointcut and advice
mechanisms can elegantly implement the concern in
a module called an aspect.
A pointcut and advice mechanism is explained by

the following three elements:

• join points that represent certain kinds of ac-
tions during program execution (e.g., a call to
readLine method, a call to main method, and
an assignment to counter field),

• pointcuts that declaratively specify interested

join points (e.g., any join point that represents a
call to a method whose name begins with read),
and

• advice declarations that add or substitute behav-
ior to the specified join points (e.g., to record the
parameter by calling Log.add method).

We emphasize that the pointcuts play key role
in making aspects more reusable and robust against
changes. When we apply an aspect to different base
programs, we need to modify the aspect so that ad-
vice runs at appropriate points in execution. AOP
languages make this task easier by separating point-
cuts from advice declarations and by allowing redefin-
ing pointcuts later. For example, applying a logging
concern to a different application requires to run the
advice at different method calls.
The pointcut and advice mechanisms in existing

AOP languages, however, have problems in reusabil-
ity. Our observation is that the problem originates
from the design of join points, namely a join point
represents a region-in-time despite its name. This
paper therefore propose an alternative mechanism in
which a join point represents a point-in-time.

The following sections are organized as follows.
The next section presents the problem in reusabil-
ity. Section 3 overviews our alternative pointcut and
advice mechanism. Sections 4 and 5 discuss formal
semantics and advanced features of the mechanism.
After discussing related work in Section 6, the paper
concludes in Section 7.

2 Problems of Pointcut and
Advice Mechanism Based on
Region-in-Time Join Points

Although the pointcut and advice mechanisms in ex-
isting AOP languages are designed to be reusable,
there are situations where aspects are less reusable.
We argue that this is common to the mechanisms
that regard join points as region-in-time.
In order to clarify the problem, this section uses

a crosscutting concern that is to log user’s input re-
ceived by two base programs. The first base program,
called the console version, receives input from the
console. The second one, called the hybrid version,
receives input either from the console or GUI compo-
nents. As for the logging concern, we first implement
an aspect for the CUI version.
In order to cope with changes from the console ver-

sion to the hybrid version, we modify the aspect ac-
cordingly. Contrary to our expectation, the changes
in the aspect are not trivial; we had to duplicate al-
most entire declarations in the aspect. At the end of
the section, we discuss the problem originates in the
design of the join points in the pointcut and advice
mechanism.

2.1 Logging Aspect for the Console
Version

Figure 1 shows the logging aspect for the console ver-
sion in AspectJ[6]. We assume that the base pro-
gram receives user input as return values of readLine
method in any classes.
Lines 2 and 3 declare a pointcut userInput that

matches any join point that calls readLine method.
Lines 4–7 declare advice to log the input. The
after modifier of the declaration specifies to run

1 aspect UserInputLogging {

2 pointcut userInput():

3 call(String *.readLine());

4 after() returning(String str)

5 : userInput() {

6 Log.add(str);

7 }

8 }

Figure 1: A logging aspect for the console version

the advice body after the matched join points. The
returning(String str) modifier binds the return
value from the join point to str. The body of the
advice, which is at line 6, records the value.

The aspect is robust against some minor changes
in the base program thanks to separation of point-
cut and advice declarations. When we modify
the base program to take user input from environ-
ment variable—by calling System.getenv method—
as well, we only need to extend the pointcut declara-
tion as follows:

2 pointcut userInput():

3 call(String *.readLine()) ||

4 call(String System.getenv(String));

It is even possible to linguistically declare an aspect
that can subsume changes in pointcut with the aid of
the mechanisms like abstract aspects, abstract point-
cuts and aspect inheritance.

2.2 Modifying the Aspect to the Hy-
brid Version

The aspect is not reusable when the base program
changes its programming style. In other words, point-
cuts no longer can subsume changes in certain kinds
of programming style.

Consider the hybrid version of the base program
that receives user input from GUI components as
well as from the console. In the version, when a user
inputs a string, the GUI framework used here calls
onSubmit(String) on a listener object in the base
program with the string as an argument.

Figure 2 shows the logging aspect for the hybrid
version. Note that the pointcuts can not subsume
the changes from the console version; i.e., we have to
define an additional advice declaration with an addi-
tional pointcut. This is because the hybrid version
receives user input from GUI components as param-
eters to some methods in addition to the input from
the console as return values from some methods.

1 aspect UserInputLogging {

2 pointcut userInput():

3 call(String *.readLine());

4 pointcut userInput2(String str):

5 call(String *.onSubmit(String))

6 && args(str);

7 after() returning(String str)

8 : userInput() {

9 Log.add(str);

10 }

11 before(String str)

12 : userInput2(str) {

13 Log.add(str);

14 }

15 }

Figure 2: A logging aspect for the hybrid version

Figure 2 has an additional pointcut declaration at
lines 4–6 and an additional advice declaration at lines
11–14. The pointcut specifies the join points that
calls to method onSubmit, and binds actual param-
eters to the method to formal parameter str. The
advice logs the user input just before method calls to
onSubmit method.

2.3 Analysis of the Problem

By generalizing the problem observed above, we ar-
gue that pointcuts in existing AOP languages can
not subsume differences between the beginnings of
actions and the ends of actions.
The difference between the console version and the

hybrid version is the timing to receive user input.
The console version receives at the ends of actions
(i.e., upon returning from readLine), while the GUI
one receives at the beginnings of actions (i.e., upon a

call to onSubmit from the framework).
Such a difference is not unique to the logging con-

cern, but can also be seen in changes of minor pro-
gramming styles. For example, differences between
event-driven and polling (e.g., non-blocking I/O and
blocking I/O), between returning an error value and
throwing an exception to represent a failure and be-
tween direct style and continuation-passing style in
functional programming.
Our claim is that the inability of pointcuts to sub-

sume such differences roots from the design of join
points in which a join point represents a region-in-
time during program execution. For example, in As-
pectJ, a method call join point represents a region-
in-time from the beginning of the method call until
the end of the call. This design in turn requires ad-
vice declarations to select either the beginnings or the
ends of the join points that are selected by pointcut.

3 Point-in-Time Join Points

3.1 Overview

We propose a new pointcut and advice mechanism
based on the point-in-time join points. The mecha-
nism differs the one based on the region-in-time join
points in the following ways:

• A join point represents a point-in-time during
execution, rather than a region-in-time. Conse-
quently, there are no such notions like “begin-
ning of a join point” or “end of a join point”.

• There are new kinds of join points that represent
terminations of actions. For example, returns
from methods are independent join points of call
join points.

• There are new pointcut constructs that match
those new kinds of join points. For example,
return(f) is a pointcut that selects a return
from method f.

• Advice declarations no longer take modifiers like
before to specify timing of execution.

Figures 3 and 4 illustrate the difference between
the region-in-time join points and the point-in-time

ones. As in Figure 3, a call join point in existing AOP
languages represents a whole life time of a method
call. Our proposed mechanism, a method call is rep-
resented by two independent join points; one is a call
join point that represents an action that begins a
method call and the other is a return join point that
represents an action that returns from a method call.
The next two advice declarations based on the

region-in-time join points:

before(): call(* *.onSubmit(String))

after() returning: call(String *.readLine())

become the following ones based on the point-in-time
join points:

advice(): call(* *.onSubmit(String))

advice(): return(String *.readLine())

readLine();

main

readLine(){

}

console

call join point

Figure 3: A call join point in existing mechanisms

We also extend the meaning of args(x) to bind
return values to x upon return join points. Conse-
quently, the next two advice declarations based on
the region-in-time join points:

before(String str):

call(* *.onSubmit(String)) && args(str)

after() returning(String str):

call(String *.readLine())

become the following ones based on the point-in-time
join points:

advice(String str):

call(* *.onSubmit(String)) && args(str)

advice(String str):

return(String *.readLine()) && args(str)

readLine();

main

readLine(){

}

console

call join point

return join point

Figure 4: call and return join points in our proposed
mechanism

3.2 Logging Aspect with Point-in-
Time Join Points

With the point-in-time join points, we can define the
logging aspects for the two versions of the base pro-
gram as in Figures 5 and 6.
Figure 5 is not different from Figure 1 except in the

pointcut that specifies returns from readLine, and
binds return values to a variable. The advice decla-
ration at lines 5–7 no longer has the after modifier
because the pointcut specifies the timing.
In order to cope with the changes in the base pro-

gram, we merely need to change the pointcut declara-
tion as in Figure 6. The modified pointcut userInput
matches returns from method readLine as well as
calls to method onSubmit. Note that the advice dec-
laration is not changed at all.
As we see, differences in the timing of advice execu-

tion as well as the way of passing parameters can be
subsumed by pointcuts with the point-in-time based
join points. This ability would foster to define more
reusable aspect libraries by using abstract pointcuts
because the library user can fully control the join
points to apply aspect.

4 Formal Semantics

We give a formal semantics to a pointcut and advice
mechanism based on the point-in-time join points.
The details of the semantics are presented in the other

1 aspect UserInputLogging {

2 pointcut userInput(String str):

3 return(String *.readLine()) &&

4 args(str);

5 advice(String str): userInput(str) {

6 Log.add(str);

7 }

8 }

Figure 5: Logging aspect for the console version with
the point-in-time join points

2 pointcut userInput(String str):

3 (return(String *.readLine()) ||

4 call(* *.onSubmit(String))) &&

5 args(str);

Figure 6: Modification to the pointcut for the hybrid
version with the point-in-time join points

literature[4]. The semantics contributes to clarify the
detailed behavior of the mechanism especially when
integrated with other features such as excepting han-
dling and first class continuations. It also helps to
compare expressiveness of the mechanism against ex-
isting ones.
A denotational semantics is given in a continuation

passing style (CPS). Since a return from a function
is denoted as application of a value to a continuation
in CPS, we can symmetrically model call and return
join points.

5 Advanced Features

With the aid of the clarified semantics, we further in-
vestigated integration of advanced language features
with the point-in-time join points. Thus far, the fol-
lowing two features are integrated into the mecha-
nism:

Exception handling: Exception handling is also a
good candidate of join points. In AspectJ, ad-
vice declarations have to distinguish exceptions
by adding modifiers like after throwing. With

the point-in-time join points, ‘throwing an ex-
ception’ can be simply regarded as an indepen-
dent join point.

Around advice and proceed: One of the most
notable drawbacks in the point-in-time join
points is that it can not fully support all the fea-
tures of around advice with the region-in-time
join points. In AspectJ, an around advice has
abilities to:

1. continue execution without running the join
point,

2. proceed to the join point with different pa-
rameters,

3. continue execution with a different return
value, and

4. run the join point more than once.

We observe that those abilities can also be simu-
lated by the advice with point-in-time join points
by adding a construct to modify the parame-
ter to the join point (for the abilities 2 and 3),
and by adding a construct to continue execution
without running the join point (for the ability
1). For the last ability, we are investigating a
mechanism similar to partial continuation[3].

6 Related Work

There are different ways to formalize the pointcut
and advice mechanism. Wand et al. gave a denota-
tional semantics to an AOP language that is a subset
of AspectJ[12]. Since the language is based on the
region-in-time join points, the formalization have to
give different semantic equations to different kinds of
advice declarations.

Walker et al. gave a semantics of an AOP language
as a translation to a language of labeled terms and ad-
vice[11]. Although the surface AOP language is based
on the region-in-time join points, the translated lan-
guage is based on the point-in-time join points. A
function call and a return from a function are uni-
formly treated as jumps to labels.

7 Conclusion

We proposed a new pointcut and advice mechanism
based on the point-in-time join point. The mech-
anism treats ends of actions, such as returns from
methods, as independent join points, which in turn
gives more power to pointcuts. As a consequence,
the mechanism contributes to define aspects more
reusable and robust against changes.
We gave the semantics of the pointcut and advice

mechanism based on the point-in-time join points in
a continuation passing style. It uniformly represents
beginnings and ends of actions as join points. We also
investigated integration of advanced features with the
proposed join point model.
Our future work includes the following topics. We

will integrate other advanced features, such as cflow
pointcut and tail-call elimination. We will also design
and implement compilers for AOP languages based
on the point-in-time join points.

Acknowledgments We would like to thank
Kenichi Asai, the members of the Principles of Pro-
gramming Languages Group at University of Tokyo,
and the members of the Kumiki Project for their valu-
able comments.

References

[1] A. Bryant, and R. Feldt.
AspectR, http://aspectr.sourceforge.net/

[2] B. Burke, A. Chau, M. Fleury, A. Brock,
A. Godwin, and H. Gliebe, JBoss Aspect
Oriented Programming, The JBoss Group,
http://www.jboss.org/developers/pro jects/jboss
/aop, 2003

[3] O. Danvy and A. Filinski. Abstracting control.
In Proceedings of the 1990 ACM Conference on
Lisp and Functional Programming, pages 151–
160, Nice, France, June 1990.

[4] Y. Endoh, H. Masuhara, and A. Yonezawa, A
Model for Aspect-Oriented Programming that
Regards Applications to Continuations as Join
Points. in Proceedings of Annual Conference of

Japan Society for Software Science and Technol-
ogy, September 2005. to appear.

[5] R. Hirschfeld, AspectS – Aspect-Oriented Pro-
gramming with Squeak. in Proceedings of NODe
2002, LNCS 2591, pages 216-232, Springer-
Verlag, 2003

[6] G. Kiczales, E. Hilsdale, J. Hugunin, M. Ker-
sten, J. Palm, and W. G. Griswold. An overview
of AspectJ. In Proceedings of the European Con-
ference on Object-Oriented Programming, Bu-
dapest, Hungary, 18–22 June 2001.

[7] G. Kiczales, J. Lamping, A. Mendhekar, C.
Maeda, C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. In ECOOP’97—
Object-Oriented Programming, 11th European
Conference, LNCS 1241, pages 220–242, 1997.

[8] H. Kim. AspectC#: An AOSD implementation
for C#. MSc. Thesis, Comp.Sci, Trinity College,
Dublin, Dublin, 2002.

[9] O. Spinczyk, D. Lohmann, and M. Urban, As-
pectC++: an AOP Extension for C++. in Soft-
ware Developer’s Journal, pages 68-76, 05/2005.

[10] A. Vasseur. Dynamic AOP and Runtime Weav-
ing for Java – How does AspectWerkz Address
it? In AOSD 2004, Dynamic AOP WorkShop,
March 2004.

[11] D. Walker, S. Zdancewic, and J. Ligatti. A The-
ory of Aspects. In International Conference on
Functional Programming, 2003.

[12] M. Wand, G. Kiczales, and C. Dutchyn. A Se-
mantics for Advice and Dynamic Join Points in
Aspect-Oriented Programming. ACM TOPLAS.
2003.

