
WTAOP-1

A Unit Testing Framework for Aspects without Weaving
Yudai Yamazaki

Shibaura-Institute of Technology
307 Fukasaku, Minuma-ku,

Saitama-shi, Saitama-ken, Japan
+81 48-683-2020

l01104@sic.shibaura-it.ac.jp

Hidehiko Masuhara
University of Tokyo

3-8-1 Komaba, Meguro-ku,
Tokyo, Japan 153-8902.

+81 3-5454-6679
masuhara@acm.org

Kouhei Sakurai
Shibaura-Institute of Technology
307 Fukasaku, Minuma-ku,

Saitama-shi, Saitama-ken, Japan
+81 48-683-2020

sakurai@komiya.ise.shibaura-it.ac.jp

Hiroaki Hashiura
Shibaura-Institute of Technology
307 Fukasaku, Minuma-ku,

Saitama-shi, Saitama-ken, Japan
+81 48-683-2020

hashiura@komiya.ise.shibaura-it.ac.jp

Saeko Matsuura
Shibaura-Institute of Technology
307 Fukasaku, Minuma-ku,

Saitama-shi, Saitama-ken, Japan
+81 48-683-2020

matsuura@se.shibaura-it.ac.jp

Seiichi Komiya
Shibaura-Institute of Technology
307 Fukasaku, Minuma-ku,

Saitama-shi, Saitama-ken, Japan
+81 48-683-2020

skomiya@sic.shibaura-it.ac.jp

ABSTRACT
Unit testing of aspects can verify aspects implementations of
aspects against their specification. Current technique for unit
testing of aspects requires to weave the aspect definition into a
target program, which thus makes it difficult to write
comprehensive test cases and to avoid interference from other
aspects. In this paper, we propose a framework for unit testing
aspects without weaving. Our framework generates testing
methods from an aspect definition so that test cases can directly
verify properties of aspects such as the advice behavior and
pointcut matching.

Keywords
Aspect, Unit Testing, Framework, AOP, AspectJ

1. INTRODUCTION
Aspect-Oriented Programming(AOP) [1] allows modular
implementation of crosscutting concerns in software development
subjects. A typical software system comprises several core
concern and the other crosscutting concerns. An aspect offers the
unit of modular definition of crosscutting concerns. Comparing
with the other programming paradigms such as object-oriented
programming, the separation of crosscutting concerns improves
modularity of the program. On the other hand, it becomes difficult
to test whether the woven program operates correctly. In the unit
testing in AOP, there is a work like [2]. But the method of unit
testing without weaving an aspect with associated classes is not
clear. Also in the aspectj-users mailing list [3], it argues about this
problem actively, and Adrian Colyer pointed out as follows.
Current unit-testing approaches for aspects are lacking in the
following ways:
* you cannot easily unit test an individual aspect in isolation from
the rest of the program
* you cannot easily test whether the pointcut expression
associated with a piece of advice matches the join points you

expect
* you cannot easily test whether the pointcut expression
associated with a piece of advice matches unwanted join points
* you cannot easily test the body of advice in isolation from the
rest of the program
We propose a method of unit testing without weaving an aspect
by describing test cases from the same viewpoint as describing the
aspect for the program. For this purpose, the framework for
describing the test cases with the method generated from aspect
description is offered. This aims at solving the second, third and
fourth problems that Adrian Colyer pointed out.
The rest of the paper is organized as follows. Section 2 presents
problems of unit testing in AOP. Section 3 explains our unit
testing framework and describes how to use the framework.
Section 4 describes how to implement the framework in AspectJ.
Section 5 discusses unit testing for aspect modules in AOP.
Section 6 concludes the paper.

2. PROBLEM OF UNIT TESTING IN AOP
This section presents an example to clarify a problem of unit
testing in AOP. Section 2.1 presents an example program with an
aspect that tracks movement of figures. Section 2.2 shows a
process to test the program after weaving aspects. Section 2.3
analyzes some problems that lie in the process.

2.1 Aspect Example
Graphical applications often re-draw figures such as points and
lines. A typical requirement to such applications is to re-drawonly
when a figure actually moves; thus it is necessary to observe
movement of all figures. Tracking movement of figures is a
crosscutting concern for the applications as shown in Figure 1.

WTAOP-2

Figure 1. Tracking Movement of Points and Lines.

There are the following specifications in the tracking movement
of figures concern:
• A minimum composition unit of a figure is a point that has

coordinates. All figures in the program are defined by this
premise. The figure in this example is defined by the Point
class or the Line class shown in Figure 1.

• A figure moves when it is called the method setXY(int,int),
which changes the coordinates of the figure.

• The testAndClear() method checks movement of figures.
• When once any figure moves to anywhere by the time the

program calls the testAndClear() method, it returns true and
the state is cleared.

• When any figure does not move to anywhere by the time the
program calls the testAndClear() method, it returns false.

Figure 2 is an implementation of the tracking movement in
AspectJ under the abovementioned specification.
aspect MoveTracking{
 private static boolean dirty = false;
 public static boolean testAndClear(){
 boolean result = dirty; dirty = false; return result;
 }
 pointcut move() : call(void *.setXY(int, int));
 after() returning : move(){
 dirty = true;
 }
}

Figure 2. An Implementation of Tracking Movement in
AspectJ.1

We will test whether this implementation code satisfies its
specification by unit testing for associated modules.
Unit testing is a testing method for one program module. Since it
does not contain any testing element of the other modules, it has
following merits in software testing [5].

1 This aspect is defined by modifying the sample code of [4].

• It is not necessary to test by two or more modules combining.
• The place where some errors arose becomes clear.
• It can run in parallel.
2.2 Unit Testing after Weaving
To verify that MoveTracking aspect meets the specification
mentioned in Section 2.1, we define the following test cases.
• When the testAndClear() method is called twice

consecutively, the second call returns false.
• Immediately after the construction of a Point object, or after a

call to getX() or getY() method of a Point object, the
testAndClear() method returns false.

• After the setXY(int,int) method of a Point object is called,
the testAndClear() method returns true.

We also define the test cases for all methods of the Line class in a
similar manner to the last two cases.
Figure 3 shows an implementation of these test cases in JUnit [6].
1. class MoveTrackingTest extends TestCase{
2. Point p;
3. void setUp(){
4. p = new Point();
5. }
6. void testTestAndClear(){
7. MoveTracking.testAndClear();
8. assertFalse(MoveTracking.testAndClear());
9. }
10. void testPointNew(){
11. assertFalse(MoveTracking.testAndClear());
12. }
13. void testPointGetX(){
14. p.getX();
15. assertFalse(MoveTracking.testAndClear());
16. }
17. void testPointGetY(){
18. p.getY();
19. assertFalse(MoveTracking.testAndClear());
20. }
21. void testPointSetXY(){
22. p.setXY(1, -2);
23. assertTrue(MoveTracking.testAndClear());
24. }
25. // Test cases for the Line class are omitted.
26. }

Figure 3. Test Cases for the Woven Program.

2.3 Problems
- Problem of object creation and method calls
In order to verify the behavior of the advice bodies, the test cases
have to include "glue code" that creates objects and calls methods.
In other words, the testing method requires the definitions in of
the target program even for verifying the sole behavior of aspects.
This is because AspectJ offers no direct means of running bodies
of the advice.
Specifically, the test cases in Figure 3 have to create a Point
object (ll.2-5), and call the getX(), getY() and setXY(int,int)

WTAOP-3

method (ll.14, 18, and 22, respectively) in order to verify the
behavior of advice bodies. The code for creating objects and
calling methods would became more complicated for practical
applications.

- Problem of interference from other aspects
Even if the aspect definition correctly implements the
specification of the concern, the results of test cases may change
due to interference from the other aspects. This is obviously
because the testing method examines the woven program. For
example, when the program also has the following aspect, which
prevents calls to the setXY() method with a negative argument,
the test case testPointSetXY() will fail even though the definition
of the MoveTracking aspect itself is correct against the
specification.
aspect NegativeArgumentPrevention{
 pointcut negativeCall(int x, int y) :
 call(void *.setXY(int, int)) && args(x, y)
 && if (x < 0 || y < 0);
 before(int x, int y) : negativeCall(x, y){
 throw new RuntimeException();
 }
}
In this case, a test may be interrupted when the
NegativeArgumentPrevention aspect throws
RuntimeException.
As it is required to enable it to test an aspect without weaving other
aspects, it becomes hard to check other all aspects of which the target
aspect for a test is influenced. Whenever we run tests, we have to select
appropriate aspects and recompile all the program.

3. UNIT TESTING FRAMEWORK FOR
UNWOVEN ASPECTS
We propose a method of unit testing without weaving an aspect
by describing test cases from the same viewpoint as describing the
aspect for the program. This paper assumes that aspects are
written in AspectJ. The proposed unit testing framework, which is
presented in this section, is integrated into the AspectJ language
and its compiler.
Section 3.1 presents how to describe test cases for the example
mentioned in Section 2. Section 3.2 shows our unit testing
framework and how to implement these test cases using the
framework.

3.1 Test Cases with Our Unit Testing Method
With our unit testing method, the following test cases verify the
MoveTracking aspect against the specification in Section 2.1:
• When the testAndClear() method is called twice

consecutively, the second call returns false.
• Whenever any join point matches the move() pointcut, its

advice body runs. A subsequent call to the testAndClear()
method returns true.

• Any method call to Point.setXY(int,int) matches the
move() pointcut. So does to Line.setXY(int,int).

• No method call to Point.getX() matches the move()
pointcut. Similarly, there are test cases for the methods in
Point and Line class except for setXY(int,int).

3.2 Unit Testing Framework
In order to directly describe such test cases, we design our framework as
follows.
(A) Test cases can directly run advice bodies; i.e., without

manipulating objects of target programs. This makes it
possible to describe the second test case without requiring
the target classes.

(B) Test cases can manually generate join points and test the
pointcut expressions against those join points where join
points are points at which advice can run. AspectJ employs
a dynamic join point model [7], in which the join points are
the points in execution. This makes it possible to describe
the third and fourth test cases without the target classes.

The framework offers the following two kinds of methods in order
to describe the test cases (B) :
1. TestJoinPointFactory.create(String) creates a join point

object that matches to a given primitive pointcut expression.
2. For each pointcut expression in the aspect, a method that

matches the pointcut and the join point object as created
above. In the following example,
MoveTrackingTester.testMove(TestJoinPoint) is for the move()
pointcut in the MoveTracking aspect.

Figure 4 shows an implementation of these test cases in our unit
testing framework.
1. import framework.TestJoinPoint;
2. import framework.TestJoinPointFactory;
3. class MoveTrackingTester{
4. static void afterReturningMove(){…}
5. static boolean testMove(TestJoinPoint jp){…}
6. }
7. class MoveTrackingTest extends TestCase{
8. void testTestAndClear(){
9. MoveTracking.testAndClear();
10. assertFalse(MoveTracking.testAndClear()); }
11. void testAfterReturningMove(){
12. MoveTrackingTester.afterReturningMove();
13. assertTrue(MoveTracking.testAndClear()); }
14. void testMove(){
15. TestJoinPoint jp1 = TestJoinPointFactory.create(
16. "call(void Point.setXY(int, int))");
17. TestJoinPoint jp2 = TestJoinPointFactory.create(
18. "call(int Point.getX())");
19. assertTrue(MoveTrackingTester.testMove(jp1));
20. assertFalse(MoveTrackingTester.testMove(jp2)); }
21. }
Figure 4. An Implementation of Test Cases in our Framework.
The method that calls an advice body mentioned in (A) is the
afterReturningMove() method in the fourth line of Figure 4.
Using this method, the second test case mentioned above is
described like 11-13 lines of Figure 4.
Using the create() and testMove() method, the third and the

WTAOP-4

fourth test cases are described as follows.
1. Create join points that are expected to be included in the

specified pointcut expression (as shown in the 15-16 lines of
Figure 4).

2. Create join points that are expected not to be included in the
specified pointcut expression (as shown in the 17-18 lines of
Figure 4).

3. Check that join points defined in the step 1 are included in
the specified pointcut expression (as shown in the 19 line of
Figure 4).

4. Check that join points defined in the step 2 are not included
in the specified pointcut expression (as shown in the 20 line
of Figure 4).

The 1-2 lines of Figure 4 show the import declarations of some
classes in the framework2. The method create() is defined in the
TestJoinPointFactory class.
The 3-6 lines of Figure 4 is a definition of the
MoveTrackingTester class which consists of the
afterReturningMove() method and the testMove() method. This
class definition is generated from the source code of the
MoveTracking aspect. It is also offered by our framework. We call
such a generated class Tester Class.
Using this framework, the test cases for the MoveTracking aspect
is described as shown in the 7-21 lines of Figure 4. Using this
framework, we can create any join point at the unit testing for any
aspect. Therefore, it is not necessary to generate required objects
or to call the methods.

4. IMPLEMENTATION
A unit testing framework for aspect modules is implemented using
AspectJ compiler version 1.2. This tool is a unit testing support tool
which offers three generator functions and some class to implement the
functions of (A) and (B) mentioned in Section 3.2.

4.1 Tester Class Generator
Tester class consists of some methods to call each advice body
defined in an aspect module and some methods to check each
specified pointcut expression.
After we define any aspect module, our tool automatically
generates its Tester Class from the source code.
Tester Class generator has the following three functions.
• A function of Advice body method generation.
• A function of Pointcut expression checker generation.
• A function of Tester Class generation.
4.1.1 Advice Body Method Generation
The AspectJ compiler translates an aspect module into a class file
which runs on JavaVM. At this time, each advice body is changed
into a public method of the class and a name of the method
corresponding to the advice body is automatically generated

2 The package name of "framework" is a temporary name for the
explanation.

according to a mechanical rule. It is an unreadable name for us
like ajc$afterReturning$MoveTracking1c0539092.
This function gets these data from some classes in the AspectJ
compiler and automatically generates a wrapper method which
calls the unreadable named method. This wrapper method is
named by its original keywords in the aspect description so that
the name is more readable one for us.
For example, in the case of the advice in Figure 2, a method named
afterReturningMove is automatically generated from such keywords
as after, returning, and move. The function of advice body method
generation generates the following method definition.
public static void afterReturningMove(){
 MoveTracking.aspectOf()
 .ajc$afterReturning$MoveTracking1c0539092();
}
In addition, a mechanism in which a name of the generated
method is specified clearly is also prepared.

4.1.2 Pointcut Expression Checker Generation
This function gets all pointcut expressions from the advice
declarations in the aspect, and generates a method to check each
pointcut expression as follows.
public static boolean testMove(TestJoinPoint jp){
 return testPointcut(new TestPointcut(
 "call(void *.setXY(int,int))"), jp);
}
The TestJoinPoint class is a class for processing a join point as an
object. The TestPointcut class is a class for processing a pointcut
expression as an object. The testPointcut() method has both a pointcut
expression object and a join point object as the parameters. If the
former matches the latter, it returns true. Otherwise it returns false.
These classes are offered by our framework.

4.1.3 Tester Class Generation
Using the above two functions, this function generates the class
definition of Tester Class for the target aspect module. This class
definition consists of the wrapper methods, the checking methods
for each advice and the methods for initializing a Tester Class.

4.2 Other Components
Some classes are defined in order for the form shown in Section 3.2
using the method that checks a pointcut expression to validate it. Each
test case on checking pointcut expressions is defined as follows.
1. The create() method of the TestJoinPointFactory class

creates an instance of the TestJoinPoint class with a join
point sentence as a parameter.

2. The checking method is called with the above TestJoinPoint
instance as a parameter.

3. Its return value is checked.
void testMove(){
 TestJoinPoint jp =
 TestJoinPointFactory.create(
 "call(void Point.setXY(int, int))");
 assertTrue(

WTAOP-5

 MoveTrackingTester.testMove(jp));
}
A pointcut expression is changed into a syntax tree using the
parser of AspectJ compiler, and is tested by being compared with
the specified TestJoinPoint instance.
Each primitive join point that the join points are decided at the
compile time such as call and execution can be set a parameter of
the create() method.

5. DISCUSSION
This section discusses some topics related to the unit testing for
aspect modules in AOP and the future problems.

5.1 Unit Testing in AOP Framework
In the framework based on JBoss AOP [8], AspectWerkz [9], and
AOP alliance [10], AOP is realized as a framework, without
extending the Object-Oriented Language itself. An aspect or an
advice definition is defined by these frameworks as one class.
Therefore, the advice definition has the specific name, and the
advice body can be tested by calling in code of pure Java.
In these frameworks, a point cut is described in the form other than
programs, such as XML and annotation, so that generally it is difficult
to test a point cut expression directly. Our framework can describe the
test cases for an aspect from the same viewpoint as description of an
aspect. It is enabled to define an aspect module based on the
specification, and to also define the test program.

5.2 Combination with Other Testing
Frameworks
The testing framework JUnit and mock object [11] can be used
with our tool at the unit testing for aspect modules. The typical
usage of our tool is as follows. Test cases are described using the
TestCase class offered by JUnit as shown in the example of this
paper. The code to test an aspect module is defined by such a
class as the MoveTrackingTester class, which is generated by
our tool.
Moreover, in case the advice body definition is tested, we can use
mock object within the advice definition. For example, we assume
that the advice of MoveTracking uses the Point class. If the
advice definition uses the mock object instead of actual Point
object, the unit testing becomes independent of the
implementation of the Point class.
Since our unit testing framework is defined by pure Java classes,
it is possible to combine it with such existing frameworks.

6. CONCLUSION
Some of the problems that Adrian Colyer pointed out can be
solved by our proposed framework, which tests an aspect isolated
from the rest of the program. The framework enables to test
pointcut expressions and body of advice declarations in aspects
without weaving. This also guarantees non-interference from
other aspects when a program has more than one aspects without
requiring recompilation of the whole system.

In this paper, test subjects are limited to the advice body and
pointcut expressions. Since an aspect in AspectJ has the following
elements, it needs to extend the framework to support all of them:
• Kind of advice
• Body of advice
• Pointcut expression
• Inter-type declaration
It is also our future work to evaluate the effectiveness of our unit
testing framework with practical application programs.

7. ACKNOWLEDGMENTS
We would like to thank all the members of Masuhara’s and
Tamai’s research groups at University of Tokyo for their
comments on this work. We also would like to thank the SIGSE
members of Information Processing Society of Japan for their
comments.

8. REFERENCES
[1] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris

Maeda, Cristina Videira Lopes, Jean-Marc Loingtier, John
Irwin, Aspect-Oriented Programming, Published in
proceedings of the European Conference on Object-Oriented
Programming (ECOOP), Finland. Springer-Verlag LNCS
1241. June 1997.

[2] J. Zhao, Data-Flow-Based Unit Testing of Aspect-Oriented
Programs, Proceedings of the 27th Annual IEEE
International Computer Software and Applications
Conference (COMPSAC’ 2003), Dallas, Texas, USA,
November 3-6, 2003.

[3] aspectj-users:
https://dev.eclipse.org/mailman/listinfo/aspectj-users

[4] Production Aspects:
http://dev.eclipse.org/viewcvs/indextech.cgi/~checkout~/aspe
ctj-home/doc/progguide/starting-production.html#d0e67

[5] Glenford J.Myers, The Art of Software Testing, John Wiley
and Sons, March 1979, 177p, ISBN 0-471-04328-1.

[6] JUnit, Testing Resources for Extreme Programming:
http://junit.org

[7] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten,
Jeffrey Palm, William G. Griswold, An Overview of AspectJ,
Proceedings of the 15th European Conference on Object-
Oriented Programming, p.327-353, June 18-22, 2001.

[8] JBoss AOP: http://www.jboss.org
[9] AspectWerkz: http://aspectwerkz.codehaus.org
[10] AOP Alliance: http://aopalliance.sourceforge.net
[11] Tim Mackinnon, Steve Freeman, Philip Craig, Endo-Testing:

Unit Testing with Mock Objects, eXtreme Programming and
Flexible Processes in Software Engineering - XP2000,
Cagliari, Sardinia, Italy, June 21-23, 2000.

https://www.researchgate.net/publication/239720664

