
Journal of Information Processing Vol.0 No.0 1–10 (??? 1992)

[DOI: 10.2197/ipsjjip.0.1]

Regular Paper

Proof of Soundness of Concurrent Separation Logic
for GPGPU in Coq

Izumi Asakura1,a) Hidehiko Masuhara1,b) Tomoyuki Aotani1,c)

Received: May 8, 2015, Accepted: July 28, 2015

Abstract: We design a concurrent separation logic for GPGPU, namely GPUCSL, and prove its soundness
by using Coq. GPUCSL is based on a CSL proposed by Blom et al., which is for automatic verification of
GPGPU kernels, but employs different inference rules because the rules in Blom’s CSL are not standard. For
example, Blom’s CSL does not have a frame rule. Our CSL is a simple extension of the original CSL, and it
is more suitable as a basis of advanced properties proposed for other studies on CSLs. Our soundness proof
is based on Vafeiadis’ method, which is for a CSL with a fork-join concurrency model. The proof reveals two
problems in Blom’s approach in terms of soundness and extensibility. First, their assumption that thread
ID independence of a kernel implies barrier divergence freedom does not hold. Second, it is not easy to
extend their proof to other CSLs with a frame rule. Although our CSL covers only a subset of CUDA, our
preliminary experiment shows that it is useful and expressive enough to verify a simple kernel with barriers.

Keywords: Concurrent separation logic, Coq, GPGPU, barrier divergence

1. Introduction

GPGPU (general-purpose computing on graphics process-

ing units) is a method that allows GPUs to be used for gen-

eral purpose computation. It is used in many applications

because GPUs provide high parallelism at a low price.

However, the programmers need to write GPGPU pro-

grams carefully in order not to cause data races (e.g., by us-

ing synchronization among threads), because the programs

run in an SPMT (single program multiple threads) manner.

One of the pitfalls GPGPU programs is barrier diver-

gence [9]. CUDA, which is one of the widely used program-

ming languages for GPGPU, has a synchronization instruc-

tion that succeeds when and only when all threads reach

the barrier instruction at the same location in a program.

If some threads do not execute any barrier instructions or

reach a barrier instruction at a different location in the pro-

gram, the behavior of the program is unspecified.

Blom et al. proposed an extension of concurrent separa-

tion logic (CSL) [10] for verifying GPGPU programs [3].

They extended the CSL for SPMT programs and made an

automated verifier. The inference rules of Blom’s CSL differ

from the standard CSL in the following points. (i) Their

CSL does not have a frame rule. (ii) In their CSL, asser-

tions must be separated into those on resources and those

on functions. They also proposed thread ID independence

as a sufficient condition for freedom from barrier divergence.

1 Department of Mathematical and Computing Sciences,
Tokyo Institute of Technology

a) asakura.i.aa@m.titech.ac.jp
b) masuhara@acm.org
c) aotani@is.titech.ac.jp

However, they did not prove the soundness of the condition.

Here, we designed a CSL for GPGPU, namely GPUCSL,

on the basis of Blom’s CSL and Vafeiadis’ CSL [13] and

proved its soundness by using the Coq proof assistant [11].

The inference rules of GPUCSL is designed to be similar

to standard CSL. To prove soundness, we applied Vafeiadis’

soundness proof for a CSL based on a fork-join concurrency

model [13]. We also formalized thread ID independence as

a type system and proved its soundness.

In proving the soundness, we identified the following prob-

lems in Blom’s proof. First, it is hard to apply the proof

strategy to CSLs with the frame rule. This is because one

of the lemmas in their proof does not hold in CSLs with the

frame rule. Second, Blom et al. overlooked the prerequisite

to the thread ID independence of a program, namely the

absence of data races in the program.

The rest of this paper is organized as follows. We present

our object language in Sec. 2 and the inference rules and

definition of soundness of GPUCSL in Sec. 3. We give a

sketch of the soundness proof of GPUCSL in Sec. 4 and dis-

cuss differences between Blom’s CSL and GPUCSL in Sec. 5.

We show an example of verifying a simple program in Sec. 6

and discuss related work in Sec. 7. Finally, we present our

conclusion and mention future work in Sec. 8.

2. Language

The object language of GPUCSL is a simplified version

of CUDA C [9]. In CUDA C, GPUs and CPUs have their

own memories and carry out computations in the following

steps. (1) A program running on a CPU (the host program)

allocates memory areas that are used by a program running

c⃝ 1992 Information Processing Society of Japan 1

Journal of Information Processing Vol.0 No.0 1–10 (??? 1992)

E ::= x | n | E1 + E2 | . . .

B ::= E1 = E2 | E1 ≤ E2 | !B | B1&&B2 | . . .

C ::= skip | x := E | x := [E] | [E1] := E2 | C1;C2 | if B then C1 else C2 | while B do C | barrierb

Fig. 1 Syntax of the WhileB language

G-Step
(Ci, si, h) →t (C′, s′, h′)

(C, s, h) →g (C[i := C′], s[i := s′], h′)
G-Barrier

∃b, ∀i ∈ Tid ,wait(Ci) = (b, C′
i)

(C, s, h) →g (C′, s, h)

G-Abort
∃i ∈ Tid , (Ci, si, h) →t abort

(C, s, h) →g abort

Fig. 3 Operational semantics for parallel execution

1 x := [a + tid];
2 barrier0;
3 t = tid + 1;
4 if (tid == T - 1) {
5 t = 0
6 }
7 [a + t] := x;

Fig. 2 Program example: rotate

wait(barrierb) = (b, skip)

wait(C1;C2) = (b′, C′
1;C2) (wait(C1) = (b′, C′

1))

wait(C) = ⊥ (otherwise)

Fig. 4 Definition of the wait function

on a GPU (the kernel). (2) The host program invokes the

kernel with the number of threads and the addresses of the

memory areas allocated in step (1). (3) The GPU spawns

the specified number of threads in step (2), each of which

starts executing the kernel from its first instruction. Each

thread uses its own registers and the global memory, which

is shared with all the other threads (i.e., based on shared

memory parallelism). One of the registers holds the thread

ID. The model for synchronization among threads is based

on barriers.

With barrier synchronization, a barrier instruction only

succeeds when all threads reach the barrier instruction at

the same location in a kernel. A state when two threads

reach two different barriers is called barrier divergence [9],

and its behavior is unspecified. One of the properties that

GPUCSL verifies is that kernels do not cause barrier diver-

gence.

In this paper, we only discuss execution of a kernel on a

GPU. We define a language for writing a kernel by extending

the “while” language with instructions for barrier synchro-

nization and for reading and writing to the global memory

(WhileB language). We discuss the features in CUDA C

that are omitted in the WhileB language in Sec. 8.

2.1 Syntax rule

Fig. 1 shows the syntax rules of WhileB. The meta-

variables E, B and C denote arithmetic expressions,

Boolean expressions, and commands, respectively. x and

n denote local variables and integer values, respectively. A

local variable corresponds to a register that every thread

has. Note that E and B have no instructions that read or

write to the global memory. x := [E1] and [E1] := E2 are

respectively read and write instructions for the global mem-

ory. barrierb is the barrier instruction. The instruction is

indexed by b to account for barrier divergence. Each bar-

rier instruction in a program must have an index b that is

different from the index of any other barrier in the program.

Fig. 2 shows an example program rotate in WhileB, where

T is the number of threads as well as the length of array a.

Each thread rotates an element of the array a to the right

by one offset. In other words, an element at index i is moved

to the index ((i+ 1) mod T) when rotate finishes. Line 1 of

rotate reads an element of a at index tid. The variable tid

has a thread ID. Line 2 is a barrier instruction, which lets

all the threads execute the write instruction after all threads

have finished the read instruction. Lines 3–6 calculate the

destination index t. Line 7 writes to a at index t.

2.2 Semantics

We define the semantics of WhileB by extending the se-

mantics of Vafeiadis [13] with transition rules for barrier

instructions. The semantics consist of rules for parallel ex-

ecution →g and rules for sequential execution →t. A state

of the GPU is represented by a triple (C, s, h), where x is

an abbreviation of x0, x1, . . . , xT−1, and T is the number

of threads. The elements of the triple denote the following

states.

• C is a sequence of commands, where Ci is the command

to be executed by the thread i.

• s is a sequence of variable environments (stacks), where

si is the stack of thread i.

• h is the global memory.

A stack si is a function from variables Var to values Val

(si ∈ stack = Var → Val.) A global memory h is a par-

tial function from addresses Loc to values Val (h ∈ heap =

Loc → Val ∪ {⊥}.) Loc is the set of integers.

Fig. 3 defines the semantics of parallel execution (→g).

The definition is represented in the form (C, s, h) →g

(C′, s′, h′). The parallel execution denotes a GPU state

transition from (C, s, h) to (C′, s′, h′) by one-step execu-

tion of the GPU. The G-Step rule moves one of the threads

by using the sequential execution →t. The G-Barrier rule

moves all threads by one step when all threads reach a bar-

c⃝ 1992 Information Processing Society of Japan 2

Journal of Information Processing Vol.0 No.0 1–10 (??? 1992)

T-Seq1
(skip;C, s, h) →t (C, s, h)

T-Seq2
(C1, s, h) →t (C′

1, s
′, h′)

(C1;C2, s, h) →t (C′
1;C2, s′, h′)

T-If1
s(B) = true

(if B then C1 else C2, s, h) →t (C1, s, h)
T-If2

s(B) = false

(if B then C1 else C2, s, h) →t (C2, s, h)

T-While
(while B do C, s, h) →t (if B then (C;while B do C) else skip, s, h)

T-Assign
s(E) = v

(x := E, s, h) →t (skip, s[x := v], h)

T-Read
s(E) = v h(v) = [v′]

(x := [E], s, h) →t (skip, s[x := v′], h)
T-Write

s(E1) = v1 s(E2) = v2

([E1] := E2, s, h) →t (skip, s, h[v1 := v2])

T-ReadA
s(E) = v h(v) = ⊥

(x := [E], s, h) →t abort
T-WriteA

s(E1) = v h(v) = ⊥
([E1] := E2, s, h) →t abort

Fig. 5 Operational semantics for sequential execution

s(n) = n

s(E1 + E2) = s(E1) + s(E2)

s(E1 = E2) = s(E1) = s(E2)

s(E1 ≤ E2) = s(E1) ≤ s(E2)

s(!B) = ¬s(B)

s(B1&&B2) = s(B1) ∧ s(B2)

Fig. 6 Definition of an extended stack

Parallel

P ⇒ ⋆iPi

⋆iQi ⇒ Q
∀i ∈ Tid , BS, i ⊢seq {Pi ∧ tid = i} C {Qi}

Γ ⊢ C : τ
∀b, ⋆i∈TidBS(i, b)pre ⇒ ⋆i∈TidBS(i, b)post

∀i ∈ Tid b, BS(i, b)pre/post is precise
∀i ∈ Tid and b, Pi, Qi and BS(i, b) are tid independent

Γ, BS ⊢par {P} C {Q}
Fig. 7 Proof rules for parallel execution

rier instruction. This rule was newly added by the authors.

Tid is the set of thread ID, namely Tid = {0, 1, . . . , T − 1}.
The relation wait(C) = (B,C′) denotes that all the threads

in the kernel C reach a barrier with index b, and the next

set of commands is C′ (Fig. 4). The G-Abort rule aborts

the kernel if any of the threads aborts.

Fig. 5 defines the sequential execution (→t). →t are the

same as those in the standard While language. Note that the

domain of a stack s is extended to arithmetic and Boolean

expressions, as shown in Fig. 6.

3. GPUCSL

CSL verifies that a concurrent program C satisfies a speci-

fication {P} C {Q}. The specification reads: when C starts

with a state satisfying P , (i) C does not abort during the

execution and (ii) the memory state when C terminates sat-

isfies Q. P and Q are predicates on a pair of a stack and a

heap, namely assertion.

GPUCSL verifies that a kernel meets a specification. Its

inference rules are based on those for Blom’s CSL and

Vafeiadis’ CSL. GPUCSL ensures barrier divergence free-

dom in addition to the above properties (i) and (ii). The

inference rules include the Parallel rule (Fig. 7) to verify

parallel execution of a kernel. The premise of the rule check

the following properties of the kernel.

L1 The precondition implies a separating conjunction of

preconditions of threads.

L2 There are postconditions of threads whose separating

conjunction implies the postcondition of the specifica-

tion.

L3 For all threads, the specification {Pi∧tid = i} C {Qi}
is satisfied under the sequential execution semantics.

L4 The kernel is thread ID independent. Intuitively, this

means that barrier instructions in the kernel appear

only in execution contexts that do not depend on the

thread ID.

L5 In every barrier specification BS, the memory resources

redistributed before and after a barrier synchronization

instruction are exactly the same. This means that the

threads correctly exchange the memory areas used be-

fore and after the barrier synchronization instruction.

The conditions at line 6 and line 7 are not important and

will be explained later.

Note that GPUCSL can only verify programs without

data races, as it is based on separation logic [10].

3.1 Inference rules

GPUCSL is a fraction-based permission CSL (FPCSL) [4].

Assertions of FPCSL are predicates on a pair of a stack

and a permission-heap (pheap). pheap is a function of type

Loc → (Perm× Val) ∪ {⊥}, where Perm is a set of rational

numbers that are greater than 0 and less than or equal to 1.

When a thread has a pheap h, and h satisfies h(l) = (1, v)

for some address l and some value v, the thread has per-

mission to read from and write to address l. If h satisfies

h(l) = (π, v) for some π < 1, the thread only has read

permission.

Now let us define the sum of two pheaps (⊎). First, we

define a binary operator (⊕) over Perm× Val.

(π1, v1)⊕ (π2, v2) ={
(π1 + π2, v1) (v1 = v2 ∧ π1 + π2 ≤ 1)

⊥ (otherwise)

For all pheaps h1 and h2, h1⊥h2 denotes that, for all

l ∈ dom(h1)∩dom(h2), h1(l)⊕h2(l) ̸= ⊥, where dom(h)

is {l | h(l) ̸= ⊥}. h1 ⊎ h2 is defined if and only if h1⊥h2:

(h1 ⊎ h2)(l) =

c⃝ 1992 Information Processing Society of Japan 3

Journal of Information Processing Vol.0 No.0 1–10 (??? 1992)

Skip
BS, i ⊢seq {Q} skip {Q}

Frame
BS, i ⊢seq {P} C {Q} fv(R) ∩ wr(C) = ∅

BS, i ⊢seq {P ⋆ R} C {Q ⋆ R}

Seq
BS, i ⊢seq {P} C1 {Q} BS, i ⊢seq {Q} C2 {R}

BS, i ⊢seq {P} C1;C2 {R}
If

BS, i ⊢seq {P ∧B} C1 {Q} BS, i ⊢seq {P ∧ ¬B} C2 {Q}
BS, i ⊢seq {P} if B then C1 else C2 {Q}

While
BS, i ⊢seq {P ∧B} C {P}

BS, i ⊢seq {P} while B do C {P ∧ ¬B}
Barrier

BS, i ⊢seq {BS(i, b)pre} barrierb {BS(i, b)post}

Assign
BS, i ⊢seq {P [E/x]} x := E {P}

READ
x /∈ fv(E1) x /∈ fv(E2)

BS, i ⊢seq {E1 7→π E2} x := [E1] {E1 7→π E2 ∧ x = E2}

Write
BS, i ⊢seq {E1 7→1 E0} [E1] := E2 {E1 7→1 E2}

Conseq
P ⇒ P ′ BS, i ⊢seq {P ′} C {Q′} Q′ ⇒ Q

BS, i ⊢seq {P} C {Q}
Fig. 8 Proof rules for sequential execution


h1(l)⊕ h2(l) (h1(l) ̸= ⊥ ∧ h2(l) ̸= ⊥)

h1(l) (h1(l) ̸= ⊥ ∧ h2(l) = ⊥)

h2(l) (h1(l) = ⊥ ∧ h2(l) ̸= ⊥)

⊥ (otherwise).

GPUCSL has, in addition to logical formulas, the follow-

ing logical operators: emp, E1 7→π E2 and P ⋆ Q. The

semantics of these operators are as follows.

s, h |= emp ⇐⇒ ∀l, h(l) = ⊥

s, h |= E1 7→π E2 ⇐⇒ h(s(E1)) = (π, s(E2)) ∧

∀l ̸= s(E1), h(l) = ⊥

s, h |= P ⋆ Q ⇐⇒ ∃h1 h2, h = h1 ⊎ h2 ∧

(s, h1 |= P) ∧ (s, h2 |= Q)

We also use the following notations:
⊎

i∈Tid hi = h0 ⊎ h1 ⊎
. . . ⊎ hT−1, and ⋆i∈TidPi = P0 ⋆ P1 ⋆ . . . ⋆ PT−1.

In order to extend assertions to predicates on a pair of a

stack and a heap, we convert heaps into pheaps by using an

auxiliary function to pheap.

to pheap(h)(l) =

{
(1, v) (h(l) = v ̸= ⊥)

⊥ (h(l) = ⊥)

Conversely, we can regard a pheap h as a heap if h satisfies

∀l ∈ dom(h), ∃v, h(l) = (1, v) ∨ h(l) = ⊥. We write this

condition as hdef(h).

Figures 7 and 8 show the inference rules of GPUCSL. In-

tuitively, Γ, BS ⊢par {P} C {Q} reads: under a typing

environment Γ and a barrier specification BS, a specifica-

tion {P} C {Q} can be proved. GPUCSL has rules for

barrier synchronization (the barrier rule) and parallel ex-

ecution (the parallel rule) in addition to the rules for the

separation logic by Vafeiadis [13].

The frame rule extends a proven specification {P} C {Q}
by adding a resource R that is not referenced in C. The

sets fv(R) and wr(C) appearing in the premise respectively

denote the set of variables appearing in R and the set of

variables appearing in C on the left hand side of assignment

statements.

The barrier rule redistributes the resources to threads

according to the barrier specification. A barrier specifica-

tion BS specifies the resources BS(i, b)pre and BS(i, b)post ,

which denote the resource returned by thread i upon ar-

rival of the barrier b and the resource allocated to thread i

after the barrier synchronization, respectively. In order to

guarantee proper exchange of resources before and after the

barrier synchronization, BS must satisfy the condition that

the separating conjunction of the returned resources implies

the separating conjunction of the allocated resources, i.e.,

⋆i∈TidBS(i, b)pre ⇒ ⋆i∈TidBS(i, b)post. This condition

does not appear in the premise of the barrier rule, but does

appears in the premise of the parallel rule.

The parallel rule verifies that a kernel meets a specifica-

tion. Lines 1 and 2 in the premise represent distribution/ag-

gregation of resources to/from each thread. Line 3 verifies

each thread, and tid = i in the precondition initializes the

program variable tid to i. Line 4 means that the command

is thread ID independent (Sec. 3.2). Line 5 means that each

barrier specification properly redistributes resources. Line

6 represents that each barrier specification is precise, where

assertion P is precise if and only if for all pheaps h, there

exists at most one sub-pheap of h which satisfies P . Line 7

means that all preconditions, postconditions, and the bar-

rier specifications are thread ID independent. An assertion

P is thread ID independent if and only if all variables in

P are thread ID independent. Any thread ID independent

variable has the same value in all threads when a kernel ter-

minates or performs barrier synchronization. The condition

requires that the specifications are written by only using

such variables.

3.2 Thread ID independence

Blom et al. proposed thread ID independence as a con-

dition that guarantees barrier divergence freedom of ker-

nels [3]. An instruction or a variable in a kernel is thread ID

independent if and only if execution of the instruction or the

value of the variable is not affected by the value of thread

ID, regardless of it being direct or indirect. Therefore, exe-

cution traces of thread ID independent instructions coincide

in all threads. If all barrier instructions are thread ID in-

dependent, we can ensure freedom from barrier divergence.

The definition of thread ID independence is sound, but is

not complete [3]. Thus, there exists a program that never

causes barrier divergence, yet is not thread ID independent.

Such a program cannot be verified by GPUCSL.

We formalize thread ID independence as a type sys-

tem (Figs. 9, 10, 11). This type system is based on non-

interference [8]. In thread ID independence, variables, arith-

metic expressions, Boolean expressions, and commands are

typed as either type Hi or type Lo. Type Lomeans thread ID

independence. Γ : Var → {Hi, Lo} is a typing environment.

c⃝ 1992 Information Processing Society of Japan 4

Journal of Information Processing Vol.0 No.0 1–10 (??? 1992)

Γ ⊢ tid : Hi

x ̸= tid

Γ ⊢ x : Γ(x) Γ ⊢ n : Lo

Γ ⊢ E1 : τ1 Γ ⊢ E2 : τ2
Γ ⊢ E1 + E2 : τ1 ⊔ τ2

Fig. 9 Typing rules for expressions

Γ ⊢ E1 : τ1 Γ ⊢ E2 : τ2
Γ ⊢ E1 = E2 : τ1 ⊔ τ2

Γ ⊢ E1 : τ1 Γ ⊢ E2 : τ2
Γ ⊢ E1 ≤ E2 : τ1 ⊔ τ2

Γ ⊢ B1 : τ1 Γ ⊢ B2 : τ2
Γ ⊢ B1&&B2 : τ1 ⊔ τ2

Γ ⊢ B : τ
Γ ⊢!B : τ

Fig. 10 Typing rules for Boolean expressions

Ty-skip
Γ ⊢ skip : τ

Ty-Read
Γ ⊢ E : τ τ ⊔ τ ′ ⊑ Γ(x)

Γ ⊢ x := [E] : τ ′

Ty-Write
Γ ⊢ [E1] := E2 : τ

Ty-Assign
Γ ⊢ E : τ τ ⊔ τ ′ ⊑ Γ(x)

Γ ⊢ x := E : τ ′

Ty-Seq
Γ ⊢ C1 : τ Γ ⊢ C2 : τ

Γ ⊢ C1;C2 : τ
Ty-If

Γ ⊢ B : τ ′ Γ ⊢ C1 : τ ⊔ τ ′ Γ ⊢ C2 : τ ⊔ τ ′

Γ ⊢ if B then C1 else C2 : τ

Ty-While Γ ⊢ B : τ ′ Γ ⊢ C : τ ⊔ τ ′

Γ ⊢ while B do C : τ
Ty-Barrier

Γ ⊢ barrierb : Lo

Fig. 11 Typing rules for commands

Fig. 9 shows the typing rules for arithmetic expressions. An

expression has type Hi if an expression contains a variable

with type Hi; otherwise, it has type Lo. τ1 ⊔ τ2 is defined as

follows.

τ1 ⊔ τ2 =

{
Lo (τ1 = Lo ∧ τ2 = Lo)

Hi (otherwise)

The typing rules for Boolean expressions are defined simi-

larly (Fig. 10). Fig. 11 shows the typing rules for commands.

If a command C has type Lo, C is ensured to be executed in

a context that is independent from thread ID. τ1 ⊑ τ2 is de-

fined as τ1 = Lo∨τ2 = Hi. The rules Ty-Read and Ty-Assign

prevent the values of variables with type Lo from depending

on the values of variables with type Hi. The rules Ty-While

and Ty-If prevent commands with type Lo from appearing

in the bodies of conditional statements whose conditional

expression has type Hi. By forcing barrier instructions to

have type Lo, we can ensure that barrier synchronization

always succeeds (Ty-Barrier).

3.3 Soundness

The definition of soundness of GPUCSL is based on

Vafeiadis [13]. The main differences from the Vafeiadis’

soundness are in the conditions on barrier synchronization.

To define the soundness of GPUCSL, we define a predicate

Gsafen. Gsafen means “the execution is safe for at least n

steps”. Here, safety means that (i) if the execution termi-

nates, its memory state satisfies the postcondition, (ii) the

execution does not abort, and (iii) barrier divergence does

not occur in the execution.

Definition 1 (The Gsafe predicate). Gsafen(C, s, h,Q,Γ)

is defined as follows:

Gsafe0(C, s, h,Q,Γ) always holds.

Gsafen+1(C, s, h,Q,Γ) holds if and only if

(1) C = skip ⇒ s, h |= Q

(2) For all pheaps hF , if h⊥hF , then (C, s, h ⊎ hF) ↛G

abort

(3) If ∀i ∈ Tid ,wait(Ci) = (bi, C
′
i), then ∀i, j ∈ Tid ,

Γ |= si =L sj and bi = bj

(4) For all pheaps hF , if h⊥hF and (C, s, h ⊎ hF) →g

(C′, s′, h′) holds, then there exists a pheap h′′ such that

h′ = h′′ ⊎ hF and Gsafen(C′, s′, h′′, Q,Γ)

Here, Γ |= s =L s′ is defined as ∀x,Γ(x) = Lo ⇒ s(x) =

s′(x). s, h |= Q is also defined as ∃s′, (∀i ∈ Tid ,Γ |= si =L

s′) ∧ s′, h |= Q

We define the semantics of {P} C {Q} by using the Gsafe

predicate as follows.

Definition 2. Γ |=par {P} C {Q} is defined as follows.

For all natural numbers n, stack sequences s, and pheaps h,

if s, h |= P and ∀i, si(tid) = i, then Gsafen(C, s, h,Q,Γ).

Here, C is a sequence of T Cs.

To prove the soundness of the parallel rule, we define the

soundness of rules for sequential execution. We first define

the Tsafe predicate like the Gsafe predicate; then we define

the semantics of the {P} C {Q} for sequential execution in

the same way as above.

Definition 3 (Tsafe predicate). Tsafei,n(C, s, h,Q,BS) is

defined as follows.

Tsafei,0(C, s, h,Q,BS) always holds.

Tsafei,n+1(C, s, h,Q,BS) holds if and only if

(1) C = skip ⇒ s, h |= Q

(2) For all pheaps hF , if h⊥hF and hdef(h⊎hF) hold, then

(C, s, h ⊎ hF) ↛T abort

(3) writes(C, s) ̸= ⊥ ⇒ ∃v, h(writes(C, s)) = (1, v)

(4) For all pheaps hF which satisfies h⊥hF and hdef(h ⊎
hF), if (C, s, h ⊎ hF) →t (C′, s′, h′) hold, then there

exists a pheap h′′ such that h′ = h′′ ⊎ hF and

Tsafei,n(C
′, s′, h′′, Q,BS)

(5) If wait(C) = (b, C′), there exist pheaps hP and hF such

that

• hP⊥hF , h = hP ⊎ hF and s, hP |= BS(i, b)pre hold,

and

• for all pheaps hQ which satisfy hQ⊥hF and s, hQ |=
BS(i, b)post, Tsafei,n(C

′, s, hQ ⊎ hF , Q,BS)

The predicate hdef in (2) and (4) means that the pheap

has read and write permission for all addresses in its domain.

If a pheap h satisfies hdef(h), h can be used as a heap. The

function writes used in (3) is an auxiliary function which

returns the address written to in the next step of the exe-

cution, if the command executes a write instruction in the

next step.

c⃝ 1992 Information Processing Society of Japan 5

Journal of Information Processing Vol.0 No.0 1–10 (??? 1992)

writes([E1] := E, s) = s(E1)

writes(C1;C2, s) = writes(C1, s)

writes(C, s) = ⊥ (otherwise)

Definition (5) is for when a barrier instruction is executed

in the next step. This means that when a thread reaches

a barrier, each thread returns proper resources according

to the barrier specification and is safe with the distributed

resources.

We define the semantics of {P} C {Q} for sequential ex-

ecution by using the Tsafe predicate as follows.

Definition 4. BS, i |=seq {P} C {Q} is defined as fol-

lows. For all natural numbers n, stacks s and pheaps h, if

s, h |= P , then Tsafei,n(C, s, h,Q,BS).

4. Proof of soundness

We proved the soundness of GPUCSL by using Coq. This

proof is based on Vafeiadis’ proof with Coq [12], and it is

about 4000 LOC. Because the Vafeiadis’ CSL has many dif-

ferences compared with GPUCSL, we formalized GPUCSL

without reusing Vafeiadis’ Coq proof. Our proof is available

at http://prg.is.titech.ac.jp/ja/projects/gpucsl/.

Because Vafeiadis’ system uses atomic instructions as a

synchronization model, we changed the definition of sound-

ness to fit barrier synchronization. We applied Vafeiadis’

proof to the soundness of the inference rules for sequential

execution. We proved the soundness of thread ID indepen-

dence and showed the soundness of the rules for parallel

execution by applying the Vafeiadis’ proof to it, but our

proof is different from Vafeiadis’ in the point that it uses

the soundness of thread ID independence.

In the following, we outline the soundness proof. The

following theorem is the soundness of GPUCSL.

Theorem 5 (Soundness of GPUCSL). Γ, BS ⊢par

{P} C {Q} ⇒ Γ |=par {P} C {Q}
To prove Theorem 5, we first prove the soundness of the

inference rules for sequential execution. Next, we show the

soundness of thread ID independence (barrier divergence

does not occur, and values in all thread ID independent

variables coincide in all threads when reaching a barrier in-

struction or terminating). Finally, we show the soundness of

the inference rule for parallel execution by using these two

lemmas.

In this section, we assume the barrier specification

BS is precise and satisfies ∀b, ⋆i∈TidBS(i, b)pre ⇒
⋆i∈TidBS(i, b)post

4.1 Soundness of inference rules for sequential ex-

ecution

The following lemma is soundness of the inference rules

for sequential execution.

Lemma 6 (Soundness for sequential execution). BS, i ⊢seq

{P} C {Q} ⇒ BS, i |=seq {P} C {Q}
The proof is done by induction on derivations of

BS, i ⊢seq {P} C {Q}, and in each case of its derivation,

we unfold the definition of |=seq and prove the case by in-

duction on the index n of the Tsafe predicate. The cases

other than the barrier rule can be proved as Vafeiadis did.

So, in the following, we prove the case of the barrier rule.

First, we prove the following lemma.

Lemma 7. For all n, BS, i, s, h, if s, h |= P , then

Tsafei,n(skip, s, h, P,BS)

Proof. If n = 0, this is trivial. So consider when n + 1.

We prove each condition of Tsafe. (1) can be proved by

s, h, |= P . The other cases can also be easily proved.

Lemma 8 (Soundness of barrier rule). For all

BS, i, b, s, h, n, if s, h |= BS(i, b)pre, then

Tsafei,n(barrierb, s, h,BS(i, b)post, BS)

Proof. By induction on n. The case of n = 0 is trivial.

Consider the case of n = k + 1. We prove each condition

of Tsafe. (1), (2), (3), and (4) are trivial. Next, we prove

(5). wait(barrierb) = (b, skip) holds. We choose h as hp,

and a pheap that satisfies ∀l, hF (l) = ⊥ as hF . hp⊥hF ,

h = hp ⊎hF and s, hp |= BS(i, b)pre trivially hold. Assume

that hQ is an arbitrary pheap which satisfies hQ⊥hF and

s, hQ |= BS(i, b)post. From hQ ⊎ hF = hQ, we only need

to show Tsafei,k(skip, s, hQ, BS(i, b)post, BS), and this fol-

lows from s, hQ |= BS(i, b)post and Lemma 7

4.2 Soundness of thread ID independence

We define a predicate initConf(C, s, h,Γ, BS) that repre-

sents the initial state of a kernel.

Definition 9. initConf(C, s, h,Γ, BS) holds if and only if

• ∃Cinit τ, (∀i ∈ Tid , Ci = Cinit) ∧ Γ ⊢ Cinit : τ

• ∀i, j ∈ Tid ,Γ |= si =L sj

•
⊎

i∈Tid hi is defined

• ∀i ∈ Tid , n,Tsafei,n(Ci, si, hi, Qi, BS)

The following lemma is the soundness of thread ID inde-

pendence.

Lemma 10. If initConf(C, s, h,Γ, BS) and

(C, s,
⊎

i∈Tid hi) →∗
g (C′, s′, h′), then the following condi-

tions hold.

(1) If ∀i ∈ Tid , C′
i = skip, then ∀i, j ∈ Tid ,Γ |= s′i =L s′j

(2) If ∀i ∈ Tid ,wait(C′
i) = (bi, C

′′
i), then

∀i, j ∈ Tid , bi = bj ∧ s′i =L s′j
(1) means that when all threads terminate, all values of

variables with type Lo coincide in all threads, and (2) means

that when all threads reach barriers, all values of variables

with type Lo and all indices of the barriers (bi) coincide in

all threads.

To prove Lemma 10, we first show the following lemma.

Lemma 11 (Non-interference). If Γ ⊢ C : τ , s1 =L s2,

h1⊥h2, (C, s1, h1) →∗
p (C1, s

′
1, h

′
1) and (C, s2, h2) →∗

p

(C2, s
′
2, h

′
2), then the following conditions hold.

(1) ∀i ∈ {1, 2},wait(Ci) = skip ⇒ ∀i, j ∈ {1, 2}, s′i =L s′j
(2) ∀i ∈ {1, 2},wait(Ci) = (bi, C

′
i) ⇒

∀i, j ∈ {1, 2}, bi = bj ∧ s′i =L s′j
Here, →p are extended semantics of →t in order to use

pheap instead of heap, and they are defined as follows.

Definition 12. (C, s, h) →p (C′, s′, h′) holds if and only if

c⃝ 1992 Information Processing Society of Japan 6

Journal of Information Processing Vol.0 No.0 1–10 (??? 1992)

the following hold.

(1) writes(C, s) ̸= ⊥ ⇒ ∃v, h(writes(C, s)) = (1, v)

(2) reads(C, s) ̸= ⊥ ⇒ ∃v, p, h(reads(C, s)) = (p, v)

(3) There exists a pheap hF such that h⊥hF ,

hdef(h ⊎ hF), and (C, s, h ⊎ hF) →t (C
′, s′, h′ ⊎ hF)

reads is an auxiliary function that returns the address

which will be read from in the next step if the command

executes a read instruction in the next step.

reads(x := [E], s) = s(E)

reads(C1;C2, s) = reads(C1, s)

reads(C, s) = ⊥ (otherwise)

We omit the proof of Lemma 11.

To apply Lemma 11 to the whole kernel semantics, we

prove the following lemma.

Lemma 13. If initConf(C, s, h,Γ, BS) and

(C, s,
⊎

i∈Tid hi) →∗
g (C′, s′, h′), then there exist C′′, s′′,

and h′′ such that initConf(C′′, s′′, h′′,Γ, BS) and

∀i ∈ Tid , (C′′
i , s

′′
i , h

′′
i) →∗

p (C′
i, s

′
i, h

′
i)

Proof. By induction on →∗
g

By using Lemma 11 and Lemma 13, we can prove Lemma

10 as follows.

Proof. By applying Lemma 13 to the hypotheses, there

exist C′′, s′′ and h′′ such that initConf(C′′, s′′, h′′,Γ, BS)

and ∀i ∈ Tid , (C′′
i , s

′′
i , h

′′
i) →∗

p (C′
i, s

′
i, h

′
i). Here, we choose

a command that satisfies ∀i ∈ Tid , C′′
i = Cinit as Cinit.

For all i and j, we apply Lemma 11 to (Cinit, s
′′
i , h

′′
i) →∗

p

(C′
i, s

′
i, hi) and (Cinit, s

′′
j , h

′′
j) →∗

p (C′
j , s

′
j , h

′
j). This proves

the lemma.

4.3 Soundness of CSL on parallel execution

We prove Theorem 5 by using Lemma 6 and Lemma 10.

First, we prove a lemma.

Lemma 14. Assume the following conditions hold.

(a) h =
⊎

i∈Tid hi

(b) ∀i ∈ Tid ,Tsafei,n(C, si, hi, Qi, BS)

(c) initConf(Cinit, sinit, hinit,Γ, BS)

(d) (Cinit, sinit, hinit) →∗
g (C, s, h)

(e) ⋆i∈TidQi ⇒ Q

Then Gsafen(C, s, h,Q,Γ).

Proof. By induction on n. The case of n = 0 is trivial.

Consider the case of n = n′ +1. We prove each condition of

Gsafek.

(1) Assume ∀i ∈ Tid and Ci = skip. By (b), ∀i ∈ Tid ,

si, hi |= Qi. By applying Lemma 10 to (c) and (d), we

get ∀i, j ∈ Tid , si =L sj . Therefore, s, h |= ⋆i∈TidQi.

From (e), s, h |= Q.

(2) For all i′, we define h′ = (
⊎

i∈Tid∧i ̸=i′ hi) ⊎ hF . From

case (2) of (b) with i = i′ and hF = h′, (Ci, si, h ⊎
hF) ↛t abort, since hi ⊎ h′ = h ⊎ hF . Because i′ is

an arbitrary thread ID, (C, s, h ⊎ hF) ↛g abort.

(3) Similarly to (1), this can be proved by applying Lemma

10 to the hypotheses.

(4) Assume (C, s, h ⊎ hF) →g (C′, s′, h′), and let us use

case analysis on the derivation. If the derivation is (G-

Step), let k be the thread ID of the executed thread,

and (Ck, sk, h ⊎ hF) →t (C′
k, s

′
k, h

′). Here, C′
i = Ci

and s′i = si hold for i other than k. We choose

h′
F = (

⊎
i∈Tid,i̸=k hi) ⊎ hF , and h ⊎ hF = hk ⊎ h′

F

holds. From (4) of (b) with i := k, there exists h′′
k

such that h′ = h′′
k ⊎ h′

F and Tsafek,n′(C′
k, s

′
k, h

′′
k , Qk).

For all i other than k, we choose hi as h′′
i , and from

(b), Tsafei,n′(C′
i, s

′
i, h

′′
i , Qi) holds. Therefore, ∀i ∈

Tid ,Tsafei,n′(C′
i, s

′
i, h

′′
i , Qi). Let h′′ be

⊎
i∈Tid h

′′
i ;

then h′ = h′′⊎hF . By applying the induction hypothe-

sis, we get Gsafen′(C′, s′, h′′, Q,Γ). The G-Barrier case

can be proved similarly.

We prove Theorem 5 by using Lemma 14.

Proof. From Γ, BS ⊢par {P} C {Q}, the following con-

ditions hold.

(1) P ⇒ ⋆i∈TidPi

(2) ⋆iQi ⇒ Q

(3) ∀i ∈ tid , BS, i |= {Pi} Ci {Qi}
(4) Γ ⊢ C : τ

(5) ∀b, ⋆i∈TidBS(i, b)pre ⇒ ⋆i∈TidBS(i, b)post

Here, we prove that for all s and h, if ∀i ∈ Tid ,

si(tid) = i, ∀i, j ∈ Tid , si =L sj and s, h |= P ,

then ∀n,Gsafen(C, s, h,Q,Γ). By (1), ∃h, h = ⊎ihi and

∀i, si, hi |= Pi. From (3), ∀i, n,Tsafei,n(Ci, si, hi, Qi, BS).

Trivially, (C, s, h) →∗
g (C, s, h). Applying Lemma 14 to

these conditions concludes the proof.

5. Differences from Blom’s CSL

In this section, we compare Blom’s research and ours in

terms of their inference rules and soundness proofs.

5.1 Differences between inference rules

As differences between Blom’s CSL and GPUCSL, we can

point out (i) the different forms of the assertions and (ii) the

absence of the frame rule.

(i) Blom’s inference rules are not suitable for proving

its soundness in Coq. An assertion in Blom’s CSL con-

sists of an assertion on resources and an assertion on

functions. A specification of Blom’s CSL takes the form

{Rpre, Ppre} C {Rpost, Ppost}. Rpre and Rpost are asser-

tions on resources, and Ppre, and Ppost are assertions on

functions.

Fig. 12 is the write rule of Blom’s CSL. The predi-

cate LPerm(e, rw) in assertions on resources is equivalent

to ∃e′, e 7→1 e′ of GPUCSL. The expression L[e1] in as-

sertions on functions means the value that the address e1

points to. All inference rules of Blom’s CSL require that all

addresses appearing in assertions on functions are referred

to by assertions on resources as a premise. This condition is

relatively complex, and hence, it is considered to complicate

the soundness proof.

c⃝ 1992 Information Processing Society of Japan 7

Journal of Information Processing Vol.0 No.0 1–10 (??? 1992)

Write
{R ⋆ LPerm(e1, rw), P [L[e1] := e2]}wrloc(e1, e2){R ⋆ LPerm(e1, rw), P}

Fig. 12 Write rule of Blom’s CSL

(ii) While Blom’s CSL does not have a frame rule,

GPUCSL has one since it is designed to be similar to stan-

dard CSL. The frame rule is needed to describe specifications

of program functions in a modular manner, and as we de-

scribe later, we cannot simply apply Blom’s proof to CSLs

which have the frame rule.

5.2 Problems with Blom’s soundness proof

We show that (i) it is difficult to add the frame rule to

Blom’s proof and (ii) Blom’s proof lacks an appropriate

premise for thread ID independence.

(i) Blom’s soundness proof depends on the following

Lemma 15 *1.

Lemma 15. If Γ, BS ⊢par {P} C {Q}, s, h |= P ,

(C, s, h) →∗
g (C′, s′, h′) and ∀i ∈ Tid ,wait(C′

i) = (b, C′′
i),

then s′, h′ |= ⋆i∈TidBS(i, b)pre

This lemma means that when a kernel C satisfying

{P} C {Q} reaches a barrier instruction, the memory state

when reaching the barrier satisfies the precondition of the

barrier specification. However, this lemma does not hold on

CSLs with the frame rule. Consider the following kernel C.

1 [a+tid] = tid;
2 barrier0;
3 [a+tid] = tid;

By using GPUCSL, we can derive Γ, BS ⊢par {P} C {Q}
with the following assertions.

• P := ⋆i∈Tid (∃v, a+ i 7→ v)

• Q := ⋆i∈Tid (a+ i 7→ i)

• Pi := ∃v, a+ i 7→ v

• Qi := a+ i 7→ i

• ∀i, BS(i, 0) := emp

We can prove ∀i, BS, i ⊢seq {Pi ∧ tid = i} C {Qi} as fol-

lows.

1 {∃v, a+ i 7→ v ∧ tid = i} ⇒
2 {a+ tid 7→ v ∧ tid = i}
3 [a+tid] = tid;
4 {a+ tid 7→ tid ∧ tid = i} ⇒
5 {emp ⋆ (a+ tid 7→ tid ∧ tid = i)}
6 barrier0;
7 {emp ⋆ (a+ tid 7→ tid ∧ tid = i)} ⇒
8 {a+ tid 7→ tid ∧ tid = i}
9 [a+tid] = tid;

10 {a+ tid 7→ tid ∧ tid = i} ⇒
11 {a+ i 7→ i}

Note that we use the frame rule on line 6. Here, the

global heap h satisfies ∀i ∈ Tid , h(i) = i when reaching

the barrier instruction, so apparently it does not satisfy

s, h |= ⋆i∈Tidemp = emp. Accordingly, Blom’s sound-

ness proof is not suitable for GPUCSL

(ii) We prove thread ID independent kernels do not suf-

fer from barrier divergence in Lemma 10. We assume a

*1 Lemma 15 corresponds to the following statement in [3]. “Since
the barrier resources properly divide the group resources, the
resources required by the second part of the trace are avail-
able.”

condition that is not mentioned by Blom et al.: ∀i ∈
Tid , n,Tsafei,n(Ci, si, hi, Qi, BS). This condition means

the kernel is free of data races, and this condition cannot

be omitted. This is because there is a counterexample ker-

nel that is thread ID independent, but for which data races

and barrier divergence occur:

1 x := [a];
2 [a] := tid;
3 if (x == 0) {
4 barrier0;
5 }

We can derive Γ ⊢ C : Lo under a type environment Γ that

satisfies Γ(a) = Lo∧Γ(x) = Lo. However, because the result

of evaluating the conditional expression on line 3 depends

on scheduling, barrier divergence can occur with this kernel.

6. Application

As a merit of defining GPUCSL by using Coq, we can

verify kernels on Coq. Here, we have verified the kernel

shown in Fig. 2 (rotate) on Coq. The proof is about 1000

LOC and is available at http://prg.is.titech.ac.jp/ja/

projects/gpucsl/. Here, we show a sketch of the proof

done by Coq. rotate moves the i-th element of array a of

length T to the ((i + 1) mod T)-th location. We specify

rotate as follows.

{is array(a, T, f)}

rotate

{is array(a, T, λi.f((i− 1) mod T)))}

The predicate is array(arr, n, f) means that arr is an ar-

ray of length n, and the i-th element is initialized by f(i).

Here, arr is an expression, n is a natural number, and f is

a function from a natural number to an expression. is array

is defined as follows.

is array(arr, 0, f) = emp

is array(arr, n+ 1, f) = ((arr + n) 7→ f(n)) ⋆

is array(arr, n, f)

Now let us prove each premise of the parallel rule. First,

we prove Γ ⊢ rotate : Lo. This is easily done by taking Γ

that satisfies Γ(x) = Hi for all x other than a. Next, we

choose each assertion as follows.

• Pi = (a+ i 7→ f(i))

• Qi = (a+ (i+ 1) mod T) 7→ f(i)

• BS(i, 0)pre = (a+ i 7→ f(i))

• BS(i, 0)post = (a+ (i+1) mod T 7→ f((i+1) mod T))

i and T appearing in each predicate are constants, so from

Γ(a) = Lo, these predicates are thread ID independent. The

conditions on assertions (P ⇒ ⋆i∈TidPi, ⋆i∈TidQi ⇒ Q

and ⋆i∈TidBS(i, 0)pre ⇒ ⋆i∈TidBS(i, 0)post) can be eas-

ily proved. So, we will prove that for all i, BS, i ⊢seq

{Pi ∧ tid = i} rotate {Qi} by case analysis on i < T − 1

c⃝ 1992 Information Processing Society of Japan 8

Journal of Information Processing Vol.0 No.0 1–10 (??? 1992)

1 {a+ i 7→ f(i) ∧ tid = i} ⇒
2 {a+ tid 7→ f(i) ∧ tid = i}
3 x := [a + tid];
4 {a+ tid 7→ f(i) ∧ tid = i ∧ x = f(i)} ⇒
5 {a+ i 7→ f(i) ∧ tid = i ∧ x = f(i)}
6 barrier0;
7 {a+ (i+ 1) mod T 7→ f((i+ 1) mod T)∧ tid = i∧ x = f(i)} ⇒
8 {a+ (i+ 1) 7→ f(i+ 1) ∧ tid = i ∧ x = f(i)}

(By i < T − 1 ⇒ (i+ 1) mod T = i+ 1)
9 t = tid + 1;

10 if (tid == T - 1) {
11 t = 0
12 }
13 {a+ (i+ 1) 7→ f(i+ 1) ∧ tid = i ∧ x = f(i) ∧ t = tid+ 1} ⇒
14 {a+ t 7→ f(i+ 1) ∧ tid = i ∧ x = f(i) ∧ t = tid+ 1}
15 [a + t] := x;
16 {a+ t 7→ f(i) ∧ tid = i ∧ x = f(i) ∧ t = tid+ 1} ⇒
17 {(a+ (i+ 1)) mod T 7→ f(i)}

Fig. 13 Proof of BS, i ⊢seq {Pi ∧ tid = i} rotate {Qi}

and i = T − 1. We can prove this when i < T − 1 in the

same way as in Fig. 13 (we can prove the case of i = T − 1

in a similar way).

7. Related work

GPUVerify [2] is a verifier for kernels which detects data

races and barrier divergence. Betts et al. designed SDV se-

mantics which can describe these conditions, and GPUVerify

verifies kernels under the SDV semantics. By using assert

and assume statements, GPUVerify can also verify specifi-

cations of kernels as well as GPUCSL. However, the spec-

ifications which can be proved in GPUVerify are restricted

to those which can be solved by the SMT solvers used by

GPUVerify.

Kojima et al. proposed a Hoare logic for single instruction

multiple threads (SIMT) programs and proved the sound-

ness and relative completeness of the logic [7]. SIMT se-

mantics force all threads to execute a every step of a pro-

gram simultaneously. GPUCSL assumes all threads execute

a program in arbitrary order.

Vafeiadis devised a concise proof of the soundness of CSL

and used it to prove the soundness of FPCSL [13]. He also

proved soundness by using Coq and Isabelle/HOL. We ap-

plied Vafeiadis’ proof to the soundness of GPUCSL.

Affeldt et al. formalized the separation logic for verifying

TSL packet processing programs written in the C language

by Coq/SSReflect [1]. Their separation logic can represent

detailed specifications such as the alignment of data struc-

tures and the behavior of the sizeof operator. Our lan-

guage omits composite data types and only has the integer

data type.

Hobor et al. proposed a CSL for languages which have

Pthread-like barrier synchronization [6]. He chose Cminor,

which is an intermediate representation of the CompCert

compiler, as the object language, and proved soundness of

their CSL by using Coq. As differences from GPUCSL, we

point out that dynamic thread creation is allowed in their

CSL and they do not verify freedom from barrier diver-

gences.

8. Conclusion and future work

We designed a CSL for verifying GPGPU kernels and

proved its soundness by using Coq. The inference rules are

designed based on Blom’s CSL and Vafeiadis’ CSL, and we

proved its soundness by applying Vafeiadis’ soundness proof.

We also proved the soundness of thread ID independence,

which was not given by Blom et al. Through the design

and the proof, we showed that (i) Blom’s proof cannot be

straightforwardly applied to CSLs with the frame rule, and

(ii) the soundness of thread ID independence depends on the

kernels being free of data races.

8.1 Towards more precise GPGPU semantics

There are important CUDA features that are not con-

sidered in our CUDA subset: thread blocks and warps. In

CUDA, the set of all threads are divided into units of thread

blocks. Moreover, each thread block is divided into units of

warps. A thread block is a set of warps, and a warp is a

set of threads. Each thread block has its own memory that

runs fast (shared memory). Barrier synchronization is done

in units of thread blocks. Threads which belong to the same

warp are executed in an SIMT manner.

The semantics of the WhileB language are such that all

threads belong to the same thread block. However, we can

easily add a thread block feature to GPUCSL. First, we

would add an inference rule to GPUCSL which distributes

the kernel precondition to each thread block, verify each

thread block by using the parallel rule, and aggregate the

postconditions of each thread block into the kernel post-

condition. Then, we would give type Lo to the variable

bid, which means the number of the threads in each thread

block. Finally, we would introduce 7→ operator between

shared memories.

In contrast, because GPUCSL was proved on arbitrary

scheduling, it is also sound under semantics having the warp

feature. However, kernels that omit barrier synchronization

and assume SIMT execution are considered racy, so we can-

not use GPUCSL to verify these kernels. These omissions

of barrier synchronization are optimization techniques for

GPGPU [5], so we should extend CSL to enable these ker-

nels to be verified.

8.2 Design of GPGPU kernel verification library

in Coq

We proved the soundness of GPUCSL by using Coq. We

can use this proof to verify GPGPU kernels in Coq. We ver-

ified the rotate kernel in Coq and it required many lemmas.

A future task would be to design lemma libraries and tactics

that would make it easier to verify kernels.

Acknowledgments We wish to thank Atsushi Igarashi

and Kensuke Kojima of Kyoto University for helpful advice

on this research, the reviewer for many important comments

on this paper, and our laboratory members for their discus-

sions on this research.

c⃝ 1992 Information Processing Society of Japan 9

Journal of Information Processing Vol.0 No.0 1–10 (??? 1992)

References

[1] Affeldt, R. and Sakaguchi, K.: An Intrinsic Encoding of
a Subset of C and its Application to TLS Network Packet
Processing, Journal of Formalized Reasoning, Vol. 7, No. 1
(2014).

[2] Betts, A., Chong, N., Donaldson, A., Qadeer, S. and Thom-
son, P.: GPUVerify: A Verifier for GPU Kernels, Proceedings
of the ACM International Conference on Object-Oriented
Programming Systems Languages and Applications, pp. 113–
132 (2012).

[3] Blom, S., Huisman, M. and Mihelčić, M.: Specification and
Verification of GPGPU programs, Science of Computer Pro-
gramming, Vol. 95, Part 3, pp. 376 – 388 (2014).

[4] Bornat, R., Calcagno, C., O’Hearn, P. and Parkinson, M.:
Permission Accounting in Separation Logic, Proceedings of
the 32Nd ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, pp. 259–270 (2005).

[5] Harris, M.: Optimizing parallel reduction in CUDA (2007).
[6] Hobor, A. and Gherghina, C.: Barriers in Concurrent Sep-

aration Logic, Proceedings of 20th European Symposium on
Programming, Lecture Notes in Computer Science, Vol. 6602,
pp. 276–296 (2011).

[7] Kojima, K. and Igarashi, A.: A Hoare Logic for SIMT Pro-
grams, Proceedings of 11th Asian Symposium on Program-
ming Languages and Systems, Lecture Notes in Computer
Science, Vol. 8301, pp. 58–73 (2013).

[8] Myers, A.: Proving Noninterference for a While-Language
Using Small-Step Operational Semantics (2011). Tutorial
Note for the Marktoberdorf Summer School on Logics and
Languages for Reliability and Security.

[9] NVIDIA: CUDA C Programming Guide, http://docs.
nvidia.com/cuda/cuda-c-programming-guide/ (2015).

[10] O’Hearn, P. W.: Resources, Concurrency and Local Reason-
ing, CONCUR 2004 - Concurrency Theory, Lecture Notes
in Computer Science, Vol. 3170, pp. 49–67 (2004).

[11] The Coq Development Team: The Coq Proof Assistant Ref-
erence Manual (2014).

[12] Vafeiadis, V.: Concurrent Separation Logic Soundness,
https://www.mpi-sws.org/~viktor/cslsound/.

[13] Vafeiadis, V.: Concurrent Separation Logic and Operational
Semantics, Electronic Notes in Theoretical Computer Sci-
ence, Vol. 276, pp. 335–351 (2011).

Izumi Asakura is a master course

student at Department of Mathemat-

ical and Computing Sciences, Tokyo

Institute of Technology. He received

his B.S. degree from Tokyo Institute of

Technology in 2014. His research inter-

ests include programming languages.

Hidehiko Masuhara is a Professor

at Department of Mathematical and

Computing Sciences, Tokyo Institute

of Technology. He received his B.S.,

M.S., and Ph.D. degrees from the Uni-

versity of Tokyo in 1992, 1994 and 1999

respectively. Before joining Tokyo In-

stitute of Technology, he served as an

Assistant Professor, Lecturer, and Associate Professor at

Graduate School of Arts and Sciences, the University of

Tokyo. His research interests include design and implemen-

tation of programming languages and software development

environments.

Tomoyuki Aotani is an assistant

professor at Department of Mathemat-

ical and Computing Sciences, Tokyo

Institute of Technology. He received

his BSc from Hosei University in 2004

and MA and PhD from the Univer-

sity of Tokyo in 2006 and 2009, respec-

tively. His research interests include

design of programming languages, program analysis, verifi-

cation and optimization.

c⃝ 1992 Information Processing Society of Japan 10

