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In widely-used actor-based programming languages, such as Erlang, se-
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rency. In order to improve sequential performance of Erlang, we develop
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grams, most of which heavily rely on function recursion. Our preliminary
evaluation showed approximately 38% speedup over the standard Erlang
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Chapter 1

Introduction

Erlang (Armstrong and Virding, 1990) is a dynamically-typed, functional
and concurrent programming language based on the actor model (Agha,
1986). It is widely used for practical applications that require distribution,
concurrency and availability. The application area ranges from telecom-
munication, banking, electric commerce to instant messaging (Armstrong,
1996), and recently expanding to server side like Cowboy1, Chicago Boss2,
and MochiWeb3.

We consider that sequential execution performance in Erlang is as im-
portant as scalability of concurrency. In this regard, the two mainstream im-
plementations of Erlang, namely the BEAM virtual machine (or BEAM in
short) (Armstrong, 1997) and the HiPE compiler (or HiPE in short) (Johans-
son et al., 1999b), are either less efficient or less portable. BEAM is a byte-
code interpreter, and guarantees bytecode level portability across different
platforms. Its sequential execution is however slow due to the interpreter-
based execution4. HiPE is a static native code compiler, and is faster than
BEAM5. However, despite of the performance improvement, the compiled
code using HiPE loses the compatibility, which means we cannot use it
cross-platform. Moreover, users cannot re-compile libraries without source-
code into native code using HiPE.

Alternatively, we propose Pyrlang, a virtual machine for the BEAM
bytecode with a just-in-time (JIT) compiler. We use the RPython’s meta-
tracing JIT compiler (Bolz et al., 2009) as a back-end. Although the back-end
is primarily designed for imperative programming languages like Python
(as known as the PyPy project), Pyrlang achieved approximately 38% speedup
over BEAM.

We consider that the implementation cost is also important for JIT com-
piler research. In this thesis we also compared the implementation cost of
different approaches to help to build JIT compiler in Chapter 5. The re-
sult showed that meta-tracing JIT has significant benefits because it makes
language developers concentrate on interpreter implementation, and then
one can generating a tracing JIT compiler without touching any low-level
details.

1https://github.com/ninenines/cowboy
2https://github.com/ChicagoBoss/ChicagoBoss
3https://github.com/mochi/mochiweb
4According to the Computer Language Benchmarks Game

(http://benchmarksgame.alioth.debian.org/), BEAM is slower than C by the factors
of 4–95 with 10 benchmark programs.

5Though HiPE is known to exhibit largely different performance improvements depend-
ing on the types of application programs (Johansson et al., 1999a), it speeds up by the factors
from 1.8 to 3.5 according to the benchmark results in a literature (Pettersson, Sagonas, and
Johansson, 2002) and our experiments.
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Contributions The contributions of the thesis can be explained from the
two viewpoints: as an alternative implementation of Erlang, and as an ap-
plication of a meta-tracing JIT compiler to a mostly-functional language.

As an alternative implementation of Erlang, Pyrlang demonstrates a po-
tential of JIT compilation for Erlang6. The performance was comparable to
an existing static Erlang compiler. This suggests that, by reusing a quality
back-end, we could provide Erlang a JIT compiler with a number of modern
optimization.

From a viewpoint of tracing JIT compilers, Pyrlang is equipped with
a new more strict tracing JIT policy, which focuses on detecting more fre-
quently executed path under conditional branch. In our research, we found
that a naive application of a tracing JIT compiler suffers overheads when
the compiler chooses less frequent paths. We showed that a new tracing
policy reduces the overheads by the factor of 2.9% on average.

Organization of the Thesis The thesis is organized as follows. Chapter 2
introduces the instruction set of BEAM as well as an overview of differ-
ent approaches to help to build a JIT compiler, including meta-tracing JIT.
Chapter 3 describes the key design decisions in Pyrlang. Chapter 4 de-
scribes several performance optimization we applied to Pyrlang. Chap-
ter 5 evaluates both the performance of Pyrlang by comparing against the
existing Erlang implementations, and the implementation cost for differ-
ent approaches to build a JIT compiler. Chapter 6 discusses related work.
Chapter 7 concludes the thesis with discussing future work.

6Other than BEAM and HiPE, there are a few attempts to support JIT compilation for
Erlang, which we discuss in the later section of the thesis.
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Chapter 2

Background

2.1 Erlang and BEAM Bytecode

The mainstream Erlang implementation compiles an Erlang program to
bytecode, and executes on BEAM. We here briefly explain the architecture
of the bytecode language by using a few examples.

BEAM is a bytecode-based register machine, whose instruction set in-
cludes register transfers (e.g., move), conditional jumps (e.g., is_eq_exact
and is_lt_exact), arithmetic operations (expressed as calls to built-in func-
tions like “gc_bif erlang:+/2”), and function calls (e.g., call and call_only).
There are three sets of registers, namely X, Y and F, which are denoted as
x(i), y(i) and f(i), respectively. The X and F registers store values of any
types other than floating point numbers, and values of floating point val-
ues, respectively. They are used for passing parameters to and returning
results from functions, and can also be used as caller-saved temporary vari-
ables. The Y registers are callee-saved, and can be used for storing local
variables in a function body. There are instructions to save (allocate_zero)
and restore (deallocate) Y registers.

Figures 2.1, 2.2 and 2.3 show three simple functions in BEAM bytecode.
Figure 2.1 shows a function that adds two parameters (from L2) and a

code fragment that calls the function with parameters 3 and 5 (from L5).
The function expects parameters in registers x(0) and x(1), and returns a
result by storing it in x(0). The instruction immediately after L2 (gc_bif2
erlang:+/2) is a built-in function that stores the sum of two registers into a
register. To invoke a function, the caller sets parameters on X registers, and
then executes the call instruction. As can be seen in the code, the caller and
the callee share the X registers.

; funct ion my_module : add/2
L2 : ; x ( 0 ) := x ( 0 ) + x ( 1 )

g c _ b i f 2 er lang :+/2 x ( 0 ) x ( 1 ) x ( 0 )
re turn
. . .

L5 : move #3 x ( 0 )
move #5 x ( 1 )
c a l l L2
. . .

FIGURE 2.1: An add function and its invocation in BEAM
bytecode
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; func t ion f a c t : f a c t /2
L2 : ; i f x (0 )==0 , jump to L3

i s _ e q _ e x a c t L3 , x ( 0 ) , #0
; x ( 0 ) := x ( 1 )
move x ( 1 ) , x ( 0 )
re turn

L3 : ; x ( 2 ) := x ( 0 ) − 1
g c _ b i f 2 er lang :−/2 , x ( 0 ) , #1 , x ( 2 )
; x ( 1 ) := x ( 0 ) ∗ x ( 1 )
g c _ b i f 2 er lang :∗/ 2 , x ( 0 ) , x ( 1 ) , x ( 1 )
move x ( 2 ) , x ( 0 )
c a l l _ o n l y L2 ; t a i l c a l l

FIGURE 2.2: A tail-recursive factorial function in BEAM
bytecode

; func t ion f a c t : f a c t /1
L2 : ; i f x (0 )==0 , jump to L3

i s _ e q _ e x a c t L3 , x ( 0 ) , #0
move #1 , x ( 0 ) ; x ( 0 ) := 1
return

L3 : a l l o c a t e _ z e r o 1 , 1 ; save Y r e g i s t e r s
; x ( 1 ) := x ( 0 ) − #1
g c _ b i f 2 er lang :−/2 , x ( 0 ) , #1 , x ( 1 )
move x ( 0 ) , y ( 0 ) ; save x ( 0 ) to y ( 0 )
move x ( 1 ) , x ( 0 )
c a l l 1 , L2 ; non− t a i l c a l l
; x ( 0 ) := y ( 0 ) ∗ x ( 0 )
g c _ b i f 2 er lang :∗/ 2 , y ( 0 ) , x ( 0 ) , x ( 0 )
d e a l l o c a t e 1 ; r e s t o r e Y r e g i s t e r s
re turn

FIGURE 2.3: A non-tail recursive factorial function in BEAM
bytecode

Figure 2.2 shows a factorial function written in a tail recursive man-
ner, where the second parameter accumulates the product of numbers com-
puted so far. The first instruction from L2 (is_eq_exact) compares two pa-
rameters and jumps if they are the same. The last instruction of the function
(call_only) is a tail-call. Note that BEAM uses different instructions for tail
(call_only) and non-tail calls (call).

Figure 2.3 shows a non-tail recursive factorial function. Since the func-
tion multiplies the result from a recursive call by the given argument, it
saves the argument (x(0)) into a callee-saved register (y(0)) before the re-
cursive invocation. The block from L3 saves and restores the Y registers at
the beginning and the end of the block, respectively.
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2.2 Approaches to Help to build JIT Compiler

2.2.1 Meta-tracing JIT Compiler

Tracing JIT Compiler

A tracing JIT compiler works by (1) detecting a frequently executed instruc-
tion (called a JIT merge point) in an execution of a program, which is usu-
ally a backward jump instruction, (2) then recording a series of executed
instructions from the merge point (which we call a trace), and (3) compil-
ing the trace to optimized code. When the control reaches the merge point
again, the optimized code runs instead of the original one. Since a trace is
a straight-line code fragment spanning over multiple functions, the com-
piler effectively achieves aggressive inlining with low-level optimization
like constant propagation.

When the counter of a JIT merge point hits a threshold, the compiler
records a trace, which is a series of executed instructions, until the control
comes back to the same JIT merge point. The compiler converts the trace
into native code by applying optimization like the constant propagation.
When a conditional branch remains in a trace, it is converted to a guard,
which checks the condition and jumps back to the original program when
the condition code holds differently from the recorded trace.

In real world programming languages, a trace recorded by a JIT com-
piler is usually either an iteration of some loop or recursive function, since
this kind of structures satisfy the definition of trace once we put a JIT merge
point in the entry point of them, and are usually executed frequently enough,
make it worth to pick them up and compile into native code.

False Loop Problem & Two State Tracing The false loop problem was
originally proposed by (Hayashizaki et al., 2012), it is a problem which
makes a trace into pieces when there are nested traces where the inner trace
is executed more than once.

Consider a recursive function a, as Figure 2.4 shows, which calls a very
short function b in it body for twice, and recursive a itself again. Here we
expect to record the function body of a, since it is a tail recursion and we
can reuse that trace efficiently. However, in this situation, JIT tracing will
start from b since b is executed more frequently than a. As a result, trace of
b break the body of a into two pieces, it may start from the first invocation,
and end up with the second invocation, or it may start at the second invoca-
tion, then go to the next iteration of a, then end up with the first invocation
of b. Neither of these two patterns are not good, in fact, b here are totally
neither a loop nor a recursion. This is what means a “false” loop.

Currently, there are several approaches that try to solve this problem,
like by inspecting function call stack to detect a false loop and eliminate
it (Hayashizaki et al., 2012), or by adding another tracing state to get rid of
increasing counter, namely two state tracing, which is originally proposed
by Pycket (Bolz et al., 2014).

Here we introduce the two state tracing since it is relative to our re-
search. The basic idea of two state tracing is to partly distinguish different
execution contexts of a function invocation, and therefore make JIT com-
piler judge a piece of code as a trace more strictly. In Pycket, the previous
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a ( ) −>
b ( ) ,
b ( ) ,
a ( ) .

b ( ) −>
ok .

FIGURE 2.4: An example to show false loop problem

AST (Abstract Syntax Tree) node is recorded as a part of JIT merge point at
every old JIT merge point, and therefore function invocations from different
contexts may be considered as different.

Consider previous example with function a and b again. This time the
first invocation of b can be regarded as different with the second one, be-
cause they have different previous states. As a result, the body of function
a can be covered by one single trace, in other word, the false loop is elimi-
nated.

We also applied two state tracing in Pyrlang. We introduce the imple-
mentation detail in Chapter 4.

RPython meta-tracing JIT Compiler

RPython (Ancona et al., 2007) is a subset of Python. It remains most of
Python’s core datatype like list, dictionary, tuple, and features like OOP,
exception handling, closure, but removed some dynamic features like dy-
namic typing, generator, dynamic field lookup. As as result, types of all
variables in a RPython program can be determined statically. With a spe-
cial compilation tool, namely RPython tool chain, a RPython program can
be transformed to different kinds of backend code like Java, CLI, and C,
and has a comparable performance with CLI and Java.

RPython is originally developed and used by pypy project to build a
high performance python virtual machine, but afterwards grows up to a
general-used programming language. RPython has lots of low-level li-
braries including number datatype, string I/O, socket, random, and so on,
which can help language developers implement their own language vir-
tual machine easier. For example, if a developer want to implement big int
datatype it their own language, he can just simply reuse the implementation
in rbigint library, so there is no need to touch any low-level implementation
details in this case.

RPython can also support meta-programming. That is because the RPython
tool chain only begins collecting type information and transforming code
after python’s loading time (which is a phrase that Python virtual machine
trying to executing every top-level command at each module in order to
load those function or class definitions). In other words, developers can
fully use Python‘s dynamic features during the loading time, which re-
mains a good chance to do meta-programming. We also show an example
in Chapter 4 about using this feature to implement optimization of datatype
representation.
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Besides those features, RPython can also provide a tracing JIT com-
piler to language developer, this technique is called meta-tracing JIT com-
piler (Bolz et al., 2009; Bolz and Tratt, 2015). We therefore introduce this
technique here.

Meta-tracing JIT compilers are tracing JIT compilers that optimize an
interpreter program (which is the interpreter written by RPython in our case).
Their mechanisms for monitoring and tracing an execution of the subject
program are the same as the one in general tracing JIT compilers, except for
the notion of program locations. While general tracing JIT compilers select a
trace from the loops in the interpreter program, meta-tracing JIT compilers
do so from the loops in an subject program. To do so, they recognize the
program counter variable (denoted as pc hereafter) in the interpreter, and
assign a different execution frequency counter to different pc values.

With this extension, the compilers detect frequently executed instruc-
tion in the subject program, and record the interpreter’s execution until
it evaluates the same instruction in the subject program. As a result, the
technique enables to build a JIT compiler of a language by writing an in-
terpreter of that language with proper annotations. In the case of Pyrlang,
we use a meta-tracing JIT compiler for interpreters written in RPython, a
subset of Python. In other words, we write a BEAM bytecode interpreter in
RPython.

In the rest of the thesis, we simply refer JIT merge points as locations in
subject programs. Except that the program locations are indirectly recog-
nized through variables in the interpreter, the readers can understand the
subsequent discussion in the paper as if we are working with a dedicated
tracing JIT compiler for BEAM.

2.2.2 Compilation to JIT Languages

Instead of generating a target language specific JIT compiler, another ap-
proach to build a JIT compiler is compilation to JIT languages.

For the popular dynamic typed languages, there are projects like Jython (Jython:
Python for the Java Platform) and JRuby (JRuby, the Ruby Programming Lan-
guage on the JVM), which are pure Java implementations for Python and
Ruby, respectively. However, The main goal of these projects is to build
those dynamic language implementations with better compatibility with
Java, such as manipulating Java class directly. As for the performance, un-
fortunately, although there is an existing JIT compiler in most of modern
JVM implementations, which can improve Java program performance very
much, performance of such Java implementations of dynamic languages
are not as good as their official implementations. One of the most impor-
tant reasons is due to the mismatch between the dynamic features of such
dynamic languages, and the JVM static object modal.

For those popular functional programming languages, there are projects
like OCaml-Java (Clerc, 2012) and Kawa (Bothner, 1998), which are pure
Java implementations for OCaml and Scheme, respectively. In the case of
OCaml-Java, performance data showed that it can be faster than OCaml
interpreter, but still slower than OCaml native code compiler. The result
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showed OCaml‘s static typed object is somehow suitable in JVM, and there-
fore has a comparable performance. On the other hand, however, per-
formance of Kawa is not as good as other Scheme implementations like
Scheme48.

We therefore consider the dynamic typing feature is a large factor to
effect the performance of compiled Java code.

2.2.3 Partial-evaluation-based Meta-compilation

Besides typical JIT compiler, there is another runtime optimization Technol-
ogy called partial-evaluation-based meta-compilation. This technology was
firstly proposed by Truffle project (Würthinger et al., 2012) (Würthinger et
al., 2013), which is a Java framework for self-optimizing interpreter. Differ-
ent from RPython, which use meta-tracing JIT to generate optimized code
during the runtime, Truffle uses partial evaluation (Futamura, 1999) tech-
nology to optimize “hot” method of target language.

There are two main differences between meta-tracing JIT and partial
evaluation. (1) A compilation unit in partial evaluation includes entire con-
trol flow of a hot method, while there is no control flow in a trace gener-
ated by meta-tracing JIT compiler. (remember that all conditional branches
in a trace are reduced to guard instructions) (2) Compilation units in par-
tial evaluation is strictly independent of a concrete execution, while meta-
tracing JIT relies on runtime information (such as assumption that some
variables are changed rarely during runtime) to generate optimized code.

There are also existing researches to compare meta-tracing JIT and par-
tial evaluation like (“Tracing vs. partial evaluation: Comparing meta-
compilation approaches for self-optimizing interpreters”). In this paper
authors showed that Truffle‘s partial evaluation has a comparable perfor-
mance that RPython‘s meta-tracing JIT in their experiment target language
SOM (Simple Object Machine) (Haupt et al., 2010). However, this paper also
showed that much more work is needed to implement a target language
in Truffle since language developers need to provide more information to
guide optimistic Optimization.
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Chapter 3

Implementation

This section overviews the design of Pyrlang’s JIT compiler, which is em-
bodied as a BEAM bytecode interpreter written in RPython. We first show
the representation of data structures in the interpreter, and then describes
the design of the dispatch loop (i.e., the interpreter’s main loop).

We use C language as our backend for RPython tool chain, since this
backend can gain the best performance of the interpreter. As a result, all
RPython datatypes are transferred into C datatypes. For example, a RPython
integer is a C integer, which means we do get overflow if the integer is large
enough.

3.1 Representation of Internal Data of the Interpreter

3.1.1 Erlang datatype

As Figure 3.1 shows, we represent each Erlang datatype as an object of
RPython class. All of these datatypes inherit from a common abstract class,
namely W_Root, we therefore can realize polymorphism in related functions
to handle different kinds of datatypes.

Erlang number datatype including both integer and float-point num-
bers, both of them inherit from W_AbstractNumber class. Integer is imple-
mented by two different RPython object. When the value of integer is little
enough, we use W_IntObject, which is a wrap of RPython integer. When
the value of integer is as large as resulting an overflow, we transfer this
W_IntObject into a W_BigIntObject, which is a wrap of rpython’s big int li-
brary. Float is simply a wrap of RPython float-point number.

As for other important Erlang datatypes, Erlang atom is object includ-
ing an index of some atom table. Erlang list is implemented as a linked-list
of RPython object. Erlang closure is a RPython object including a pointer to
bytecode address of that function, an arity field stroing arity of that func-
tion, and a list of W_Root object to store free variables. A general Erlang
tuple object is a wrap of a RPython list of W_Root, for tuples with small
size, we use some specialized tuple objects, which we introduce in Chap-
ter 4.

We mark as many fields as possible with RPython _immutable_fields_
hint function, which tells RPython that these fields can never be changed so
RPython JIT compiler can perform further optimization like constant prop-
agation during optimizing recorded trace.
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c l a s s W_Root :
# makes s u r e f i e l d o f a W_Root i s a t u a l l y empty
_ a t t r s _ = ( )

def clone ( s e l f ) :
return W_Root ( )

def i s _ e q u a l ( s e l f , other ) :
# a t r i c k t o s i m u l a t e a b s t r a c t f u n c t i o n
r a i s e NotImplementedError

c l a s s W_AbstractNumberObject ( W_Root ) :
def abs ( s e l f ) :

r a i s e NotImplementedError

def t o f l o a t ( s e l f ) :
r a i s e NotImplementedError

def t o i n t ( s e l f ) :
r a i s e NotImplementedError

def neg ( s e l f ) :
r a i s e NotImplementedError

c l a s s W_AbstractIntObject ( W_AbstractNumberObject ) :
pass

c l a s s W_IntObject ( W_AbstractIntObject ) :
_ immutable_f ie lds_ = [ ’ i n t v a l ’ ]
. . .

FIGURE 3.1: part of implementations of Erlang datatypes
by using RPython

3.1.2 Built-In Functions and User-Defined Functions

There are two kinds of functions in Erlang, namely built-in functions and
user-defined functions. Built-in functions (BIF) are implemented using na-
tive code (that is, RPython code in our research), while user-defined func-
tions are implemented using Erlang code. Each function also belongs to an
actual Erlang module. An function without any context namespace belongs
to Erlang module, implicitly.

As Figure 3.2 shows, We use a RPython class called BaseBIF to represent
built-in functions. Each built-in function is a subclass of BaseBIF, which has
a common method called invoke. We can get the execution context via argu-
ments past to this invoke function. A unroll_safe hint is placed at the head of
apply_bif function, which suggests RPython to unroll loop inside this func-
tion (that is, the list-comprehension of operands) to generate better native
code during JIT compilation. Unrolling is safe here because we confirm one
BIF can only take limited number of operands.
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c l a s s BaseBIF ( BaseFunc ) :
def invoke ( s e l f , args ) :

r a i s e NotImplementedError

c l a s s AddFunc ( BaseBIF ) :
def invoke ( s e l f , args ) :

( a , b ) = args
return a . add ( b )

@ j i t . u n r o l l _ s a f e
def apply_bi f ( cp , b i f , rands , dst_reg ) :

# e v a l u a t e e a c h operand i n t o a c t u a l v a l u e
args = [ ge t_bas i c_va lue ( cp , rand ) for rand in rands ]
# a t r i c k t o s i m u l a t e t y p e c a s t i n g
a s s e r t i s i n s t a n c e ( b i f , BaseBIF )
r es = b i f . invoke ( args )
# s t o r e r e s u l t i n t o d e s t i n a t i o n r e g i s t e r
s tore_basereg ( dst_reg , r es )

FIGURE 3.2: Definition of built-in functions and an example
of add function

When loading an Erlang module, Pyrlang will firstly parse the module
header information to find what BIFs the module needs, than initiate corre-
sponding BIF objects, storing them into an array, then replace each reference
of these BIFs in the module with corresponding index in this array, so we
can find each BIF with O(1).

For user-defined functions, however, we need to take care of both tail-
invocation and nontail-invocation.

Tail-invocation is invoked by a BEAM instruction namely CALL_ONLY.
In this situation, similar with any other functional languages, there is no
need to handle call-stack, so we simply make the execution jumps to desti-
nation address by modifying the value of program counter(pc).

Nontail-invocation is invoked by several BEAM instructions such as
CALL, CALL_LAST, and CALL_EXT. In this situation, we need to handle
the call-stack of user-defined functions by ourselves, that is because there is
a stack limitation in RPython function call-stack, while in Erlang, the limi-
tation of call-stack should be as large as the memory size of local machine,
which is different with RPython.

3.1.3 Instructions and Literal Values

An Erlang program is a module with at least one function. Each Erlang
module has head information, including at least (1) a table of all atoms
occurred in this module file, (2) a list of functions that are exported from
this module so any other module can access them, (3) a table of literal values
used in this module.

When executing an Erlang program, an user firstly specify the mod-
ule file and the entry function, which must be an exported function in that
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c l a s s i n t e r p r e t e r :
. . .

# h a n d l e r f o r CALL i n s t r u c t i o n
def c a l l ( s e l f , frame , l a b e l ) :

s e l f . c a l l _ s t a c k . push ( frame )
return frame [ 0 ] . labe l_ to_addr ( l a b e l )

. . .

FIGURE 3.3: Definition of built-in functions and an example
of add function

c l a s s I n s t r u c t i o n :
_immutable_f ie lds_ = [ ’ opcode ’ , ’ args [ ∗ ] ’ ]
def _ _ i n i t _ _ ( s e l f , opcode , args ) :

s e l f . opcode = opcode
s e l f . args = args

FIGURE 3.4: Definition of basic BEAM instruction

module, with valid argument(s). A module may include other modules as
well, these modules will be pre-loaded before interpreter starts.

We represent a BEAM bytecode program as an RPython array of in-
struction objects. As Figure 3.4 shows, an instruction object is an RPython
object that contains operands in its fields. The opcode field suggests the exact
instruction, while args field suggests the arguments of this instruction.

Literal values are stored in literal tables, whose indices are used in the
operands. We made the following design decisions in order to let the JIT
compiler perform obvious operations at compile time. (1) We separately
manage the literal table for integers, and the table for other types. This
will eliminate dynamic type checking for integer literals. (2) We mark the
instruction array and all fields of instruction objects as “immutable.” This
will eliminate operations for fetching instructions and operands from the
generated code.

3.1.4 Atoms

We represent an atom by an index of a global atom table, which contains
the identifiers of dynamically created atoms. This will make the equality
test between atoms constant time.

3.1.5 X and F Registers

We use two RPython lists for X and F registers, respectively. We also mark
those lists virtualizable1, which is an optimization hint in RPython. This hint
encourages the compiler to perform scalar replacement of marked objects,
so that they do not need to be allocated, as a result fields reads/writes can
be treated as pure data dependencies and their data are ideally kept in reg-
isters only.

1https://pypy.readthedocs.org/en/release-2.4.x/jit/virtualizable.html
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3.1.6 Y Registers and Stack Frame

We represent Y registers and the stack frame as a pair of resizable lists with
stack pointers. The first list serves as a stack of Y registers whose indices
are shifted by its stack pointer. The stack pointer is adjusted by the allo-
cate_zero and deallocate instructions. The second list serves as a stack of
return addresses. The runtime initially constructs those two lists with fixed
lengths, yet re-allocates a new lists with twice length of the current one
when the stack pointer reaches to the end of either list.

Our representation differs from a linked-list of frames, which is found
in typical implementations of interpreters. The rationales behind our repre-
sentation are as follows. (1) We use single list a fixed-length (yet resizable)
list for avoiding allocation overheads of frames that were required at every
function invocation in the linked-list representation. (2) We separately man-
age the local variables and the return addresses so as to give static types to
the return addresses.

3.2 Dispatch Loop

The core of the BEAM bytecode interpreter is a single loop called the dis-
patch loop, which fetches a bytecode instruction at the program counter,
and jumps to the handler code that corresponds to the instruction. A han-
dler performs operations of the respective instruction, such as moving val-
ues between registers, performing arithmetic operations, and changing the
value of the program counter.

The design of the dispatch loop is similar to typical bytecode inter-
preters, except for the following three Pyrlang specific points. (1) We use a
local variable for managing the program counter, which is crucial for the JIT
compiler to eliminate accesses to the program counter. (2) The handler for
call_only merely changes the program counter value as the instruction is
for tail calls, which effectively realizes tail call elimination. (3) The dispatch
loop yields its execution for realizing the green threading. To do so, the
loop has a yield counter, and the handlers of some instructions (those can
become an end of a trace) terminates the dispatch loop when the counter is
decremented to zero.

The green thread yield policy is different from Ericsson’s implementa-
tion, which decrease the yield counter at each function invocation (includ-
ing customized functions and built-in functions). This is because we want
to limit the switch-out behavior happening only at the boundary of trace.
Of course, this approach might bring “unfairness” between different pro-
cess execution. However, in real world, this “unfairness” is usually consid-
ered acceptable compared with the performance improvement, and widely
used in many main-stream programming language implementations such
as PyPy and Ruby.

To complete context switching, we implement a scheduler to help man-
age different green threads (also known as Erlang processes), which are
objects that include a dispatch loop of their own.

Figure 3.7 shows part of RPython code of our scheduler. Each Erlang
process has a priority when created, the scheduler handles different priority
in order. A Erlang process is context switched by one of the next three con-
ditions: (1) process terminates because all of its code has been executed, (2)
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process hangs out because its event listener does not receive any new mes-
sage, (3) process consumes all yield counter value and therefore is paused
and switched out.
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c l a s s C a l l S t a ck :
def _ _ i n i t _ _ ( s e l f ) :

s e l f . addrs = [ ( None , 0 ) ] ∗ i n i t _ y _ r e g _ s i z e
s e l f . addr_top = −1
s e l f . addr_size = j i t . h in t ( i n i t _ y _ r e g _ s i z e , promote=True )
. . .

def push ( s e l f , val ) : # ( cp , pc )
s e l f . addr_top += 1
i f s e l f . addr_top >= s e l f . addr_size :

s e l f . addrs = s e l f . addrs + [ ( None , 0 ) ] ∗ s e l f . addr_size
s e l f . addr_size = s e l f . addr_size << 1

s e l f . addrs [ s e l f . addr_top ] = val

def pop ( s e l f ) :
val = s e l f . addrs [ s e l f . addr_top ]
s e l f . addr_top −= 1
return val

. . .

c l a s s Y_Register ( A b s t r a c t R e g i s t e r ) :
def _ _ i n i t _ _ ( s e l f ) :

s e l f . va l s = [ None ] ∗ i n i t _ y _ r e g _ s i z e
s e l f . val_top = −1
s e l f . v a l _ s i z e = j i t . h in t ( i n i t _ y _ r e g _ s i z e , promote=True )

@ j i t . u n r o l l _ s a f e
def a l l o c a t e ( s e l f , n , i n i t _ v a l = None ) :

s e l f . val_top += n
while s e l f . val_top >= s e l f . v a l _ s i z e :

s e l f . va l s = s e l f . va l s + [ None ] ∗ s e l f . v a l _ s i z e
s e l f . v a l _ s i z e = s e l f . v a l _ s i z e << 1

i f i n i t _ v a l :
index = s e l f . val_top
for i in range ( n ) :

s e l f . va l s [ index ] = i n i t _ v a l
index −= 1

def d e a l l o c a t e ( s e l f , n ) :
s e l f . val_top −= n

def get ( s e l f , n ) :
idx = s e l f . val_top − n
a s s e r t idx >= 0
return s e l f . va l s [ idx ]

def s t o r e ( s e l f , n , val ) :
s e l f . va l s [ s e l f . val_top − n ] = val

FIGURE 3.5: Definition of Y registers and the stack frame
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# t h e g r e e n s a r e t h e p o s i t i o n k e y s
dr iver = j i t . J i t D r i v e r ( greens =[ ’ bytecode ’ , ’ pc ’ ] , reds = [ . . . ] )
reduct ion = 2000 # t h e y i e l d c o u n t e r
. . .

while ( True ) :
# t o t e l l j i t where i s t h e head o f t h e d i s p a t c h l o o p
dr iver . j i t _ m er g e _p o in t ( bytecodes , pc , . . . )
i n s t r = bytecodes [ pc ] ;
i f i n s t r == ’ GC_BIF2 ’ :

. . .
pc += 1

e l i f i n s t r == ’CALL ’ :
pc = bytecodes [ pc +1]
. . .
# t o t e l l j i t where s h o u l d i t put a c o u n t e r
dr iver . c a n _ e n t e r _ j i t ( bytecodes , pc , . . . )
reduct ion −= 1
i f reduct ion < 0 :

. . .
break

. . .

FIGURE 3.6: Implementation of dispatch loop
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c l a s s scheduler :
. . .
def schedule ( s e l f ) :

low_skip_times = 0
while True :

while not s e l f . max_queue . empty ( ) :
s e l f . _handle_one_process_from_queue ( s e l f . max_queue )

while not s e l f . high_queue . empty ( ) :
s e l f . _handle_one_process_from_queue ( s e l f . high_queue )

i f s e l f . normal_queue . empty ( ) :
# we now s t i l l on ly have one s c h e d u l e r so h e r e
# we j u s t s imp l y t e r m i n a t e t h e whole sys t em
break

else :
process = s e l f . normal_queue . pop ( )
# f o r low p r i o r i t y p r o c e s s :
# s k i p p i n g a low p r i o r i t y p r o c e s s
# f o r a number o f t i m e s b e f o r e e x e c u t i n g i t .
i f process . p r i o r i t y == constant . PRIORITY_LOW :

i f low_skip_times >=
constant . LOW_PRIORITY_PROCESS_SKIP_TIMES :
s e l f . _handle_one_process ( s e l f . normal_queue , process )
low_skip_times = 0

e lse :
low_skip_times += 1

# f o r normal p r i o r i t y p r o c e s s
e lse :

s e l f . _handle_one_process ( s e l f . normal_queue , process )

def _handle_one_process ( s e l f , queue , process , msg=None ) :
s t a t e = process . execute ( s e l f . i s_ s i ng l e_ ru n ,

s e l f . reduction , msg)
i f s t a t e == constant . STATE_SWITH :

queue . append ( process )
e l i f s t a t e == constant . STATE_TERMINATE :

pass
e l i f s t a t e == constant .STATE_HANG_UP:

i f process . mail_box . is_empty ( ) :
process . i s _ a c t i v e = Fa l se

e lse :
s e l f . push_to_priori ty_queue ( process , process . p r i o r i t y )

FIGURE 3.7: Implementation of scheduler
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Chapter 4

Optimization

4.1 Optimizing Data Representation Based on RPython
Meta-programming

As we mentioned in chapter 2, thanks to the transformation mechanism
of RPython tool chain, we can achieve meta-programming by generating
any class/function definitions during the loading time using any Python
dynamic features.

Here we give an example that we use RPython Meta-programming to
implement BEAM tuple datatype representation optimization.

Similar with tuple datatype in Python and Lisp, a tuple datatype in Er-
lang is a nameless data record, whose fields are all immutable, and can be
any type. As figure 4.1 shows, a naive implementation of a tuple object can
be considered as an object with an array field, which stores pointers to its
content objects. Since a tuple object can have arbitrary length, the array
field is allocated dynamically, then it can store the content object pointers.

Due to that array field, two overheads can be considered in this im-
plementation. (1) overhead when allocating list field. (2) overhead when
accessing tuple field, since it has to be accessed indirectly by first accessing
the array filed, and accessing content object with its pointer.

On the other hand, we observed that, for most Erlang programs, pro-
grammers trend to use a tuple object with a small size (say length less than
5), which gives us chance to eliminate overheads below in this situation.
That is, to pre-define small, fix-sized tuple object class, and therefore we
can eliminate the array field and store content objects as the fields in a tuple
object (as figure 4.2 shows).

To do so, we firstly define a class factory function to help us to gener-
ate specialised tuple class with fix-sized (that is tuple_factory in figure 4.4).
Although this function uses many Python dynamic features, like dynamic
class definition and getattr, setattr, it is still valid in RPython since we only
invoke this function during the loading time(the initialization code of spe-
cialized_tuples at top level).

Then we can dispatch the argument about size in PUT_TUPLE(the BEAM
instruction used to create new tuple object), and prepare corresponding
specialised tuple object for it. For those general-sized tuple object, we still
use the naive implementation in figure 4.3.

4.2 Two State Tracing

In order to overcome the false loop problem, we also applied Pycket’s two
state tracing to Pyrlang. Different with Pycket’s AST interpreter, Pyrlang is
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FIGURE 4.1: A naive implementation
of BEAM tuple datatype

FIGURE 4.2: Optimized implementa-
tion by RPython meta-programming

c l a s s Tuple ( AbstractTuple ) :
def _ _ i n i t _ _ ( s e l f , values ) :

s e l f . values = values

def element_at ( s e l f , index ) :
return s e l f . values [ i ]

. . .

FIGURE 4.3: code of naive imple-
mentation of BEAM tuple datatype

def t u p l e _ f a c t o r y ( t u p l e _ s i z e ) :
c l a s s c l s ( AbstractTuple ) :

def _ _ i n i t _ _ ( s e l f , values ) :
for i in range ( t u p l e _ s i z e ) :

s e t a t t r ( s e l f ,
’ value%s ’%i , values [ i ] )

def element_at ( s e l f , index ) :
for i in range ( t u p l e _ s i z e ) :

i f i == index :
return g e t a t t r ( s e l f ,

’ value%s ’%i )
. . .
return c l s

s p e c i a l i s e d _ t u p l e s =
[ t u p l e _ f a c t o r y ( i )

for i in range (MAX_SIZE ) ]

FIGURE 4.4: code of optimized
implementation by RPython meta-

programming
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# t h e g r e e n s a r e t h e p o s i t i o n k e y s
dr iver = j i t . J i t D r i v e r ( greens =[ ’ bytecode ’ , ’ pc ’ ,

’ c a l l e r _ p c ’ ] , # c o n s i d e r i t a s p o s i t i o n key , t o o
reds = [ . . . ] )

reduct ion = 2000 # t h e y i e l d c o u n t e r
. . .

while ( True ) :
# t o t e l l j i t where i s t h e head o f t h e d i s p a t c h l o o p
dr iver . j i t _ m er g e _p o in t ( bytecodes , pc , c a l l e r _ p c , . . . )
i n s t r = bytecodes [ pc ] ;
i f i n s t r == ’ GC_BIF2 ’ :

. . .
pc += 1

e l i f i n s t r == ’CALL ’ :
c a l l e r _ p c = pc
pc = bytecodes [ pc +1]
. . .
# t o t e l l j i t where s h o u l d i t put a c o u n t e r
dr iver . c a n _ e n t e r _ j i t ( bytecodes , pc , c a l l e r _ p c , . . . )
reduct ion −= 1
i f reduct ion < 0 :

. . .
break

. . .

FIGURE 4.5: Implementation of two state tracing in Pyrlang

a BEAM bytecode interpreter. In this situation, we implement it by using
the program counter as well as the caller’s address (we refer as caller-pc
hereafter) as the interpreted program’s location.

Figure 4.5 shows the implementation of two state tracing in Pyrlang.
The caller_pc is updated every time right before pc jumps to another address
caused by function invocation. As a result, the loop judging rule of JIT
compiler becomes “it’s a loop only when both pc and caller-pc are same as
before, respectively”.

4.3 Finer-grained Path Profiling

4.3.1 The False Path Problem

A tracing JIT compiler sometimes chooses an execution path as a compila-
tion target, even if it is not frequently executed. We call this problem the
false path problem, as an analogy to the false loop problem (Hayashizaki et
al., 2012).

One of the causes of the false path problem is mismatch between profil-
ing and compilation. A tracing JIT compiler selects the first execution path
executed from a merge point whose execution counter exceeds a thresh-
old. When there are conditional branches after the merge point, the selected
path can be different from the one that is frequently executed.
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; func t ion cd : cd/1
L2 :

i s _ e q _ e x a c t L3 , x ( 0 ) , #1
move #10 , x ( 0 )
c a l l _ o n l y L2

L3 :
g c _ b i f 2 er lang :−/2 , x ( 0 ) , #1 , x ( 0 )
c a l l _ o n l y L2

A
B

C

FIGURE 4.6: A countdown function which restarts itself
from 10

�

� �

FIGURE 4.7: Control flow graph of the count-down func-
tion. (The alphabets in the nodes correspond to the basic
blocks in Figure 4.6. The doubly-circled node denotes the

JIT merge point.)

When a false path is selected and compiled, it puts a considerable amount
of performance penalty on the frequently executed paths that share the
same merge point. This is because the execution from the merge point has
to follow the compiled false path, and then frequently fails; i.e., a condi-
tional branch goes to a different target from the compiled path. Upon a
failure, the runtime needs to reconstruct an intermediate interpreter state.

4.3.2 An Naive Profiling Policy for Functions

A naive profiling policy for functional programs can cause the false path
problem. Let us illustrate this by using a simple concrete program after we
introduced a naive profiling policy.

For functional programs where loops are realized by recursive function
calls, a naive profiling policy places merge points at the beginnings of func-
tions. In fact, we used this policy in our first implementation, which we
refer as pyrlang-naive in the rest of the paper. Technically, pyrlang-naive
actually marks call (non-tail function invocation), call_only (tail function
invocation), and return as JIT merge points. Since we have tail call elimina-
tion as introduced in Chapter 3, tail recursions in Pyrlang are similar with
typical loops in an imperative language, as a tracing JIT compiler expects.

Figures 4.6 and 4.7 show a countdown function in the BEAM bytecode
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FIGURE 4.8: Control flow graph of the countdown function
for pattern matching tracing

with its control flow graph. The function infinitely repeats counting num-
bers from 10 to 1. While imperative languages realize the computation dou-
ble nested loops, functional languages typically realize it a recursive func-
tion with a conditional branch as can be seen in the control flow graph. In
this case, node B is executed one out of ten iterations.

The two loops, namely A–B–A and A–C–A in the control flow graph,
share the single JIT merge point, namely A. This means that the compiler
has 10% of chance to select the less frequently path (i.e., A–B–A). Then, the
subsequent executions from A use the compiled trace for the path A–B–A,
and fail 9 out of 10 cases.

4.3.3 Pattern Matching Tracing

We propose an improved policy for tracing called pattern matching tracing.
The basic idea is to place JIT merge points on the destinations of condi-
tional branches, instead of the beginnings of functions so as to distinguish
different paths as different traces. For the countdown function, we place
JIT merge points on the target nodes of conditional branches, namely B and
C as in the control-flow graph shown in Figure 4.8.

With this policy, the compiler will select more frequently executed paths
because the merge points are placed in all branch targets. In the example,
the merge point C will hit the threshold before B will, and the path starting
from the next execution of C (i.e., C–A–C) will be compiled first.

We implemented this policy in the Pyrlang’s dispatch loop by marking
conditional branch destinations, instead of function entries, as JIT merge
points.
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# t h e g r e e n s a r e t h e p o s i t i o n k e y s
dr iver = j i t . J i t D r i v e r ( greens =[ ’ bytecode ’ , ’ pc ’ ,

’ c a l l e r _ p c ’ ] , # c o n s i d e r i t a s p o s i t i o n key , t o o
reds = [ . . . ] )

reduct ion = 2000 # t h e y i e l d c o u n t e r
. . .

while ( True ) :
# t o t e l l j i t where i s t h e head o f t h e d i s p a t c h l o o p
dr iver . j i t _ m er g e _p o in t ( bytecodes , pc , c a l l e r _ p c , . . . )
i n s t r = bytecodes [ pc ] ;
i f i n s t r == ’ GC_BIF2 ’ :

. . .
pc += 1

e l i f i n s t r == ’CALL ’ :
c a l l e r _ p c = pc
pc = bytecodes [ pc +1]
. . .
# t h i s t ime we don ’ t i n v o k e c a n _ e n t e r _ j i t h e r e
reduct ion −= 1
i f reduct ion < 0 :

. . .
break

e l i f i n s t r == ’IS_EQ_EXACT ’ :
v1 = evaluate ( bytecodes [ pc +1 ] )
v2 = evaluate ( bytecodes [ pc +2 ] )
l a b e l = evaluate ( bytecodes [ pc + 3] )
i f v1 . i s _ e q u a l _ e x a c t ( v2 ) :

pc += 4
. . .

e lse :
pc = labe l_ to_addr ( l a b e l )
. . .
# we i n v o k e i t a t e v e r y c o n d i t i o n a l
# branch i n s t r u c t i o n
dr iver . c a n _ e n t e r _ j i t ( bytecodes , pc , . . . )

. . .

FIGURE 4.9: Implementation of pattern matching tracing in
Pyrlang
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Chapter 5

Evaluation

5.1 Performance Evaluation

5.1.1 Benchmark Environment

We evaluate the performance of Pyrlang and its optimization technique
with subsets of two benchmark suites. The one is the Scheme Larceny
benchmark suite1 that is translated by the authors from Scheme to Erlang.
The other is the ErLLVM benchmark suite2, which is developed to eval-
uate the HiPE LLVM backend. Since the current implementation of Pyr-
lang supports a limited set of primitives, we excluded programs that test
concurrency, binary data processing, and modules using the built-in func-
tions that are not yet implemented in Pyrlang. Also, currently there is an
unsolved bug in Pyrlang which causes the execution crashing when deal-
ing with float datatype during context switching, so we have to excluded
benchmark programs related to it like fibfp and fpsum, too.

We evaluate three different versions of Pyrlang, namely (pyrlang) the
version using pattern matching tracing, (pyrlang-two-state) the version using
only two state tracing, which is the same as pyrlang except JIT merge points
are placed in function entities rather than functional branch destinations,
(pyrlang-naive) the version using only naive tracing policy, as we introduced
in Section 4.3.2.

We emphasize that Pyrlang does not apply low-level optimization such
as calling convention for the x86 architecture (Pettersson, Sagonas, and Jo-
hansson, 2002), and the local type propagation (Sagonas et al., 2003) that
are used in BEAM or HiPE. Furthermore, we use the original BEAM in-
struction set for the ease of implementation, unlike BEAM which internally
uses superinstructions (Hausman, 1997, Section 3.15) in order to reduce in-
terpretation overheads.

All the benchmark programs are executed on a 1.87 GHz Intel Core
i7 processor with 8 MB cache memory and 8 GB main memory, running
GNU/Linux 14.04. The version of the BEAM runtime and HiPE is Erlang
R16B03, with the highest optimization option (-o3) for HiPE. The backend
of Pyrlang is RPython revision b7e79d170a32 (timestamped at 2016-01-13
04:38).

Each program is executed inside a loop, whose number of iterations is
manually selected so that the loop runs for at least 5 seconds. The bench-
mark results in this section are indicated by the execution times relative to
the ones with the BEAM runtime.

1https://github.com/pnkfelix/larceny-pnk/tree/master/test/Benchmarking/CrossPlatform/src
2https://github.com/cstavr/erllvm-bench/tree/master/src
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5.1.2 Overall Performance

Figure 5.1 shows the execution times of 30 programs in the benchmark
suites, executed with the three versions of Pyrlang, HiPE and the BEAM
runtime. The height of each bar shows the relative time to the execution
time with BEAM. The rightmost 4 bars (geo_mean) are the geometric means.

As can be seen in Figure 5.1, pyrlang-match is 38.3% faster than the
BEAM, yet still 25.2% slower than HiPE. With some benchmark programs
that are relatively non-trivial, such as deriv, pi, nucleic, and qsort, pyrlang-
match is the fastest among 5 implementations. There is a group of the pro-
grams (string, length_c, pseudoknot, ring, stable, sum, zip, zip3, and zip_nnc)
where Pyrlang is slower than BEAM and HiPE. We conjecture that most
of the slow cases are caused by the overhead of Erlang datatype alloca-
tion. This is expected since we simply use RPython objects to implement
datatypes such as lists, function closures without any further low-level op-
timization. The programs ring and stable are the only two benchmark pro-
grams using green threads in our benchmark suite, which indicate room of
optimization around thread implementations.

5.1.3 Effect of Pattern Matching Tracing

Improvements by Pattern Matching Tracing

In this section, we evaluate effectiveness of our proposed pattern match-
ing tracing by comparing execution times of benchmark programs with
three versions of Pyrlang, namely the one with pattern matching tracing
(pyrlang), one with two state tracing (pyrlang-two-state) and naive tracing
(pyrlang-naive). In pyrlang-naive, we mark merely 3 kinds of instructions
as JIT merge points, namely call (non-tail invocation), call_only (tail invo-
cation), and return. Also, in this version, the JIT merge points are identified
by only pc but not by caller-pc, which we introduced in Chapter 4.

As we can see, pyrlang is 1.3% and 2.9% faster than pyrlang-two-state
and pyrlang-naive on average, respectively.

There are programs where pyrlang is significantly slower, namely sum
and pseudoknot. Sum is a program using two Erlang built-in functions,
namely lists:seq and lists:sum, to generate a long Erlang list and to calculate
the sum of the elements in the generated list, respectively. Pseudoknot is a
program that generates pseudoknot matrix from a database of nucleotide
conformations. With sum, we found Pyrlang only generates a trace for
lists:sum, but not for lists:seq, which contributed to the significant perfor-
mance degradation. Currently we are not clear why the lists:seq is missed,
which remains as the future work to be resolved. With pseudoknot, we
found a loop of a long series of conditional branches that serves as a dis-
patch loop. This control structure created overly many JIT merge points
with Pyrlang-match, though only a few of them are compiled. We conjec-
ture that we can reduce the number of JIT merge points so as to improve
performance.

Also, there are two programs where Pyrlang is significantly faster, namely
deriv and qsort. Deriv is a program that performs symbolic derivation of
mathematical expressions. Qsort is a program that performs quick-sorting
of a number sequence. We observed that, in both benchmark programs,
Pyrlang generated much longer traces. In deriv, the longest compiled trace
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TABLE 5.1: A comparison among different approaches to
build a JIT compiler

interpreter im-
plementation

optimiza-
tion
hints

JIT compiler
implementa-

tion
manual
implementation

High High High

meta-tracing JIT High Low None
compilation to JIT
languages

Low None None

partial-evaluation-
based
meta-compilation

High High None

corresponds to an expression of a specific shape (namely multiplication of
variables). We presume that the trace is significantly effective as the pro-
gram has many sub-expressions in the same shape. In Qsort, the longest
compiled trace corresponds to a loop in partition function. In fact, Pyrlang
records a whole execution of the partition for a short sequence. We have
to point out that these two cases heavily depend on the program inputs,
which might not be as effective when inputs can vary among executions. In
other words, those results indicate that Pyrlang with the pattern matching
tracing is quite effective when a program follows a few specific paths in a
complicated control structure.

5.2 Implementation Cost Comparison

In this section, we compare several approaches help to build a JIT compiler.
To to honest, it’s very hard to evaluate these approaches in a quantitative
way, since the implementation instances (that is, the different language im-
plementation with a JIT compiler) have different integrity, using different
programming languages and libraries.

Instead, we compare these approaches in a qualitative way. To do so,
we separate the implementation with three parts as (1) interpreter imple-
mentation, (2) optimization hints, (3) JIT compiler implementation.

The interpreter implementation means the work spent to implement an
AST/bytecode interpreter, including semantics of each node/instruction,
built-in function, and scheduler (if that language support green-thread).
The optimization hints mean the work spent to help a JIT compiler to do
profiling and generate hotspot efficiently, for example, the JIT hints in meta-
tracing compiler. The JIT compiler implementation means the work spent
to implement a JIT compiler itself.

We also compare the traditional way to implement a language imple-
mentation with JIT compiler (that is, implementing each of those three parts
manually), such as any modern JVM implementation, as a baseline.

Table 5.1 shows the comparison of different approaches to build a JIT
compiler.

The manual implementation has the most implementation cost, trivially.
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The meta-tracing JIT requires developers to rebuilt a language virtual
machine by using RPython. As a result, developers need to implement
each component as a normal virtual machine including interpreter, sched-
uler, built-in functions and so on. On the other hand, however, developers
only need to insert a few JIT hint functions in their implementation code,
so that RPython can generate a JIT compiler automatically, which means
developers do not need to a new JIT compiler again.

Approach of compilation to JIT languages has the least implementation
cost, because developers only need to use a JIT languages, such as Java, to
implement target languages. During the implementation, however, many
existing features and libraries, like scheduler and many built-in functions,
in a JIT languages can also be reused in target language easily. There is
also no need to add optimization hint or implement a JIT compiler again,
because the JIT language implementation has already taken care of it. How-
ever, we also emphasize that, this approach can not really improve imple-
mentation performance, many implementations are even slower than the
official one, instead, the main goal of these projects is to build a language
implementation with better compatibility with the JIT languages, such as
Java.

The partial-evaluation-based meta-compilation requires developers to
rebuilt a language virtual machine by using using framework like Truffle.
Besides it, developers need to provide both optimization hints for inter-
preter behavior and the compilation time. That is because the optimiza-
tion of partial evaluation is performed strictly independent of actual exe-
cution, and therefore developers need to directly the partial evaluator to
deal with multiple values. As a result, the implementation cost of opti-
mization hints is considered higher than meta-tracing JIT. Note that the
heavy optimization hints are not an entire disadvantage since it does help
partial-evaluation-based meta-compilation to realize a relatively better per-
formance.
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Related Work

PyPy (Bolz et al., 2009), an alternative implementation of Python, is the
primary target system of the meta-tracing JIT compiler in RPython. It is
reported to be faster than an interpreter implementation (CPython) by the
factor of 7.11 while achieving high compatibility. This suggests that the
meta-tracing JIT compiler is a realistic approach to provide an efficient and
highly compatible language implementation with a JIT compiler. The meta-
tracing JIT compiler’s design is implicitly affected by the language features
of PyPy (or Python), such as a stack-based bytecode language and use of
loop constructs in source programs.

Pycket (Bolz et al., 2014) is an implementation of Racket runtime sys-
tem based on the meta-tracing JIT compiler in RPython. Similar to Er-
lang, Racket is a Scheme-like functional programming language, in which
user programs use recursive calls for iterations. It proposes a two-state-
tracing (Bolz et al., 2014), which is a light-weight solution to the false loop
problem (Hayashizaki et al., 2012). The basic idea of two-state-tracing is to
record the previous abstract syntax tree node of the node in a function head,
and use both previous node (1st state) and current node (2nd state) to iden-
tify a JIT merge point. It means a function head node in a control flow graph
is duplicated. The pattern matching tracing extends the two-state-tracing
by moving the 2nd state from a function head to a conditional jumping des-
tination. By this approach, in addition to duplicate the function head nodes
in a control flow graph, we also duplicate the nodes of conditional jumping
destinations.

BEAMJIT (Drejhammar and Rasmusson, 2014) is a tracing JIT compiler
implementation for Erlang. It extracts the basic handler code for each BEAM
instruction from the BEAM runtime. The extracted handler code is then
used to construct the content of a trace. The JIT therefore can be integrated
in the BEAM runtime with high compatibility. The implementation work is
quite different between our work and BEAMJIT because we already have a
JIT compiler provided by RPython that almost for free, and target to build
a BEAM VM using RPython that can match best to RPython JIT compiler,
while BEAMJIT uses BEAM VM with full compatibility, and tries to build
a JIT compiler that can match best to existing BEAM VM. BEAMJIT is re-
ported 25% reduction in runtime in well-behaved programs.

ErLLVM (Sagonas, Stavrakakis, and Tsiouris, 2012) is a modified ver-
sion of HiPE that uses LLVM as its back-end instead of the original code
generator. Similar to Pyrlang, it uses an existing compiler backend, but it
inherits other characteristics, like ahead-of-time compilation, from HiPE. It
is reported that ErLLVM has almost the same performance as HiPE.

1According to the data from http://speed.pypy.org
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PyHaskell (Thomassen, 2013) is another functional programming lan-
guage implementation that uses the RPython meta-tracing JIT compiler.
Similar to Pyrlang, it is implemented as an interpreter of an intermediate
language (called the Core language). To the best of the authors’ knowl-
edge, current PyHaskell supports a few primitives, and still slower than an
existing static compiler, GHC in most cases.

HappyJIT (Homescu Andrei, 2011) is a PHP implementation that uses
the RPython meta-tracing JIT compiler. Its stack representation is a pre-
allocated array of RPython objects, similar to the Y registers in Pyrlang.
However, HappyJIT is slower than Zend Engine for the programs mainly
performing recursive function calls. As far as the authors know, HappyJIT
does not have a tracing policy specialized to recursive functions.

Marr and Ducasse implemented two implementations of SOM by using
meta-tracing JIT and partial-evaluation-based meta-compilation, respectively
in (“Tracing vs. partial evaluation: Comparing meta-compilation approaches
for self-optimizing interpreters”). In this paper, they compared these two
approaches with the respects of performance and implementation cost. Ac-
cording to it, meta-tracing JIT shows less implementation cost, while partial-
evaluation-based meta-compilation is 30.4% faster than meta-tracing JIT.
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Conclusions and Future Work

We proposed Pyrlang, a virtual machine for the BEAM bytecode language
with a meta-tracing just-in-time (JIT) compiler. At the high-level view, we
merely needed to write a BEAM interpreter in RPython in order to adapt the
compiler for Erlang. We however needed to make careful decisions in the
interpreter design for achieving reasonable runtime performance. We also
proposed an optimization technique called the pattern matching tracing for
performance improvement. With the technique (and the two state tracing
for Pycket), the compiler can select longer traces (which usually give better
performance) by distinguishing different branches in a loop.

Our current implementation runs micro-benchmark programs 38.3% faster
than the standard BEAM interpreter. Though it is still slower than HiPE
in some benchmark programs, we believe that a JIT compiler with our ap-
proach can achieve similar level of performance by introducing further low-
level optimization.

We also emphasize that most of the implementation decisions of Pyr-
lang in section 3 using RPython can be also easily applied to any other func-
tional programming language implementations, because most functional
programming languages share the similar feature in common.

Pattern Matching Tracing is also a general approach to improve tracing
JIT policy, it focus on determining the path selection below some condi-
tional branches, which means it can be also applied to any other tracing JIT
compiler.

Our implementation is has several points of improvements and exten-
sions as discussed below.

Improvement of Pattern Matching Tracing: As we explained in Chapter 3,
there are programs that are poorly optimized with the pattern match-
ing tracing. While we identified the causes of overheads for some
programs, we need to collect more cases and generalize the causes of
overheads so that we can improve the strategy of trace selection.

List Optimization: Our experiments showed that Pyrlang performs more
poorly than BEAM and HiPE with programs that allocate a large amount
of objects (e.g., very long lists). While we are still investigating the
underlying memory manager’s performance in RPython, we plan to
introduce well-known optimization for functional style list process-
ing, such as cdr-coding (Li and Hudak, 1986) and list unrolling (Shao,
Reppy, and Appel, 1994). We also consider to use the live variable
hints in the BEAM bytecode during garbage collection.
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Compatibility: There are still data types and operators that need to be im-
plemented in Pyrlang. Those data types include bit strings and bina-
ries. Though it is a matter of engineering, an (semi-)automated ap-
proach would be helpful to ensure compatibility.
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Benchmark Program List

ack A version of the Ackermann function.

cpstak tak function with continuation-passing style.

deriv A Gabriel benchmark dealing with symbolic differentiation.

diviter A Gabriel benchmark dividing 1000 by 2 using lists as a unary
notation for integers.

fib Calculating fibonacci number using doubly recursive computation.

mazefun Constructs a maze on a rectangular grid using purely functional
style.

nqueens Computes the number of solutions to the 13-queens problem.

pi A bignum-intensive benchmark that calculates digits of pi.

primes Computes the primes less than 1000.

string Tests of ++ and lists:sublist.

sumLoop Sums the integers from 0 to argument, with tail-invocation style.

tak A triply recursive integer function related to the Takeuchi function.

takl A tak function but using lists to represent integers.

barnes Barnes-Hut algorithm for computing gravity against a brute-force
direct summation.

length Computes the length of a list, with tail-invocation style.

length_c Computes the length of a list, with BIF implementation.

length_u Computes the length of a list, with an unrolled tail-recursive
function.
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mean Computes mean of a list with integer elements, using BIF lists:sum
and lists:duplicate.

mean_nnc Computes mean of a list with integer elements, using customized
sum and duplicate functions with tail-invocation style.

nrev Reverses a list using list concatenation.

nucleic A modified version of the program described in the paper (Feeley,
Turcotte, and Lapalme, 1994).

pseudoknot Computes the 3D structure of a nucleic acid.

qsort Quick sort with the first element of list as pivot.

ring Creates N processes in a ring and sends a message round the ring M
times so that a total of N * M messages get sent.

smith The Smith-Waterman DNA sequence matching algorithm.

stable Stable marriages problem with n men and n women.

sum Sums the integer from 1 to N using lists:sum.

zip Generates and sums a list from 2 lists using lists:sum, lists:map, lists:zipwith,
lists:seq, and lists:duplicate.

zip3 Generates and sums a list from 3 lists using lists:sum, lists:map, lists:zipwith3,
lists:seq, and lists:duplicate.

zip_nnc Generates and sums a list from 2 lists using lists:map, lists:zipwith2,
and manual implemetation of sum, duplicate, and seq.
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