
Batak Java: Version Numbered
Object-oriented Language to Solve

Dependency Hell

Tokyo Institute of Technology, School of Science,
Department of Information Science

Luthfan Anshar Lubis
15B15953

Academic Supervisor

Hidehiko Masuhara

February 28, 2019

Contents

1 Introduction 2

2 Background 5

3 Programming with Version 13

4 Calculus 20
4.1 Syntax . 20
4.2 Reduction . 29
4.3 Typing . 31
4.4 Soundness . 36

4.4.1 Progress . 36
4.4.2 Preservation . 42
4.4.3 Type Soundness . 55

5 Formal Examples 56

6 Related Work 64

7 Conclusion and Future Work 67

1

Chapter 1

Introduction

Version is an important, innate property of a computer program. Most
often than not, aside from their names, the programs we use are always
identified by their versions. Many computer programs and softwares will,
to meet the demand for functions and better capabilities, be produced with
newer versions as they are updated over time. Over the years, the need to
keep track and maintain version updates has spawned the creation of version
control systems, such as Git and SVM.

With software update however comes version incompatibility, which is a
very common problem in software development. This problem is especially
common in the case where interdependent softwares are developed and up-
dated independently and asynchronously. One problem that we can examine
is called dependency hell. Dependency hell is incompatibility or conflict that
may occur when there are different versions of libraries being used, directly
or indirectly. In most existing programming languages, two definitions of
the same function or class cannot be distinguished when they have the same
names and signatures.

Figure 1.1 illustrates an example of dependency hell. Suppose that the li-
braries Base, Education and Health are all provided by different sources and
developed independently. At the beginning, both Education and Health de-
pend on Base, while Municipal depends on both Education and Health.
Before the update, Municipal runs without any issue. Afterwards however,
a second version of Base was introduced, and subsequently used by Health.
Here, although Base does not have a direct relationship with Base, due to its
dependency relation with both Education and Health which now use dif-
ferent version of Base, error will occur in Municipal because two different
definitions of the same library are mixed together. This type of dependency

2

CHAPTER 1. INTRODUCTION 3

Figure 1.1: Example of dependency hell

hell is called diamond dependency due to its diamond-like shape.
Another example of dependency hell is conflicting dependencies that

occur between multiple parts of a program. Suppose we have an application
app1 using the first version of Base and a second application using the
second version of Base. To run the whole application we will require both
applications, but due to conflicting dependencies, the application will not
run properly.

One concrete example of this problem can be found in frameworks and
programs requiring ASM. ASM is a Java bytecode manipulation and analysis
framework1. A program is built using Groovy and Spring framework, both
depending on ASM version 3. Later on Groovy was updated to use ASM
version 4, as a consequence of this, the original program ran into an issue
because version 3 and version 4 are not compatible with each other2.

Even considering the importance of the notion of version, there are not
that many languages created for the purpose of addressing this issue. Pre-
ceding studies which has addressed this issue before includes Variational

1ASM, https://asm.ow2.io/
2https://blog.jayway.com/2013/04/12/solving-asm-conflicts-after-upgrading-to-

groovy-2-1/

CHAPTER 1. INTRODUCTION 4

Programming [2] and VL [7]. However, both of these researches focus on
functional programming. There is not yet a research working on the solu-
tion for object-oriented programming, where issues occuring from version
changes may propagate through inheritance.

A very simple way to deal with the issue in Figure 1.1 is by renaming
all the class declarations in either the first or second version of Base so
there is no name conflicts. However, using this solution means we lose
the relationship between one version with another. In other words we are
creating new definitions with different names every time.

Thus to solve this problem, we introduce the idea of version number as
an attribute of package (versioned package), to discern a type in a particular
version from another. By doing so we can avoid conflict from occuring and
increase flexibility. We propose Batak Java, an object-oriented language
based on a minimal core calculus for Java system called Featherweight Java
[5], equipped with versioned package and package interface.

We expect the following capabilities from Batak Java:

• The feature of version numbering gives the users freedom to choose
which version of a particular library they want to use.

• In general, same named classes taken from different version are treated
as separate types, therefore it is possible for users to mix different
version within the attributes of a class and an expression.

• Package interface to manage which behavior (constructor, method) of
a class the user can keep public.

• A type system which soundness has been proven.

Chapter 2

Background

Featherweight Java

Batak Java is based on Featherweight Java, a minimal core calculus that
models Java’s type system. Featherweight Java is minimal in the way that
most of the features normally found in Java, such as assignment, interfaces,
overloading, side effects and abstract method are omitted. In the calculus
of Featherweight Java we can only find classes, methods, fields, inheritance,
and dynamic typecasts. Featherweight Java provides only five forms of ex-
pression: object creation, method invocation, field access, casting and vari-
ables. The compactness of Featherweight Java’s calculus makes it easy to
conduct rigorous proofs for any extensions and variations that we may add
into the object-oriented language. In our case we will be adding versioned
package and package interface into this calculus.

Although the compactness entails the inability to do various compu-
tations with the calculus, encoding another calculus, such as the lambda
calculus within Featherweight Java is not difficult.

In Featherweight Java, a program consists of class definitions and an
expression to be evaluated. Listing 2.1 shows an example of class definitions
in Featherweight Java.

class A extends Object {

A() { super (); }

}

class B extends Object {

Object single;

B(Object single){

super ();

5

CHAPTER 2. BACKGROUND 6

this.single = single;

}

}

class Pair extends Object {

A fst;

B snd;

Pair(A fst , B snd){

super ();

this.fst = fst;

this.snd = snd;

}

Pair setfst(A newfst){

return new Pair(newfst , this.snd);

}

}

Listing 2.1: Class declarations in Featherweight Java

As can be seen above, class definition in Featherweight Java is strict.
Every class must declare its superclass even if it is only Object. The con-
structor must include all the fields, including those of the superclass. The
special name super calls the constructor of the superclass. super must
always be called even if the superclass is only Object.

As previously mentioned, a program consists of class definitions and an
expression to be evaluated. Based on Listing 2.1, below is an example of
field access expression. → here denotes evaluation.

new Pair(new A(), new B(new Object())).fst → new A()

While method invocation in Featherweight Java looks like below. 7→ here
denotes substitution.

new Pair(new B(new Object()), new A()).setfst(new A())

→
[
newfst 7→ new A(),
this 7→ new Pair(newB(newObject(), newA())

]
new Pair(newfst, this.snd)

Example of Dependency Hell

Using the example of Base, Education, Health and Municipal introduced
shortly in the first chapter, we will show a concrete dependency hell problem.

CHAPTER 2. BACKGROUND 7

Below we will show a simple example of the implementation of these libraries
written in Java. Figure 2.1 shows the class diagram.

Figure 2.1: Class diagram of the libraries

// The first version of Base

package Base

class Person {

String name;

int age;

Person(String name , int age){

this.name = name;

this.age = age;

}

int birth_year(int current_year){

return current_year;

CHAPTER 2. BACKGROUND 8

}

}

class Building {

String addr;

Building(String addr){

this.addr = addr;

}

}

Listing 2.2: First version of package Base

// The second version of Base

package Base

class Person {

String name;

int age;

Person(String name , int age){

this.name = name;

this.age = age;

}

int birth_year(int current_year){

return current_year;

}

}

class Address {

String street;

String number;

Address(String street , String number){

this.street = street;

this.number = number;

}

}

class Building {

Address addr;

Building(Address addr){

this.addr = addr;

}

}

Listing 2.3: Second version of package Base

From the Figure 1.1, we assumed that we have two different versions of

CHAPTER 2. BACKGROUND 9

Base. Here, we assume that the difference lies in the introduction of the
class Address and its usage in the class Building, while both versions have
identical class Person.

// The library/package Education imports

// the first version of Base

package Education imports Base

class Teacher extends Person {

String id;

School workplace;

Teacher(String name , int age , String id, School workplace){

super(name , age);

this.id = id;

this.workplace = workplace;

}

}

class School extends Building {

String name;

Teacher head;

School(String addr , String name , Teacher head){

super(addr);

this.name = name;

this.head = head;

}

void change_head(Teacher new_head){

this.head = new_head;

}

}

Listing 2.4: Package Education

As the Figure 2.1 illustrates, the package Education uses the first version
of Base. In this package we declared the class Teacher which is a subclass
of Person from the first version of Base and School which is a subclass of
Building, also from the first version of Base.

// This package Health imports the second version of Base

package Health imports Base

class Doctor extends Person {

String branch;

Hospital workplace;

Doctor(String name ,

CHAPTER 2. BACKGROUND 10

int age ,

String branch ,

Hospital workplace)

{

super(name , age);

this.branch = branch;

this.workplace = workplace;

}

}

class Hospital extends Building {

String name;

Doctor head;

Hospital(Address addr , String name , Doctor head){

super(addr);

this.name = name;

this.head = head;

}

void change_head(Doctor new_head){

this.head = new_head;

}

}

Listing 2.5: Package Health

The package Health uses the second version of Base. In this package,
class Doctor is a subclass of Person and Hospital is a subclass of Building.

package Municipal imports Education , Health

class Pair extends Object {

Teacher nameA;

Doctor nameB;

Pair(Teacher nameA , Doctor nameB){

this.nameA = nameA;

this.nameB = nameB;

}

}

class Manage extends Object {

Manage (){ }

Pair pair_heads(School a, Hospital b){

return new Pair(a.head , b.head);

}

CHAPTER 2. BACKGROUND 11

}

Listing 2.6: Package Municipal

In Municipal, we use both Education and Health. However, since
Education and Health both use a different version of Base, multiple defini-
tions of Base ended mixing in Municipal. This results in error because we
do not have the ability to decide which Base to use for each object.

Problems in ASM

ASM, a framework used to manipulate Java bytecode is one example which
we can use to show the problem of dependency hell.

From comparing ASM 3.X and ASM 4.X we can find several differences
such as the removal of class ClassAdapter and conversion of ClassVisitor,
AnnotationVisitor, etc. which were interfaces in ASM 3.X into abstract
classes in later versions. However, these changes are not as disrupting as
the update which happened in ASM 5.X.

As mentioned in the introduction, the method VisitMethodInsn in ASM
4.X requires only 4 arguments but it requires 5 arguments in the ASM 5.X.
The ASM program quoted in Listing 2.7 and 2.8 are written in full Java.

public abstract class MethodVisitor {

protected final int api;

protected MethodVisitor mv;

...

public void visitMethodInsn(int opcode , String owner ,

String name , String desc) {

if (mv != null) {

mv.visitMethodInsn(opcode , owner , name , desc);

}

}

...

}

Listing 2.7: MethodVisitor in ASM 4.X

public abstract class MethodVisitor {

protected final int api;

protected MethodVisitor mv;

...

public void visitMethodInsn(int opcode , String owner ,

String name , String desc , boolean itf) {

if (api < Opcodes.ASM5) {

...

}

CHAPTER 2. BACKGROUND 12

if (mv != null) {

mv.visitMethodInsn(opcode , owner , name , desc ,

itf);

}

}

...

}

Listing 2.8: MethodVisitor in ASM 5.X

If we were the direct user of ASM, this problem can easily be dealt
with by changing parts of our own program. The dependency hell problem
however, occurs when a user’s program requiring multiple libraries, where
each package is using different version of a different package. If we put ASM
in the previous section, then it is equivalent to having ASM 4.X as the first
version of Base and ASM 5.X as the second version of Base. Conflict will
immediately occurs as two different versions of the same package cannot
coexist in the program. Unfortunately, programming languages we have
right now cannot solve this.

This problem can also further propagate the more dependencies involved
in the development. Suppose other programs require the user’s program,
then that program will also fall into dependency hell.

Chapter 3

Programming with Version

In this chapter we will introduce an example on how we program with ver-
sion.

We introduce versioned package and package interface in Batak Java.
With versioned package, the version number is explicitly declared within
the program and becomes an attribute of package. This also means that a
type consists of not only class name and its package name, but also version
number. To separate one particular version from another, after declaring the
package name and package interface, we create version declarations with the
class declarations in them, in the form of version n {...}. Each version
declaration must have a corresponding package interface.

Interface or package interface in Batak Java does not have the same
role as interface in Java. Package interface is the window into a package,
consisting of information about declared classes with their constructors and
methods, which can be seen by any importing package. The package inter-
face of a class is written in the form of interface n {...}.

Example

The example introduced here is the same from the previous chapter, con-
sisting of four different libraries: Base, Education, Health and Municipal.
Base package consists of two versions, where the first version is used by
Education and the second version is used by Health. Municipal then uses
both Education and Health in its implementation, to show how differing
version can work within the proposed system.

To grasp an easier understanding of the version numbering, the example
introduced below is not written in the formal calculus (different mainly in

13

CHAPTER 3. PROGRAMMING WITH VERSION 14

the way the class name is written).

package Base

interface 1 {

Person {

birth_year :: (Object) -> Object;

new :: (Object , Object) -> Person;

}

Building {

new :: (Object) -> Building;

}

}

interface 2 {

Person {

birth_year :: (Object) -> Object;

new :: (Object , Object) -> Object;

}

Address {

new :: (Object , Object) -> Address;

}

Building {

new :: (Address) -> Building;

}

}

Listing 3.1: Package interface of Base

Within the interface we can find the superclass for each declared class and
the methods allowed to be used by any importing package. From the above
example, there are two interfaces, each corresponding to a different version of
Base. From the interface of version 1, we can see that any importing package
may use the method birth year which takes a value and returns a value of
class Object. The special name new represents the constructor of the class,
with class Person requiring two values of class Object to instantiate and
class Building requiring one value of class Object. If new is not declared
within the interface, any importing package is not allowed to create a new
object of that class, which in a sense is similar to internal in Java. In the
interface of version 2, we can see the main differences to version with the
existence of the class Address and its usage as the field of class Building.

version 1 {

class Person {

String name;

int age;

Person(String name , int age){

CHAPTER 3. PROGRAMMING WITH VERSION 15

this.name = name;

this.age = age;

}

int birth_year(int current_year){

return current_year;

}

}

class Building {

String addr;

Building(String addr){

this.addr = addr;

}

}

}

version 2 {

class Person {

String name;

int age;

Person(String name , int age){

this.name = name;

this.age = age;

}

int birth_year(int current_year){

return current_year;

}

}

class Address {

String street;

String number;

Address(String street , String number){

this.street = street;

this.number = number;

}

}

class Building {

Address addr;

Building(Address addr){

this.addr = addr;

}

CHAPTER 3. PROGRAMMING WITH VERSION 16

}

}

Listing 3.2: Version and class declarations of Base

From Listing 3.2, two versions of the package Base are declared. Both
are separated by version 1 {...} and version 2 {...}. In both versions,
the class Person is declared without any difference. In the second version,
we declare a new class Address. In the first version, the field of the class
Building consists of only an addr of type String, while in the second
version we use the newly declared class Address as the field of the class
Building.

package Education imports Base

interface 1 {

Teacher <: [1] Person {

new :: (Object , Object , Object , School) -> Teacher;

}

School <: [1] Building {

change_head :: (Teacher) -> School;

new :: (Object , Object , Teacher) -> School;

}

}

version 1 {

class Teacher extends [1] Person {

String id;

School workplace;

Teacher(String name ,

int age ,

String id,

School workplace)

{

super(name , age);

this.id = id;

this.workplace = workplace;

}

}

class School extends [1] Building {

String name;

Teacher head;

School(String addr , String name , Teacher head){

super(addr);

this.name = name;

this.head = head;

CHAPTER 3. PROGRAMMING WITH VERSION 17

}

void change_head(Teacher new_head){

this.head = new_head;

}

}

}

Listing 3.3: Package Education with version

The package Education is Listing 3.3 uses the above defined package
Base by importing it as usual. As before, we first declare an interface, since
here we have only version 1 {...}, we only require interface 1 {...}.
The declaration of class Teacher is written as class Teacher extends

[1]Person to signify that it extends the first version of Person. The same
goes for class School which extends the first version of the class Building.
In the interface, the information on inheritance is declared together with the
class name connected with <: to denote subclass relation.

package Health imports Base

interface 1 {

Doctor <: [2] Person {

promotion :: (Object) -> Surgeon;

new :: (Object , Object , Object , Hospital) -> Doctor

}

Surgeon <: Doctor {

new :: (Object , Object , Object , Hospital , Object)

-> Surgeon;

}

Hospital <: [2] Building {

change_head :: (Doctor) -> Hospital;

new :: (Address , Object , Doctor) -> Hospital;

}

}

version 1 {

class Doctor extends [2] Person {

String branch;

Hospital workplace;

Doctor(String name ,

int age ,

String branch ,

Hospital workplace)

{

super(name , age);

this.branch = branch;

CHAPTER 3. PROGRAMMING WITH VERSION 18

this.workplace = workplace;

}

Surgeon promotion(int hours){

return new Surgeon(this.name , this.age ,

this.branch , this.workplace , hours);

}

}

class Surgeon extends Doctor {

int total_hours;

Surgeon(String name ,

int age ,

String branch ,

Hospital workplace ,

int total_hours)

{

super(name , age , branch , workplace);

this.total_hours = total_hours;

}

}

class Hospital extends [2] Building {

String name;

Doctor head;

Hospital(Address addr ,

String name ,

Doctor head)

{

super(addr);

this.name = name;

this.head = head;

}

void change_head(Doctor new_head){

this.head = new_head;

}

}

}

Listing 3.4: Package Health with version

Similar to Education package, the Health package defined above also
imports Base. It differs in the way that the classes in this package extend
the second version of the classes in Base.

It should be noted that both Education and Health do not import a
specific version of Base. The package imports the whole Base and then

CHAPTER 3. PROGRAMMING WITH VERSION 19

selectively choose which version it wishes to use. It means that one of the
classes in the package may use the first version of Base and another class
may use the second version of Base.

package Municipal imports Education , Health

interface 1 {

Pair {

new :: (Teacher , Doctor) -> Pair;

}

Manage <: Object {

pair_heads :: (School , Hospital) -> Pair;

new :: () -> Manage;

}

}

version 1 {

class Pair extends Object {

Teacher nameA;

Doctor nameB;

Pair(Teacher nameA , Doctor nameB){

this.nameA = nameA;

this.nameB = nameB;

}

}

class Manage extends Object {

Manage (){}

Pair pair_heads(School a, Hospital b){

return new Pair(a.head , b.head);

}

}

}

Listing 3.5: Package Municipal with version

The Municipal package imports Education and Health, both of which
utilize different versions of Base in its implementation. First, there will be
no conflict arising from the existence of two different Person or Building,
because they have already been distinguished with differing version number.

In the method pair buildings in the class Manage, we can see how the
class School and Hospital can still interact with each other in the same
expression return new Pair(a.head, b.head); even though both classes
extend a different class Building, where School extends the first version
and Hospital extends the second version.

Chapter 4

Calculus

4.1 Syntax

Formal Syntax

Package declaration

P ::= package N imports Q {IL V }

Interface declaration

IL ::= interface n {IC}

Version declaration

V ::= version n {CL}

Class declaration

CL ::= class C extends DV {CV f ; K M}

Constructor declaration

K ::= C(DV g,CV f) {super(g), this.f = f}

20

CHAPTER 4. CALCULUS 21

Method declaration

M ::= CV m(CV x){ return t; }

Class name

CV,DV,EV ::= [n]N.C | C

Interface’s class

IC ::= C <: DV {IM, new :: CV → C}

Interface’s method

IM ::= m :: CV → CV

Expression

e ::= t in version n of package N

Terms

t ::= x | t.f | t.m(t) | new [n]N.C(t) | (CV) t | new Object()

Values

v ::= new [n]N.C(v) | new Object()

Subtyping

Reflexivity

CV <: CV

Transitivity

CV <: DV DV <: EV
CV <: EV

CHAPTER 4. CALCULUS 22

Inheritance (Same Package)

CT ([n]N.C) = class C extends D...

[n]N.C <: [n]N.D

Inheritance (Different Package)

CT ([n]N.C) = class C extends [m]Q.D...

[n]N.C <: [m]Q.D

The concrete syntax of Batak Java is given above. The metavariable
N and Q range over package names; n ranges over version numbers; C, D
range over class names without version and package name; f , g range over
field names; m ranges over method names; t ranges over terms; x ranges
over variable names. this is a special reserved variable that is implicitly
bound in every method declaration.

Q is shorthand for a possibly empty sequence Q1, ..., Qn, similarly also
with CV , CL, t, and others. Pairs of sequences such as ”IL V ” signifies
”IL1 V1, ..., ILn Vn” where n is the length of IL and V . Sequences of
field declarations, argument names and method declarations in the same
version of the same package are assumed to contain no duplicate names.
Concatenation is denoted by a comma.

The syntax is mostly similar with Featherweight Java. However, because
Batak Java introduces versioned package, the differences with the syntax of
Featherweight Java can be found in the existence of package declaration
and version declaration. Consequently, a program in Batak Java is made of
package declarations and an expression to be evaluated.

Due to the additional attribute of package, we also require a proper
way to express type/class. A class with version number and package name
is written as [n]N.C where n denotes version number, N denotes package
name and C denotes class name. The other distinguishing aspect is the
interface declaration which has a different semantic compared to full Java.

The package declaration P ::= package N imports Q {IL V } creates
a new package N that imports a set of packages Q. For every version dec-
laration V declared in the package, there must be a corresponding interface
declaration IL. Importing Q implies that within the package N , every
classes and their behaviors declared within Q’s interfaces can be used in
package N .

The interface declaration IL ::= interface n {IC} introduces the in-
terface for classes declared in version n within the package. n denotes the

CHAPTER 4. CALCULUS 23

version number corresponding to this interface. Unlike full Java, interface in
Batak Java specifies which behaviors (superclass, constructor and methods)
can be viewed by an importing package.

The version declaration V ::= version n {CL} introduces the version
n of the package. The class declarations CL signify that CL are defined
within version n.

The class declaration CL ::= class C extends DV {CV f ; K M}
introduces a class named C with superclass DV . The new class C has fields
f with types CV , a constructor K and a set of methods M . The class name
C must also be distinct from every class defined within the same package
and version. As mentioned above, DV may be written in the form of class
name as D, only if C and D are declared in the same package and version.
In other cases, DV must be written in the form of [n]N.D. DV also cannot
be a class from a different version of the same package. The fields defined
in C will be added to the fields which are already declared in DV and its
superclasses; they should have distinct names from the superclasses’ fields.
The methods of C may override methods from DV or we can also create
new methods special to the class C.

The constructor declaration K ::= C(DV g,CV f) {super(g), this.f =
f} represents the initialization of fields of C. g and their types DV must
correspond with all fields of the superclass of C; f and their types CV must
correspond with fields that were introduced in the class declaration of C.
super(g) is a special function that calls the constructor of the superclass of
C, while this.f = f will initialize the fields declared in C. In other words,
all the fields must be initialized during the creation of an object of class C.

The method declaration M ::= CV m(CV x){ return t; } introduces a
method named m with a result type CV and arguments x of types CV . In
the method body return t, this and x are bound.

The class name CV is defined in two forms: [n]N.C and C. [n]N.C
represents class C in the version n of package N . We can only use the
simple class name C in two cases, which are during declaration of a new
class and extending a class from the same package and version, both in
interface declaration and class declaration. Apart from those two cases, the
calculus only allows CV to be written in the form of [n]N.C.

The interface class IC ::= C <: DV {IM, new :: CV → C} adds a class
named C into the interface. C <: DV signifies that class C is a subclass
of DV . DV can written in the form of simple class name as D only if it is
also declared in the same package and version. In other cases, DV must be
written in the form of [n]N.D. DV also cannot be a class from a different
version of the same package. Y are the methods with their types, while new

CHAPTER 4. CALCULUS 24

represents the constructor of the class C and CV in CV → C represents
the fields’ types of C. Declaring all methods and the constructor of C in its
interface is not obligatory.

The interface method IM ::= m :: CV → CV adds the method named
m into the set of methods that an importing package may use. CV are the
types of arguments of the method and CV is its result type.

Expression is written as t in version n of package N . This means
that the term t will be evaluated on the basis that it exists with version n
of package N .

Terms consist of x for variable, t.f for field access, t.m(t) for method
invocation, new [n]N.C(t) for object creation, (CV) t for casting and new

Object() to create an object of class Object. new Object() needs to be
separately defined because it does not belong to any particular package or
version and takes the role of the superclass for every class declared.

Values consist of object creation new [n]N.C(v) and new Object().
A package table PT is a mapping from package name N to its package

declaration P . An interface table IT is a mapping from a class name [n]N.C
to its interface declaration IL. A version table V T is a mapping from a
pair of version number and package name [n]N to the sequence of class
CL declared in that particular version and package. A class table CT is a
mapping from a class name [n]N.C to class declaration CL. The definition
of the class Object cannot be found in class table. A program consists of the
tuple (PT, IT, V T,CT, e) of a package table, interface table, version table,
class table and an expression e to be evaluated.

Package table is assumed to satisfy some conditions: (1) PT (N) =
package N imports ... for every N ∈ dom(PT); (2) for every version decla-
ration V in PT (N), there is a corresponding interface declaration IL with
the same version number in PT (N), e.g., version 2 {...} has a corresponding
interface 2 {...}; (3) there are no cycles in import relation induced by PT .

From Featherweight Java, class table is assumed to satisfy some condi-
tions: (1) CT ([n]N.C) = class [n]N.C for every [n]N.C ∈ dom(CT); (2)
Object /∈ dom(CT); (3) for every class name [n]N.C (except Object) in
CT , we also have [n]N.C ∈ dom(CT); (4) there are no cycles in subtype
relation induced by CT .

The subtype relation can be figured out from the class table, separated
into two cases, superclass in the same package and superclass in a different
package. CV <: DV signifies that CV is the subtype of DV . The subtyping
is reflexive and transitive. The formal definition for subtyping is shown
above.

CHAPTER 4. CALCULUS 25

Auxillary Definitions

Field Lookup
[
fields(CV) = CV f

]
Object

fields(Object) = •

Superclass is Object

V T ([n]N) = CL where class C extends ... ∈ CL

CT ([n]N.C) = class C extends Object {CV f ; K M}
fields([n]N.C) = CV f

Superclass in the same package

V T ([n]N) = CL where class C extends ... ∈ CL

CT ([n]N.C) = class C extends D {CV f ; K M}
fields([n]N.D) = DV g

fields([n]N.C) = DV g, CV f

Superclass in a different package

V T ([n]N) = CL where class C extends ... ∈ CL

CT ([n]N.C) = class C extends [v]Q.D {CV f ; K M} N 6= Q

PT (N) = package N imports N {...} Q ∈ N

ifields([v]Q.D) = DV g

fields([n]N.C) = DV g, CV f

Interface Field Lookup
[
ifields(CV) = CV f

]
IT ([n]N.C) = C <: DV {Y ; new :: (CV)→ C}

ifields([n]N.C) = CV f

CHAPTER 4. CALCULUS 26

Method Type Lookup
[
mtype(m,CV) = BV → BV

]
Method defined in the class

V T ([n]N) = CL where class C extends ... ∈ CL

CT ([n]N.C) = class C extends DV {CV f ; K M}
BV m(BV x){ return t; } ∈M

mtype(m, [n]N.C) = BV → BV

Method defined in the superclass belonging to the same package

V T ([n]N) = CL where class C extends ... ∈ CL

CT ([n]N.C) = class C extends D {CV f ; K M}
m is not defined in M

mtype(m, [n]N.C) = mtype(m, [n]N.D)

Method defined in the superclass belonging to a different package

V T ([n]N) = CL where class C extends ... ∈ CL

CT ([n]N.C) = class C extends [v]Q.D {CV f ; K M} N 6= Q

m is not defined in M

PT (N) = package N imports N {...} Q ∈ N

mtype(m, [n]N.C) = imtype(m, [v]Q.D)

Interface Method Type Lookup
[
imtype(m,CV) = BV → BV

]
Method found in the interface

IT ([n]N.C) = C <: DV {Y ; new :: CV → C}
m :: BV → BV ∈ Y

imtype(m, [n]N.C) = BV → BV

Method in the superclass belonging to the same package

IT ([n]N.C) = C <: D {Y ; new :: CV → C}
Type of m is not defined in Y

imtype(m, [n]N.C) = imtype(m, [n]N.D)

CHAPTER 4. CALCULUS 27

Method in the superclass belonging to a different package

IT ([n]N.C) = C <: [v]Q.D {Y ; new :: CV → C} N 6= Q

Type of m is not defined in Y

PT (N) = package N imports N {...} Q ∈ N

imtype(m, [n]N.C) = imtype(m, [v]Q.D)

Method Body Lookup
[
mbody(m,CV) = (x, t)

]
Method defined in the class

V T ([n]N) = CL where class C extends ... ∈ CL

CT ([n]N.C) = class C extends DV {CV f ; K M}
BV m(BV x){ return t; } ∈M

mbody(m, [n]N.C) = (x, t)

Method defined in the superclass belonging to the same package

V T ([n]N) = CL where class C extends ... ∈ CL

CT ([n]N.C) = class C extends DV {CV f ; K M}
m is not defined in M

mbody(m, [n]N.C) = mbody(m, [n]N.D)

Method defined in the superclass belonging to a different package

V T ([n]N) = CL where class C extends ... ∈ CL

CT ([n]N.C) = class C extends [v]Q.D {CV f ; K M} N 6= Q

m is not defined in M

PT (N) = package N imports N {...} Q ∈ N

mtype(m, [n]N.C) = imbody(m, [v]Q.D)

Method Body Lookup (Different Package)
[
imbody(m,CV) = (x, t)

]
Method found in the interface

IT ([n]N.C) = C <: DV {Y ; new :: CV → C}
m :: BV → BV ∈ Y

imbody(m, [n]N.C) = mbody(m, [n]N.C)

CHAPTER 4. CALCULUS 28

Method in the superclass belonging to the same package

IT ([n]N.C) = C <: D {Y ; new :: CV → C}
Type of m is not defined in Y

imbody(m, [n]N.C) = imbody(m, [n]N.D)

Method in the superclass belonging to a different package

IT ([n]N.C) = C <: [v]Q.D {Y ; new :: CV → C} N 6= Q

Type of m is not defined in Y

PT (N) = package N imports N {...} Q ∈ N

imbody(m, [n]N.C) = imbody(m, [v]Q.D)

Valid Method Overriding

mtype(m,DV) = DV → DV0 implies CV = DV and CV0 = DV0

override(m,DV,CV → CV0)

imtype(m,DV) = DV → DV0 implies CV = DV and CV0 = DV0

ioverride(m,DV,CV → CV0)

For the typing and reduction rules, we also require a few auxillary defi-
nitions as given above.

The fields of a class fields(CV) is a sequence of CV f pairs. f denotes
the field name and CV is its type. Object is a special class without any
field, denoted by •. Aside from fields(Object), fields of a class is always
written with version and package in the form of fields([n]N.C). Since every
class extends a different class, finding fields([n]N.C) depends on whether
the superclass of CV belongs in the same package or not. In the case of
superclass in the same package, the superclass is declared in a simple class
name D and must also be declared in the same package and version. In the
case of extending a class from a different package, we first check whether
the other package has been imported or not, then we use ifields([v]Q.D).
Unlike fields(CV) which checks the class table, ifields(CV) goes directly
into the package interface to check the fields. ifields(CV) checks that (new
:: ...) is included in the interface table.

The type of a method m in class CV is written as mtype(m,CV). It
is a pair, written as BV → BV , of a sequence of argument types BV and

CHAPTER 4. CALCULUS 29

a result type BV . If the method m is not defined within the class [n]N.C,
as in the case of field lookup, we have to separate the method type lookup
into two different cases, superclass in the same package and superclass in
different package. In the former, it is straightforward recursion. In the
latter, we first need to check the package table before performing an interface
method type lookup. Unlike mtype(m,CV) which checks the class table, the
interface method type lookup imtype(m,CV) checks only package interface.
Therefore, a package only interacts with the interface of other packages in
type checking. A similar check is performed as in the case of mtype(m,CV)
but only by looking through the interface table.

Similarly the body of m in class CV is written as mbody(m,CV) consist-
ing of x, t pair of a sequence of argument types x and term t. The method
body lookup is performed in a similar manner as method type lookup that
branches into interface method body lookup in the case of superclass from
a different package.

Additionally, since Object doesn’t have methods, mtype(m, Object),
imtype(m, Object), mbody(m, Object) and imbody(m,Object) are unde-
fined.

override(m,DV,CV → CV0) determines whether a method m with ar-
gument types CV and result type CV0 can be declared in the subclass of DV
which belongs to the same package and version. ioverride(m,DV,CV →
CV0) determines whether a method m can be defined in the subclass of DV
which belongs to a different package. If a method with the same name is
declared in the superclass, then its signature must be identical.

4.2 Reduction

Exp-Red

t0 → t′0
t0 in version n of package N → t′0 in version n of package N

E-ProjNewS

fields([n]N.C) = CV f sl = [n]N(
new [n]N.C(v)

)
.fi → vi

E-ProjNewD

CHAPTER 4. CALCULUS 30

ifields([n]N.C) = CV f sl = [v]Q(
new [n]N.C(v)

)
.fi → vi

E-InvkNewS

mbody(m, [n]N.C) = (x, t0) sl = [n]N(
new [n]N.C(v)

)
.m(u)→

[
x 7→ u, this 7→

(
new [n]N.C(v)

)]
t0

E-InvkNewD

imbody(m, [n]N.C) = (x, t0) sl = [v]Q(
new [n]N.C(v)

)
.m(u)→

[
x 7→ u, this 7→

(
new [n]N.C(v)

)]
t0

E-Field

t0 → t′0
t0.f → t′0.f

E-InvkRecv

t0 → t′0
t0.m(t)→ t′0.m(t)

E-InvkArg

ti → t′i
v0.m(v, ti, t)→ v0.m(v, t′i, t)

E-NewArg

ti → t′i
new [n]N.C(v, ti, t)→ new [n]N.C(v, t′i, t)

E-CastNew

[n]N.C <: DV

(DV) new [n]N.C(v)→ new [n]N.C(v)

E-Cast

CHAPTER 4. CALCULUS 31

t0 → t′0
(CV) t0 → (CV) t′0

The evaluation rules are in small-step semantics. Expression simply
reduces into the term it contains through Exp-Red. The reduction relation
for terms is in the form of t→ t′ which reads as ”term t reduces to term t′ in
one step.” The reduction rules are mostly identical to the evaluation rules
of Featherweight Java with the difference lies in separating E-ProjNewS
from E-ProjNewD as well as E-InvkNewS from E-InvkNewD. E-ProjNewS
is used on object created from class declared in the same package, while
E-ProjNewD is used for object created from class imported from a different
package.

The evaluation rules are given above. There are three reduction rules: E-
ProjNewS and E-ProjNewD for field access, E-InvkNewS and E-InvkNewD
for method invocation and E-CastNew for casting. The notation

[
x → u,

this →
(
new [n]N.C(v)

)]
denotes substitution of x1 with u1, ..., xn with

un and this with new [n]N.C(v). The five remaining rules of E-Field, E-
InvkRecv, E-InvkArg, E-NewArg and E-Cast are congruence rules.

4.3 Typing

Exp-Typ

sl = [n]N , Γ ` t0 : CV

Γ ` t0 in version n of package N : CV

T-Var

x : CV ∈ Γ
sl, Γ ` x : CV

T-FieldS

sl = [n]N, Γ ` t0 : [n]N.C0 fields([n]N.C0) = CV f

sl = [n]N, Γ ` t0.fi : CVi

T-FieldD

sl = [v]Q, Γ ` t0 : [n]N.C0 ifields([n]N.C0) = CV f

sl = [v]Q, Γ ` t0.fi : CVi

CHAPTER 4. CALCULUS 32

T-InvkS

sl = [n]N, Γ ` t0 : [n]N.C0

mtype(m, [n]N.C0) = DV → DV

sl = [n]N, Γ ` t : CV CV <: DV

sl = [n]N, Γ ` t0.m(t) : DV

T-InvkD

sl = [v]Q, Γ ` t0 : [n]N.C0

imtype(m, [n]N.C0) = DV → DV

sl = [v]Q, Γ ` t : CV CV <: DV

sl = [v]Q, Γ ` t0.m(t) : DV

T-NewS

fields([n]N.C) = DV f

sl = [n]N, Γ ` t : CV CV <: DV

sl = [n]N, Γ ` new [n]N.C(t) : [n]N.C

T-NewD

PT (Q) = package Q imports N {· · · } where N ∈ N

ifields([n]N.C) = DV f

sl = [v]Q, Γ ` t : CV CV <: DV

sl = [v]Q, Γ ` new [n]N.C(t) : [n]N.C

T-UCast

sl, Γ ` t0 : DV DV <: CV

sl, Γ ` (CV) t0 : CV

T-DCast

sl, Γ ` t0 : DV CV <: DV CV 6= DV

sl, Γ ` (CV) t0 : CV

T-SCast

CHAPTER 4. CALCULUS 33

sl, Γ ` t0 : DV CV ≮: DV DV ≮: CV

stupid warning

sl, Γ ` (CV) t0 : CV

T-Sub

sl, Γ ` t : CV CV <: DV

sl, Γ ` t : DV

Constructor typing

CT ([n]N.C) = class C extends DV {CV f...}
fields([n]N.C) = DV g, CV f

∀[v]Q.D ∈ CV ∪DV where Q = N , v = n
∀[v]Q.D ∈ CV ∪DV where Q 6= N ,

PT (N) = package N imports N {· · · } where Q ∈ N

C(DV g,CV f){super(g); this.f = f ; } OK in [n]N.C

Method typing

Method-I

sl = [n]N, x : EV , this : [n]N.C ` t0 : EV0 EV0 <: EV

CT ([n]N.C) = class C extends D {...}
override(m, [n]N.D,EV → EV)

∀[v]Q.D ∈ EV ∪ EV where Q = N , v = n
∀[v]Q.D ∈ EV ∪ EV where Q 6= N ,

PT (N) = package N imports N {· · · } where Q ∈ N

EV m(EV x){ return t0; } OK in [n]N.C

Method-II

CHAPTER 4. CALCULUS 34

sl = [n]N, x : EV , this : [n]N.C ` t0 : EV0 EV0 <: EV

CT ([n]N.C) = class C extends [v]Q.D {...}
PT (N) = package N imports N {...} Q ∈ N

ioverride(m, [v]Q.D,EV → EV)
∀[v]Q.D ∈ EV ∪ EV where Q = N , v = n

∀[v]Q.D ∈ EV ∪ EV where Q 6= N ,

PT (N) = package N imports N {· · · } where Q ∈ N

EV m(EV x){ return t0; } OK in [n]N.C

Class typing

K OK in [n]N.C

M OK in [n]N.C

class C extends DV {CV f ;K M} OK in version n of package N

Interface well-definedness

Interface’s method

mtype(m, [n]N.C) = BV → BV

m :: BV → BV OK in interface of [n]N.C

Interface’s class

CT ([n]N.C) = class C extends DV {...}
fields([n]N.C) = CV f

Y OK in interface of [n]N.C

C <: DV {Y ; new :: CV → C} OK in interface of [n]N

CT ([n]N.C) = class C extends DV {...}
fields([n]N.C) = CV f

Y OK in interface of [n]N.C

C <: DV {Y } OK in interface of [n]N

CHAPTER 4. CALCULUS 35

The typing rules for expression, terms, constructor declarations, method
declarations, class declarations and interface declarations are shown above.
A typing environment Γ is a finite mapping from variables to types, written
as x : CV . sl is short for source location which denotes the context (version
number and package name) in which a term is supposed to be evaluated.
The context sl for term typing is extracted from the expression through the
Exp-Typ rule. Typing judgement for terms has the form sl, Γ ` t : CV
which reads as ”in the typing environment Γ and context sl, the term t
has type CV .” The term typing rules are identical to the term typing in
Featherweight Java only with CV replacing C and the introduction of sl.
The typing rule T-FieldS and T-FieldD, only differ in the lookup used, in
which T-FieldS uses fields(CV) whereas T-FieldD uses ifields(CV). The
same applies for T-InvkS and T-InvkD, as well as for T-NewS and T-NewD.

The significant differences with Featherweight Java lie in the typing judg-
ment for constructor, method, class and interface declarations. The typing
judgment for constructor declarations has the form K OK in [n]N.C which
reads ”constructor declaration K is ok when it occurs within class [n]N.C.”
The main point of the typing is to check whether the types CV of the fields
f and the superclass DV are conflicting with version n of package N or not.
Not conflicting implies that if there is any class among CV which comes from
the same package N , then it must come from the same version n, because it
would be naturally strange to use a class defined in the different version of
the package. If the type of the field or superclass is from a different package,
we check PT (N) to see if the package has been imported or not. This is
done by the last three lines before the conclusion. This also shows that the
fields of a class can be quite flexible as we can even introduce two fields
from a single different package but differing in version number. At a glance
it seems counterintuitive to perform field lookup on [n]N.C. However, in
the case of the class having a superclass belonging to a different package,
we need to also check the package table N along with the interface table of
DV to see whether the constructor is available or not, and field lookup does
exactly this.

The typing judgment for method declarations has the form M OK in
[n]N.C which reads ”method declaration M is ok when it occurs within class
[n]N.C.” We use the term typing on the body of the method, where the free
variables are the arguments of the method and the special variable this with
type [n]N.C. In case of overriding, if a method with the same name exists
within the superclass, then its type must be the same. As before, there are
two different cases for method typing: superclass in the same package and a
different package. The similar point in both cases is that we need to ensure

CHAPTER 4. CALCULUS 36

that the argument types and the result type of the method are not conflicting
with package and version where it is declared. The first case simply uses
override(m, [n]N.D,EV → EV) for overriding. The second case however
requires a check on the package table and uses ioverride(m, [v]Q.D,EV →
EV) which directly sees the content of the interface of the [v]Q.D.

The typing judgment for class declaration has the form CL OK in version
n of package N which reads ”class declaration CL is ok when it occurs
within version n of package N .” We simply combine the constructor typing
and methods typing to arrive at the conclusion that the class declaration is
also acceptable.

The well-definedness of interface is inductively checked from the methods
to the class. The typing judgement for interface’s method has the form IM
OK in interface of [n]N.C which reads ”the interface’s method IM is ok
when it occurs within the class C in the interface of version n of package
N .” It simply checks whether the interface method corresponds with mtype
or not.

The typing judgement for interface’s class has the form IC OK in in-
terface of [n]N.C which reads ”the interface’s class IC is ok when it occurs
within the interface of version n of package N .” It checks whether the inter-
face’s methods are OK and the fields correspond with the constructor (new).
As mentioned before, by not including constructor or a certain method in the
interface, any importing package would not have access to object creation
or a method of that particular class.

A version declaration is well defined, if every class declarations within it
are well-defined. The same also applies to interface declarations, where an
interface declaration is well-defined if all the interface’s classes within it are
well-defined.

4.4 Soundness

4.4.1 Progress

Theorem [Progress] Suppose e = t in version n of package N is a
well-typed expression. Then either (1) t is a value, (2) there is some t′ with
t → t′, or (3) t contains (CV) new DV (v) where DV ≮: CV in which the
evaluation will get stuck.

Proof. By induction on the typing of derivation of t.

Case T-Var

CHAPTER 4. CALCULUS 37

Impossible for t to be typed with T-Var without any typing environment.

Case T-FieldS
Suppose that t is typed with the T-FieldS rule,

sl = [n]N ` t0 : [n]N.C0 fields([n]N.C0) = CV f
(T-FieldS)

sl = [n]N ` t0.fi : CVi

from the induction hypothesis then either there exists t′0 such that t0 → t′0, t0
is a value, or t0 stuck because it contains (CV) newDV (v) where DV ≮: CV .

If t0 stuck then t also stuck because it contains (CV) new DV (v) where
DV ≮: CV .

If t0 is a value, then from the definition of value, t0 is in the form of new
[n]N.C(v). Using E-ProjNewS,

fields([n]N.C) = CV f sl = [n]N
(E-ProjNewS)(

new [n]N.C(v)
)
.fi → vi

we can see that there exists t′ = vi. t0 cannot of the form new Object()
because it does not have any fields.

If t0 is not a value, then by using E-Field,

t0 → t′0 (E-Field)
t0.fi → t′0.fi

there exists t′ = t′0.fi

Case T-FieldD
Suppose that t is typed with the T-FieldD rule,

sl = [v]Q ` t0 : [n]N.C0 ifields([n]N.C0) = CV f
(T-FieldD)

sl = [v]Q ` t0.fi : CVi

from the induction hypothesis then either there exists t′0 such that t0 → t′0, t0
is a value, or t0 stuck because it contains (CV) newDV (v) where DV ≮: CV .

If t0 stuck then t also stuck because it contains (CV) new DV (v) where
DV ≮: CV .

If t0 is a value, then from the definition of value, t0 is in the form of new
[n]N.C(v). Using E-ProjNewD,

ifields([n]N.C) = CV f sl = [v]Q
(E-ProjNewD)(

new [n]N.C(v)
)
.fi → vi

CHAPTER 4. CALCULUS 38

we can see that there exists t′ = vi. t0 cannot of the form new Object()
because it does not have any fields.

If t0 is not a value, then by using E-Field,

t0 → t′0 (E-Field)
t0.fi → t′0.fi

there exists t′ = t′0.fi

Case T-InvkS
Suppose that t is typed with the T-InvkS rule,

sl = [n]N ` t0 : [n]N.C0

mtype(m, [n]N.C0) = DV → DV

sl = [n]N ` t : CV CV <: DV
(T-InvkS)

sl = [n]N ` t0.m(t) : DV

from the induction hypothesis then both t0 and t are values or reducible
into t′0 and t

′
or any of t0 and t stuck because it contains (CV) new DV (v)

where DV ≮: CV .
If either t0 or any of the terms t stuck, then t also stuck because it

contains (CV) new DV (v) where DV ≮: CV .
If both t0 and t are all values then because t is well-typed and we

know that mtype(m, Object) is undefined, then t0 must be of the form
new [n]N.C(v). Then by using E-InvkNewS,

mbody(m, [n]N.C) = (x, t0) sl = [n]N
(E-InvkNewS)(

new [n]N.C(v)
)
.m(t)→

[
x 7→ t, this 7→

(
new [n]N.C(v)

)]
t0

there exists t′ =
[
x→ t, this → t0

]
s0

If t0 is a value and ∃tj ∈ t which is not a value, suppose t = ta, tj , tb,
then from

tj → t′j
(E-InvkArg)

t0.m(ta, tj , tb)→ t0.m(ta, t
′
j , tb)

there exists t′ = t0.m(t′)
If t0 is not a value then from

t0 → t′0 (E-InvkRecv)
t0.m(t)→ t′0.m(t)

CHAPTER 4. CALCULUS 39

there exists t′ = t′0.m(t)

Case T-InvkD
Suppose that t is typed with the T-InvkD rule,

sl = [v]Q ` t0 : [n]N.C0

imtype(m, [n]N.C0) = DV → DV

sl = [v]Q ` t : CV CV <: DV
(T-InvkD)

sl = [v]Q ` t0.m(t) : DV

from the induction hypothesis then both t0 and t are values or reducible
into t′0 and t

′
or any of t0 and t stuck because it contains (CV) new DV (v)

where DV ≮: CV .
If either t0 or any of the terms t stuck, then t also stuck because it

contains (CV) new DV (v) where DV ≮: CV .
If both t0 and t are all values then because t is well-typed and we

know that mtype(m, Object) is undefined, then t0 must be of the form
new [n]N.C(v). Then by using E-InvkNewD,

imbody(m, [n]N.C) = (x, t0) sl = [v]Q
(E-InvkNewD)(

new [n]N.C(v)
)
.m(t)→

[
x 7→ t, this 7→

(
new [n]N.C(v)

)]
t0

there exists t′ =
[
x→ t, this → t0

]
s0

If t0 is a value and ∃tj ∈ t which is not a value, suppose t = ta, tj , tb,
then from

tj → t′j
(E-InvkArg)

t0.m(ta, tj , tb)→ t0.m(ta, t
′
j , tb)

there exists t′ = t0.m(t′)
If t0 is not a value then from

t0 → t′0 (E-InvkRecv)
t0.m(t)→ t′0.m(t)

there exists t′ = t′0.m(t)

Case T-NewS
Suppose that t is typed with T-NewS rule,

CHAPTER 4. CALCULUS 40

fields([n]N.C) = DV f

sl = [n]N ` t : CV CV <: DV
(T-NewS)

sl = [n]N ` new [n]N.C(t) : [n]N.C

again from the induction hypothesis, t are either values or there exist t
′
such

that t→ t
′

or any of the terms t stuck because it contains (CV) new DV (v)
where DV ≮: CV .

If any of the terms t stuck then t also stuck because it contains (CV)
new DV (v) where DV ≮: CV .

If t are values, then t = new [n]N.C(t) is also a value.
If ∃tj ∈ t which is not a value, then from

tj → t′j
(E-NewArg)

new [n]N.C(v, tj , t)→ new [n]N.C(v, t′j , t)

there exists t′ = new [n]N.C(v, t′j , t)

Case T-NewD
Suppose that t is typed with T-NewD rule,

PT (Q) = package Q imports N {· · · } where N ∈ N

ifields([n]N.C) = DV f

sl = [v]Q ` t : CV CV <: DV
(T-NewD)

sl = [v]Q ` new [n]N.C(t) : [n]N.C

again from the induction hypothesis, t are either values or there exist t
′
such

that t→ t
′

or any of the terms t stuck because it contains (CV) new DV (v)
where DV ≮: CV .

The proof is similar as in the case of T-NewS.

Case T-UCast
Suppose that t is typed with T-UCast rule,

sl ` t0 : DV DV <: CV
(T-UCast)

sl ` (CV) t0 : CV

from the induction hypothesis, t0 is either a value or there exists t′0 such that
t0 → t′0 or t0 stuck because it contains (CV) new DV (v) where DV ≮: CV .

If t0 stuck then t also stuck because it contains (CV) new DV (v) where
DV ≮: CV .

If t0 is a value, then from

CHAPTER 4. CALCULUS 41

t0 : DV DV <: CV
(E-CastNew)

(CV) t0 → t0

there exists t′ = t0
If t0 is not a value, then from

t0 → t′0 (E-Cast)
(CV) t0 → (CV) t′0

there exists t′ = (CV) t′0

Case T-DCast
Suppose that t is typed with T-DCast rule,

sl ` t0 : DV CV <: DV CV 6= DV
(T-DCast)

sl ` (CV) t0 : CV

from the induction hypothesis, t0 is either a value or there exists t′0 such that
t0 → t′0 or t0 stuck because it contains (CV) new DV (v) where DV ≮: CV .

If t0 stuck then t also stuck because it contains (CV) new DV (v) where
DV ≮: CV .

If t0 is a value, then t0 can only progress in the form of new [n]N.C(v).
Since new [n]N.C(v) is well-typed, [n]N.C must be a subtype of both CV
and DV such that

[n]N.C <: CV
(E-CastNew)

(CV) new [n]N.C(v)→ new [n]N.C(v)

there exists t′ = t0
If [n]N.C is not the subtype of CV then the expression stuck.
If t0 is not a value, then from

t0 → t′0 (E-Cast)
(CV) t0 → (CV) t′0

there exists t′ = (CV) t′0

Case T-SCast
Suppose that t is typed with T-SCast rule,

sl ` t0 : DV CV ≮: DV DV ≮: CV

stupid warning
T-SCast

sl ` (CV) t0 : CV

CHAPTER 4. CALCULUS 42

from the induction hypothesis, exists t′0 such that t0 → t′0 or t0 stuck because
it contains (CV) new DV (v) where DV ≮: CV .

If t0 stuck then t also stuck because it contains (CV) new DV (v) where
DV ≮: CV .

For t to be well-typed, t0 cannot be a value. Then from

t0 → t′0 (E-Cast)
(CV) t0 → (CV) t′0

there exists t′ = (CV) t′0

Case T-Sub
Suppose that t is typed with T-Sub rule,

sl ` t : CV CV <: DV
sl ` t : DV

then it follows directly from the induction hypothesis, t→ t′ or t stuck be-
cause it contains (CV) new DV (v) where DV ≮: CV .

4.4.2 Preservation

Lemma [Term Substitution Preserves Typing] If sl, Γ, x : AV ` t : CV
and sl, Γ ` d : AV then sl, Γ ` [d/x]t : CV

Proof. On the derivation of the statement sl, Γ, x : AV ` t : CV

Case T-Var
Suppose t = z and z : CV ∈ Γ, x : AV

If z = x, then sl, Γ ` [d/x]z = x : AV , which is part of the assumptions.
It also implies that CV = AV .

If z 6= x, then sl, Γ ` [d/x]z = z : CV .

Case T-FieldS

t = t0.fi : CVi

sl = [n]N, Γ, x : AV ` t0 : [n]N.C0

fields([n]N.C0) = CV f

From the induction hypothesis, then there exists [n]N.C0 such that sl =
[n]N, Γ ` [d/x]t0 : [n]N.C0. Then from T-FieldS

CHAPTER 4. CALCULUS 43

sl = [n]N, Γ ` [d/x]t0 : [n]N.C0 fields([n]N.C0) = CV f
(T-FieldS)

sl = [n]N, Γ ` ([d/x]t0).fi : CVi

where [d/x](t0.fi) is exactly ([d/x]t0).fi.

Case T-FieldD

t = t0.fi : CVi

sl = [v]Q, Γ, x : AV ` [n]N.C0 : CV0

ifields([n]N.C0) = CV f

Similarly as in the case of T-FieldS, from the induction hypothesis, then
there exists [n]N.C0 such that sl = [v]Q, Γ ` [d/x]t0 : [n]N.C0. Then from
T-FieldD

sl = [v]Q, Γ ` [d/x]t0 : [n]N.C0 ifields([n]N.C0) = CV f
(T-FieldD)

sl = [v]Q, Γ ` ([d/x]t0).fi : CVi

where [d/x](t0.fi) is exactly ([d/x]t0).fi.

Case T-InvkS

t = t0.m(t) : DV

sl = [n]N, Γ, x : AV ` t0 : [n]N.C0

mtype(m, [n]N.C0) = DV → DV

sl = [n]n, Γ, x : AV ` t : CV

CV <: DV

From the induction hypothesis, then there exist [n]N.C0 and CV such
that sl = [n]N, Γ ` [d/x]t0 : [n]N.C0 and sl = [n]N, Γ ` [d/x]t : CV . Using
T-InvkS

sl = [n]N, Γ ` [d/x]t0 : [n]N.C0

mtype(m, [n]N.C0) : DV → DV

sl = [n]N, Γ ` [d/x]t : CV

CV <: DV (T-InvkS)
sl = [n]N Γ `

(
[d/x]t0

)
.m([d/x]t) : DV

where [d/x]
(
t0.m(t)

)
is equivalent to

(
[d/x]t0

)
.m([d/x]t) : DV .

Case T-InvkD

CHAPTER 4. CALCULUS 44

t = t0.m(t) : DV

sl = [v]Q, Γ, x : AV ` t0 : [n]N.C0

imtype(m, [n]N.C0) = DV → DV

sl = [v]Q, Γ, x : AV ` t : CV

CV <: DV

Similar as in the case of T-InvkS, from the induction hypothesis, then
there exist [n]N.C0 and CV such that sl = [v]Q, Γ ` [d/x]t0 : [n]N.C0 and
sl = [v]Q, Γ ` [d/x]t : CV . Using T-InvkD

sl = [v]Q, Γ ` [d/x]t0 : [n]N.C0

imtype(m, [n]N.C0) : DV → DV

sl = [v]Q, Γ ` [d/x]t : CV

CV <: DV (T-InvkD)
sl = [v]Q Γ `

(
[d/x]t0

)
.m([d/x]t) : DV

where [d/x]
(
t0.m(t)

)
is equivalent to

(
[d/x]t0

)
.m([d/x]t) : DV .

Case T-NewS

t = new [n]N.C(t) : [n]N.C

fields([n]N.C) = DV f

sl = [n]N, Γ, x : AV ` t : CV

CV <: DV

From the induction hypothesis, then there exists CV such that sl = [n]N,
Γ ` [d/x]t : CV . Using T-NewS

sl = [n]N, Γ ` [d/x]t : CV

fields([n]N.C) = DV f

CV <: DV (T-NewS)
sl = [n]N, Γ ` new [n]N.C([d/x]t) : [n]N.C

where [d/x]
(
new [n]N.C(t)

)
is equivalent to new [n]N.C([d/x]t).

Case T-NewD

CHAPTER 4. CALCULUS 45

t = new [n]N.C(t) : [n]N.C

PT (Q) = package Q imports N {· · · } where N ∈ N

ifields([n]N.C) = DV f

sl = [v]Q, Γ, x : AV ` t : CV

CV <: DV

From the induction hypothesis, then there exists CV such that sl = [v]Q,
Γ ` [d/x]t : CV . Using T-NewD

PT (Q) = package Q imports N {· · · } where N ∈ N

sl = [v]Q, Γ ` [d/x]t : CV

ifields([n]N.C) = DV f

CV <: DV (T-NewD)
sl = [v]Q, Γ ` new [n]N.C([d/x]t) : [n]N.C

where [d/x]
(
new [n]N.C(t)

)
is equivalent to new [n]N.C([d/x]t).

Case T-UCast

t = (CV) t0 : CV

sl, Γ, x : AV ` t0 : DV

DV <: CV

From the induction hypothesis, then there exists DV such that sl, Γ `
[d/x]t0 : DV . Then from T-UCast

sl, Γ ` [d/x]t0 : DV DV <: CV
(T-UCast)

sl, Γ ` (CV) [d/x]t0 : CV

where [d/x]
(
(CV) t0

)
is equivalent to (CV) [d/x]t0.

Case T-DCast

t = (CV) t0 : CV

sl, Γ, x : AV ` t0 : DV

CV <: DV
CV 6= DV

From the induction hypothesis, then there exists DV such that sl, Γ `
[d/x]t0 : DV . Then from T-DCast

CHAPTER 4. CALCULUS 46

sl, Γ ` [d/x]t0 : DV CV <: DV CV 6= DV
(T-DCast)

sl, Γ ` (CV) [d/x]t0 : CV

where [d/x]
(
(CV) t0

)
is equivalent to (CV) [d/x]t0.

Case T-SCast

t = (CV) t0 : CV

sl, Γ, x : AV ` t0 : DV

CV ≮ DV

DV ≮ CV

stupid warning

From the induction hypothesis, then there exists DV such that sl, Γ `
[d/x]t0 : DV . Then from T-SCast

sl, Γ ` [d/x]t0 : DV CV ≮: DV DV ≮: CV

stupid warning

sl, Γ ` (CV) [d/x]t0 : CV

where [d/x]
(
(CV) t0

)
is equivalent to (CV) [d/x]t0.

Case T-Sub

sl, Γ ` t : DV

sl, Γ ` t : CV

CV <: DV

Follows directly from the induction hypothesis,

sl, Γ ` [d/x]t : CV CV <: DV
(T-Sub)

sl, Γ ` [d/x]t : DV

Theorem [Preservation] If sl, Γ ` t : CV and t→ t′ then sl, Γ ` t′ : CV

Proof. By induction on the derivation of t : CV

Case T-Var

t = x : CV (T-Var)
x : CV ∈ Γ

CHAPTER 4. CALCULUS 47

There is no derivation rule for t = x.

Case T-FieldS

t = t0.fi : CVi

sl = [n]N, Γ ` t0 : [n]N.C0

fields([n]N.C0) = CV f

t→ t′ can be derived from E-Field and E-ProjNewS.

• E-Field If t → t′ is derived with E-Field, then t0 is not a value and
can be reduced into t′0. Using this,

t0 → t′0 (E-Field)
t0.fi → t′0.fi

we have t′ = t′0.fi.

Then from the induction hypothesis, we know that there exists [n]N.C0

such that sl = [n]N, Γ ` t′0 : [n]N.C0. Applying this to the T-FieldS
rule,

sl = [n]N, Γ ` t′0 : [n]N.C0 fields([n]N.C0) = CV f
(T-FieldS)

sl = [n]N, Γ ` t′0.fi : CVi

we then obtain sl = [n]N, Γ ` t′0.fi : CVi.

• E-ProjNewS If t → t′ is derived with E-ProjNewS then t0 is of the
form new [n]N.C(v). Using this,

fields([n]N.C) = CV f sl = [n]N
(E-ProjNewS)(

new [n]N.C(v)
)
.fi → vi

vi is the i-th field of [n]N.C0, which means that vi : CVi. Thus sl =
[n]N, Γ `

(
new [n]N.C(v)

)
.fi : CVi.

Case T-FieldD

t = t0.fi : CVi

sl = [v]Q, Γ ` t0 : [n]N.C0

ifields([n]N.C0) = CV f

CHAPTER 4. CALCULUS 48

t→ t′ can be derived from E-Field and E-ProjNewD.

• E-Field If t → t′ is derived with E-Field, then t0 is not a value and
can be reduced into t′0. Using this,

t0 → t′0 (E-Field)
t0.fi → t′0.fi

we have t′ = t′0.fi.

Then from the induction hypothesis, we know that there exists [n]N.C0

such that sl = [v]Q, Γ ` t′0 : [n]N.C0. Applying this to the T-FieldD
rule,

sl = [v]Q, Γ ` t′0 : [n]N.C0 ifields([n]N.C0) = CV f
(T-FieldD)

sl = [v]Q, Γ ` t′0.fi : CVi

we then obtain sl = [v]Q, Γ ` t′0.fi : CVi.

• E-ProjNewD If t → t′ is derived with E-ProjNew then t0 is of the
form new [n]N.C(v). Using this,

ifields([n]N.C) = CV f sl = [v]Q
(E-ProjNewD)(

new [n]N.C(v)
)
.fi → vi

vi is the i-th field of [n]N.C0, which means that vi : CVi. Thus sl =
[v]Q, Γ `

(
new [n]N.C(v)

)
.fi : CVi.

Case T-InvkS

t = t0.m(t) : DV

sl = [n]N, Γ ` t0 : [n]N.C0

mtype(m, [n]N.C0) = DV → DV

sl = [n]N, Γ ` t : CV

CV <: DV

t→ t′ can be derived from E-InvkRecv, E-InvkArg and E-InvkNewS.

• E-InvkRecv If t→ t′ is derived with E-InvkRecv, then t0 is not value
and there exists t′0 such that t0 → t′0. From applying E-InvkRecv,

CHAPTER 4. CALCULUS 49

t0 → t′0 (E-InvkRecv)
t0.m(t)→ t′0.m(t)

we will obtain t′ = t′0.m(t).

Then from the induction hypothesis, there exists [n]N.C0 such that
sl = [n]N, Γ ` t′0 : [n]N.C0. By applying the T-InvkS rule,

sl = [n]N, Γ ` t′0 : [n]N.C0

mtype(m, [n]N.C0) = DV → DV

sl = [n]N, Γ ` t : CV CV <: DV
(T-InvkS)

sl = [n]N, Γ ` t′0.m(t) : DV

we then obtain sl = [n]N, Γ ` t′0.m(t) : DV .

• E-InvkArg If t → t′ is derived with E-InvkArg then there exists t
′

such that t → t
′
. Suppose that t = v, tj , s and t

′
= v, t′j , s. From

applying E-InvkArg

tj → t′j
(E-InvkArg)

t0.m(v, tj , s)→ t0.m(v, t′j , s)

we have t′ = t0.m(v, t′j , s).

Then from the induction hypothesis, then there exists CV such that
sl = [n]N, Γ ` t

′
: CV . Similar to the case above, by applying the

T-InvkS rule,

sl = [n]N, Γ ` t0 : CV0

mtype(m,CV0) = DV → DV

sl = [n]N, Γ ` t
′
: CV CV <: DV

(T-InvkS)
sl = [n]N Γ ` t0.m(t

′
) : DV

we obtain sl = [n]N, Γ ` t0.m(t
′
) : DV .

• E-InvkNewS If t→ t′ is derived with E-InvkNewS, then both t0 and
t are values. Suppose t0 = new [n]N.C0(v) and t = u, by applying the
E-InvkNew rule,

mbody(m, [n]N.C0) = (x, s0) sl = [n]N(
new [n]N.C0(v)

)
.m(u)→ [x 7→ u, this 7→

(
new [n]N.C0(v)

)
]s0

CHAPTER 4. CALCULUS 50

we obtain t′ = [x 7→ u, this 7→
(
new [n]N.C(v)

)
]s0.

Because t0 is well-typed, then from method’s well-definedness, we have
sl = [n]N, x : DV , this : [n]N.C0 ` s0 : DV . Afterwards, by applying
weakening and the substitution lemma, we will obtain sl = [n]N Γ `[
u/x,

(
new [n]N.C0(v)/this

)]
s0 : DV .

Case T-InvkD

t = t0.m(t) : DV

sl = [v]Q, Γ ` t0 : [n]N.C0

mtype(m, [n]N.C0) = DV → DV

sl = [v]Q, Γ ` t : CV

CV <: DV

t→ t′ can be derived from E-InvkRecv, E-InvkArg and E-InvkNewD.

• E-InvkRecv If t→ t′ is derived with E-InvkRecv, then t0 is not value
and there exists t′0 such that t0 → t′0. From applying E-InvkRecv,

t0 → t′0 (E-InvkRecv)
t0.m(t)→ t′0.m(t)

we will obtain t′ = t′0.m(t).

Then from the induction hypothesis, there exists [n]N.C0 such that
sl = [v]Q, Γ ` t′0 : [n]N.C0. By applying the T-InvkD rule,

sl = [v]Q, Γ ` t′0 : [n]N.C0

imtype(m, [n]N.C0) = DV → DV

sl = [v]Q, Γ ` t : CV CV <: DV
(T-InvkD)

sl = [v]Q, Γ ` t′0.m(t) : DV

we then obtain sl = [v]Q, Γ ` t′0.m(t) : DV .

• E-InvkArg If t → t′ is derived with E-InvkArg then there exists t
′

such that t → t
′
. Suppose that t = v, tj , s and t

′
= v, t′j , s. From

applying E-InvkArg

tj → t′j
(E-InvkArg)

t0.m(v, tj , s)→ t0.m(v, t′j , s)

CHAPTER 4. CALCULUS 51

we have t′ = t0.m(v, t′j , s).

Then from the induction hypothesis, then there exists CV such that
sl = [v]Q, Γ ` t

′
: CV . Similar to the case above, by applying the

T-InvkS rule,

sl = [v]Q, Γ ` t0 : CV0

imtype(m,CV0) = DV → DV

sl = [v]Q, Γ ` t
′
: CV CV <: DV

(T-InvkD)
sl = [v]Q Γ ` t0.m(t

′
) : DV

we obtain sl = [v]Q, Γ ` t0.m(t
′
) : DV .

• E-InvkNewD If t → t′ is derived with E-InvkNewD, then both t0
and t are values. Suppose t0 = new [n]N.C0(v) and t = u, by applying
the E-InvkNew rule,

imbody(m, [n]N.C0) = (x, s0) sl = [v]Q(
new [n]N.C0(v)

)
.m(u)→ [x 7→ u, this 7→

(
new [n]N.C0(v)

)
]s0

we obtain t′ = [x 7→ u, this 7→
(
new [n]N.C(v)

)
]s0.

Because t0 is well-typed, then from method’s well-definedness, we have
sl = [v]Q, x : DV , this : [n]N.C0 ` s0 : DV . Afterwards, by applying
weakening and the substitution lemma, we will obtain sl = [v]Q Γ `[
u/x,

(
new [n]N.C0(v)/this

)]
s0 : DV .

Case T-NewS

t = new [n]N.C(t) : [n]N.C

fields([n]N.C) = DV f

sl = [n]N, Γ ` t : CV

CV <: DV

t→ t′ can only be derived if t is not value, with the E-NewArg rule.

• E-NewArg As before, suppose t = v, tj , s and t
′
= v, t′j , s, by applying

E-NewArg,

tj → t′j
(E-NewArg)

new [n]N.C(v, tj , s)→ new [n]N.C(v, t′j , s)

CHAPTER 4. CALCULUS 52

we obtain t′ = new [n]N.C(v, t′j , s).

Then from the induction hypothesis, there exists CV such that sl =
[n]N, Γ ` t

′
: CV . By applying the T-NewS rule,

fields([n]N.C) = DV f

sl = [n]N, Γ ` t
′
: CV CV <: DV

(T-NewS)
sl = [n]N, Γ ` new [n]N.C(t

′
) : [n]N.C

we have sl = [n]N, Γ ` new [n]N.C(t
′
) : [n]N.C.

Case T-NewD

t = new [n]N.C(t) : [n]N.C

PT (Q) = package Q imports N {· · · } where N ∈ N

fields([n]N.C) = DV f

sl = [v]Q, Γ ` t : CV

CV <: DV

t→ t′ can only be derived if t is not value, with the E-NewArg rule.

• E-NewArg As before, suppose t = v, tj , s and t
′
= v, t′j , s, by applying

E-NewArg,

tj → t′j
(E-NewArg)

new [n]N.C(v, tj , s)→ new [n]N.C(v, t′j , s)

we obtain t′ = new [n]N.C(v, t′j , s).

Then from the induction hypothesis, there exists CV such that sl =
[v]Q, Γ ` t

′
: CV . By applying the T-NewD rule,

PT (Q) = package Q imports N {· · · } where N ∈ N

ifields([n]N.C) = DV f

sl = [v]Q, Γ ` t
′
: CV CV <: DV

(T-NewD)
sl = [v]Q, Γ ` new [n]N.C(t

′
) : [n]N.C

we have sl = [v]Q, Γ ` new [n]N.C(t
′
) : [n]N.C.

CHAPTER 4. CALCULUS 53

Case T-UCast

t = (CV) t0 : CV

sl, Γ ` t0 : DV

DV <: CV

t→ t′ can be derived through E-Cast and E-CastNew.

• E-Cast First by applying E-Cast,

t0 → t′0 (E-Cast)
(CV) t0 → (CV) t′0

we obtain t′ = (CV) t′0.

Then from induction hypothesis, there exists DV such that Γ ` t′0 :
DV . By applying the T-UCast rule,

sl, Γ ` t′0 : DV DV <: CV
(T-UCast)

sl, Γ ` (CV) t′0 : CV

we have sl, Γ ` (CV) t′0 : CV .

• E-CastNew If t → t′ is derived from E-CastNew, then t0 is of the
form new [n]N.E(v). From applying E-CastNew,

[n]N.E <: CV
(E-CastNew)

(CV) new [n]N.E(v)→ new [n]N.E(v)

we obtain t′ = new [n]N.E(v).

Then by using T-Sub rule,

sl, Γ ` new [n]N.E(v) : [n]N.E [n]N.E <: CV
(T-Sub)

sl, Γ ` new [n]N.E(v) : CV

we obtain sl, Γ ` new [n]N.E(v) : CV

Case T-DCast

sl, Γ ` (CV) t0 : CV

sl, Γ ` t0 : DV

CV <: DV
CV 6= DV

CHAPTER 4. CALCULUS 54

Same as in the case of T-UCast, t→ t′ can be derived through E-Cast and
E-CastNew.

• E-Cast By applying E-Cast,

t0 → t′0 (E-Cast)
(CV) t0 → (CV) t′0

we obtain t′ = (CV) t′0.

Then from induction hypothesis, there exists DV such that Γ ` t′0 :
DV . By applying the T-DCast rule,

sl, Γ ` t0 : DV CV <: DV CV 6= DV
(T-DCast)

sl, Γ ` (CV) t′0 : CV

we have Γ ` (CV) t′0 : CV .

• E-CastNew If t → t′ is derived from E-CastNew, then t0 is of the
form new [n]N.E(v). From applying E-CastNew,

[n]N.E <: CV
(E-CastNew)

(CV) new [n]N.E(v)→ new [n]N.E(v)

we obtain t′ = new [n]N.E(v).

From the assumption that CV <: DV , it means that for the derivation
to progress, [n]N.E must be a subtype of CV and DV . By applying
T-Sub,

sl, Γ ` new [n]N.E(v) : [n]N.E [n]N.E <: CV
(T-Sub)

sl, Γ ` new [n]N.E(v) : CV

we obtain sl, Γ ` new [n]N.E(v) : CV .

Case T-SCast

t = (CV) t0 : CV

sl, Γ ` t0 : DV

CV ≮ DV

DV ≮ CV

stupid warning

CHAPTER 4. CALCULUS 55

Similar to the two cases above, t → t′ can be only be derived through E-
Cast, it cannot be derived through E-CastNew because it contradicts with
the assumption.

• E-Cast By applying E-Cast,

t0 → t′0 (E-Cast)
(CV) t0 → (CV) t′0

we obtain t′ = (CV) t′0.

Then from induction hypothesis, there exists DV such that Γ ` t′0 :
DV . By applying the T-SCast rule,

sl, Γ ` t′0 : DV CV ≮: DV DV ≮: CV

stupid warning

sl, Γ ` (CV) t′0 : CV

we obtain sl, Γ ` (CV) t′0 : CV with stupid warning.

Case T-Sub

sl, Γ ` t : DV

sl, Γ ` t : CV

CV <: DV

It follows directly from the induction hypothesis.

sl, Γ ` t′ : CV CV <: DV
(T-Sub)

sl, Γ ` t′ : DV

we have Γ ` t′ : DV .

4.4.3 Type Soundness

Theorem [Type Soundness] If sl ` t : CV then either, (1) t is a value
or, (2) there exists t′ such that t → t′ and sl ` t′ : CV or, (3) t contains a
subterm of the form (DV) new CV (v) where CV ≮: DV .

Proof. Immediate from Progress and Preservation.

Chapter 5

Formal Examples

In this chapter, the examples provided in the earlier chapter will be reintro-
duced by using the formal calculus.

package Base {

interface 1 {

Person <: Object {

birth_year :: (Object) -> Object;

new :: (Object , Object) -> Person;

}

Building <: Object {

new :: (Object) -> Building;

}

}

interface 2 {

Person <: Object {

birth_year :: (Object) -> Object;

new :: (Object , Object) -> Object;

}

Address <: Object {

new :: (Object , Object) -> Address;

}

Building <: Object {

new :: ([1] Base.Address) -> Building;

}

}

version 1 {

class Person extends Object {

Object name;

Object age;

56

CHAPTER 5. FORMAL EXAMPLES 57

Person(Object name , Object age){

super ();

this.name = name;

this.age = age;

}

Object birth_year(Object current_year){

return current_year;

}

}

class Building extends Object {

Object addr;

Building(Object addr){

super ();

this.addr = addr;

}

}

}

version 2 {

class Person extends Object {

Object name;

Object age;

Person(Object name , Object age){

super ();

this.name = name;

this.age = age;

}

Object birth_year(Object current_year){

return current_year;

}

}

class Address extends Object{

Object street;

Object number;

Address(Object street , Object number){

super ();

this.street = street;

this.number = number;

}

}

class Building extends Object{

CHAPTER 5. FORMAL EXAMPLES 58

[2] Base.Address addr;

Building ([2] Base.Address addr){

super ();

this.addr = addr;

}

}

}}

Listing 5.1: Package Base written in the formal syntax

Comparing the formal Base and the informal Base which was introduced
before, the first stark difference is the types available. Since Batak Java is
based on a minimal language, primitive types such as character, integer and
boolean are not defined within the language. To account for that, we use
the class Object as replacement.

In Batak Java, every class must extend another class. Therefore classes
such as Person and Building which do not own any other superclass in
the informal example will have to explicitly extend the class Object in this
example.

In the formal calculus, every class name beside Object has to be written
in its full name (later extensions may allow other types such as integer,
boolean, etc.). Such example can be found in the second version of the class
Building, where the type of the field addr is written as [1]Base.Address

instead of just Address and likewise the constructor is written in the same
manner.

package Education imports Base {

interface 1 {

Teacher <: [1] Base.Person{

new :: (Object , Object , Object , [1] Education.School)

-> Teacher;

}

School <: [1] Base.Building {

change_head :: ([1] Education.Teacher)

-> [1] Education.School;

new :: (Object , Object , [1] Education.Teacher) -> School;

}

}

version 1 {

class Teacher extends [1] Base.Person {

Object id;

[1] Education.School workplace;

Teacher(Object name ,

CHAPTER 5. FORMAL EXAMPLES 59

Object age ,

Object id,

[1] Education.School workplace)

{

super(name , age);

this.id = id;

this.workplace = workplace;

}

}

class School extends [1] Base.Building {

Object name;

[1] Education.Teacher head;

School(Object addr ,

Object name ,

[1] Education.Teacher head)

{

super(addr);

this.name = name;

this.head = head;

}

[1] Education.School change_head(

[1] Education.Teacher new_head)

{

return new [1] Education.Teacher(this.addr , this.name ,

new_head)

}

}

}}

Listing 5.2: Package Education written in the formal syntax

Similarly here we need to specify the version number and the package
name while declaring a class extending a class from a different package. We
need to write class Teacher extends [1]Base.Person to avoid conflict
that may happen when two different packages have a similar named class.
In the current calculus, the same also applies for result type of method, with
the result type of method change head written as [1]Education.School;
also for type of field, we write [1]Education.School instead of School and
[1]Education.Teacher instead of Teacher.

package Health imports Base {

interface 1 {

Doctor <: [2] Base.Person{

promotion :: (Object) -> [1] Health.Surgeon;

CHAPTER 5. FORMAL EXAMPLES 60

new :: (Object , Object , Object , [1] Health.Hospital)

-> Doctor

}

Surgeon <: Doctor {

new :: (Object , Object , Object , [1] Health.Hospital , Object)

-> Surgeon;

}

Hospital <: [2] Base.Building {

change_head :: ([1] Health.Doctor) -> [1] Health.Hospital;

new :: ([2] Base.Address , Object , [1] Health.Doctor)

-> Hospital;

}

}

version 1 {

class Doctor extends [2] Base.Person {

Object branch;

[1] Health.Hospital workplace;

Doctor(Object name ,

Object age ,

Object branch ,

[1] Health.Hospital workplace)

{

super(name , age);

this.branch = branch;

this.workplace = workplace;

}

[1] Health.Surgeon promotion(Object hours){

return new Surgeon(this.name , this.age , this.branch ,

this.workplace , hours);

}

}

class Surgeon extends Doctor {

Object total_hours;

Surgeon(Object name ,

Object age ,

Object branch ,

[1] Health.Hospital workplace ,

Object total_hours){

super(name , age , branch , workplace);

this.total_hours = total_hours;

}

}

class Hospital extends [2] Base.Building {

CHAPTER 5. FORMAL EXAMPLES 61

Object name;

[1] Health.Doctor head;

Hospital ([2] Base.Address addr ,

Object name ,

[1] Health.Doctor head){

super(addr);

this.name = name;

this.head = head;

}

[1] Health.Hospital change_head ([1] Health.Doctor new_head){

return new [1] Health.Hospital(this.addr , this.name ,

new_head);

}

}

}}

Listing 5.3: Package Health written in the formal syntax

The Health also changes only in the way the class and type names are
written. Apart from that, everything remains identical with the examples
in the preceding chapter.

package Municipal imports Education , Health {

interface 1 {

Pair <: Object {

new :: ([1] Education.Teacher , [1] Health.Doctor) -> Pair;

}

Manage <: Object {

pair_heads :: ([1] Education.School , [1] Health.Hospital)

-> Pair;

new :: () -> Manage;

}

}

version 1 {

class Pair extends Object {

[1] Education.Teacher nameA;

[1] Health.Doctor nameB;

Pair ([1] Education.Teacher nameA , [1] Health.Doctor nameB){

super ();

this.nameA = nameA;

this.nameB = nameB;

}

}

class Manage extends Object {

CHAPTER 5. FORMAL EXAMPLES 62

Manage (){

super ();

}

Pair pair_heads ([1] Education.School a,

[1] Health.Hospital b){

return new Pair(a.head , b.head);

}

}

}}

Listing 5.4: Package Municipal written in the formal syntax

In the Municipal package, we use both Education and Health defined
above. Here also there is no different with the definitions made in the third
chapter aside from the different usage of classes.

Below is an example of a field access using the above class definitions.

new [2]Base.Building(new [2]Base.Address(new Object(),

new Object)).addr

→ new [2]Base.Address(new Object(), new Object)

To declare a new object, aside from and instance of the class Object, the
version and package name must always be specified. Following the syntax
rules, every field needs to instantiated by the constructor, so we can see that
the class Building from the second version of package Base has only one
field. From the class declaration we also know that the field is addr, hence
by using .addr we access that field.

Below is an example of method invocation involving multiple versions.

new [1]Municipal.Manage().pair heads(

new [1]Education.School(

new Object(), new Object, new [1]Education.Teacher(...))

new [1]Health.Hospital(

new [2]Base.Address(...), new Object(),

new [1]Health.Doctor(...)))

→

a 7→ new [1]Education.School(...)
b 7→ new [1]Health.Teacher(...)
this 7→ new [1]Municipal.Manage()

 new Pair(a.head, b.head)

Using the above definitions, new [1]Education.Teacher(...) uses the
first version of Base and new [1]Health.Doctor(...) uses the second ver-
sion of Base. The mechanism of method invocation in (the langauge) is

CHAPTER 5. FORMAL EXAMPLES 63

identical to Featherweight Java. The square bracket denotes the substitu-
tion, with a and b which are the actual formal parameters of the method,
replaced with the actual parameters received. Then we also replace this

with the receiver object new [1]Municipal.Manage().
The last example is the cast expression.

(Doctor) new Surgeon(new Object(), new Object(), new Object(),

new [1]Health.Hospital(...), new Object())

→ new Surgeon(new Object(), new Object(), new Object(),

new [1]Health.Hospital(...), new Object())

Suppose that new Surgeon(...) is already a value, we can easily check
whether the cast will progress or not. Hence, because Surgeon is a subclass
of the target cast Doctor, the reduction removes the cast. If not, the ex-
pression must be of the form (CV) new DV(...) where DV ≮: CV, and the
evaluation will stuck.

Chapter 6

Related Work

Family Polymorphism

Family polymorphism [3][6], a programming language feature that introduces
the idea of family was a promising candidate as a solution to dependency
hell. A family is a unit that shows the relationship between multiple objects.
We intended to treat interdependent libraries as a family of libraries, or in
other words a version of a set of libraries. Using a shorter version of the
example from the preceding chapter, the example below will demonstrate
the mechanism of a family.

class BaseFirst {

class Person {

String name;

Person{String name}{

this.name = name;

}

}

}

class BaseSecond {

class Person {

String name;

int age;

Person(String name , int age){

this.name = name; this.age = age;

}

}

}

Listing 6.1: Family polymorphism for Base

The idea of family polymorphism was formalized in virtual class calcu-

64

CHAPTER 6. RELATED WORK 65

lus[]. Using the virtual class calculus, we will treat package in Batak Java
as a class. This calculus treats class as another attribute of a class, similar
to field and method. Therefore, the inner class Person is an attribute of
the class BaseFirst. Here, BaseFirst represents the first version of Base.
Likewise, BaseSecond represents the second version of Base. Within the
framework of family, the outer class BaseFirst can be seen as a family
which member is Person.

class Education extends BaseFirst {

class Teacher extends Person {

String id;

Teacher(String name , String id){

super(name); this.id = id;

}

}

}

class Health extends BaseSecond {

class Doctor extends Person {

String branch;

Doctor(String name , String branch){

super(name); this.branch = branch

}

}

}

Listing 6.2: Family polymorphism for Education and Health

Here we declare class Education extends BaseFirst and also class

Health extends BaseSecond. In a sense it is somewhat similar to package

Education imports Base and package Health imports Base since ex-
tending a class in virtual class calculus is equal to inheriting all of its
attributes, including inner classes. However, as has been pointed before,
Batak Java does not import a particular version of a package, but imports
the whole package and then choose the desired version. In contrast, the con-
cept of family polymorphism is less flexible because a particular class has to
extend a particular version. This means that anything related to Education

can only make use of a class belonging to BaseFirst. This means we can-
not suppose add another class to Education which extends Person from the
other version.

class Municipal extends Education , Health {

class Manage {

Manage () {}

boolean compare_building(out.School a, out.Hospital b){

return a.name == b.name;

CHAPTER 6. RELATED WORK 66

}

}

}

Listing 6.3: Family polymorphism for Municipal

The keyword out refer to the enclosing object of the class it belongs to.
In the example above, out simply refers to the class Municipal; out.School
therefore points to the class School within Municipal.

Another point that family polymorphism lacks is the incapability of
discerning two similar named classes or methods. First we have class

Municipal extends Education, Health which enables its inner classes to
use the classes declared within Education and Health. Unfortunately we
face another problem during the method invocation of compare building.
Both out.School and out.Hospital extend the class Person in its imple-
mentation. Family polymorphism in unable to discern the two Persons.
Instead it linearizes the definitions, which eventually chooses only one of the
two versions, a result which opposes our objective.

Version Lambda

This research is partly inspired by the VL which introduces the idea of
version from the concept of context-oriented programming. Versions are
considered contexts and so allow the existence of multiple versions of classes
by using layers. Unlike Batak Java which assign classes with versions and so
discern values through its class, the version lambda calculus assign version
to values and definitions. The calculus is based on a coeffect system [1]
based on the simply typed lambda calculus.

Variational Programming

The calculus for variational programming attempts to allow variations within
programming. It argues that variations can be useful in software product
lines. The calculus uses the concept of choice between left and right to give
variation to values and also their types.

Chapter 7

Conclusion and Future Work

We propose Batak Java, an object-oriented programming language that
allows the existence of similarly named classes within different versions
through the introduction of version as attribute of package. With that ca-
pability, we showed how Batak Java can be used to write a program which
uses multiple versions of the same library. We also showed that Batak Java
can deal with an example of dependency hell, in the form of diamond de-
pendency.

Our future work include introducing multiple-versioned type, instead of
the current single-versioned type. With such feature, we can declare an
object such as new [1,2]Base.Person(...). This will greatly increase the
flexibility of the language as it allows us to extract common properties from
multiple versions at once. Although currently programmers do not program
in such manner, the possibility of having such a feature may open up new
way to program.

Afterwards we also need to introduce the concept of version polymor-
phism. Version polymorphism which allows the representation of an un-
bounded number of versions using a parameter. Doisng so will help simplify
how the type of an object needs to be expressed.

Once we added version polymorphism into the calculus, another exten-
sion to the current calculus that we would also like to add in the future is
union type [4]. Union type denotes a set of some given types. Suppose we
have a package Foo with two version, where a method X has return type
Int in the first version and return type Float in the second version. An-
other package which imports Foo and intends to use X will find difficulties
to determine the result type unless it specifies which version it uses.

67

References

[1] A. Brunel, M. Gaboardi, D. Mazza, and S. Zdancewic. A core quantita-
tive coeffect calculus. In Programming Languages and Systems, 2014.

[2] S. Chen, M. Erwig, and E. Walkingshaw. A calculus for variational
programming. In Proceedings of European Conference on Object-oriented
Programming (ECOOP2016), June 2016.

[3] E. Ernst, K. Ostermann, and W. R. Cook. A virtual class calculus. In
Conference record of the 33rd ACM SIGPLAN-SIGACT symposium on
principles of programming langauges, 2006.

[4] A. Igarashi and H. Nagira. Union types for object-oriented programming.
In Proceedings of the 2006 ACM symposium on applied computing, Apr.
2006.

[5] A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java: A minimal
core calculus for Java and GJ. ACM Transactions on Programming
Languages and Systems, pages 396–450, May 2001.

[6] C. Saito, A. Igarashi, and M. Viroli. Lightweight family polymorphism.
Journal of Functional Programming, pages 285–331, May 2008.

[7] Y. Tanabe, T. Aotani, and H. Masuhara. A context-oriented program-
ming approach to dependency hell. In 10th International Workshop on
Context-oriented Programming, July 2018.

68

