
�
��������
���-
�����
�������
���
�
�
�������	�
�����-
������
���
����
�
���-
������
�����-
������
�
�
-
�������
-�

Yige Wen (Master of Information Technology, University of Melbourne),
Hidehiko Masuhara (Department of Mathematical and Computing Science, Tokyo Institute of Technology)

Github: https://github.com/HikaruGE/Information-System-Management-DSL

Background
Information management system: is commonly used in
libraries, universities and companies. It provides users
with functions of creating, retrieving, updating and
deleting the records. Besides, its defined transaction
logic could be able to constraint users’ behaviors and
link different User Interface.

Domain Specific Language (DSL): comparing to general
purpose language, Java, python and C++, its usage
scenario is single and specific, which is designed for a
particular domain, e.g. HTML for web and SQL for data-
base. The objective of DSL is to help programmers get
more productive by the linguistic abstraction of some
certain domain.

Problems
•A lot of structurally similar or repeated code, which
could be easily leading to mistakes;
•In the software development process, the conflict
between the development team and the customers
without programming experience.

Goal
Designing a domain specific language of the
information management system to achieve the
followings:
•Get rid of the quantity of handwriting code;
•Easily understood semantic;
•Faster release.

Approach: Programming language workbench,
Spoofax:

Transformation Process (Kats, L. C.’s and Visser, E.’s report, 2010)

https://tudelft-in4303-2017.github.io/lectures/specification/term-rewriting.html

Example:

nSDF3 (ATerms)
3+2*7 is Add(3,Mul(2,7))

nStratego (Re-write)
Add(x,y) -> z
where z eq x+y

Model Language

Target Framework
Spring MVC

Model
Data Access Object

Service

Controller

Website(.html)
Intermediate Web Lang

General Project Structure

Auto

If only CRUD, user don’t need
define other service

Code for Author’s service’s interface
public interface IAuthorService {

List<Author> findAll(); //R
void save(Author author); //C,U
void deleteById(Long id); //D
Author findStudentById(Long id); //R

}

The author of WebDSL used a
different web framework though,
he used sentence “derive CRUD
<entity>” to let users can
quickly invoke a lot of
automatically generated method
without handwriting them.

Evaluation:
Metric: Lines of Code (LoC)

Conclusion:
Using DSL can really reduce the number of lines of code, avoid
unnecessary duplication of code, and only need to pay attention to the
data stream to complete server development, even the web page jump
is not need to be considered. But this is only for simple situation,
suppose if the system is only open for the authenticated users, login
and register functions are required and each user may have its own role
to implement access control.

Future Works:
In this project, only part of the target system is mapped to the designed
DSL, other functions, like authority management, paging query and so
on. So next step is to integrate new functions as more as possible.
By learning this language workbench, thanks to its powerful rewrite
mechanism, translating programming languages with similar
compilation methods can be promising.

DSL Spring MVC ~%

Entity Author 4 27 14.8

Entity Book 6 37 16.2

Author :
lname

Book :
lname
ltittle
ldescription

class Author
class Book

Interface AuthorDao
Interface BookDao

interface IAuthorService
interface IBookService

class AuthorServiceImpl
class BookServiceImpl

class AuthorController
class BookController

author/edit.html
author/list.html
author/add.html

Also for entity Book

Intermediate

Red line: name of the html file
Bracket: element of a web, referencing WebDSL
Besides “table”, there are “form”, “list”, different
buttons, nav.

URL Method Html file

Page: All Entity /[entity]Lst GET /[entity]/list.html

Page: Add Entity /[entity] GET /[entity]/add.html

Page: Edit Entity /[entity]/{id} GET /[entity]/edit.html

Operation: create /[entity] POST

Operation:
update

/[entity] PUT

Operation: delete /[entity]/{id} DELETE

Table: URL design of restful style

Design Thought:

When rendering pages, it will use data
in controller.

When sending requests, the restful
style is chosen, distinguishing requests
by the verb in methods, no longer in
path, which is more uniformed and
well-defined.

m : m

https://github.com/HikaruGE/Information-System-Management-DSL

