Some Improvements on KaniCUDA — a program synthesizer tor CUDA

Chengkal Yang Advisor: #&E#E

Background: KaniCUDA Optimization: Profile Analysis

Replacement of global memory with shared memory improves
runtime performance of CUDA programs.

KaniCUDA! is a program synthesizer that replaces global memory
access with shared memory access for the user.

The user should declare shared memory, candidate variables, and
global memory access.

KaniCUDA emulates the program, profile the values of shared memory
index and candidate variables, and calculates the shared memory
access expression.

KaniCUDA returns the optimized program back to the user.

(1] #8RfE, H£F A TV RBHUDIZHDGPGPU 70 7' 7 LEmES R L ¥ KF18

Examine the correlation
between smid and
candidate variables.

 Pearson correlation
coefficient, denoted by r, is
a measure of the strength
of a linear association
between two variables.

 Search on related variables
first. If no expression is
correct, continue searching
on other variables.

PEARSON CORRELATION (r) VISUALIZED AS SCATTERPLOT

:) '. o i ‘ ...,
RN | R

100 120 140 160 40 60 80 100 120 140 60 80 100 120
r=0.9 r=-0.8 r=0.7

Background: An Example Opftimization: Arithmetic Expression

__global__ void diffusion_kernel(floatx in,

}

t
(7]
1
2
3
4
5
6
7
8
9
1

Opftimization: Mofivation

1

LS I | Original Program

int nx, int ny, int nz,
float ce, float cw, float cn, float cs,
float ct. float cb. float cc) {

profile("threadIdx.x threadIdx.y blockDim.x blockDim.y csb c i j");

iNT 1 = plockDim.X * DLOCKIOX.X + tnreadldxX.X;
int j = blockDim.y * blockIdx.y + threadIdx.y;
int ¢ =1 + j % nx;

' = NX % nv:
|__shared__ float sb[BLOCK_X x BLOCK_Y];

int csb = threadIdx.x + threadldx.y *x blockDim.x;

nt k = @: k < nz; +sk) £ Initialize shared memory
| sb[csb] = inlc]; |
int w = (1 ==10) 7 C:c-1;
int e = (i == nx-1) ?7cc:c+1;
int n = (j == 0) ? C: C - nx;
int s = (j == ny-1) ?7 C: C+ nx;
int b = (k == 0) ?7 C:C - XYy;
int t = (k == nz-1) ?7 C: C+ XYy;
out[c] =
cc x in[c]
+ cw *x __opt__.in[w]
+ ce x __opt__.in[el
+ cs x _opt__.in[s] Global memory access
+ cn * __opt__.in[n]
+ cb * in[b]
+ ct % in[t];
C += XY;

¥

1 Emulate the program and profile the variables 1

Profiles

Goal: smid = an expression using candidate variables

GSGSGSSSSSQ
[
[

4
5
N
19 7
8
N
1

28 10 0 3 3 4 9 27 0 3

9 029111334102813

Generate and test arithmetic and logic expressions 1
(I rewrote this part)

for (int k = 0; k < nz; ++k) {

sb[csb] = in[c]; 1Mi
shlesbl = anlel: e Optimized Program
int e = (1 == nx-1) ?7c:c+1;
int n = (j == 0) ? C: C-nx;
int s = (j == ny-1) ?7 C: C+ nx;
int b = (k == 0) 7 C:iC-Xy;
int t = (k == nz-1) ?7 C:C+ Xxy;
out[c] =
cc * in[c]

+ cw x ((((i - 1)!'=(blockDim.y + 1))&&(i!=blockDim.x)) ? sb[(threadIdx.x==0) ? csb + 1 - 2 : csb] : in
[w])
+ ce * ((((blockDim.y + 1)!'!'=i)&&((blockDim.x - 1)!=1i)) ? sb[((threadIdx.x + 1)==blockDim.x) ? csb + 1

: csb] : in[e])
+ ¢s x ((((csb = 1)<j)||(blockDim.x!=threadIdx.y)) ? sb[(blockDim.x==threadIdx.y) ? csb + blockDim.x :
csb 1 : in[s])

+ cn x (((j==0)||(threadIdx.y!=0)) ? sb[(threadIdx.y==0) ? csb + 1 - blockDim.y : threadIdx.x] : in[
nl)
+ cb x in[b]
+ ct x in[t];
C += Xy;

Runtime performance of KaniCUDA is limited by its naively
implemented expression generation and verification.

KaniCUDA generates expressions for all candidate variables, but very
few of them are used in the result. The data could be pre-processed to
eliminate irrelevant variables.

KaniCUDA represents expression AST with java objects, which are
slower than arrays.

KaniCUDA generates and stores sufficiently many expressions and then
verify each expression. It takes up more time and space. An expression
should be tested immediately after it is generated.

KaniCUDA does not avoid equivalent expressions, suchas x+yandy +
X.

* Arithmetic expressions are written in a linear style.
 Three basic components of arithmetic expression

Unit : constant or variable
Term : unit, or unit * unit

Expression: term +- term +- term...
* |dentifiers 1:constant 2:variable 3:+ 4:- 5:*

Ex. constant list =[1, 2]
[1, 0] =
[21 OI 4) 1I 1] -

ex.2, X,y
ex.y, y*x, y*x*2
ex.y,y+x, y*x+y+2

variable list = [x, vy, Z]
[2,1] =
[2,0,5,1,1,3,2,2]=x*2+z

* Avoid equivalent expressions due to symmetry of + and *.

o Give each term a unique value.
Value of unit = index (start from 1) of the constant/variable
Value of Term = (string of values of each unit),ymper of units
Ex. Units: [1, 2], [X, Y, Z]
v(2)=2,vly)=4,vly*y*2)=442:=4*25+4*5+2*1=122
o Sort the terms with their values.
Value of current unit should not exceed value of previous unit
Ex.y * xis okay, x * y is not
Value of current term should not exceed value of previous term
Ex.x *2 +yisokay,y+x *2isnot,y-x-y* 2is not
Note: this rule applies to +/-, but not to transition from + to -
Ex.x * 2 -vyisokay,y-x*2isalso okay

* Continuation-passing style

o Functions take an argument: an explicit “continuation”, i.e. a callback

function.

o It allows different expressions to be generated based on one

expression.

o It allows an expression to be tested immediately after it is generated.

Optimization: Logic Expression

* Logic expression is represented in a binary
tree style (left & right)
e Ex.(x!=vy) || (z>1)

* |dentifiers 1:&&
-4 1= -5:<
2 : variable 3:+
EX.
constant list = [1, 2]
[1,1] =

Lor)
o O.
-2 || ° oo o

-6:> 1 : constant
4: -

variable list = [x, vy, Z]
[2, 0] =

[_21_41 210) 1) 11_51 212)3/2; 11 1IO]=(X |=2) || (Z<y+1)

Conclusion

 The runtime performance
has been significantly
improved.

* The expression generator
could be useful in other
projects.

* Future work
o More flexible

expression generator.

o User determined
different parameters
sets for profiles

9000
38000
7000
6000
5000
4000
3000
2000
1000

Synthesis Time (ms)

8361
m Original
® Optimized
3735
1021
.
himeno_baseline Diffusion

Environment:

* 0OS: macOS Mojave version 10.14.5
e CPU: 2.2 GHz Intel Core i7

* Memory: 16 GB 1600 MHz DDR3

Chengkai Yang

