
Some Improvements on KaniCUDA – a program synthesizer for CUDA

Chengkai Yang Advisor: ����

Background: KaniCUDA
• Replacement of global memory with shared memory improves

run8me performance of CUDA programs.
• KaniCUDA[*] is a program synthesizer that replaces global memory

access with shared memory access for the user.
• The user should declare shared memory, candidate variables, and

global memory access.
• KaniCUDA emulates the program, profile the values of shared memory

index and candidate variables, and calculates the shared memory
access expression.

• KaniCUDA returns the op8mized program back to the user.

[1] �
, ����
�������GPGPU �
���	����, ��
��	’18

Background: An Example

Candidate variables

Global memory access

Ini8alize shared memory

Emulate the program and profile the variables

Original Program

Generate and test arithme8c and logic expressions
(I rewrote this part)

Profiles

Op8mized Program

Optimization: Motivation

Goal: smid = an expression using candidate variables

• Run8me performance of KaniCUDA is limited by its naively
implemented expression genera8on and verifica8on.

• KaniCUDA generates expressions for all candidate variables, but very
few of them are used in the result. The data could be pre-processed to
eliminate irrelevant variables.

• KaniCUDA represents expression AST with java objects, which are
slower than arrays.

• KaniCUDA generates and stores sufficiently many expressions and then
verify each expression. It takes up more 8me and space. An expression
should be tested immediately aWer it is generated.

• KaniCUDA does not avoid equivalent expressions, such as x + y and y +
x.

Optimization: Profile Analysis
• Examine the correlation

between smid and
candidate variables.

• Pearson correlation
coefficient, denoted by r, is
a measure of the strength
of a linear association
between two variables.

• Search on related variables
first. If no expression is
correct, continue searching
on other variables.

Optimization: Arithmetic Expression
• Arithme8c expressions are wriZen in a linear style.
• Three basic components of arithme8c expression

Unit : constant or variable ex. 2, x, y
Term : unit, or unit * unit ex. y, y*x, y*x*2
Expression: term +- term +- term… ex. y, y + x, y*x + y + 2

• Iden8fiers 1 : constant 2 : variable 3 : + 4 : - 5 : *
Ex. constant list = [1, 2] variable list = [x, y, z]
[1, 0] = 1 [2, 1] = y
[2, 0, 4, 1, 1] = x – 2 [2, 0, 5, 1, 1, 3, 2, 2] = x*2 + z

• Avoid equivalent expressions due to symmetry of + and *.
o Give each term a unique value.

Value of unit = index (start from 1) of the constant/variable
Value of Term = (string of values of each unit)-./012 34 .-567
Ex. Units: [1, 2], [x, y, z]
v(2) = 2, v(y) = 4, v(y * y * 2) = 442:= 4 * 25 + 4 * 5 + 2 * 1 = 122

o Sort the terms with their values.
Value of current unit should not exceed value of previous unit
Ex. y * x is okay, x * y is not
Value of current term should not exceed value of previous term
Ex. x * 2 + y is okay, y + x * 2 is not, y - x - y * 2 is not
Note: this rule applies to +/-, but not to transi8on from + to -
Ex. x * 2 - y is okay, y - x * 2 is also okay

• Con8nua8on-passing style
o Func8ons take an argument: an explicit “con8nua8on”, i.e. a callback

func8on.
o It allows different expressions to be generated based on one

expression.
o It allows an expression to be tested immediately aWer it is generated.

Optimization: Logic Expression
• Logic expression is represented in a binary

tree style (leW & right)
• Ex. (x != y) || (z > 1)
• Iden8fiers -1 : && -2 : || -3 : ==

-4 : != -5 : < -6 : > 1 : constant
2 : variable 3 : + 4 : -

Ex.
constant list = [1, 2] variable list = [x, y, z]
[1, 1] = 2, [2, 0] = x
[-2, -4, 2, 0, 1, 1, -5, 2, 2, 3, 2, 1, 1, 0] = (x != 2) || (z < y + 1)

Conclusion

3735

8361

154
1021

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

himeno_baseline Diffusion

Synthesis Time (ms)

Original
Optimized

Environment:
• OS: macOS Mojave version 10.14.5
• CPU: 2.2 GHz Intel Core i7
• Memory: 16 GB 1600 MHz DDR3

• The run8me performance
has been significantly
improved.

• The expression generator
could be useful in other
projects.

• Future work
o More flexible

expression generator.
o User determined

different parameters
sets for profiles

Op8mized Program

Chengkai Yang

