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Background: KaniCUDA
• Replacement of global memory with shared memory improves 

run8me performance of CUDA programs.
• KaniCUDA[*] is a program synthesizer that replaces global memory 

access with shared memory access for the user.
• The user should declare shared memory, candidate variables, and 

global memory access.
• KaniCUDA emulates the program, profile the values of shared memory 

index and candidate variables, and calculates the shared memory 
access expression. 

• KaniCUDA returns the op8mized program back to the user.
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Background: An Example
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Generate and test arithme8c and logic expressions
(I rewrote this part)
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Optimization: Motivation

Goal: smid = an expression using candidate variables

• Run8me performance of KaniCUDA is limited by its naively 
implemented expression genera8on and verifica8on.

• KaniCUDA generates expressions for all candidate variables, but very 
few of them are used in the result. The data could be pre-processed to 
eliminate irrelevant variables.

• KaniCUDA represents expression AST with java objects, which are 
slower than arrays.

• KaniCUDA generates and stores sufficiently many expressions and then 
verify each expression. It takes up more 8me and space. An expression 
should be tested immediately aWer it is generated.

• KaniCUDA does not avoid equivalent expressions, such as x + y and y + 
x.

Optimization: Profile Analysis
• Examine the correlation 

between smid and 
candidate variables.

• Pearson correlation 
coefficient, denoted by r, is 
a measure of the strength 
of a linear association 
between two variables.

• Search on related variables 
first. If no expression is 
correct, continue searching 
on other variables.

Optimization: Arithmetic Expression
• Arithme8c expressions are wriZen in a linear style.
• Three basic components of arithme8c expression

Unit : constant or variable ex. 2, x, y
Term : unit, or unit * unit ex. y, y*x, y*x*2
Expression: term +- term +- term… ex. y, y + x, y*x + y + 2

• Iden8fiers 1 : constant    2 : variable    3 : +    4 : - 5 : *
Ex.  constant list = [1, 2] variable list = [x, y, z]
[1, 0] = 1 [2, 1] = y
[2, 0, 4, 1, 1] = x – 2 [2, 0, 5, 1, 1, 3, 2, 2] = x*2 + z

• Avoid equivalent expressions due to symmetry of + and *.
o Give each term a unique value.

Value of unit = index (start from 1) of the constant/variable
Value of Term = (string of values of each unit)-./012 34 .-567
Ex. Units: [1, 2], [x, y, z]
v(2) = 2, v(y) = 4, v(y * y * 2) = 442:= 4 * 25 + 4 * 5 + 2 * 1 = 122

o Sort the terms with their values.
Value of current unit should not exceed value of previous unit
Ex. y * x is okay, x * y is not
Value of current term should not exceed value of previous term
Ex. x * 2 + y is okay, y + x * 2 is not, y - x - y * 2 is not
Note: this rule applies to +/-, but not to transi8on from + to -
Ex. x * 2 - y is okay, y - x * 2 is also okay

• Con8nua8on-passing style
o Func8ons take an argument: an explicit “con8nua8on”, i.e. a callback 

func8on.
o It allows different expressions to be generated based on one 

expression.
o It allows an expression to be tested immediately aWer it is generated.

Optimization: Logic Expression
• Logic expression is represented in a binary 

tree style (leW & right)
• Ex. (x != y) || (z > 1)
• Iden8fiers -1 : && -2 : || -3 : ==

-4 : != -5 : < -6 : > 1 : constant            
2 : variable 3 : + 4 : -

Ex.
constant list = [1, 2] variable list = [x, y, z]
[1, 1] = 2, [2, 0] = x
[-2, -4, 2, 0, 1, 1, -5, 2, 2, 3, 2, 1, 1, 0] = (x != 2) || (z < y + 1)

Conclusion
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Environment:
• OS: macOS Mojave version 10.14.5
• CPU: 2.2 GHz Intel Core i7
• Memory: 16 GB 1600 MHz DDR3

• The run8me performance 
has been significantly 
improved.

• The expression generator 
could be useful in other 
projects. 

• Future work
o More flexible 

expression generator.
o User determined 

different parameters 
sets for profiles

Op8mized Program
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