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Strategies in a Meta Compiler Framework

by Yusuke IZAWA

Most virtual machines employ just-in-time (JIT) compilers to achieve their high-
performance. Trace-based compilation and method-based compilation are two
major compilation strategies in JIT compilers. In general, the former excels in com-
piling programs with more in-depth method calls and more dynamic branches,
while the latter is suitable for a wide range of applications.

Some previous studies have suggested that each trace- and method-based com-
pilation has its pros and cons. A trace-based compilation is quite suitable for
programs with many branching possibilities because it records the really-executed
path of an application and translates it into machine code. It is also able to compile
only the necessary and sufficient parts of an application. However, it performs
much worse in a tracing complicated control flow because of the occurrence of
many side exits. On the other hand, a method-based compilation is so robust that
we can apply it to any program. Nonetheless, we need more careful management
for generating code. This is because a method-based strategy usually compiles
functions, including less-executed parts. The side of the generated code tends to
be bigger than that in the trace-based compilation.

In this thesis, we present a new approach, namely meta-hybrid JIT compilation
combining trace- and method-based compilations to utilize the advantages of both
JIT compilation strategies, and it is realized as a meta JIT compiler framework. It is
so hybrid that the runtime can selectively apply different compilation strategies for
different program parts. Furthermore, using our framework, language developers
can realize a virtual machine empowered by a hybrid JIT compiler by merely writ-
ing an interpreter definition. Besides, we propose a mechanism to integrate two
kinds of JIT compilation strategies, namely stack hybridization. Stack hybridiza-
tion enables the runtime to go back and forth between the native code generated
from different strategies as a single execution.

When we apply trace- and method-based compilations for a program with
branching possibilities and a program with complicated control flow respectively,
the runtime is about 1.1x faster than using a single JIT strategy for our microbench-
mark results. To solve the trace-offs, we have to use a suitable approach depending
on the structure of a program.
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Chapter 1

Introduction

Just-in-time (JIT) compilation is widely used for modern programming language
implementations including Java [31, 13], JavaScript [14, 24, 16], and PHP [1, 30] to
name a few. While there are a variety of JIT compilers, they commonly identify
“hot spots”, or frequently executed parts of a program at runtime, collect runtime
information, and generate compiled code. By compiling only frequently-executed
parts of a program, the compilation is fast enough to be performed at runtime. By
exploiting runtime information, those compilers can perform aggressive optimiza-
tion techniques such as inlining and type specialization and produce as efficient—
sometimes more efficient—code as the code generated traditional static compilers.

JIT compilers can be classified by the strategy of selecting compilation targets,
namely the method-based and the trace-based strategies. The method-based one
uses methods (or functions) as a unit of compilation, which has been used in many
JIT compilers [10, 40, 31]. It shares many optimization techniques with traditional
static compilers. The trace-based one uses a trace of an execution of a program,
which is a sequence of instructions during a particular run of a program, as a com-
pilation unit [2, 4, 9, 14]. It effectively performs inlining, loop unrolling and type
specialization.

There is no clear winner between those two strategies; instead, each of them
works better for different kinds of programs. While the method-based strategy
works well on average, the trace-based strategy exhibits polarized performance
characteristics. It works better for programs with a lot of biased conditional branches
and method calls [2, 9, 14, 21]. However, the trace-based strategy can cause severe
overheads when the path of an execution is highly varying, which is known as the
path-divergence problem [19, 20].

It is straightforward to combine those two strategies; i.e., when compiling a
different part of a program, using a strategy that works better for that part. Then
the questions are (1) how we can construct such a compilation engine without ac-
tually creating two very different compilers, (2) how the code fragments that are
compiled by different strategies interact with each other, and (3) how we can de-
termine a compilation strategy to compile a part of a program. There are not many
studies on these regards. As far as the authors know, HHVM [30] is the only VM

that tries to support both strategies, which is designed for PHP, and implemented
by making a method-based compiler more flexible on selecting compilation tar-
gets.

We propose a new approach called meta-hybrid JIT compilation to combining
trace- and method-based strategies in order to study the above questions (1) and
(2), while leaving the question (3) for future work. One major difference from pre-
vious work is that we design it as a meta-JIT compilation framework, which can
generate a JIT compiler for a new language by merely writing an interpreter of the
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language. Moreover, we design it by extending meta-tracing compilation frame-
work by following the RPython’s [9, 11] architecture.

There are many possible approaches to promote the two kinds of JIT compi-
lations in a meta JIT compiler framework, such as building and coordinating two
types of framework, or building a single framework and developing two types of
compilation approaches on that framework. For simplicity, we decided to choose
the latter. We build a method-based compilation based on a meta-tracing JIT com-
piler and make the two compilations coexist in a meta JIT compiler framework.
From the perspective of language developers, a meta-tracing compiler approach
is more natural than a partial evaluation approach, since developers only are only
concerned about the behaviors of interpreters [23].

The basic idea of realizing this compilation is to just cover a method by tracing.
Since a trace has no control flow and inlines a function, we realize a method-based
compilation by customizing the tracing JITs’ features to cover all the paths in a
method. In this way, our meta-hybrid JIT compiler shares its implementations.

In addition to the leverage strength of the two JIT compilation policies, we aim
to resolve the path divergence problem 1 by selectively applying method-based
compilation to the functions that cause the problem, while applying trace compi-
lation to the other parts of a program.

Since the two meta compilation strategies require stack frames in different
ways, we cannot naively connect the native code from distinct strategies. This dif-
ference makes the runtime go back and forth between the native codes generated
from distinct strategies.

To overcome this, we also propose Stack Hybridization, a mechanism to bridge
the native codes generated from different strategies. Stack Hybridization manages
different kinds of stack frames and makes the compiler generate machine code
that can be mutually executed in trace-JIT and method-JIT contexts. To support
Stack Hybridization, a language developer needs to write a meta-interpreter in
a specific way: (1) For executing a call instruction in the base language, which
the developers are going to realize, they put a special flag to indicate which stack
frame is used in a self-prepared stack data structure. (2) For executing a return,
they have to branch to the return instruction of the base language corresponding
to the call by checking the already pushed flag.

We implemented BacCaml, a proof-of-concept implementation of the frame-
work. Though its architecture is based on the RPython’s, it is a completely dif-
ferent and much simpler implementation written in OCaml 2. As the compiler
backend, we modified the MinCaml compiler [37].

Contributions and Outline This thesis has the following contributions.

• We proposed an idea of the meta-hybrid JIT compilation framework that can
apply both trace- and method-based compilation strategies to different parts
of a program under a meta-compilation framework.

1Illustrated in Appendix B.
2Since we did not know the requirements of the compilation frameworks in order to support

method-based compilation, we implemented them from scratch instead of extending the existing
frameworks like RPython.
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• We presented a technique to achieve method-based compilation with a meta-
tracing compiler by controlling the tracing compiler to cover all the paths in
a method.

• We identified a problem of interconnecting code fragments compiled by the
different strategies, and proposed a solution that dynamically switches the
usage of call stacks.

• We implemented a prototype framework called BacCaml, and confirmed that
there are programs where the hybrid compilation strategy performs better.

The remainder of this paper is organized as follows. Chapter 2 gives a back-
ground of our research. Chapter 3 describes the architecture and provides an
overview of the dynamic compilation steps of our meta-hybrid JIT compiler frame-
work. Chapter 4 shows how to implement method-based compilation based on a
meta-tracing JIT compiler. Chapter 5 illustrates how we bridge trace- and method-
based compilations in a meta JIT compiler framework and describes a meta-interpreter
design supporting this idea. Chapter 6 evaluates the application performance of
our implementation using a small and simple language built with BacCaml. Chap-
ter 7 compares our approach with other frameworks and JIT compilers. Finally,
Chapter 8 concludes the thesis.
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Chapter 2

Background

Before presenting the concept and implementation of our meta-hybrid compiler,
we briefly review the background of our work.

2.1 Just-in-Time Compilation

Traditionally, there are two approaches to translate programs: compilation and
interpretation. Compilation translates a whole language into another, e.g., C to
assembly, and reproduce native code by repeating such steps. Finally, we exe-
cute the produced native code. Interpretation removes such intermediate steps
and directly performs execution immediately. Interpretation is a straightforward
approach to build a programming language runtime, and many kinds of script-
ing programming languages such as Ruby, Python, and JavaScript adopted this
technology for realizing themselves. In fact, Interpretation is much slower than
ahead-of-time (AOT) compilers. Therefore, interpretation approach is not suited
for developing the performance-critical software. However, by employing just-
in-time (JIT) compilation techniques solves such a serious performance problem.
Roughly speaking, JIT compilation combines compilation and interpretation: it in-
terprets input sources at first, compiles frequently-executed parts into native code,
and runs it lately 1. By applying many optimization techniques such as eliminat-
ing type checking, constant folding, and inlining depending on runtime informa-
tion, JIT compilers can produce highly optimized native code. Recent VMs, such as
Java Virtual Machine (JVM) or Common Language Runtime, employed JIT compi-
lation techniques and succeeded in multiple-order speed up comparing to merely
interpretation strategy.

We can classify JIT compilation strategies into several types in terms of com-
pilation unit: basic blocks (QEMU [5], and 1st generation of HHVM [1].), regions
(IMPACT [17], IBM’s Java region JIT [36], and 2nd generation of HHVM [30]),
methods (SELF [40], and HotSpot [31]), and traces (Dynamo [2], and TraceMon-
key [14]). Among these variety of JIT compilation strategies, method-based JIT and
trace-based JIT are widely used JIT approaches, we employ them in our meta JIT

compiler framework. Therefore, we give some overviews of method- and trace-
based JIT compilers in the next sections.

1In other words, JIT compilation makes flexibility with interpretation and the speed of compiled
code.
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2.1.1 Method JIT Compilation

Traditional JIT compilers, such as SELF and JVM, adopt method-based compila-
tion; they compile blocks of code, such as methods, or loop bodies, to native code.
By using the profiling data, the compilers identify frequently-executed methods
and compile it into native code. The advantages of method-based compilation
are as follows: Firstly, the same optimization techniques employed in AOT can be
applied for method-based compilation. Thus method-based JIT compilation can
leverage already existing AOT compilers. This also makes compiler infrastructures
more useful: JIT compiler backends such as GCC [15] and LLVM [12] provide JIT

compilation APIs, and they can be used as the backend of method-based JIT com-
pilers. Furthermore, method-based compilation can be applied for various types
of programs, since method-based JITs translate the structure of a target method as
it is. However, because they do not include type information, it is difficult to use
method JITs for extensive method inlining.

2.1.2 Tracing JIT Compilation

Tracing optimization was initially investigated by the Dynamo project [2], and its
technique was adopted for implementing compilers for many languages such as
Lua [32], JavaScript [14], Java trace-JIT [13, 21] and the SPUR project [4].

Tracing JIT compilers track the execution of a program and generate a machine
code with hot paths. They convert a sequential code path called trace into native
code while interprets others [6]. “Trace” is a straight-line program; therefore, every
possible branch is selected as the actually-executed one. In order to ensure that
the condition in tracing and execution is the same, a guard code is placed at every
possible point (e.g., if statements) that go to another direction. The guard code
performs to determine whether the original condition is still valid. If the condition
is false, the execution in the machine code is quit and continues to execute by
falling back to the interpreter.

Tracing JIT compilers usually consist of the following components: (1) profiler:
it profiles runtime information and detecting a hot path of a target program. (2)
tracer: it records really-executed instructions of a target. It stops to record when
when reaching the point where it stared taking the trace. (3) trace specializer: It
optimizes the resulting trace and converts it into machine code.

Tracing JIT compilers track the execution of a program and generate native code
of hot paths. They convert a sequential code path called trace into native, while in-
terprets others [6]. “Trace” is a straight-line of a program, so every possible branch
is selected only actually-executed one. In order to make sure that the condition in
tracing and execution is the same, a guard code is placed at every possible point
(e.g., if statements) that go to another direction. The guard checks to determine
whether the original condition is still valid. If the condition is false, the execu-
tion in the machine code is quit and continues to execute by falling back to the
interpreter.

Please look up a simple example. The program counts numbers from 1 to
100000; if a number is a multiple of 41, the function adds the number multiplied
by 41. In Figure 2.1, the hot spot is the for loop in the function f, so this part
becomes a trace. Then this trace converted into machine code and executed. Note
that the function call to strange_num is inlined, and the if statement is converted
into a guard_false instruction. The guard_false instruction checks the whether
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def strange_num(a):
if a % 41 == 0:

return a * 41
else:

return a

def f(n):
i = 0
for j in range(n):

i += strange_num(j)
return i

f(100000)

# corresponding trace:
loop_header(i0, j0)
j1 = int_mod(j0, Const(41))
j2 = int_eq(j1, Const(0))
guard_false(j2)
j3 = int_add(j0, Const(1))
i1 = int_add(i0, j3)
jump(i1, j3)

FIGURE 2.1: A simple Python program and its’ recorded trace.

variable j2 is false. If j2 is false, the execution continues. However, if j2 is true,
the execution is stopped, and other programs are interpreted.

Tracing JIT compilation is suitable for dynamically typed languages. The com-
pilers for statically typed languages use annotated type information for generating
efficient machine code. In dynamically typed languages, the types of variables
vary at runtime; therefore, the compilers cannot perform type-specific optimiza-
tions for some instructions depending on the types at compilation time. How-
ever, tracing JIT can collect the runtime type information of variables and gener-
ate efficient machine code. Since compilation codes include only one execution
path, compilers can apply many optimizations techniques [8] such as constant-
subexpression elimination, dead-code elimination, constant-folding, and register
allocation removal [7]. Moreover, tracing JITs can perform aggressive function in-
lining calls at a low cost. A tracing JIT compiler follows the execution of a program
so that a resulting trace will include an inlined function call [13]. This leads to re-
ducing overheads of a function call and making chances for further optimization.

2.2 Meta JIT Compiler Framework

n JIT compilers have a great effect on the performance of VMs, but implementing
them require painful and error-prone engineering tasks of language developers.
Recently, some researches proposed a meta JIT compiler framework to overcome this
problem. A meta JIT compiler frameworks provide a convenient and effective way
to implement a high-performance VM empowered by a JIT compiler. There are
two approaches in meta JIT compiler frameworks. Trace-based meta compilation,
i.e., meta-tracing, is the first practical attempt for general interpreters. Meta-tracing
technique was firstly used for implementing PyPy [35], but its system turned out to
be usable for implementing other programming languages, such as JavaScript [38],
Ruby [39], and Smalltalk [11]. Meta-tracing system enforces a language developer
to write a bytecode-formatted meta-interpreter, since its meta-tracing JIT compiler
is highly optimized for operating sequential data structure.

Practical method-based (or partial evaluation-based) meta compilation, on the
other hand, was recently proposed by Würthinger et al. [43, 41] called self-optimizing
interpreter. Its meta JIT compiler translates abstract-syntax-tree nodes selected by a
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def interp(bytecode):
stack = []; sp = 0; pc = 0
while True:

jit_merge_point(reds=['stack','sp'],greens=['bytecode','pc'])
inst = bytecode[pc]
if inst == ADD:

v2, sp = pop(stack, sp)
v1, sp = pop(stack, sp)
sp = push(stack, sp, v1 + v2)

elif inst == JUMP_IF:
pc += 1; addr = bytecode[pc]
if addr < pc: # backward jump

can_enter_jit(reds=['stack','sp'],greens=['bytecode','pc'])
pc = addr

FIGURE 2.2: An example meta-interpreter definition written in
RPython.

partial evaluator into native code. This approach is used for implementing Ruby [28],
R [29], JavaScript [27] and Smalltalk [26]. In contrast to meta-tracing, an user of
self-optimizing interpreter has to write AST-based meta-interpreter definition.

In the next sections, we overview the meta-tracing JIT compiler framework that
is the foundation of our work.

2.2.1 Meta-tracing JIT Compiler

Typically, tracing JIT compilers record a representation of the program; however,
a meta-tracing JIT compiler traces the execution of a meta-interpreter defined by
a language builder. Meta-tracing compilation is just tracing compilation: in the
sense that it compiles a path of a base program, even if it has conditional branches.
If it has, the compiled code will contain guards, each of which is a conditional
branch to the interpreter execution from that point.

RPython [9, 6], a statically typed subset of Python programming language, is
a tool-chain for creating high-performance VMs empowered by a trace-based JIT

compiler. It requires a language builder for implementing a bytecode compiler
and a meta-interpreter definition for the bytecode. BacCaml is based on RPython’s
architecture. Before describing the details of BacCaml, let us give an overview of
RPython’s meta-tracing JIT compilation.

To leverage the RPython JIT, a meta-interpreter developer should annotate to
help identify the loops in the base-program that is going to be interpreted. Fig-
ure 2.2 shows an example of a meta-interpreter defined by a programming lan-
guage builder. The example uses two annotations, jit_merge_point and can_enter_jit.
A developer should put jit_merge_point at the top of a dispatch loop to identify
which part is the main loop, and can_enter_jit at the point where a back-edge
instruction can occur (where meta-tracing compilation might start).

Algorithms 1 and 2 illustrate the meta-tracing compilation algorithm in pseu-
docode. The procedure JitMetaTracing takes the following arguments: rep – a rep-
resentation for the meta-interpreter and states – the state of the meta-interpreter
just in starting to trace. A meta-tracing JIT compiler records the execution and
checks the operands in the executed operations. It uses red and green colors for
recognizing runtime information. The color red means “a variable in a base lan-
guage”; hence, red variables are used for calculating the result of a base program.



2.2. Meta JIT Compiler Framework 9

Algorithm 1: JitMetaTracing(rep, states)
input : Representations of a meta-interpreter itself
input : States (e.g., virtual registers and memories) of a meta-interpreter

itself
output: The resulting trace of the hot spot in a base program
entry_states← states;
repeat

residue← [ ] ; // A data to store the result
op← rep.current_operation(states);
if op = conditional branch then

if op has red variables then
guard← op.mk_guard(states);
residue.append(guard);

eval(op, states, residue);
else if op = function call to f then

inline f ;
else

eval(op, states, residue);

until op = jit_merge_point ∧ entry_states = states;
return residue;

Algorithm 2: Eval(op, states, residue)

if op has red variable then
op.const_fold(states);
residue.append(op);

else
op.execute(states);

The color green indicates “a variable in a meta-interpreter”, then the compiler will
optimize this variable by constant-folding or inlining. If all the operands in one
operation are green, the operation is only used for calculation in an interpreter,
and therefore the compiler executes it. If at least one variable is red, the compiler
recognizes the operation is in a base program and writes to the residue.

One significant advantage of the meta-tracing compilation strategy depicted
by RPython is that it is more comfortable to write meta-interpreters in compari-
son to the AST-rewriting specialization in Truffle. In [23], S. Marr and S. Ducasse
stated that a significant difference between RPython and Truffle is the number of
optimizations a language implementer needs to apply to reach the same level of
performance. In their experiments Michael et al. found that SOM [18] built with
RPython achieves excellent performance without adding many optimizations. On
the other hand, SOM built with Truffle without any additional optimizations per-
forms one-order worse than the meta-tracing. By adding some optimizations,
SOM with Truffle reaches the same level as that of SOM with RPython. From these
experiments, they concluded that the meta-tracing strategy has significant benefits
from an engineering perspective [23].
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Chapter 3

Meta-hybrid JIT Compilation
Approach

In this section, we explain the trade-offs between trace- and method-based compi-
lation, and introduce our approach to solve the trade-offs.

3.1 Trade-offs between Trace- and Method-based Compila-
tion

The advantages of method-based compilation are the following: Firstly, the same
optimization techniques employed in AOT can be applied for method-based com-
pilation. Thus, it can leverage already existing AOT compiler engines such as
GCC [15] and LLVM [12]. Secondly, method-based compilation is so mature and
well-studied that it can be applied for various shaped programs, since a method-
based JIT compile a method without changing its structure. Thus, it performs bet-
ter on average than trace-based compilation [21, 23]. However, when it compiles
a method with many biased branches, the compiled code includes colds spots of
the method, causing compilation time longer than the case of applying trace-based
compilation to it. Furthermore, it needs a well-planned method inlining for re-
ducing the overhead of a function call. When it applies aggressive inlining to a
method with deeply-nested function calls, the size of the compiled code goes big,
and it puts high pressure on the runtime.

On the other hand, trace-based compilation can apply many optimizations
techniques [8] including constant-subexpression elimination, dead-code elimina-
tion, constant-folding, and register allocation removal [7], since compilation code
represent only one execution path. Thus, trace-based compilation get better results
with certain programs with branching possibilities or loops [3, 20]. Moreover, it
can perform aggressive function inlining calls at a low cost; this is because a trace-
based JIT compiler follows the execution of a program so that a resulting trace will
include an inlined function call [13]. This leads to reducing overheads of a function
call and making chances for further optimization. However, trace-based compila-
tion works worse at programs with complex control flow. This problem is caused
by the mismatch between tracing and execution [20] 1 than the case of applying
method-based compilation for it.

1Details are explained in Appendix B
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Trace-based
Compiler

Method-based
Compiler

Meta-hybrid JIT Compiler

Trace Specializer

Profiler

Meta-interpreter

Base Program

Written w/ BacCaml

Written w/ Base Language

Implemented as a 
BacCaml interpreter

(A) Structure overview of the meta-hybrid JIT compiler
framework.

Interpretation

Tracing the loop Tracing the method

Compilation + Optimization

Running

Loop Method

Hot loop
Method w/
Path Div. Problem

Exit/ReturnGuard fail native native
S.H.

(B) Dynamic compilation overview by the
meta-hybrid JIT compiler. Black line is data

flow, and dotted line is control flow.

FIGURE 3.1: The architecture and compilation steps overview of a
meta-hybrid JIT compiler framework.

3.2 Proposal: Meta-hybrid JIT Compiler Framework

To overcome the trade-offs explained above, we propose a meta-hybrid JIT com-
piler framework. The framework is a meta-JIT compiler framework; therefore the
language developer needs to write an interpreter definition to enable JIT compila-
tion. It is a hybrid of the trace- and method-based compilations as it can compile
both an execution trace and a function of a base program. The compiled code from
the two types of strategies can work together in a single execution. Moreover, this
compiler is based on a meta-tracing compiler; therefore, a method-based compila-
tion is created by extending a tracing compilation.

The basic idea of realizing hybrid compilation is covering a method by tracing.
Since a trace has no control flow and inlines a function, we realize a method-based
compilation by customizing the tracing JITs’ features to cover all the paths in a
method. In this way, our meta-hybrid JIT compiler shares its implementations.
In addition to the leverage strength of the two JIT compilation policies, we aim to
resolve the path divergence problem by selectively applying method-based com-
pilation to the functions that cause the problem, while applying trace compilation
to the other parts of a program.

Since the two meta compilation strategies require stack frames in different
ways, we cannot naively connect the native code generated from different strate-
gies. To overcome this, we also propose Stack Hybridization, a mechanism to
bridge the native codes generated from different strategies. Stack Hybridization
manages different kinds of stack frames and makes the compiler generate machine
code that can be mutually executed in trace-JIT and method-JIT contexts. To sup-
port Stack Hybridization, a language developer needs to write a meta-interpreter
in the specific way: (1) For executing a call instruction in the base language, de-
velopers put a special flag to indicate which stack frame is used in a self-prepared
stack data structure. (2) For executing a return, they have to branch to the return
instruction of the base language corresponding to the call by checking the already
pushed flag.

Figure 3.1a overviews the structure of our meta-hybrid JIT compiler frame-
work. A base language is a programming language that a language developer
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is going to create. A meta-interpreter is the interpreter for a base language writ-
ten with the framework. The framework is based on a meta-tracing JIT compiler
framework. As a result, the method-based compiler is retrofitted from the trace-
based compiler and shares many parts of the implementations. It consists of the
following components. (1) profiler: It profiles the runtime information of the in-
terpreter and detects which compilation strategy (method- or trace-based) is pre-
ferred. Furthermore, it chooses a compiled trace to jump. (2) hybrid JIT compiler: It
consists of a trace-based compiler and a method-based compiler. Both compilers have a
tracer, implemented as an interpreter for BacCaml, to track the execution of a base-
language meta-interpreter. (3) trace specializer: It performs optimization of the re-
sulting traces and converts them into native code. Both trace- and method-based
compilers share this specializer.

Figure 3.1b shows the outline of BacCaml’s dynamic compilation steps. First, in
the interpreting phase, the profiler monitors the runtime information and detects
which program parts are hot. At first, the hybrid JIT compiler applies trace compi-
lation for the hot spot, and compiles it into native code. When many guard failures
happen in some program code, the profiler tries to find a function, including that
part. If it succeeds, instead of the trace-based compiler, the method-based compiler
is launched to compile that function into native code. With Stack Hybridization, the
runtime can use the appropriate mode of the stack frame for executing calls, and
the loops and methods can call each other.

In Chapter 4, we describe how to construct a method-based compilation based
on a meta-tracing JIT compiler. Chapter 5.3 illustrates how Stack Hybridization
works and how to implement a meta-interpreter for supporting Stack Hybridiza-
tion.
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Chapter 4

Method JIT by Tracing

In this chapter, we provide the details of method JIT compilation based on trac-
ing JIT compilation and discuss the problem of implementing an interpreter in the
meta-hybrid JIT compiler in one definition.

To construct method JIT by utilizing trace-based compilation, we have to cover
all paths of a function. In other words, we need to determine the true path and
decrease the numbers of guard failures occur to solve the performance degradation
problem while tracing JITs. We propose such a method-based JIT compilation by
customizing the following features:

1. trace entry/exit points

2. conditional branches

3. loops

4. function calls

In the following paragraphs, we explain in detail how to trace a method by
modifying these features.

Trace entry/exit points Tracing JIT compilers [13, 14] generally compile loops in
the base program; therefore, they start to trace at the top of a loop and end when
the execution returns to the entry point. To assemble the entire body of a function,
we modify this behavior to trace from the top of a method body until a return
instruction is reached (see Algorithm 3).

Conditional branches When handling a conditional branch, the tracing JIT com-
pilers convert the code into a guard instruction and collect the instructions that are
executed. In method JIT, however, we must compile both sides of the conditional
branches. In order to achieve this, the tracer must return to the branch point and
restart to trace the other side as well. As shown in Algorithm 4, the tracer in the
method JIT policy has to trace both then and else sides, so that it backtracks to the
beginning of a conditional branch when it reaches the end of one side and con-
tinues to trace the other side. At tracing one side, the tracer stores its states (e.g.,
the data stored in the tracer’s virtual registers and memories) in already prepared
arrays. For just backtracking, the tracer restores those states and continues to the
other side.

Figure 4.1a shows an example to describe how the method JIT tracer works. on
the left-hand side, node A is the method entry, nodes B – C – D form a conditional
branch, and node E is the end of this method. At first, the tracer starts to trace at
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(A) Handling of a conditional branch. In this pro-
gram, A is a method entry, B – C – D is a condi-

tional branch.
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(B) Handling of a loop. B – C – D represents a loop
in this program.
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(C) Handling of a function call. A – B – C – D and E – F are functions. In this program, (A – B – C –
D) calls (E – F) at C. Note that only target function (A – B – C –D) is compiled.

FIGURE 4.1: Examples of method JIT by trace. Each left-hand side
is the control-flow of a target base-program, and each right-hand

side is a result.

A. On reaching a conditional branch (B), the tracer stores its state and follows one
side (B – C – E – G – H). On reaching return instruction (H), the tracer backtracks
to B and resumes to trace the other side (B – D – F – G – H) by restoring the already
saved data.

Loops The method compiler compiles loops 1 without guard failure. Algorithm 5
and 5 illustrate how the tracer traces a loop in method-based compilation. At first,
the tracer for method-based compilation analyzes the body of a function and tries
to find a back-edge instruction. In order to find the loops, the meta-method ana-
lyzer symbolically executes the body of a program before recording instructions
and tries to find a back-edge instruction. We utilize the fact that the developers

1Strictly speaking, loops indicate a control flow like for or while, without including a recursive
call.



Chapter 4. Method JIT by Tracing 17

Algorithm 3: JitMetaMethod(rep, states) METHOD JIT

input : Representations of a meta-interpreter itself
input : States (e.g., virtual registers and memories) of a meta-interpreter

itself
output: The resulting trace of the method in a base program
if op = method_entry then

do
/* trace the body of this method */
if op = conditional branch then

TraceCond (rep, states, residue);
else if op = loop entry then

TraceLoop (rep, states, residue);
else if op = function call to f then

TraceFunction (rep, states, residue);
else

eval(op, states, residue);
while op = return;

else
return;

of a meta-tracing compiler framework should add can_enter_jit when a back-
edge instruction occurs. When the analyzer encounters can_enter_jit, it saves
the entry points of a loop. Then, when all the entry points are gathered, the meta-
method “tracer” starts to trace the body of a method. When it encounters the entry
of a loop, it splits the trace and connects it with the successors by emitting a jump
instruction. The rest of the program is traced as in the other cases. However, a
back-edge instruction is converted into a jump instruction to the trace, including
the loop 2.

Figure 4.1b shows an example of how to handle a loop. In this example, the
method JIT compiler compiles a single loop into two trace parts. The first one (tr.1)
is up to the loop entry, and the second one is the loop itself and the successors (tr.2)
of the loop.

Function calls Whereas a tracing JIT will inline function calls, the method JIT will
emit a call instruction code and continue tracing. Therefore, we make the tracer
distinguish the part represented for the base program’s function call. To inform the
tracer which part is the base language’s function call, the framework requires lan-
guage developers of the meta-interpreter style shown in the left-hand side of Fig-
ure 4.2. By writing as such, the tracer can find the representation equivalent to the
base program’s function call from a meta-interpreter definition (res = self.interp(addr)),
and continue to trace the successors of the function call. Figure 4.1c shows how
the tracer compiles a function call. In this example, the tracer eventually generates
two traces, the caller (tr.1) and callee (tr.2).

For optimizing a base program’s non-tail recursive style function, developers
should implement a meta-interpreter as shown in the right-hand side of Figure 4.2
and apply trace-based compilation for it since such a meta-interpreter definition

2Note that a loop condition is compiled as a conditional branch.
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Algorithm 4: TraceCond(rep, states, residue) METHOD JIT

regs, mems← [ ], [ ];
do

if op = cond branch then
regs.store(states.get_reg());
mems.store(states.get_mem());
trace_then← JITMETAMETHOD(states);
states.restore(regs, mems);
trace_else← JITMETAMETHOD(states);
/* construct if exp including trace_then and trace_else

*/
trace_ifexp← begin

if op.const_fold(states) then
trace_then;

else
trace_else

residue.append(trace_ifexp);

rep.next();
while op = return;

Algorithm 5: TraceLoop(rep, states, residue) METHOD JIT

loop_states← FindLoopEntry(rep, state);
do

if loop_states.contains(state) then
start_state, end_state← loop_states.get_state_by(state);
loop← JITMETHOD(rep, start_state, residue);
residue.append(jump to loop);
residue.append(loop);

while op = return;
/* a helper function */
Function FindLoopEntry(rep, state) do

entry_state← state;
op← rep.get_current_states();
do

if op = can_enter_jit then
/* get the state of a loop entry by can_enter_jit */
entry_state← rep.next_of(op).get_state();
/* add a pair of the state of the “entry” */
results.append(entry_state);

else
rep.next_of(op);

while op = return;
return results
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Algorithm 6: TraceFunction(rep, states, residue) METHOD JIT

do
if op = function call to f then

/* not following but leaving the instruction “call f” */
residue.append(call to f );
/* trace successors */

while op = return;

if opcode == CALL:
addr = ord(self.bytecode[pc])
# call the `interp' recursively
res = self.interp(addr)
user_stack.push(res)
pc += 1

elif opcode == RETURN:
# just return a top of `user-stack'
return user_stack.pop()

if opcode == CALL:
addr = ord(self.bytecode[pc])
pc += 1
# push a return address to
# the user-stack
user_stack.push(W_IntObject(pc))
if addr < pc:

can_enter_jit(..)
# jump to a callee function
pc = t

elif opcode == RETURN:
v = user_stack.pop()
# restore the already pushed
# return address
addr = user_stack.pop()
user_stack.push(v)
if addr < pc:

can_enter_jit(..)
# jump back to the caller

function↪→

pc = addr

FIGURE 4.2: Meta-interpreter definition styles. For managing a
return address/value, left-hand side style uses a host-language’s
(system provided) stack, but right-hand side uses a developer-

prepared stack data structurpe.

allows the tracer to convert a non-tail recursive call into a loop (it is represented as
a series of a meta-interpreter loop). The tracer can consider that this part is a loop
when it comes back to the beginning of the function.

Considering the integration of the two compilation strategies, the difference
between the meta-interpreter definition styles (Figure 4.2) causes an inability to
traverse code compiled with different compilation methods (we discuss this in
Section 5.2). To solve this problem, we propose a technique to execute trace- and
method-compiled native codes in a single runtime (we explain this in Section 5).
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Chapter 5

Bridging Tracing and Method
Compilation in Meta-level

In this section, we first explain the problem that we cannot naively integrate trace-
and method-based compilation strategies. Next, we introduce a mechanism to
overcome this problem.

5.1 Two Meta-interpreter Definition Styles

To fully bring out the potential of meta JIT compilation, programming language
developers are forced to implement a meta-interpreter in a specific way. RPython
requires language developers to write a bytecode-based meta-interpreter defini-
tion, while the Truffle framework requires the implementation of an AST-based
meta-interpreter. Riding on the rails provided by the frameworks is important,
but choosing a suitable meta-interpreter implementation method depending on
the style of the base language (e.g., functional or object-oriented programming
language; bytecode-, AST-, or IR-based format, etc. . . ) is more important. In the
case of AST-rewriting interpreters, Sulong [34] and GraalSqueak [26] followed a
bytecode-based AST execution since their base language specifications included
unstructured control flow or a well-defined bytecode set, and therefore they de-
signed it to run on a bytecode interpreter.

In a meta-tracing JIT compiler, we discovered that there are two possible ways:
one is managing the states in a stack defined by a language developer (user-stack
style), and the other is managing the states in a stack by a host language (host-stack
style). With regard to the novel implementations by RPython, PyPy 1 and Topaz 2

employ the host-stack style for defining a method invocation. On the other hand,
other implementations for functional programming languages, such as Pycket 3

and Pyrlang 4, employ the user-stack style.
The difference between the two styles (shown in Figure 4.2, and their trade-offs

are explained in Appendix A) is in the way they manage a return address, return
value, and callee address. We call the left-hand side one as host-stack style, and the
right-hand one as user-stack style. In the user-stack style, all of them are managed
by a user-defined stack data structure. In contrast, in the host-stack style, the return
value is only managed by a user-defined stack, and the stack provided by a host-
language manages other variables.

1https://bitbucket.org/pypy/pypy/src/default/
2https://github.com/topazproject/topaz
3https://github.com/pycket/pycket
4https://bitbucket.org/hrc706/pyrlang/src/master/

https://bitbucket.org/pypy/pypy/src/default/
https://github.com/topazproject/topaz
https://github.com/pycket/pycket
https://bitbucket.org/hrc706/pyrlang/src/master/
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def sum(n) {

}

def  fib_s(n) {

}

...
call sum
...

call

return (jump)

return_addr

return_val

compiled by method-JIT compiled by trace-JIT

Runtime cannot find
the return address
at returning

user-stack

host-stack

(A) Calling a trace-compiled code from a method-
compiled function.

def sum_f(n) {

}

def fib(n) {

}

...
call fib(n-1)
...
call fib(n-2)
...
return

return

return_val

return_addr

compiled by method-JITcompiled by trace-JIT

user-stack

host-stack

call (jump)

return_addr

user-stack

Runtime cannot find
the return address
at returning

(B) Calling a method-compiled function from a
trace-compiled code.

FIGURE 5.1: Example of Integration Problem. Gray background
code is compiled by method JIT, and blue lined code is compiled by

tracing JIT.

As a result, the user-stack style is suitable for trace-based compilation, while
the host-stack style is suitable for method-based compilation. The reasons are as
follows: Firstly, a trace-based compiler can automatically inline a function and also
convert a non-tail recursive call into a loop, since the definition of function call
in a meta-interpreter is implemented as a “jump” (left-hand side of Figure 4.2).
Secondly, method-based compilation can distinguish which part is a function call
of a “base-program” and spontaneously follow the successors of the function call.

5.2 Integration Problem

Naive integration of trace- and method-based compilations is not allowed, because
of the following reason: the two types of compilations require different meta-
interpreter implementation styles. Trace-based compilation requires the user-stack
style, while method-based compilation requires the host-stack style. In other words,
the native codes from different types of compilations use different stack frames.
Because of this gap, the runtime cannot call back and forth between native codes
generated from the two compilations. We call this problem Integration Problem.

Trace-based compilation inlines a function call; therefore, there is no function
call instruction in the resulting trace. On the other hand, method-based compi-
lation “leaves” a function call instruction in the resulting trace. We explain this
problem by using Figures 5.1a and 5.1b. This problem happens when calling a
trace-compiled function from a method-compiled function, and vise versa.

In the case that fib_s (method-compiled) calls sum (trace-compiled) as shown
in Figure 5.1a, the runtime puts a return address in the host-stack. In sum, the
return value and return address are stored in the user-stack. On returning from
sum, since the semantics of return is defined as shown in Figure 4.2, the runtime
tries to find a return address from a user-stack. However, the return address is
stored in a host-stack, and the runtime cannot return to the correct place.

On the other hand, in the case that sum_f (trace-compiled) calls fib (method-
compiled), first, the runtime puts its return address in the user-stack. When run-
time returns from fib, it tries to find the return address from the host-stack, but it
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if instr == CALL:
addr = bytecode[pc]
# get an annotation from bytecode
if mj_context(addr):

# push JIT flag to user-defined
stack (HS)↪→

user_stack.push(HS)
return_value = interp(addr)
user_stack.push(return_value)

else:
# push JIT flag to user-defined

stack (US)↪→

user_stack.push(US)
user_stack.push(pc + 1)
pc = addr

elif instr == RETURN:
return_value = user_stack.pop()
# get JIT context flag from the

user-defined stack↪→

JIT_flag = user_stack.pop()
# check the JTI context and branch
if JIT_flag == HS:

return return_value
else:

return_addr = user_stack.pop()
user_stack.push(return_value)
pc = return_addr

FIGURE 5.2: A sketch of meta-interpreter definition with Stack
Hybridization. Some hint functions (e.g., can_enter_jit and
jit_merge_point), and other definitions are omitted for simplicity.

fails to find the address, resulting in a runtime-error because the return address is
pushed to the user-stack.

5.3 Stack Hybridization

To address the Integration Problem, we propose Stack Hybridization: a meta-
interpreter design to enable runtime to switch the context of function call. Roughly
speaking, the meta-interpreter handles the call and return operations in the fol-
lowing ways:

• When it calls a function under the trace-based compilation, it uses the user-
stack; i.e., it saves the context information in the stack data structure, and
iterates the interpreter loop. Additionally, it leaves a flag “user-stack” in the
user-stack.

• When it calls a function under the method-based compilation, it uses the
host-stack; i.e., it calls the interpreter function in the host language. Addi-
tionally, it leaves a flag “host-stack” in the user-stack.

• When it returns from a function, it first checks a flag in the user-stack. If the
flag is “user-stack”, it restores the context information from the user-stack.
Otherwise, it returns from the interpreter function using the host-stack.

For supporting these behaviors, we propose a meta-interpreter implementa-
tion pattern: we embed both styles into a single meta-interpreter and switch its
behavior depending on the flag. Figure 5.2 shows a sketch of some special syntax
to support Stack Hybridization. For implementing call, the developer separates
the host- and user-stack style using the mj_context(addr) function. This function
returns true under the method JIT context, otherwise false. addr is used for emit-
ting trace (described in Section 5.4). The host-stack styled definition is placed in
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# method-compiled fun.
def fib(n):

if n <= 2:
return n

else:
return fib(n-1) + fib(n-2)

# trace-compiled fun.
def summary(n):

if n <= 2:
return n

else:
return fib(n) + summary(n-1)

summary(30)

(A) Calling method-compiled code from method-
compiled function.

# method-compiled fun.
def fib(n):

if n <= 2:
return summary(n)

else:
return fib(n-1) + fib(n-2)

# trace-compiled fun.
def summary(n):

if n <= 2:
return n

else:
return n + summary(n-1)

fib(30)

(B) Calling method-compiled code from method-
compiled function.

FIGURE 5.3: Example base-programs, fib and sum. fib is compiled
with method-based compilation, but sum is compiled with trace-

based compilation.

the then branch, and user-stack styled definition is places in the else branch. The
flags US and HS indicate under “user-stack” context, and under “host-stack” con-
text, respectively. The developer needs to write an instruction to leave these flags
at the top of each branch. For implementing return, first of all, the developer
should first check the flag in the user-stack and then branch the process according
to the flag.

5.4 Compilation with Stack Hybridization

By implementing a meta-interpreter as in Figure 5.2, the compiler can generate
traces as explained in Section 5.3. When the compiler compiles the base programs
shown in Figure 5.3, the tracer works as follows:

• When the tracer traces mj_context(addr), it checks whether there is a com-
piled code at addr. If there is a native code compiled by method-based com-
pilation, it does not inline a function call, but emits a jump instruction to
the addr. This avoids the following problem: if the tracer continues to trace
and enters a function causing the path-divergence problem, it keeps tracing
almost infinitely, which results in a high runtime overhead.

• When the tracer traces the flag check part at return, it is converted into a
guard function. If the method-compiled code is called under the context of
trace-compile, then it lets the interpreter complete the remaining instructions
before returning (and vise versa).



5.4. Compilation with Stack Hybridization 25

Figure 5.4 shows an overview of the resulting traces compiled with stack hy-
bridization. Hence, we assume that summation and fib are determined to be com-
piled by the tracing JIT and method JIT, respectively, by the profiler. Since a result-
ing trace and the native code generated from the trace correspond one-to-one, we
use the resulting traces for explaining how to compile.

In Figure 5.4a, given that fib has already been compiled by method JIT, the
tracer traces summation under the tracing JIT context. When it reaches the CALL
part, mj_context checks whether there is any compiled code and finds that fib
has been already compiled. Then, it traces the user-stack styled CALL definition,
but leaves the jmp instruction to fib and exits without tracing.

In Figure 5.4b, on the other hand, the tracer first traces fib. When it encounters
the part of calling summation, the tracer does not follow the destination of calling
summation. Because it is under method JIT context, it traces the host-stack styled
CALL definition. Then, it leaves the instruction to call summation and continues to
trace in the context of method JIT. Subsequently, summation is traced under the
tracing JIT context, and its CALL and RETURN parts are traced as jmp instruction.
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# trace: summation
loop_header("summation0",stack0,sp0)
...
store(stack0,HS,sp5)
sp6 = int_add(sp5,Const(1))
jmp("fib0",stack0,sp6)

# trace: fib
function_header("fib0",stack0,sp9)
...
store(stack0,HS,sp12)
sp13 = int_add(sp12,Const(1))
call("fib",stack0,sp13)
...
store(stack0,HS,sp19)
sp20 = int_add(sp12,Cons(1))
call("fib",stack0,sp20)
...
JIT_flag0 = load(stack0,sp23)
guard_eq(JIT_flag0,HS)
ret

(A) Resulting trace from Figure 5.3b.

# trace: fib
function_header("fib1",stack0,sp0)
...
store(stack0,HS,sp2)
sp3 = int_add(sp2,Const(1))
call("fib1",stack0,sp3)
...
store(stack0,HS,sp12)
sp13 = int_add(sp12,Const(1))
call("fib1",stack0,sp13)
...
store(stack0,HS,sp18)
sp19 = int_add(sp2,Const(1))
call("summation1",stack0,sp19)
...
ret

# trace: summation (the first
recursive call part)↪→

loop_header("summation1",stack0,sp0)
...
store(stack0,US,sp12)
sp13 = int_add(stack0,Const(1))
jmp("summation1",stack0,sp13)

# trace: summation (the return part)
loop_header("summation2",stack0,sp0)
...
JIT_flag1 = load(stack0,sp31)
sp32 = int_sub(sp31,Const(1))
guard_eq(JIT_flag1,US)
jmp("summation2",stack0,sp32)

(B) Resulting trace from Figure 5.3a.

FIGURE 5.4: Overview of resulting traces compiled with Stack Hy-
bridization.
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Evaluation

In this section, we briefly introduce our implementation of a meta-hybrid JIT com-
piler framework and evaluate BacCaml by using two different types of microbench-
marks. Firstly, we compare the performance of each JIT compilation strategy. Next,
based on the previous result, we assess the performance of the hybrid JIT compi-
lation approach and discuss the effects of combining the two compilation strate-
gies. In order to obtain data, we implemented a small functional programming
language with BacCaml.

6.1 Implementation

As a proof-of-concept, we implemented BacCaml based on the MinCaml com-
piler. MinCaml is a ML compiler created by E.Sumii [37] for education-purpose.
It generates native code almost as fast as other notable compilers such as GCC or
OCamlOpt. The reason why we did not extend RPython itself is that the imple-
mentation of RPython is too huge to comprehend: initially, we created a subset
of RPython on a compiler with reasonable implementation size. BacCaml itself
is written in OCaml, and its implementation can be accessed at GitHub (https:
//github.com/prg-titech/BacCaml).

In order to evaluate the performance of BacCaml, we also created a small func-
tional programming language, we call it MinCaml– – here, with BacCaml. This
language consists of a meta-interpreter and a bytecode compiler for the inter-
preter. This is almost similar to MinCaml, but is limited to use unit integer vari-
ables. The meta-interpreter and the bytecode compiler are also available at GitHub
(https://github.com/prg-titech/MinCaml).

6.2 Benchmarking

To assess the performance of the hybrid JIT compilation, we prepared two kinds of
benchmarks. The first one is to compare the standalone performance of trace- and
method-based compilations, and the second one is comparing hybrid, trace-, and
method-based compilations 1.

https://github.com/prg-titech/BacCaml
https://github.com/prg-titech/BacCaml
https://github.com/prg-titech/MinCaml
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FIGURE 6.1: Standalone JIT compilation microbenchmark results
in elapsed time relative to the MinCaml compiler (lower is better).
Each benchmark program runs 100 times and the first run was ig-

nored.

6.2.1 Standalone JIT Microbenchmarking Result

For comparing the standalone performance of trace- and method-based compila-
tions, we first applied the both compilations separately for programs written in
MinCaml– –, and compared the performance of MinCaml– – and MinCaml.

The standalone benchmark results are shown in Figure 6.1. The trace-based
compilation performs 1.13x to 1.72x better than the method-based compilation in
straight-forward programs (sum, sum-tail, square, fact, ary, prefix_sum and ran-
dom). Sieve has a simple control flow; however it works worse than the method-
based compilation. This is because our implementation of the trace-based com-
pilation cannot retrace at the point where guard failure occurs several times, and
therefore the tracer generates only one branch in sieve 2. In contrast, when it is ap-
plied for programs with several recursive function calls (fib, tak, ack), the perfor-
mance becomes worse; it is around 100x to 1000x slower than the method-based
compilation because of the path-divergence problem.

Instead, the method-based compilation shows good performance on average
compared to the trace-based compilation (1.07x to 34.8x slower than MinCaml).
Above all, the method-based compilation performs from around 100x to 400x bet-
ter than the trace-based compilation in programs with complex control-flow (in
the case of fib, tack, ack).

The main reason why MinCaml– – is still around 10x slower than MinCaml
mainly is that we use dynamic loading for realizing JIT compilation as BacCaml
is a proof-of-concept. To improve the performance, we should adopt some just-in-
time native code generation framework such as libgccjit 3 or GNU Lightning 4. If

1We ran all the microbenchmarks on Arch Linux with Linux kernel version 5.4.6-arch-3-1 and
dedicated hardware based on the MacBook Pro 13 inch model from Early 2015 (CPU: 2.7 GHz Intel
Core i5 (I5-5257U) processor; Memory: 8 GB 1866MHz LPDDR3). We ran each program 100 times,
and the first run was ignored to exclude the warm-up process.

2When we implement a retracing function, the performance in sieve will reach or surpass the
method-based compilation.

3https://gcc.gnu.org/onlinedocs/jit/
4https://www.gnu.org/software/lightning/

https://gcc.gnu.org/onlinedocs/jit/
https://www.gnu.org/software/lightning/
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FIGURE 6.2: Hybrid JIT compilation microbenchmark results in
elapsed time relative to the MinCaml compiler (lower is better).
Each benchmark program runs 100 times and the first run was ig-

nored.

we realize it, the performance of the compiled code from BacCaml will be almost
similar to that from MinCaml.

From the result, we can conclude that trace-based compilation is suitable for
straight-forwarded control flow (1.28x better than method JIT). Alternatively, method-
based compilation is better for complex control flow, which causes the path-divergence
problem (396x faster than tracing JIT).

6.2.2 Hybrid JIT Microbenchmarking Result

According to the result of standalone microbenchmarks, we composed functions
suitable for trace- and method-based compilations. Then, we appled a hybrid com-
pilation for them, and compare the performance with standalone strategies and
MinCaml. The hybrid JIT microbenchmark program are shown and explained in
Appendix C, and results are shown in Figure 6.2.

For all cases, the hybrid JIT strategy is 1.05x to 1.21x faster than the method JIT

only. The hybrid JIT strategy applies trace-based compilation to sum, and method-
based compilation to fib and tak. This avoids the overhead of function calling
when executing the native code of sum which trace-based optimization is applied
for. Furthermore, the hybrid JIT is about 100x faster than the tracing JIT only. This
is because the tracing JIT has arose many times of side exits in executing the native
code of fib, and the runtime performance is quite worse than hybrid JIT and other
strategies.

From the results, the hybrid JIT is 1.1x faster than the method JIT only and
over 300x faster than the tracing JIT only strategies. Hence, We can conclude that
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the hybrid JIT strategy improves the runtime performance when we can apply
appropriate JIT compilation strategies according to the structure of program parts.
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Chapter 7

Related Work

In this chapter, we introduce some research projects related to our research and
discuss and compare them with BacCaml.

7.1 Self-optimizing Interpreter

Self-optimizing abstract-syntax-tree (AST) interpreter [43, 42] enables language de-
velopers to implement effective virtual machines. The framework for building a
language runtime is called Truffle, and the optimizer for a meta-interpreter writ-
ten in Truffle is called Graal. The self-optimizing interpreter optimizes executing
AST nodes of a meta-interpreter at execution time by profiling the runtime types
and values. This prevents interpreters from executing unnecessary generic run-
time operation and simplifies the control flow which leads to better performance
of the compiled code.

For example, we consider the multiplying operation a * b. A self-optimizing
interpreter represents the expression as mul node. It receives two child nodes (a
and b) as arguments and will return the result of multiplying them. When the
interpreter executes this expression, it first checks the type of arguments; a and
b have some possibilities for having a type, e.g., integer or string at runtime. The
self-optimizing interpreter will replace this mul node with a mul-integer when it
proves that both child nodes are mainly integers during further execution. This
makes it possible to reduce needless type checks and reduce the complexity of
the generated native code. If two child nodes receive variables of other types, the
self-optimizing interpreter changes mul-integer into a more generic node mul.

7.2 GraalSqueak

GraalSqueak [26] is a Squeak/Smalltalk VM implementation written in Truffle
framework. In [25], Fabio Niephaus, et al. provided an efficient way to compile
a bytecode-formatted program; that is, they showed a way to apply trace-based
compilation with an AST-rewriting interpreter strategy.

We extend the meta-tracing JIT compilation framework to support method-
based compilation, but their approach involves creating a meta-interpreter to en-
able trace-based compilation on a partial evaluation-based meta JIT compiler frame-
work. Their idea is to implement a meta-interpreter with some specific hint an-
notations in order to expand the loop of an application program. Sulong has
already demonstrated the same idea [34], and it was applied for implementing
Squeak/Smalltalk VM.
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7.3 HHVM JIT Compiler

HHVM [30] is a high-performance virtual machine for PHP and Hack program-
ming languages. An important aspect of HHVM 2nd generation is its region-based
JIT compiler. Region-based compilers [17] are not restricted to compile the entire
body of methods, basic blocks, or straight-line traces; it can compile a combination
of several program areas.

Their compilation strategy is more flexible than our hybrid compilation strat-
egy, because HHVM region-based compiler can compile basic blocks, the entire
body of methods, loops, and any combination of them. However, their approach
is limited to a specific language system; our research aims to provide some flexi-
bility of compilation as a meta JIT compiler framework.

7.4 IBM Trace-based Java JIT Compiler

IBM trace-based Java JIT compiler [21] was developed on the existing mature Java
method-based JIT compiler. Their motivation was to investigate whether there are
any opportunities to address the limitations of traditional JIT compilers, such as
requiring careful management of inlining functions. As a result, this trace-based
JIT compiler is as efficient as method-based JIT compiler, but they did not explore
the coexistence of trace- and method-based compilations in one virtual machine.

7.5 Android Hybrid JIT

Pérez, et al. [33] combined trace- and method-based JIT compilers on the Android
Dalvik VM. This hybrid JIT compiler achieved better performance than unmod-
ified Dalvik VM by sharing profiling and compilation information. However, in
comparison to our approach, their approach involved considerable engineering
costs to realize the hybrid JIT compiler since they implemented the two kinds of
compilers naively, which reduces many duplicated code bases and leads to less
maintainability.



33

Chapter 8

Conclusion and Future Work

In this work, we presented a meta-hybrid JIT compilation approach to take ad-
vantage of trace- and method-based compilation strategies in a meta JIT compiler
framework. For supporting the idea, we chose a meta-tracing JIT compiler and ex-
tended it to be able to perform method-based compilation using trace by customiz-
ing the following features: (1) trace entry/exit points, (2) conditional branches,
(3) function calls, and (4) loops. Furthermore, we proposed Stack Hybridization: a
meta-interpreter design to enable connecting native code generated from different
strategies. The key concept of Stack Hybridization is (1) embedding two kinds of
meta-interpreter implementation styles into a single definition, (2) selecting an ap-
propriate style at just-in-time compilation time, and (3) putting a flag on the stack
data structure to indicate whether it is under trace- or method-based compilation.

We implemented a meta-hybrid JIT compiler framework called BacCaml as a
proof-of-concept. We created a small meta-tracing JIT compiler on the MinCaml
compiler, supported method-based compilation by extending trace-based compi-
lation, and realized stack hybridization mechanism on it.

Our benchmarks show that trace-based compilation performs 1.13x to 1.72x
better than method-based compilation in the case of straightline control flow, but
about 100x to 1000x worse in the case of complex control flow. On the other hand,
method-based compilation performs well on average. By combining and apply-
ing them for appropriate program parts, the hybrid compilation approach shows
about 1.1x better performance than individual compilation approaches.

We still need to specify some annotations to tell the compiler how to com-
pile, but it requires additional engineering efforts from users of a programming
language written in BacCaml. In the future, we are going to investigate a pro-
filing scheme to detect which part is fitted for trace- or method-based compila-
tion. Moreover, we want to apply our idea for RPython to measure the impact
of hybrid JIT compilation on real-world applications. BacCaml is just a proof-of-
concept meta JIT compiler framework; therefore, we have limitations to measure
its performance. In order to return our ideas to the real world, implementing it on
a practical meta JIT compiler is very important.
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Appendix A

Trade-offs between the Two Stack
Styles

As shown in Section 5.3, there are two possible choices to implement a meta-
interpreter with a meta-tracing JIT compiler framework. The reason why such
difference occurs is that, whether being able to optimize the base language pro-
gram efficiently or not depends on how language developers manage the states of
the base language program in a meta-interpreter. In this section, we organize the
advantages and disadvantages between both styles: user- and host-stack meta-
interpreter definition styles.

A.0.1 Host-stack Style

If a developer adopts only host-stack definition style, its implementation is easier
than that of user-stack style, because it does not require managing a return address
and value in a meta-interpreter. Moreover, the biggest advantage of host-stack
style is that our proposed method JIT compilation, which is retrofitted from a meta-
tracing JIT compilation, is based on host-stack style: The compiler can find which
part is a base-program’s method invocation in a meta-interpreter definition.

The drawback of employing only host-stack style for a meta-tracing compila-
tion is that a meta-tracing compiler cannot efficiently optimize nontail-recursive
function calls, that is, the compiler cannot convert them into loops. For example,
when PyPy executes the sum function shown in the left of Figure A.1, its meta-
tracing JIT compiler generates the trace shown in the right of Figure A.1. From the
resulting trace, the compiler cannot recognize a nontail-recursive call as a loop in
the viewpoint of a meta-interpreter’s program counter. Basically, a meta-tracing
JIT compiler closes a trace when its tracer comes to the start of tracing, by using
hint functions (e.g., can_enter_jit and jit_merge_point). In this case, the states
of the meta-interpreter between the beginning of trace recording and at the point
where nontail-recursive function call occurs differ. Therefore, the compiler cannot
optimize nontail recursive function calls and tries to continue tracing.

A.0.2 User-stack Style

On the other hand, if a developer employs only use-stack definition style, on the
other hand, a meta-tracing JIT compiler can convert a nontail-recursive function
call of the base program into a jump instruction (i.e., method inlining). There-
fore, this style works better and enhances the performance of a meta-tracing JIT

compilation in functional programming languages. The disadvantage is that the
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path-divergence problem [20] occurs when it is applied to a program with a com-
plex control flow as illustrated in Appendix ??. To prevent this problem, a tracing
JIT compiler has to apply method-based compilation as shown in our previous
work [22]. However, if you decide to use only user-stack style, the tracer has to
continue taking a trace to know the state in which a method invocation is per-
formed completely. In the meantime, the tracer does not record instructions and
merely follows the execution of a meta-interpreter. When the tracer enters a pro-
gram with the path-divergence problem, it spends a considerable amount of time
in the program, which results in a big performance penalty. For such a reason,
sticking to using only user-stack style is not a good choice.
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def sum(n):
if n <= 1:

return 1
else:

return n+sum(n-1)

sum(10000)

# resulting trace
debug_merge_point(0,0,#0 LOAD_FAST')
debug_merge_point(0,0,#3 LOAD_CONST')
debug_merge_point(0,0,#6 COMPARE_OP')
debug_merge_point(0,0,#9 POP_JUMP_IF_FALSE')
debug_merge_point(0,0,#16 LOAD_FAST')
debug_merge_point(0,0,#19 LOAD_GLOBAL')
debug_merge_point(0,0,#22 LOAD_FAST')
debug_merge_point(0,0,#25 LOAD_CONST')
debug_merge_point(0,0,#28 BINARY_SUBTRACT')
debug_merge_point(0,0,#29 CALL_FUNCTION')
debug_merge_point(1,1,#0 LOAD_FAST')
debug_merge_point(1,1,#3 LOAD_CONST')
...
...
debug_merge_point(6,6,#28 BINARY_SUBTRACT')
debug_merge_point(6,6,#29 CALL_FUNCTION')
debug_merge_point(7,7,#0 LOAD_FAST')
debug_merge_point(7,7,#3 LOAD_CONST')
debug_merge_point(7,7,#6 COMPARE_OP')
debug_merge_point(7,7,#9 POP_JUMP_IF_FALSE')
debug_merge_point(7,7,#16 LOAD_FAST')
debug_merge_point(7,7,#19 LOAD_GLOBAL')
debug_merge_point(7,7,#22 LOAD_FAST')
debug_merge_point(7,7,#25 LOAD_CONST')
debug_merge_point(7,7,#28 BINARY_SUBTRACT')
debug_merge_point(7,7,#29 CALL_FUNCTION')
debug_merge_point(7,7,#32 BINARY_ADD')
debug_merge_point(7,7,#33 RETURN_VALUE')
debug_merge_point(6,6,#32 BINARY_ADD')
debug_merge_point(6,6,#33 RETURN_VALUE')
debug_merge_point(5,5,#32 BINARY_ADD')
debug_merge_point(5,5,#33 RETURN_VALUE')
debug_merge_point(4,4,#32 BINARY_ADD')
debug_merge_point(4,4,#33 RETURN_VALUE')
debug_merge_point(3,3,#32 BINARY_ADD')
debug_merge_point(3,3,#33 RETURN_VALUE')
debug_merge_point(2,2,#32 BINARY_ADD')
debug_merge_point(2,2,#33 RETURN_VALUE')
debug_merge_point(1,1,#32 BINARY_ADD')
debug_merge_point(1,1,#33 RETURN_VALUE')
debug_merge_point(0,0,#32 BINARY_ADD')
debug_merge_point(0,0,#33 RETURN_VALUE')

FIGURE A.1: The left is a function calculating a summation of a
given number, implemented with tail-recursive sytle. The right is

the resulting trace of sum function by RPython and PyPy.
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Appendix B

The Path-Divergence Problem

int fib(int n) { if (n < 2)
A

return 1;
B

} else {

int res1 = fib(n - 1);
C

int res2 = fib(n - 2);
D

return res 1 + res2;
E

FIGURE B.1: The control flow of a Fibonacci function.

The tracing JIT compilers are not very efficient in compiling certain types of
programs [20]; we call this the path-divergence problem. The problem is observed
as frequent guard failures (and compilation of the subsequent traces) when it runs
such kinds of programs. Since it spends most of the time for JIT compilation, the
entire execution can be slower than an interpreted execution.

Programs that cause the path-divergence problem often take different execu-
tion paths when they are executed. Functions that have multiple, non-tail recur-
sive calls, e.g., the Fibonacci, are the examples.

Let us consider the problem with a Fibonacci function, whose control flow
graph is shown in Figure B.1. Each node in the graph is a basic block. Since
tracing JIT compilers1 basically inline function calls, the node’s end with a func-
tion call is connected to the entry of the function. Also, the node’s end with a
return statement is connected to the next basic blocks of its caller, which can be
more than one.

Tracing compilers rely on the fact that many program executions contain a sub-
sequence (i.e., a sequence of control flow nodes) that appear frequently during the

1As explained in Section 2.2.1, meta-tracing JIT compilers effectively compile traces of the base
program by means of tracing the meta-interpreter. Therefore we here discuss the problem in a con-
text when a tracing compiler handles a base program.
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entire execution. However, the execution of the Fibonacci rarely contains such a
subsequence. This is because the branching nodes in the graph, namely A, B, and
E in the graph, take one of the two following nodes almost the same probability.
As a result, no matter what path the tracing compiler chooses, the next execution
of the compiled trace will likely cause guard failure in the middle of its execution.
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Programs used for Evaluating
Hybrid JIT Compilation

(* applying method-based
* compilation for it *)

let%mj rec fib n =
if n < 2 then 1 else

fib (n-1) + fib (n-2) in

(* applying trace-based
* compilation for it *)

let%tj rec sum i n =
if i <= 1 then n else

sum (i-1) (n + (fib i)) in

(* main function *)
print_int (sum 30 0)

(A) sum-fib

(* applying trace-based
* compilation for it *)

let%tj rec sum n acc =
if n <= 1 then acc else

sum (n-1) (n+acc) in

(* applying method-based
* compilation for it *)

let%mj rec fib n =
if n < 2 then sum 1000 0 else

fib (n-1) + fib (n-2) in

(* main function *)
print_int (fib 20)

(B) fib-sum

let%mj rec tak x y z =
if x <= y then y else
tak (tak (x-1) y z) (tak (y-1) z

x) (tak (z-1) x y)↪→

in
let%tj rec sum i n =

if i <= 1 then n else
let x = (tak 13 8 6) in
sum (i - 1) (n + x) in

print_int (sum 20 1)

(C) sum-tak

let%tj rec sum i n =
if i <= 0 then n else

sum (i - 1) (n + i) in
let%mj rec tak x y z =

if x <= y then sum 10 0 else
tak (tak (x-1) y z)

(tak (y-1) z x)
(tak (z-1) x y)

in
print_int (tak 14 8 3)

(D) tak-sum

FIGURE C.1: Microbenchmark programs for evaluating the per-
formance of hybird JIT compilation. sum is implemented in tail-
recursive style, and fibs is in nontail-recursive style. Therefore sum
and fib are fitted for trace-based and method-based compilation re-

spectively.

Programs used for evaluating hybrid JIT compilation are shown in Figure C.1.
sum is trace-based compilation-suited, but fib and tak are method-based compilation-
suited programs. We applied trace-based compilation for sum, and method-based
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compilation for fib and tak in taking a hybrid compilation strategy. For com-
paring the performance, we also applied trace- and method-based compilations
individually and majored their execution time.
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Appendix D

Interpreter Definition Example
written in BacCaml

let rec frame_reset stack old_base new_base ret n i =
if n = i then (stack.(old_base + n + 1) <- ret; old_base + n + 2)
else (stack.(old_base + i) <- stack.(new_base + i);

frame_reset stack old_base new_base ret n (i + 1)) in

(* declaring a casting function: int array -> int *)
let rec cast_fAII x = x in
(* declaring a casting function: int -> int array *)
let rec cast_fIAI x = x in

let rec frame_reset stack old_base new_base ret n i =
if n = i then (stack.(old_base + n + 1) <- ret; old_base + n + 2)
else (stack.(old_base + i) <- stack.(new_base + i);

frame_reset stack old_base new_base ret n (i + 1)) in

let rec interp stack sp bytecode pc =
jit_merge_point pc stack sp;
let instr = bytecode.(pc) in
if instr = 0 then (* UNIT *)

interp stack sp bytecode (pc + 1)
else if instr = 1 then (* ADD *)

let v2 = stack.(sp - 1) in (* sp: sp - 1 *)
let v1 = stack.(sp - 2) in (* sp: sp - 2 *)
stack.(sp-2) <- (v1+v2); (* sp: sp - 1 *)
interp stack (sp - 1) bytecode (pc + 1)

else if instr = 2 then (* SUB *)
let v2 = stack.(sp - 1) in
let v1 = stack.(sp - 2) in
stack.(sp - 2) <- (v1 - v2);
interp stack (sp - 1) bytecode (pc + 1)

else if instr = 3 then (* MUL *)
let v2 = stack.(sp - 1) in
let v1 = stack.(sp - 2) in
stack.(sp - 2) <- (v1 * v2);
interp stack (sp - 1) bytecode (pc + 1)

else if instr = 29 then (* DIV *)
let v2 = stack.(sp - 1) in
let v1 = stack.(sp - 2) in
stack.(sp - 2) <- (divide v1 v2);
interp stack (sp - 1) bytecode (pc + 1)

else if instr = 30 then (* DIV *)
let v2 = stack.(sp - 1) in
let v1 = stack.(sp - 2) in
stack.(sp - 2) <- (modulo v1 v2);
interp stack (sp - 1) bytecode (pc + 1)

else if instr = 4 then (* NOT *)
let v = stack.(sp - 1) in
let n = (if v = 0 then 1 else 0)in
stack.(sp - 1) <- n;
interp stack sp bytecode (pc + 1)

else if instr = 5 then (* NEG *)
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let v = stack.(sp - 1) in
stack.(sp - 1) <- (-v);
interp stack sp bytecode (pc+1)

else if instr = 6 then (* LT *)
let v2 = stack.(sp - 1) in
let v1 = stack.(sp - 2) in
let n = (@if v1 < v2 then 1 else 0) in
stack.(sp - 2) <- n;
interp stack (sp - 1) bytecode (pc + 1)

else if instr = 7 then (* EQ *)
let v1 = stack.(sp - 1) in
let v2 = stack.(sp - 2) in
let v = (if v1 = v2 then 1 else 0) in
stack.(sp - 2) <- v;
interp stack (sp - 1) bytecode (pc + 1)

else if instr = 15 then (* CONST *)
let c = bytecode.(pc + 1) in
stack.(sp) <- c;
interp stack (sp + 1) bytecode (pc + 2)

else if instr = 8 then (* JUMP_IF_ZERO *)
let addr = bytecode.(pc + 1) in
let v = stack.(sp - 1) in
let sp2 = sp - 1 in
@if v = 0 then (

interp stack sp2 bytecode addr
) else

interp stack sp2 bytecode (pc + 2)
else if instr = 9 then (* JUMP *)

let addr = bytecode.(pc + 1) in
if addr < pc then (

can_enter_jit stack sp bytecode addr;
interp stack sp bytecode addr

) else
interp stack sp bytecode addr

else if instr = 10 then (* CALL *)
let addr = bytecode.(pc + 1) in
let rands = bytecode.(pc + 2) in
if is_mj () then

(stack.(sp) <- 100; (* push jit flag *)
let sp2 = sp+2 in
let r = mj_call stack sp2 bytecode addr in
stack.(sp - rands) <- r;
interp stack (sp-rands+1) bytecode (pc+3))

else
(stack.(sp) <- pc + 3;
stack.(sp + 1) <- 200; (* push jit flag *)
let sp2 = sp+2 in
@if addr < pc then (

can_enter_jit stack sp2 bytecode addr;
interp stack sp2 bytecode addr

) else
interp stack sp2 bytecode addr)

else if instr = 11 then (* RET *)
let v = stack.(sp - 1) in
let mode = stack.(sp-2) in (* sp: sp-3 *)
let addr = stack.(sp-3) in (* sp: sp-3 *)
if mode = 200 then (* check jit flag *)

(let n = bytecode.(pc + 1) in
stack.(sp - n - 3) <- v; (* sp: sp-3-n+1 = sp-2-n *)
let sp2 = sp - n - 2 in
@if addr < pc then (

can_enter_jit stack sp2 bytecode addr;
interp stack sp2 bytecode addr

) else
interp stack sp2 bytecode addr)

else v
else if instr = 12 then (* HALT *)

stack.(sp - 1)
else if instr = 13 then (* DUP *)

let n = bytecode.(pc + 1) in
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let v = stack.(sp - n - 1) in
stack.(sp) <- v;
interp stack (sp + 1) bytecode (pc + 2)

else if instr = 14 then (* POP1 *)
let v = stack.(sp - 1) in
let _ = stack.(sp - 2) in
stack.(sp - 2) <- v;
interp stack (sp - 1) bytecode (pc + 1)

else if instr = 16 then (* GET *)
let n = stack.(sp - 1) in
let arr = cast_fIAI(stack.(sp - 2)) in
stack.(sp - 2) <- arr.(n);
interp stack (sp - 1) bytecode (pc + 1)

else if instr = 17 then (* PUT *)
let i = stack.(sp - 1) in
let arr = cast_fIAI(stack.(sp - 2)) in
let n = stack.(sp - 3) in
arr.(i) <- n;
stack.(sp - 3) <- cast_fAII(arr);
interp stack (sp - 2) bytecode (pc + 1)

else if instr = 18 then (* ARRAYMAKE *)
let init = stack.(sp - 1) in
let size = stack.(sp - 2) in
let a = Array.make size init in
stack.(sp - 2) <- cast_fAII(a);
interp stack (sp - 1) bytecode (pc + 1)

else if instr = 19 then (* FRAME_RESET *)
let o = bytecode.(pc + 1) in
let l = bytecode.(pc + 2) in
let n = bytecode.(pc + 3) in
let ret = stack.(sp-n-l-1) in
let old_base = sp - n - l - o - 1 in
let new_base = sp - n in
let sp2 = frame_reset stack old_base new_base ret n 0 in
interp stack sp2 bytecode (pc + 4)

else if instr = 20 then (* PRINT_INT *)
let v = stack.(sp - 1) in
prerr_int v;
interp stack (sp - 1) bytecode (pc + 1)

else if instr = 21 then (* PRINT_NEWLINE *)
(print_newline ();
interp stack sp bytecode (pc + 1))

else if instr = 22 then (* METHOD_ENTRY *)
interp stack sp bytecode (pc + 1)

else if instr = 23 then (* CONST0 *)
(stack.(sp) <- 0;
interp stack (sp + 1) bytecode (pc + 1))

else if instr = 24 then (* DUP0 *)
let v = stack.(sp - 1) in
stack.(sp) <- v;
interp stack (sp + 1) bytecode (pc + 1)

else if instr = 25 then (* METHOD_COMP *)
interp stack sp bytecode (pc+1)

else if instr = 26 then (* TRACING_COMP *)
interp stack sp bytecode (pc+1)

else if instr = 27 then (* NOP *)
interp stack sp bytecode (pc+1)

else
-1000 in

let stk = Array.make 2000000 0 in
stk.(0) <- (-987); stk.(1) <- (-456);
let rec read_code i n arr =

if i = n then arr
else

(arr.(i) <- read_int ();
read_code (i+1) n arr) in

let n = read_int () in
let arr = Array.make n 0 in
let code = read_code 0 n arr in
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interp stk 1 code 0
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