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Abstract

Keyword programming is a feature of programming editors that recommends code
fragments suitable to the keywords given by the programmer and the surrounding
program text around the cursor position. It can be considered as advanced code
completion by taking the programming intention through keywords. However, the
existing keyword programming algorithm does not consider the meaning of the con-
text, which should be useful in selecting recommendations. In this study, we improve
the ranking algorithm by incorporating the likeliness factor of the code fragment
concerning the context For estimating the likeliness, we use a neural network-based
sentence generator. We implement it as a form of a plug-in on Eclipse and evaluate
it by recommending expressions that is hard to obtain from the existing keyword
programming.
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Chapter 1
Introduction

1.1 Programming Environment
For a beginner who wants to learn a new programming language, the first thing that
they would do is to choose a programming environment, after they decide which
programming language to use.

For each programming language, there are always plenty of programming environ-
ments that supports a programmer with different features. For example, a Java
programmer is likely to choose Eclipse or IntelliJ, while a C programmer prefers
Visual Studio. And, both of them may use Vim and customize it with different
useful plugins such as TabNine.

Selecting a proper programming environment is essential for a programmer when
they start to build a project. However, how should a programmer decide which one
is suitable to them? A principle to judge which environment is appropriate for a
programmer is the efficiency in developing code.

There are a lot of techniques that could help a user to shorten the time costs. Here
are some examples in section 1.1.1.

1.1.1 Efficient Tools of Programming Environment
Visualize a program

Some features of a programming environment visualize the program, which aids a
programmer to reduce the time to organize their thoughts.

For example, Kanon [Oka et al., 2017] provides a live programming feature that
visualizes the layout of a data structure while a programmer is implementing it. It
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helps the user to comprehend a complicated data structure while programming.

Figure 1.1: A live programming environment: Kanon
(Image from https://prg-titech.github.io/Kanon/ )

Quick Fix

Moreover, several programming environments advise the user to modify the program
when they get stuck. As an illustration, the quick fix feature on Eclipse shown as
below offers some options to solve a problem immediately, such as adding a missing
package declaration.

Figure 1.2: Quick Fix of Eclipse provides advice
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Template creation

A few programming environments enable a user to avoid writing some code if it is
a pattern. For instance, CodeSandbox provides a template for some regular tasks
like creating an application. A user does not need to program starting from zero,
and it is also pretty comprehensible for a beginner to understand the effect without
understanding the whole project. Besides, IntelliJ and Eclipse offers a convenient
method to generate a constructor for an object class using its fields.

Figure 1.3: Create a template to start to build an application on CodeSandbox
(Image from https://codesandbox.io/ )

In addition, a lot of popular programming environments have a code assist feature
that saves the programmers from unnecessary typos. We will discuss more details in
the next section.

1.2 Code Assist
Code assist completes the program, given a sequence of keystrokes. This feature is
especially vital in saving the user’s time when they start to build a complex project.
Code assist consists of two primary techniques: code snippets completion and code
recommendation.
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1.2.1 Code Snippets Completion
Code snippets completion is similar to template creation, which simplifies entering
some repeating code patterns. The difference between code snippet completion and
template creation is that code snippets need a standard input, and the generated
code relates to the input, including an abbreviation, a snippet prefix, and keywords.

Some programming environments such as Eclipse and IntelliJ take an abbreviation
or a snippet prefix as input and translate it into a template of code.

For example, when a Java programmer creates a new class and wants to declare the
static main method. Instead of typing the whole method, the user only needs to type
main and press Ctrl-Space on Eclipse or type psvm and then press Tab on IntelliJ.
This technique also helps a novice programmer to learn how to use the programming
language without comprehending the whole syntax.

Figure 1.4: Main method completion on Eclipse

Unlike common code snippets completion systems, the inputs of NLP2Code [Camp-
bell and Treude, 2017] are a bunch of keywords written in natural language. NLP2Code
first provides some choice to completes the keyword query and then insert a code
snippet from Stack Overflow in terms of those keywords without leaving the current
editor.
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Figure 1.5: The flow of NLP2Code completing code
(Image from: Campbell and Treude, 2017)

1.2.2 Code Recommendation
Code recommendation is one of the advanced techniques that assists a programmer
in saving time by providing a list of possible code fragments displayed on the editing
monitor. The recommendations would show on the editing monitor after a user type
some inputs. Then, the user can view the list and select the desired code fragment
instead of writing down the whole code.

The information that a code recommendation takes into consideration can be divided
into two kinds: explicit and implicit.

Explicit information stands for straightforward information that comes from inputs
of a code recommendation system. Similar to code snippets completion, the inputs in
such kinds of system vary in different implementations, and there are three categories
of input: an abbreviation, a partial expression, and a bunch of keywords.

Han, Wallace and Miller, 2009 and Hu et al., 2019 recommend possible code frag-
ments given an abbreviated input. The former uses a Hidden Markov Model to
expand the abbreviation to inputs, while the latter uses a Gaussian mixture model.

Traditional code recommendation systems like the default one on Eclipse provide all
possible code fragments after the user inputs a few characters. The recommendations
are generally in alphabetical order, and the user could browse the recommendation
list and select the required code fragment. For example, when a user wants to write
a lengthy method name such as currentTimeMillis, instead of writing the whole
characters, the user only needs to type cu, and then the method currentTimeMillis
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will appear on the recommendation list.

Figure 1.6: Eclipse recommend code based on prefix

Robbes and Lanza, 2008 proposes a code recommendation system that also inputs
a few characters, but the recommendations are sorted according to the user’s pro-
gramming history.

In addition, Little and Miller, 2009 provides expressions given some keywords that
represent the user’s intention. An expression is more likely to show on the list if it
contains more words in the keyword query. The programmers, especially who are not
familiar with the programming language, do not need to rack their brain to remember
the correct method name from a complicated API. The complete procedure of its
implementation QUACK is shown in the following figure.

In contrast, implicit information denotes information that can be exploited from the
context.

TabNine takes the whole context into consideration, and Bruch, Monperrus and
Mezini, 2009 refers to previous method invocations. Both of them arrange the recom-
mendations by their probabilities. The previous system calculates probabilities by a
GPT-2 model, and Bruch, Monperrus and Mezini, 2009 utilizes an algorithm named
Best Matching Neighbors(BMN) based on the K-Nearest Neighbors algorithm.

1.3 Evaluation Criteria
We define two dimensions to estimate our code completion system and others, which
are accuracy and precision.

1.3.1 Accuracy
Accuracy is evaluated by both the occurrence and similarity. Occurrence stands for
whether the desired expression is on the recommendation list. And the similarity of
two expressions depends on how many tokens are common in both.

Introduction 6



Figure 1.7: Code recommendation based on keyword programming
(Image from Little and Miller, 2009)

It is apparent that a recommendation is accurate if it appears on the recommendation
list. However, why we also define accuracy regarding the similarity? The answer is
that an incorrect recommendation sometimes can give the user a hint, which enables
them to write the correct code by themselves.

For example, if a user wants to print a result on the monitor in Java, the desired
expression should be System.out.println(result). However, for those who are not fa-
miliar with this programming language, it is almost impossible for them to write the
token println without any suggestions. If a similar expression System.err.println(result)
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Figure 1.8: TabNine recommends code regarding comments of program

appears on the top of the recommendation list, although it is not a desired one, it
can give the user a hint to use the keyword println.

Therefore, we estimate the accuracy by both occurrences and similarity.

1.3.2 Precision
Precision is judged by the order where the desired code fragment appears on the list.

It is also essential for a code recommendation system. For example, the code com-
pletion system on Eclipse could ensure the desired code fragments shown on the
recommendation list, since it generates all possible fragments that are stick to the
syntax rule and type rule of the programming language. However, the user has to
roll the mouse wheel to find out their desired one when the object class contains
hundreds of methods such as JButton shown as Figure 1.9 .

1.4 Purpose
In this paper, we aim to build a code recommendation system that:

• Suitable to all programmer from a beginner to an expert.

• Recommend the expression that satisfies the user’s purpose.

• Can recommend a complicated expression.

• Be able to give the programmer a hint to write their required expression when
it is not on the recommendation list.
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Figure 1.9: Available methods in the class JButton

1.5 Overview
This paper is organized as follows.

First, Chapter 1 gives a brief overview of code recommendation and our goal of this
paper.

Chapter 2 shows how keyword programming works and why we choose it as our
previous work. Then we introduce a neural text generation approach that is able to
predict probabilities of the next tokens given the preceding context.

Subsequently, we demonstrate the limitation occurring in previous works in Chapter 3.

In Chapter 4, we put forward our proposal which is to improve keyword programming
by exploiting information from context.

Then, we explain the mechanism of our implementation ACKN in Chapter 5. And
we evaluate several systems based on the above approach, discuss the results from
each experiment, and describe our achievements and limitations in Chapter 6.

We illustrate the benefits and disadvantages of several related research in regards to
code snippets completion and code recommendation in Chapter 7.

Our conclusions are drawn in the final chapter.
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Chapter 2
Background

2.1 Keyword Programming
Keyword programming is a technique that translates a keyword query to an expres-
sion. It is similar to a search engine that gets the desired website by a few keywords.
A keyword programming system has three parts: input, extraction, and generation.

2.1.1 Input
Just like its literal meaning, a keyword programming system inputs a bunch of
keywords to program.

A keyword query is similar to a piece of pseudo-code or comment that conveys
a certain meaning. For example, a keyword query print f name stands for an
operation to display the name of variable f on the monitor.

Moreover, it does not make a difference if the user changes the order of keywords.
Which means, a keyword query print f name is identical to print name f or f
print name.

Furthermore, for each word in the keyword query, repeated words are only counted
once. Considering a keyword query add number one to number two as an
example. In this query, the word number occurs twice. Since a repeated word is
only counted once, it is actually the same as add number one to two.

2.1.2 Extraction
A keyword programming system needs to model the programming language in order
to generate all possible expressions. A model M is defined as a triple (T, L, F),
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where T stands for a set of types, L denotes a set of labels and F is short for a set
of function.

Type Set: T

The set T consists of all available type’s fully qualified name, such as java.lang.String
or java.util.List.

Moreover, sub(t) defines the set of sub-types of t. Similar to the type java.lang.Object
in Java, there is a universal super-type T.

Label Set: L

The name of a variable or a method is represented by a label separated by punc-
tuation or a capital letter. For example, label (instance, of) denotes a method
instanceOf or instance_of .

The reason to apply this is because programmers usually define a variable or a method
in a camel case or a snake case.

Function Set: F

A function set includes elements that are modeled from methods, fields, and local
variables. And a function is defined as a list of (T, L, T . . . T ). The initial T stands
for the return type, L is the label and the remaining T denotes all the parameter
types. For example, a method String toString(int i) in Java will be modeled as
(java.lang.String, (to, string), int).

In addition, ret(f) stands for the return type, label(f) represents the label, and
params(f) is the parameter types of function f.

Function Tree

An expression is modeled as a function tree that is made of functions.

Figure 2.1 shows a function tree of the Java expression System.out.println(result). It
consists of four nodes. The first one System is a class name, then out is a field in
class java.lang.System and returns type java.io.PrintStream. The next node println
is a method that receives type java.io.PrintStream and returns type void, and the
parameter type is java.lang.String. The final node is result, which returns type
java.lang.String.
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Figure 2.1: Function tree of the expression System.out.println(result)

In addition, depth stands for the height of a function tree in this paper. For example,
a local variable result is in the depth of one, and a method invocation expression
list.add() is in the depth of two.

Except for the methodology above, keyword programming also provides a few ways
to model some elements for a specific programming language.

Types

There are three situations to model a type of java: primitive type,generic type and
object classes.

In Java, the primitive type has 8 kinds, and each of them is modeled as their corres-
ponding wrapper class. For instance, int seems identical to java.lang.Integer.

Moreover, the model denotes a generic type literally as it is, which means a type
List<String> is recognized as a new type. Currently, keyword programming does
not completely support a type system.
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Finally, an object class or an interface is modeled as its fully qualified name such as
java.io.PrintStream.

Local Variables

Local variables are represented by the type that its return and the variable name of
itself. For example, the local variable String s is modeled as (java.lang.String,
(s)).

Fields

The field is divided into two kinds: static and non-static.

A non-static field is modeled as functions that return the type of the field and take
the receive object class as a parameter. For example, a field String name of class
Fruit is modeled as (String, (name), Fruit)

By contrast, a static field is usually represented by two functions. One is the same
as the non-static field, and another adds the simplified receiver-type name to the
label. For instance, the static field out in java.lang.System could both be modeled as
(java.io.PrintStream, (out), java.lang.System) and (java.io.PrintStream,
(system, out)).

Methods

Like a field, methods are also separated by a static one and a non-static one.

A non-static method is modeled in terms of its receiver-type, return-type, parameters’
type, and its name. For instance, the method public void print() of java.lang.System
is translated to (void, (print), java.lang.System).

A static method is modeled as two functions. For example, a method static Big-
Decimal valueOf(double val) will become (java.math.BigDecimal, (value, of),
java.math.BigDecimal, double) or (java.math.BigDecimal, (big, decimal,
value, of), double)

Instance creation

Instance creations are similar to a method, but only add a keyword new to the label
set. For instance, a default instance creation for class String could be represented as
(java.lang.String, (new, string), int).
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2.1.3 Generation
Generation algorithm

The existing keyword programming generates expressions with a recursive algorithm.
Figure 2.2 shows how the algorithm generates method invocations that do not have
any receivers.

1: procedure GenerateMethodInvocations(t, h)
2: for 1 ≤ i ≤ h do
3: for all method where ret(method) ∈ sub(t) do
4: for all parameter do
5: parameterType← GetParameterType(paramter)
6: parameterSet← GenerateMethodInvocations(t, h− 1)
7: end for
8: methodSet← GenerateMethods(parameterSet)
9: end for

10: end for
11: return methodSet
12: end procedure

Figure 2.2: Greedy algorithm for method invocation generation

Score function

Keyword programming arranges generated expressions by a score calculation func-
tion. For each expression, there are four rules including:

• For each depth, the score decreases by 0.05

• If the expression contains a keyword that in the keyword query, then the score
adds 1.0

• Otherwise, if the word in the expression is not in the keyword query, then the
score minuses 0.01.

• If the element is a local variable or a member method, then the score will add
0.001
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Figure 2.3: Score function calculates array.add() given the keyword query add line

We will demonstrate the rule by an example of calculating the score for a function
array.add() given the keyword add and line.

First, since the depth of array.add() is two, the initial score is -0.1.

Then, since the token array is not in the keyword query, the score becomes -0.11.

Because the token add belongs to the keyword query, the score becomes +0.89.

Finally, since the token array is also a local variable, the final score is +0.891.

2.1.4 Advantages
Most of the traditional works are not beginner-friendly. We use Eclipse as an example
to illustrate this point. For a programmer who wants to use the code completion
system on Eclipse, they need to remember all the spelling correctly of API. Otherwise,
they have to search on the internet and seek some examples, which is desperate,
especially for a novice programmer.

In contrast, since a keyword programming system takes natural language as inputs,
it is easy to use for a programmer no matter whether they are beginners or not.

Keyword programming is generic

Although the existing keyword programming models Java, it does not mean the tar-
get programming language should only be Java. As we know, most of the object
orient programming languages have similar syntax. As a result, we could also imple-
ment the keyword programming on other programming languages such as python.
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High accuracy inputting appropriate keywords

In the previous research, the existing keyword programming proves that the accuracy
could achieve appropriately 90% if the keyword query is exactly identical to the
desired expression. Although the accuracy becomes 50% when the keyword query
is provided by a human. We could assume that the keyword query has a better
performance when the keyword query contains more words that appear in the desired
expression.

Represent programmers’ intention

Last but not least, unlike most current code recommendation systems, a keyword
programming system is able to represent the programmers’ intention precisely. Con-
sequently, the programmer does not need to struggle to remember the method name
from API that contains abundant functions.

2.2 Neural generation
Neural text generation is the process of generating a likely token by using neural
networks. The generation procedure regards the implicit information from the pro-
ceeding sentences exploited from a deep-learning algorithm.

In this chapter, we will introduce several neural networks and the one we chose,
which is the long short time memory(LSTM). Then we illustrate how to use such a
model to generate a likely token by an example.

2.2.1 Neural networks
It is common to estimate the probability of an event that happened in the future
through a statistical model. In the traditional approach, we often use some straight-
forward concepts from statistics, such as frequency, to forecast what would occur
later. However, such kinds of models are inadequate to predict accurately and pre-
cisely.

Therefore, a lot of machine-learning algorithm is designed to increase the accuracy
and precision by analyzing a massive amount of data.

Deep learning is a subset of machine learning that uses neural networks to simulate
how a human being’s brain works. A human’s brain can translate a piece of music to
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a signal and figure out what the music represents by analyzing the signal. A neural
network uses different layers to simulate this procedure.

In a neural network, layer denotes a collection of neurons that are at a particular
depth. A neural network usually has an input layer, an output layer, and several
hidden layers. An input layer and an output layer manipulate the input and the
result. The hidden layers are the essence of a neural network, which have the capacity
to learn the data by minimizing an error function.

For example, the Figure 2.4 shows the structure of a neural network. Each circle
represents a neuron, and each neuron has an input. The input will pass to another
neuron by a particular calculation, and finally deduce to an output.

Figure 2.4: Sketch of neural networks

For example, Figure 2.5 shows the structure of determining whether the output
neuron turns on via an activation function. The neural network will first give each
node in the input layer a weight, and calculate through a sum function. Then, it will
pass the number to an active function such as sigmoid to decide whether to return
1 or 0.

However, the standard neural networks do not support temporal data very well. The
reason is that those networks like a feed-forward neural network are simple and do
not form a cycle inside the network. For example, supposed we want to predict the
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Figure 2.5: Sketch of pass through layers of neural networks

next word of "A Chinese speaks Chinese, and a Japanese speaks," which should be
"Japanese." For a human being, it is easy to answer from the context. But for an
old standard neural network, the eight words in the previous sentence is put into the
input layer separately and ignore the relationship between each other.

Recurrent neural networks, short for RNN, is designed to solve this problem.

2.2.2 RNN: Recurrent Neural Networks
For a traditional neural network, it does not take the implicit relation between two
adjacent input into consideration, as shown in Figure 2.6. The reason is that para-
meters in the hidden layer do not change. However, if the data is temporal such as
a sentence, each word should not be separated. In other words, we could guess the
next word in terms of the context.
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Figure 2.6: Structure of standard neural networks

In contrast, RNN modifies arguments of the current input’s hidden layers considering
previous hidden states, as shown in Figure 2.7. Thus, the inputs are connected by
transferring these arguments through the adjacent hidden state.

Figure 2.7: Structure of recurrent neural networks

However, a recurrent neural network can not predict precisely and accurately when
the input sequence is too long. It is because the hidden layer of an input considers
all previous hidden states, which leads to forgetting the initial information of the
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sentence.

To be specific, recurrent neural networks use a method called backward-propagation,
which would propagate the error from the last time to the beginning. And since the
recurrent neural network takes all hidden states into consideration, it will cause a
gradient vanishing or exploding problem.

Gradient vanishing means the error would varnish to 0, and gradient exploding means
the error would explode to an infinite number. Both would make the networks forget
the information from starting inputs. This makes the traditional recurrent neural
networks hard to be trained.

LSTM is designed to solve this issue.

2.2.3 LSTM: Long Short Term Memory
LSTM, stands for long short term memory, is created to solve the gradient vanishing
and exploding issue mentioned in the section 2.2.2.

The reason why traditional recurrent neural networks cause gradient vanishing or
exploding problems is that the neural networks remember all related information
even it is not important enough.

Consider a movie that has a mainline and several sidelines. Although each plot in
the sideline affects the mainline more or less, the end of the film only needs the
information from a few sidelines. RNN is similar to remember all the sideline plots.
Thus, the audience would forget some essential plots if the movie is too long, while
LSTM has a mechanism to decide whether to remember it or not.

To be more specific, LSTM imports a concept called forget gate that has the
capacity to decide whether the information from the current timestamp should be
remembered or not.

Figure 2.8 shows the mechanism of LSTM. The red line is the main line, the blue
one is the side line, and the green one is the forget gate. If the input influences the
mainline, then it would be added to the mainline by a weighted function. Then, the
forget gate would forget some irrelevant information from the mainline. Finally, the
output depends on the input information from both the mainline and the sideline.

There are several reasons why we choose to use a LSTM model.

Firstly, an LSTM model usually has a good performance on temporal data. For a
program, each token is typed continuously. Therefore, LSTM is a suitable approach
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Figure 2.8: Long short term memory

to manipulate a program written in a programming language.

Secondly, we expect the LSTM model to exploit the implicit information from a
program’s context in order to improve the original keyword programming. An LSTM
model considers the relationship between each token like what we introduced in
section 2.2.2.

Third, since LSTM is a mature technique, there are a lot of implementations that
are easy to use. For example, TensorFlow, Pytorch, or Keras all have their imple-
mentations that enable a user to use such a tool without specialized knowledge about
machine learning.

2.2.4 Neural Text Generation
Neural text generation predicts the next likely words or sentences given some articles
by using a neural network. For example, if we use all of Shakespeare’s works as the
training data set, we can use the model to write some sentences in a Shakespeare’s
style.

The prepossessing of the training data is straightforward. We need to create a bunch
of pairs includes the previous words and the next word.

For example, in Figure 2.9 , we create five pairs of training data from the sentence
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"This is a dog named Bark." The first one begins with the first words, which is "This"
and outputs the next words "is." Similarly, the following input is the first two words,
and output is the third word. And we do the same operation until the last one of
the sentence.

Figure 2.9: Prepossessing data of neural text generation

After training the neural networks, the model could be used to predict the next word
given a sequence of words. For example, given the sentence "This is a cat" then the
model would recommend the word named.

We use this idea to exploit the implicit information from the context to improve the
input and generation part of the existing keyword programming. And we will discuss
the details in the Chapter 4.

Background 22



Chapter 3
Problem

In this chapter, we describe the problem of the existing keyword programming in
details.

3.1 Difficult to generate a complicated expression
It is also difficult to generate a long-expression in the existing keyword programming
system. And there are two reasons.

3.1.1 Generate duplicated expressions
First, the existing keyword programming system limit the highest height of a function
to 3, because it will generate too many expressions when the height is over 3. One of
the reasons that the system has abundant generations is it will repeatedly generate
an expression when the depth is more than 3.

These expressions contains a method invocation expression or an instance creation
expression.

Figure 3.1 shows an example given a method concat which receive a String type
object and also return a String type, and it has a parameter which is in the type of
String.

In the depth one, suppose we have two variable a and b where both type are String.

In the depth two, we can obtain four generations including a.concat(a), a.concat(b),
b.concat(a), and b.concat(b).

By far, it seem no problem, but we would get a duplicated expression in depth 3
by using the generation expression. We found that expressions generated in depth

23



Figure 3.1: Generate example of the existing keyword programming

2 will also satisfy the condition to be generated again in depth 3.

Therefore, there will be a number of identical generations by using the original gen-
eration algorithm.

3.1.2 Score function limits long generation
In section 2.1.3 score function, we have described the rule for a keyword programming
system to evaluate a generated expression. And the score will decrease when the
depth is increased. This causes a longer expression to obtain a lower score.

Furthermore, when the expression becomes longer, it will contain more words that
are not in the keyword query.

3.2 Recommendations are not likely to be used
By using the existing keyword programming to complete a program, the recommend-
ation list always contains some expressions that are not often used.

For example, the generation with the highest score is System.err.print(msg) given
the keyword print msg. Although the expression contains all of the keywords, it
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actually does not match the programmer’s intention.
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Chapter 4
Proposal

4.1 Limit the amount of generation
The amount of generation increase exponentially.

Considering the example that we described in the section 3.1.1. If we want to generate
all available expressions given two local variables a and b and a method concat.

It begins with two expressions in the depth one. And in depth two, there are four
expressions. In depth three, there will be thirty-two expressions. And 1408 expres-
sions in depth four, 2089472 expressions that are not repeated in depth five, and so
on.

For a static programming language such as Java, we can limit the amount by the type
rule. But for a dynamic programming language such as python, it seems impossible
to use these kinds of systems to predict a complicated expression.

To solve this issue, we use a graph search algorithm called beam search. Beam search
is a heuristic search algorithm that cuts the branch with lower priority. Figure 4.1
shows the procedure of a beam search algorithm.

For each depth, we only remain the branch with the highest score and eliminate
others. And the user can set the number of how many expressions to be saved by
themselves.

Although there is a possibility that the branch which generates the desired expression
is cut by this approach, since a code recommendation system can not reach 100
percent accuracy, it is acceptable when this thing occurs.
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Figure 4.1: Beam search: A search algorithm

4.2 Modify the ranking algorithm
Another approach is to modify the score calculation algorithm for each expression.

We calculate the score by not only the original rules modified some weights but also
another mechanism considering the probability of each token.

Figure 4.2 shows the algorithm to calculate a score according to the probability of
each token.

1: procedure GetScore(context, expression)
2: score← GetScoreOrginal(expression)
3: for all token in expression do
4: score← score + GetPossibility(context, token) - penalty
5: context← context + token
6: end for
7: return score
8: end procedure

Figure 4.2: Modified ranking algorithm given previous context

It is similar to the procedure in the section 2.1.1. We separate the expression at first
and get a list of tokens.
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We start with calculating the probability of the first token given the previous context.

Then concatenate this token to the previous context, and use it to calculate the
probability of the next token. We repeat this until the last token. And add all
probabilities together.

Subsequently, we calculate the score following the previous rules. And then, the final
score is the sum of these two values.

Since the user can change the weight later, we do not discuss too much about this
part. Instead, we assume a programmer should modify the weight for different pur-
poses.

For example, if the user wants to make the program seem more concisely, they could
raise the penalty of generating longer expression in order to more likely to generate
a shorter expression.
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Chapter 5
Implementation

We build a plug-in for Eclipse and name it ACKN (Auto-Completion with Keyword
programming and Neural generation) to implement our proposal.

We have three reasons why we choose Eclipse.

First, Eclipse is an integrated development environment that offers several useful
tools to support a user to build a system. In this paper, with the help of ASTParser,
Java Model, and Search Engine from Java Development Tool (JDT), we can achieve
the necessary information to generation expressions from a source file.

Second, Eclipse is one of the most popular environments, especially for Java program-
mers. Therefore, it is essential to build an intelligent code recommendation system
that assists hundreds of thousands of programmers to save their precious time.

At last, It is easy for a programmer to build a plug-in with the Plug-in Development
Environment (PDE), which is a convenient project of Eclipse. ACKN is also built by
this project and can display a recommendation list window on the editor, just like
the default code completion system of Eclipse.

And same to the existing keyword programming, we divide our implementation in
three phases: input, extraction, and generation. A neural generator based on LSTM
is used in the input and generation section, we will describe it separately in the
section 5.4.
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5.1 Input
The input of ACKN is similar to the one in the previous research, which is a bunch
of keywords.

5.2 Extraction
By far, we have only considered recommending expressions, including method invoc-
ation expression and field access expression. In order to generate those expressions,
we need to extract all available information from each local variable, object class,
field, and method.

We chose ASTParser, Java Model, and Search Engine from JDT to obtain necessary
information from the editing source file to generate all possible expressions.

Moreover, since Java is a static programming language, in order to assure each
generation is correct, we also need extra information, including:

• the return-type and the object class of each local variable and each field,

• the receive-type, return-type, and all parameters’ type of each method,

• the current object class name.

Finally, we also need to know whether a field is static or not or whether a method
is visible. Therefore, we still need to extract the information of the modifier of each
field and method.

In the section 5.2.1, we explain how we extract essential information above by AST-
Parser, Java Model and Search Engine.

5.2.1 ASTParser
To obtain information from the context, we use ASTParser and ASTVisitor in Eclipse
JDT. We would like to introduce these APIs before introducing how it works on our
project.

ASTParser is used to translate a Java program to an abstract syntax tree. After
parsing the whole file, we use ASTVisitor to obtain specific information, including a
local variable, current class, and current package from the abstract syntax tree.
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The term abstract syntax tree(AST) is generally understood to mean a tree struc-
ture representation of source code depends on the syntax of a certain programming
language. For example, Figure 5.1 shows an abstract syntax tree for a Java code
array.addLine().

Figure 5.1: Abstract syntax tree for array.addLine()

In addition, the term parse has been applied to describe a movement that analyses
the source code of a computer program and translates it to an abstract syntax tree.

Since the syntax of a programming language seldom change, and the operation to
each abstract syntax tree node is often variable, it is common to use a visitor pattern
to traverse the AST. In Eclipse JDT, ASTVisitor is able to visit the given node and
perform some operation.

We can actually get all the information we need by parsing all the file, but the time
cost would be horrible. Therefore, we only parse the current editing file and achieve
the current class, current package, and the information of all available local variables.

Current Package

It is straightforward to obtain the name of the current package by visiting a Pack-
ageDeclaration node by the code:
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1 public boolean visit( PackageDeclaration node){
2 this. packageName = node. getName (). toString ();
3 return true;
4 }

Current Class

Since it is available to declare several types in a compilation unit, we need to visit
the TypeDeclaration node and find one that covers the cursor position.

1 public boolean visit( TypeDeclaration node){
2 int startPos = node. getStartPosition ();
3 int nodeLength = node. getLength ();
4 if(( startPos < cursorPos )&&( cursorPos < startPos + nodeLength )){
5 nameOfThis = node. getName (). toString ();
6 }
7 return true;
8 }

Local Variable

It is a little bit tricky to find out all available local variables from an ASTVisitor
because there is not a LocalVariable node in the syntax. Thus, we need to consider
all situations and traverse each to get the set of local variables.

A variable is available in three AST node: SingleVariableDeclaraion, VariableDel-
caraionExpression, and VariableDeclarationStatement. Local denotes the cursor and
the variable are in the same scope.

Single Variable Declaration
A node is a single variable declaration only when it appears in a catch clause, an
enhanced for-statement, or a parameter list of a method declaration.

Consider an example :
The variable name, node and e is a single declaration.

Variable Declaration Expression
A variable is represented by a variable declaration fragment in a variable declaration
expression when it is in the initialization part of a normal for-statement.

For instance, in the program:
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the variable i can be achieved as a variable declaration fragment by visiting a Vari-
ableDeclarationExpression node.

Variable Declaration Expression
Finally, We can get other variables via visiting a VariableDeclarationStatement node.

Considering the program:

the variable gear and speed is the variable fragment among a variable declaration
statement.

Scope
In Java, variables are always lexically(or statically) scoped, local means the scope
where a variable can be referenced. Instead of extracting all local variable, we only
take those where the cursor is in the variable’s lexical scope.

Considering the program:

Implementation 33



1 public class Main{
2 public void hoge( String name){
3

4 }
5 void fuga(int index ){
6

7 }
8 }

If the cursor is in the line 3, then the local variable name can be called, while the
another local variable index can not.

5.2.2 Java Model
Because there are a lot of files that are not public to a user, it is impossible to get all
information by only parsing and visiting all source files. In addition, we use another
tool from Eclipse JDT, which is called Java Model.

Java model is a tool that enables a user to manipulate a Java program. The hierarchy
of a Java model is similar to a file system. Unlike the abstract syntax tree, the
hierarchy of Java model is closer to the way how a Java programmer analyzes and
creates a Java program, as shown below.

Figure 5.2: Hierarchy of Java Model

In addition, Figure 5.3 shows interfaces of Java Model which are used to manipulate
the corresponding element of a Java program.
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Figure 5.3: Interface for each element

For next sections, we introduce how to extract a type, a method and a field inform-
ation by Java Model.

IType

In order to achieve all possible methods and fields, we should extract all possible
IType at first. And there are three kinds of situations.

First, we need to extract all default types including 8 primitive types. Currently, we
seem the primitive type identically as the corresponding object class. For example,
float and double equal to java.lang.Float and java.lang.Double.

However, for those types in java.lang, we do not assume it as a default type. There-
fore, the user needs to declare the class name when the program has some methods
or field in that class. For example, in ACKN, the method charAt in java.lang.String
is only available when the program has imported java.lang.String.

The reason why we do this is that the size of methods and fields in java.lang is too
large.

Second, we require to obtain all available types from the same package. We begin
with searching the IPackageFragment for the current compilation unit, and then
traverse the path to find all possible compilation units. Then, we could get all types
from each compilation unit.

The code to do this in Java is:
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1 private Set <IType > getITypesFromSamePackage (){
2 Set <IType > res = new HashSet <IType >();
3 // get package fragment name
4 IPackageFragment iPackageFragment = currentCompilationUnit .

getParent ();
5 try{
6 ICompilationUnit [] iCompilationUnits = iPackageFragment .

getCompilationUnits ();
7 for( ICompilationUnit iCompilationUnit : ICompilationUnits ){
8 IType [] iTypes = iCompilationUnit . getAllTypes ();
9 for(IType iType: iTypes ){

10 res.add(iType);
11 }
12 }
13 }
14 return res;
15 }

Finally, we need to explore all available types depending on the import declaration.
We only allow the user imports an object class given the fully qualified name instead
of the package name. For example, if a user wants to use some methods in the
List class, they have to use import java.util.List instead of import java.util.*;. This
limitation is also used for lightening our system.

To gain all types from an import declaration name, we have to use another effective
Eclipse JDT API called Search Engine.

Search Engine is used to search Java projects in the workspace for Java elements.
Giving the name, matching rule and scope, it can provide all possible Java elements
satisfied those conditions. Through this useful tool, we can extract all available types
in the import declarations.

For example, if we want to get all types’ name in the package java.util, we should
provide the Search Engine.

1. the package name which is java.util in this case

2. the matching rule which is exactly matched

3. a scope such as the whole work space.
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IField

After we obtain all available types shaped in IType, we continue to use the Java
Model to get the information of fields. We can get the modifier, name, and return
type with the Java Model API.

IMethod

The way to get all IMethod elements is similar to the one in the previous section,
except a method also need the set of parameter types.

5.3 Generation
Instead of using the complicated syntax of Java, we define a simple one that only
applies to generate expressions. We currently do not consider the control flow, such
as an if-else expression or a loop. The syntax is shown in the appendix ??

Although it is available to support more syntax rule, it will take a long time to
generate all possible expression. Thus, in our paper, we only allow a user to complete
a field access expression and a method invocation expression.

We have attached the syntax rule of our system in the appendix.

In this chapter, depth is used to refer to the height of an abstract syntax tree of an
expression. We will introduce our generation procedure divided by different depths.

Moreover, in order to shorten the generating time, we build two tables that dynamic-
ally store the available expressions for each type and depth. We named tableExact
for the table containing expressions in an exact depth, and tableUnder for the table
that has expressions under each depth.

Generate expressions in the depth one

In depth one, the system has the capacity to generate a variable or an instance of
an object.

It is pretty straightforward to implement this part. For each accessible type, we
create an instance and extract local variables that return the type.

For instance, in the program
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Since the cursor is in line 10, there are two local variables including index and
number. Besides, the system could also generate the initial constructor of the object
class Test.

Generate expressions in depth two

It becomes a little bit complicated in depth of two, because we need to enable the
system to generate a method invocation or a field access expression.

In this section, the system can generate 3 kinds of expressions in depth 2, which are
instance creation, field access, and method invocation expression.

First, we define an instance creation in depth two when all of the parameters are in
the depth of one. For example, in the program,

Since only three variables are in the depth one, and index and number are available
regarding the cursor position, only the fourth expression new Test(index) and fifth
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expression new Test(number) are two instance creations in depth two.

Secondly, we define a field access expression is in depth two if the field is static or
the object expression is exactly in depth one.

For instance, in the program

the third recommendation Auxi.staticField is a static field access expression in depth
two. And the seventh recommendation new Test( ).nonStaticField is a non-static
field access expression where the object expression is an instance creation in depth
one.

Finally, a method whether static or not is in depth two when each parameter consists
of expressions in depth one. And a type is assumed as depth one through this paper.

Since the number of parameters of a constructor or a method is arbitrary, we use a
recursive algorithm to generate all possible expressions rather than a nested loop.

The algorithm to get all instance creation is:

Notice that we use a bottom-up way to generate an expression with arbitrary para-
meters. For example, for a constructor new Test(int first, int second), the system
will initially generate all possible expressions for the second parameter and then
determines what appears in the first parameter position.
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procedure GenerateInstanceCreation(paraNum, subExps, paraTypes)
if paraNum == 0 then

res← GenerateWithSubExps(subExps)
else

paraType← paraTypes[paraNum− 1]
paraExps← GetExpressionFromExactDepthOne(paraType)
for all expression ∈ paraExps do

subExps[paraNum-1] ← expression
GenerateInstanceCreation(paraNum-1, subExps, paraTypes)

end for
end if

end procedure

Generate expressions greater than depth two

For a field access expression, the generation mechanism is similar to the one in
the previous section. Nevertheless, we use a bit computation algorithm to prevent
generating duplicated expressions.

In the section 3.1.1, we mentioned that the previous generation algorithm would
generate an expression repeatedly. And in the section proposal, we find out a solution
is to give a limitation to generate expressions with multiple parameters. The rule is
that at least one of the parameter is exactly in d-1 when generating an expression
in depth d.

For example, if we want to generate all possible method invocation in depth 3 given
a method add(paraOne, paraTwo). There are three situations that satisfy the limit-
ation. Either paraOne or paraTwo is exactly in depth 2, and the other is in depth
1. Otherwise, both of them are in depth 2.
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We use a binary representation where 1 represents expressions in exactly d-1 and 0
represents expressions in depth under d-2. As a result, the three situations for the
former example add(paraOne, paraTwo) can be represented as (0, 1), (1, 0), and (1,
1).

5.4 Neural Generation
The neural generation of ACKN has two parts. One is to generate a model by
using LSTM. And another is a program that is able to predict the probability of an
expression given the context.

5.4.1 LSTM model
Prepossessing

Before we train the neural networks model, we have to process our training data to
make it perform better. In our research, we have to approach to increase the quality
of our data.

First, we eliminate all comments of each program, since keyword programming does
not take the comment information into consideration. In addition, the comment
would influence the training and be likely to generate a sequence of tokens that is
similar to a natural language.

Second, because it takes a long time to train an LSTM model, we use a word2vec
technique to decrease the dimension of each word to shorten the training time.

Training

In our research, we use the Keras LSTM as our neural networks implementation.
And the activation function is Softmax, the optimizer uses the Adam optimization
algorithm, and we use sparse categorical cross entropy function as our loss function .

5.4.2 Connect by Socket
Since we currently implement the keyword programming in Java and neural genera-
tion in python, we need a way to pass the information through these two systems.

We choose the socket programming, which seems the Java program as a client and
the python program as a server.
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First, the Java program will send the context information to the python program
and get a sequence of characters that represent next likely tokens calculated by the
neural generator. Then, at the generation step, the Java program will send each
generated expression to the server and get a number denotes the probability of the
expression.
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Chapter 6
Evaluation

6.1 Tasks
We prepare 15 tasks to evaluate ACKN. For each task, it includes an expression, a
program with a hole, and a keyword query.

First, we decide the expression by ourselves such as System.out.println(result).
Then, we find 21 different programs from Github that contains the code of the
expression. We add 20 of them to the training set. For the remaining one, we erase
the code of the expression, and create a test program with a hole. Subsequently,
we make a keyword query that can represent the meaning of the expression such as
print result. Then we run the program on ACKN given the keyword query, and
compare the rank between ACKN and the original keyword programming system.

Table 6.1 shows the keyword query and the expected expression that we made. And
Table 6.2 shows the rank of the expression and the top recommendation by the
original keyword programming system. Table6.3 shows the rank and the top recom-
mendation by ACKN.

6.2 Result
While the training set is not big enough, we can see that:

• Among 10 of 15 tasks, the desired expression are on the recommendation list

• Among 6 of 15 tasks, the desired expression are in the Top-5 of the list.
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No. Keyword Query Expected Expression
1 print result System.out.println(result)
2 print error System.err.println(error)
3 print result System.out.print(result)
4 print error System.err.print(error)
5 get time System.nanotime()
6 get time System.currentTimeMillis()
7 str at index str.charAt(index)
8 upcase str str.toUpperCase()
9 lower str str.toLowerCase()
10 str from begin to end str.substring(begin, end)
11 limit capacity to min sb.ensureCapacity(min)
12 get address of host InetAddress.getLocalHost()
13 input new Scanner(System.in)

14 read standard in new BufferedReader(new InputStreamReader
(System.in))

15 load resource name Thread.currentThread().getContextClassLoader()
.getResource(name)

Table 6.1: keywords and expected expressions of 15 tasks

6.3 Discussion

6.3.1 Method v.s. Variable
Since local variables are named differently by each programmer, it is difficult to
predict a likely variables name by neural networks. An available approach is to raise
the weight of a local variable. For example, we could add 0.1 to the score when a
token is the local variable.

In contrast, the neural generator performs well in predicting a method name.

6.3.2 Speed
Currently, it takes a long time to predict expression once. And there are two reasons.

First, even we use beam search to limit the number of generations, there are still
many expressions when the depth is over 4.

Second, we use python to write the neural generation program, and Java to write the
keyword programming system. It also costs time to communicate with each other.
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Task Position Top expressions
1 × System.err.print(result)
2 × new PrintStream(error)
3 2nd System.err.print(result)
4 3rd new PrintStream(error)
5 2nd System.getProperties()
6 4th System.getProperties()
7 1st str.charAt(index)
8 10th str
9 1st str.toLowerCase()
10 4th str.substring(end, begin).toString( )
11 × sb.append(min).insert(sb.capacity(),sb.toString())
12 2nd local.getHostAddress()
13 24th new Main().readInputUntilEndOfLine()
14 29th new InputStreamReader(System.in).read()

15 ×
ClassLoader.getSystemClassLoader()
.loadClass(ClassLoader
.getSystemResource(name).getRef())

Table 6.2: position and top result by using the original keyword programming

Alternatively, we could use an LSTM model written in Java, such as Deeplearning4j.

6.3.3 Accuracy&Precision
Although we could get the desired expression in 10 tasks by ACKN, the data set is
not big enough to use it into practice. We could collect projects on GitHub, which
have stars more than five.

In addition, we could also improve the LSTM model to increase the accuracy of
prediction. For example, we can add another LSTM layer which manipulates a file
from the tail, or we could add the attention mechanism to the model.

The desired expression is in the Top-5 on the recommendation list in the case that
ACKN could recommend successfully. Therefore, we believe that it is available to
increase the precision of keyword programming by concerning the context.

6.3.4 Input priority
In this paper, we focus on the problem of distinguishing System.err.println(f.getName())
and System.out.println(f.getName()) given print name of f. But the weight for each
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Task Position Top expressions
1 5th System.err.print(result)
2 × new PrintStream(error).println()
3 2nd System.err.print(result)
4 × new PrintStream(error)
5 1st System.nanoTime()
6 1st System.currentTimeMillis()
7 1st str.charAt(index)
8 9th str
9 1st str.toLowerCase()
10 × str.substring(end, begin).toString( )
11 30th sb.append(min).insert(sb.capacity(),sb.toString())
12 25th new Main().getLocalHost().isMulticastAddress()
13 22th new Main().readInputUntilEndOfLine()
14 × new InputStreamReader(System.in,input.readLine())

15 ×
ClassLoader.getSystemClassLoader()
.loadClass(ClassLoader
.getSystemResource(name).getRef())

Table 6.3: position and top result by using the AKCN

keyword should be different, which means the weight for print should be higher than
of.

Since keyword programming is similar to natural language processing, and we can
get inspired by the skills of natural language processing.

One of the famous weighting skill is term frequency-inverse document frequency,
short for TF-IDF. This method calculates the weight of a word by multiplying the
term frequency in a document and the inverse document frequency in a bunch of
files. If we want to get the weight of each keyword, we could use questions on Stack
Overflow and calculate the TF-IDF value.
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Chapter 7
Related Work

This work is based on the technique proposed in Little and Miller, 2009, where
recommends expressions given a keyword query.Campbell and Treude, 2017, and
Nguyen et al., 2016 also input a keyword query. But their goal is to translate the
keyword query to code snippets on Stack Overflow.

Bruch, Monperrus and Mezini, 2009 seeks for the programs that the order of method
invocations are similar to the editing file. And they also build an Eclipse plug-in
named CodeRecommenders.

Robbes and Lanza, 2010 analyses the programming history of a programmer, and is
more likely to recommend an expression that is recently used. One of the drawbacks
of these systems is that the user can never get the desired expression if they have
not used it.

Liu et al., 2016 and Hidehiko, n.d. also use an LSTM model on code completion.
However, they manipulate the source file in the form of the abstract syntax tree and
predict the next node to complete the whole system.
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Chapter 8
Conclusion

In this paper, we propose a keyword-based code recommendation system improved
by concerning the context information.

We use an LSTM model that can predict the probability of the next token given the
context.

We modify the ranking algorithm of the existing keyword programming, which con-
siders the probability of each token.

Furthermore, we use a graph search algorithm called beam search to limit the size
of generation and get multiple recommendations.

Finally, we build a plug-on on Eclipse and name it ACKN.

We testify ACKN by recommending fifteen expressions that the original keyword
programming system is hard to predict. 10 of 15 can show on the representation
list, which contains 30 candidates. And 6 of them can be shown as the Top-5 of the
recommendation list.

The result of this study indicates that a neural generator can predict the next method
invocation expression that would be used when there is no local variable inside it.

As a consequence, we believe that our method could be used in predicting a method
invocation that does not rely on any variable.
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