
TOKYO INSTITUTE OF TECHNOLOGY

DOCTORAL/MASTER THESIS

Extending Effekt with
Bidirectional Effects

Author:
Kazuki NIIMI

Student Number:
19M30318

Supervisor:
Prof. Hidehiko

MASUHARA

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

in the

Programming Research Group
Department of Mathematical and Computing Science

April 1, 2021

https://www.titech.ac.jp/
http://prg.is.titech.ac.jp
https://educ.titech.ac.jp/is/eng/

iii

Declaration of Authorship
I, Kazuki NIIMI, declare that this thesis titled, “Extending Effekt with Bidi-
rectional Effects” and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a re-
search degree at this University.

• Where any part of this thesis has previously been submitted for a de-
gree or any other qualification at this University or any other institu-
tion, this has been clearly stated.

• Where I have consulted the published work of others, this is always
clearly attributed.

• Where I have quoted from the work of others, the source is always
given. With the exception of such quotations, this thesis is entirely my
own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others,
I have made clear exactly what was done by others and what I have
contributed myself.

Signed:

Date:

v

TOKYO INSTITUTE OF TECHNOLOGY

Abstract
School of Computing

Department of Mathematical and Computing Science

Master of Science

Extending Effekt with Bidirectional Effects

by Kazuki NIIMI

Algebraic effects and handlers (proposed by Plotkin et al.) enable imple-
menting various computational effects, such as exception handlers and side
effects, in a uniform and effect-safe manner. Our goal is to allow manip-
ulation of complex control flow in a fully-fledged language with algebraic
effects. To achieve this goal, we introduce bidirectional effects to the Effekt
language. Bidirectional effects (proposed by Zhang et al.) are a novel con-
cept that makes it possible to implement bidirectional control flow needed
by generators and async-await.

Effekt natively supports algebraic effects and it has practical features such
as records, modules, mutable variables, and inputs/outputs. It also has a
compiler and a runtime system. Moreover, Effekt has a simple and easily
extensible type system by special treatment of effect polymorphism. Effect
polymorphism is required to support higher-order functions in languages
with algebraic effects. Effekt realizes this without parametric effect polymor-
phism, which is difficult to understand for users.

We extend the Effekt compiler with bidirectional effects and formalize
the extended type system. We also show that this extension allows imple-
mentation of generators and communication, which were not possible in the
original Effekt language.

HTTPS://WWW.TITECH.AC.JP/
https://educ.titech.ac.jp/is/eng/
https://educ.titech.ac.jp/is/eng/

vii

Acknowledgements
I would like to thank H. Masuhara and Y. Cong for ideas and discussions.
I would also like to thank J. Brachthäuser for many advice of Effekt. I am
grateful to the members of the Programming Research Group for useful com-
ments.

ix

Contents

Declaration of Authorship iii

Abstract v

Acknowledgements vii

1 Introduction 1

2 Background 3
2.1 Algebraic Effects . 3
2.2 Effekt Language . 5
2.3 Bidirectional Effects . 8

3 Problems and Proposal 17

4 Implementation 19
4.1 Effekt Compiler . 19
4.2 Modification of the Extension 19

5 Formalization 23
5.1 Extended Effekt . 23
5.2 Extended System Ξ . 24
5.3 Soundness Proofs of Extended Effekt and System Ξ 26

5.3.1 Lemma A.5cap . 26
5.3.2 Theorem A.6 . 27

6 Examples 29
6.1 Client-server Communication 29
6.2 Token Ring . 32

7 Related works 35
7.1 Shallow Handlers . 35
7.2 Session Types . 36

8 Conclusion 37

Bibliography 39

A Soundness Proofs of extended Effekt and System Ξ 41
A.0.1 Lemma A.1 . 41
A.0.2 Lemma A.2 . 41

x

A.0.3 Lemma A.2’ . 41
A.0.4 Lemma A.3 . 42
A.0.5 Lemma A.4cap . 42
A.0.6 Theorem 5.1 . 42

xi

List of Figures

2.1 An example of algebraic effects (exception) 4
2.2 An example of algebraic effects (Read/Print) 5
2.3 Operation call in a block . 7
2.4 The result of Figure 2.3 . 7
2.5 A translated System Ξ program from Figure 2.2 8
2.6 An example of bidirectional effects (Yield and Replace) 9
2.7 An example of generator and the result of it 11
2.8 An implementation of Figure 2.7 with plain algebraic effects . 12
2.9 An example of communication (ping and pong) and the result

of it . 14
2.10 Ping pong . 15

5.1 An extension of Effekt (Brachthäuser et al., 2020) 24
5.2 An extension of SystemΞ (Brachthäuser et al., 2020) 25

6.1 An application of chat . 31
6.2 The result of Figure 6.1 . 32
6.3 An application of token ring . 33
6.4 The result of Figure 6.3 (processed) 34
6.5 An example of token ring . 34
6.6 An example of token ring . 34

1

Chapter 1

Introduction

Algebraic effects and handlers (Plotkin and Pretnar, 2013) enable implement-
ing various computational effects, such as exception handlers and side ef-
fects, in a uniform and effect-safe manner. Effect safety means that an effect
is never accidentally handled by a wrong handler or not handled by any
handlers. This is useful for the real world programming such as exceptions
of like Java or input/output.

However, some programs cannot be written with plain algebraic effects.
Two such examples are generators and async-await, which contain complex
control flow and are currently in vogue for programming languages (Zhang
et al., 2020).

Our goal is to allow manipulation of complex control flow in a fully-
fledged language with algebraic effects. To achieve this goal, we introduce
bidirectional algebraic effects to Effekt language. Bidirectional algebraic effects
(Zhang et al., 2020) are a novel concept that makes it possible to implement
bidirectional control flow needed by generators and async-await. The dif-
ference between plain algebraic effects and bidirectional algebraic effects is
in the direction of effect propagation. With plain algebraic effects, an effect
propagates up the dynamic call stack to its handler. With bidirectional alge-
braic effects, an effect propagates to the location where the initiating effect
was raised. This is the opposite direction to plain algebraic effects.

Effekt (Brachthäuser et al., 2020; Effekt Language: Home) is a language with
algebraic effects. Effekt has practical features such as records, modules, mu-
table variables, and inputs/outputs. It also has a well-working compiler and
runtime system. Moreover, Effekt has simple and easily extensible type sys-
tem due to special treatment of effect polymorphism unlike Frank (Lindley et
al., 2017) and Koka (Leijen, 2017). Effect polymorphism is required to support
higher-order functions in languages with algebraic effects. Effekt realizes this
without parametric effect polymorphism, which is difficult to understand for
users.

Contributions. Our contributions are (i) extending the Effekt compiler
with bidirectional effects, (ii) formalize the extended type system, and (iii)
showing that this extension allows implementation of generators and com-
munication, which was not possible in the original Effekt language. We pro-
ceed as follows:

• Chapter 2 explains algebraic effects, Effekt language, and bidirectional
algebraic effects.

2 Chapter 1. Introduction

• Chapter 3 shows examples that it is difficult to express with plain al-
gebraic effects, and gives how to solve this problem with bidirectional
algebraic effects.

• Chapter 4 gives details related to the extension of the compiler and run-
time system.

• Chapter 5 shows the formalize and proves the type soundness.

• Chapter 6 shows Effekt programs with bidirectional effects.

• Chapter 7 discusses related work.

• Chapter 8 concludes this paper.

3

Chapter 2

Background

2.1 Algebraic Effects

Algebraic effects and handlers (Pretnar, 2015; Plotkin and Pretnar, 2013) are
an approach to expressing computational effects such as put/get for mutable
state, read/print for input and output, and throw for exceptions. These are
called operations and users define interpretation of them by handlers that are
like exceptions and handlers of Java.

Figure 2.1 shows an Effekt (explained in 2.2) program that involves ex-
ception handling Exceptions are the simplest example with algebraic effects.
Operation DivByZero is defined (line 1). The function div takes two integer
and calculate x/y. In an ordinary programming language, dividing an inte-
ger by 0 produces an runtime error (such as ArithmeticException). In Figure
2.1, div(x, 0) raises DivByZero that represents “integer x is divided by 0”.
The operation call do DivByZero() in div (line 5) raises an effect DivByZero
with the same name as its operation, if y = 0. A raised operation propagates
upwards in the dynamic call stack that is similar to exceptions in Java, and
must be captured by a handler. In this example, DivByZero is handled by
the handler in main function (line 16-18). The function div is passed 6 and 0
(line 14), so div raises an effect DivByZero and it is handled. The function call
main() prints “div by zero!”.

4 Chapter 2. Background

1 effect DivByZero() : Unit
2
3 def div(x: Int, y: Int) : Int / { DivByZero } = {
4 if (y == 0) {
5 do DivByZero()
6 }
7 else {
8 x / y
9 }}

10
11 def main() = {
12 try {
13 println(div(6, 0))
14 }
15 with DivByZero {
16 println("div by zero!")
17 }}

FIGURE 2.1: An example of algebraic effects (exception)

Function div has the type (Int, Int) → Int / { DivByZero }. This
type means “Given two values of type Int, the function produces a value
of type Int and has an effect DivByZero”. Traditionally with algebraic ef-
fects, effectful functions such as div have a type like α → β/ε. In traditional
language with algebraic effects such as Koka, this type is read as follows
(Brachthäuser et al., 2020).

“Given a value of type α, the function produces a value of type β
and has effects ε.”

In the above sentence, “has effects ε” with non-empty effects ε means that
the function may raise an effect including ε when it is called. In particular, a
function with empty ε is considered pure.

A more complex application is input/output. The following example
(Figure 2.2) defines operations Read and Print. Operation Read inputs a
string like readLine() in Java. Operation Print outputs a string like println
in Java. The difference from Figure 2.1 is that the resume function is called.
This resume function represents remaining computation from the operation
call of the handled effects. Passing a parameter value v to function resume
corresponds to regarding the result of an operation as a value v. In Figure 2.2,
a Read effect is raised (line 5) and handled in function main (line 13-15). The
resume function in the handler of Read is called with a parameter "Kazuki"
and the result value of operation call do Read() is "Kazuki". On the other
hand, operation Print takes a string, which is passed to its handler as str.
In the handler of Print (line 16-19), the passed parameter str is printed by
println. The resume function in the handler of Print is called with a unit
value () because we want to treat Print operation as a function. The func-
tion call main() prints “Hello Kazuki!”.

2.2. Effekt Language 5

1 effect Read() : String
2 effect Print(str: String) : Unit
3
4 def sayHello() : Unit / { Read, Print } = {
5 val name = do Read()
6 do Print("Hello " ++ name ++ "!")}
7
8 def main() = {
9 try {

10 sayHello()
11 }
12 with Read {
13 resume("Kazuki")
14 }
15 with Print { str =>
16 println(str)
17 resume(())
18 }}

FIGURE 2.2: An example of algebraic effects (Read/Print)

There are two advantages of supporting algebraic effects over having in-
dividual effects as primitives such as exceptions and input/output. First,
users can write highly modular programs. Programmers can separate inter-
faces and implementations by effects and handlers. Implementations pro-
vided by handlers of interfaces as effects can be replaced easily. In Figure
2.2, handlers of Read and Print can be replaced with other handlers such as
communicating or discarding the parameter of Print. This can be applied
to dependency injection (Fowler, 2004). Second, programs with algebraic ef-
fects are strictly typed. This means effect safety: all effects are handled by
correct handlers. An effect can never be accidentally handled by the wrong
handler or not handled by any handlers.

2.2 Effekt Language

Effekt (Brachthäuser et al., 2020; Effekt Language: Home) is a language with al-
gebraic effects. Its syntax is similar to Scala’s one. Effekt is fully-fledged lan-
guage with following reasons. First, it has features such as record, module,
mutable variable, and input/output. Second, it has well working compiler
and runtime system.

Effekt takes a unique approach to effect polymorphism Effect polymor-
phism is required to support higher-order functions in languages with alge-
braic effects, because a passed function may perform arbitrary effects, and
we must be explicit about those effects in the type of the function. Figure 2.3
defines a higher-order function myMap (line 5-10) that takes a list and a block
(anonymous function in Effekt) and calls the block on each element of the

6 Chapter 2. Background

list, and collects these result. In the main function, myMap is called with a list
and a block that includes operation call Print(a) (line 14). The type of the
block (called X) at line 14 is:

String → Unit / { Print }

The type of the block (called X f) of myMap is:

String → Unit / {}

X and X f are different in effects ε, so Figure 2.3 has a contradiction. Hence
we have to add Print to ε of X f to solve the contradiction. However it is not
possible to specialize signatures of higher-order functions to any use-sites
without effect polymorphism.

Therefore Koka supports parametric effect polymorphism.

String → Unit / {e}

Here, e can be replaced with any effect(s). This feature is difficult to under-
stand, as Biernacki et al., 2019 refers. Some languages including Koka offer
syntactic sugar to hide effect polymorphism to users. However, this hiding
often breaks and details of effect polymorphism to users.

Effekt realizes effect polymorphism simply by giving the different inter-
pretation, which is called contextual effect polymorphism, for a type α→ β/ε:

“Given a value of type α, the function produces a value of type β
and requires the calling context to handle effects ε”

(Brachthäuser et al., 2020)

In Effekt, effects are considered as inputs to a function. Function sayHello
in Figure 2.2 takes hidden parameter Read and Print. These are revealed in
System Ξ, which is a core language translated from Effekt. Figure 2.5 is a
translated System Ξ program from Figure 2.2. Function sayHello has two
effects as parameters used in its body. An effect type represent capability that
a computation needs from its context. This makes Effekt more lightweight
and simpler than other languages with algebraic effects.

To support both contextual effect polymorphism and effect safety, Effekt
offers blocks as second-class (Osvald et al., 2016). Second-class values cannot
be returned and stored in data structures. If blocks are first-class, type system
cannot track all effects which are raised in a block. The following example
illustrates this problem.

def returnit() { f: Unit } : Unit / {} = f
val g = returnit { do Exception() }
g() // raises Exception

Here, we define a function returnit which returns the block as a type Unit
→ Unit / {}. Then we bind the result of returnit with a block raising
Exception to a variable g. The type of g is Unit → Unit / {}, hence a func-
tion call g() raises no effects in the type system. However g() raises an effect
Exception in fact and a runtime error is occurred. To prevent this problem,

2.2. Effekt Language 7

Effekt treats blocks as second-class values. Effekt gets an advantage of begin
lightweight while providing type safety and effect polymorphism in place of
the limitation of expressiveness.

1 import immutable/list
2
3 effect Print(str: String): Unit
4
5 def myMap[A, B](l: List[A]) { f: A => B } : List[B] =
6 l match {
7 case Nil() => Nil[B]()
8 case Cons(a, rest) =>
9 Cons(f(a), myMap(rest) { a => f(a) })

10 }
11
12 def main() = {
13 try {
14 myMap(["A", "B", "C"]) { a => Print(a) };
15 ()
16 }
17 with Print { str =>
18 println(str)
19 resume(())
20 }}

FIGURE 2.3: Operation call in a block

A
B
C

FIGURE 2.4: The result of Figure 2.3

8 Chapter 2. Background

1 import effekt
2
3 record Read(Read)
4 record Print(Print)
5
6 def sayHello = (Read, Print) => {
7 val name = Read.Read();
8 Print.Print(infixConcat(
9 infixConcat("Hello ", name), "!"))

10 }
11
12 def main = () => {
13 handle {
14 (Read, Print) => {
15 sayHello(Read, Print)
16 }
17 } with ([{
18 Read: (resume) => {
19 resume("Kazuki")
20 }
21 }, {
22 Print: (str, resume) => {
23 println(str);
24 resume(())
25 }
26 }])
27 }

FIGURE 2.5: A translated System Ξ program from Figure 2.2

2.3 Bidirectional Effects

In Effekt, many kinds of programs can be expressed by algebraic effects.
However it is hard to write programs with complex control-flow. For ex-
ample, generator, async-await, and communication. Modern software uses
event-driven programming frequently. Callback functions are a conventional
pattern for event-driven, but callbacks without constraint make software com-
plex. Features such as generator and async-await is a solution of this prob-
lem because these are useful for writing structured event-driven programs
(Zhang et al., 2020). These features involve bidirectional control flow. In lan-
guages with algebraic effects, it is impossible to implement these bidirectional
program with keeping effect safety.

Bidirectional algebraic effects (Zhang et al., 2020) are a novel concept that
makes it possible to implement bidirectional control flow in a simple way.
The difference between plain algebraic effects and bidirectional algebraic ef-
fects is in the propagating direction of effect that is raised in the handler.
With plain algebraic effects, an effect propagates up the dynamic call stack

2.3. Bidirectional Effects 9

to its handler. With bidirectional algebraic effects, an effect propagates to the
location where the initiating effect was raised. This is the opposite direction
to plain algebraic effects.

Bidirectional effects behaves as Figure 2.6. There are two differences be-
tween plain and bidirectional algebraic effects. First, operation calls may
raise effects that are listed in its operation definition. Effect Replace is listed
in the definition of effect Yield (line 1). An operation call do Yield() may
raise a effect Replace. Second, function resume takes a block parameter. This
block is evaluated in the location where the initiating effect was raised. If
an effect is raised while this block is executed, the operation call of initiating
effect raises the effect that are defined in its operation definition. A Yield ef-
fect is raised in function iter (line 6). This effect is handled in the handler in
function func (line 13-17). In the Yield handler, a Replace effect is raised in-
side the block parameter of resume (line 14). So the Yield effect raised in this
block is handled in function iter (line 7-8). The function call main() prints
“Replace handler at iter”.

Let us write this expression with plain algebraic effect. This expression
raising the Replace effect (line 14) is written as line 16. A raised effect propa-
gates up the call stack, so it is handled the handler in function main (line 22-
23). The function call main() prints “Replace handler at main” with plain
algebraic effects.

1 effect Yield(): Unit / { Replace }
2 effect Replace(x: Int): Unit
3
4 def iter() = {
5 try {
6 do Yield() }
7 with Replace { x =>
8 println("Replace handler at iter") }}
9

10 def func() = {
11 try {
12 iter() }
13 with Yield {
14 resume { do Replace(42) }
15 // With plain algebraic effects
16 // do Replace(42); resume(())
17 }}
18
19 def main() = {
20 try {
21 func() }
22 with Replace { x =>
23 println("Replace handler at main") }}

FIGURE 2.6: An example of bidirectional effects (Yield and Re-
place)

10 Chapter 2. Background

As the next examples, how to implement generator and communication
program with bidirectional effects can be described in the following way.
Figure 2.7 is a generator program taken from Zhang et al. In this program,
function iter takes a integer list and returns a modified list. It Yields each
elements of the given list. List modification performed by effects Replace
and Reject in the handler of effect Yield. In the block of the parameter of
function resume in this handler, raising Replace means replacing the element
with x and raising Reject means removing the element. These effects, listed at
the definition of Yield (line 3), are raised at the location of operation call of
Yield (line 11). Therefore these are handled by iter (line 10-15). In function
main, function iter is called with a list lst (line 20). Function iter raises an
effect Yield (line 11) and handled at line21-24. In the handler of Yield, if x <
0, effect Reject is raised; otherwise effect Replace is raised with x * 2 (line
23). These effects are handled in function iter and handlers override or drop
elements (line 14-15). The result of lst is showed at the bottom of Figure 2.7.

The advantage of bidirectional effects over plain algebraic effects in this
example is type-safety. Figure 2.8 is an implementation of Figure 2.7 with
plain algebraic effects. Effects Replace and Reject are defined as a data type
Modification (line 3-6). A value of Modification is passed from the handler
of Yield to the operation call of Yield (line 13 and 27). Even if a programmer
forgets to handle the result of do Yield(x) (line 16-19), the program is passed
compiling and it works. Because this violates the type (effect) safety, this is
not intended behavior. We want a type error that a modification (replace or
reject) is not handled. Using bidirectional effects, if a programmer forgets to
handle effects from do Yield(x) (line 14-15), the compiling is failed.

2.3. Bidirectional Effects 11

1 effect Replace(x: Int): Unit
2 effect Reject(): Unit
3 effect Yield(x: Int): Unit / { Replace, Reject }
4
5 def iter(lst: List[Int]): List[Int] / { Yield } =
6 lst match {
7 case Nil() => Nil()
8 case Cons(x, xs) =>
9 val xsp = iter(xs)

10 try {
11 do Yield(x)
12 Cons(x, xsp)
13 }
14 with Replace { xp => Cons(xp, xsp) }
15 with Reject { xsp }
16 }
17
18 def main() = {
19 val lst = [0, 1, 3, -2, -8, 9]
20 val lst2 = try { iter(lst) }
21 with Yield { x =>
22 resume {
23 if (x < 0) do Reject() else do Replace(x * 2) }
24 }
25 println(lst2)
26 }

Cons(0, Cons(2, Cons(6, Cons(18, Nil()))))

FIGURE 2.7: An example of generator and the result of it

12 Chapter 2. Background

1 effect Yield(x: Int): Modification
2
3 type Modification {
4 Replace(x: Int);
5 Reject()
6 }
7
8 def iter(lst: List[Int]): List[Int] / { Yield } =
9 lst match {

10 case Nil() => Nil()
11 case Cons(x, xs) =>
12 val xsp = iter(xs)
13 val mod = do Yield(x)
14
15 // Mistake!
16 // mod match {
17 // case Replace(x) => Cons(x, xsp)
18 // case Reject => xsp
19 //}
20 Cons(x, xsp)
21 }
22
23 def main() = {
24 val lst = [0, 1, 3, -2, -8, 9]
25 val lst2 = try { iter(lst) }
26 with Yield { x =>
27 resume(if (x < 0) Reject() else Replace(x * 2))
28 }
29 println(lst2)
30 }

FIGURE 2.8: An implementation of Figure 2.7 with plain alge-
braic effects

An yet another example, consider a communication program Figure 2.9
taken from Zhang et al. This program denotes the exchange effects between
function pinger and ponger. Function pinger raises an effect Ping that is
handled by function ponger and function ponger raises an effect Pong that is
handled by function pinger. Figure 2.10 shows how pong-pong program to
works. In this figure, a box denotes the function context in the call stack. A
line denotes the function call. A dotted box denotes the handler and a dotted
line denotes the flow of raised effect. Function main calls pinger with 0 and
5. This means that functions pinger and ponger repeat to exchange effects 5
times. Function pinger raises an effect Ping (line 8) and it is handled by the
handler in function main (line 30-33). In the block of the parameter of resume
in it, function ponger is called (line 32). This function call is evaluated at do
Ping() (line 8), so the context of ponger is above the context of pinger in the
call stack. Function ponger raises an effect Pong (line 19) and it is handled by

2.3. Bidirectional Effects 13

the handler if function pinger (line 11-14). In this handler, function pinger is
called with i + 1 and N, that increments the counter i. The continuation is
the same as before untile i = 0.

This program cannot be implemented using plain algebraic effects, be-
cause the handler would send an other effect to the location where initiating
effect was raised. More practical examples are explained in Chapter 6.

14 Chapter 2. Background

1 effect Ping(): Unit / { Pong }
2 effect Pong(): Unit / { Ping }
3
4 def pinger(i: Int, N: Int): Unit / {Ping, Console} = {
5 println("enter pinger")
6 println(i)
7 try {
8 if (i < N) do Ping()
9 else ()

10 }
11 with Pong {
12 println("enter Pong handler")
13 resume { pinger(i + 1, N) }
14 }}
15
16 def ponger(): Unit / {Pong, Console} = {
17 println("enter ponger")
18 try {
19 do Pong()
20 }
21 with Ping {
22 println("enter Ping handler")
23 resume { ponger() }
24 }}
25
26 def main() = {
27 try {
28 pinger(0, 10)
29 }
30 with Ping {
31 println("enter Ping handler@main")
32 resume { ponger() }
33 }}

enter pinger
0
enter Ping handler@main
enter ponger
enter Pong handler
enter pinger
1
enter Ping handler
enter ponger
enter Pong handler
enter pinger
2
enter Ping handler
enter ponger
enter Pong handler

enter pinger
3
enter Ping handler
enter ponger
enter Pong handler
enter pinger
4
enter Ping handler
enter ponger
enter Pong handler
enter pinger
5

FIGURE 2.9: An example of communication (ping and pong)
and the result of it

2.3. Bidirectional Effects 15

main() Ping

ponger()

Pong

pinger(1, 5)

Ping

pinger(0, 5)

ponger()

FIGURE 2.10: Ping pong

17

Chapter 3

Problems and Proposal

As we mentioned, there is a problem that we cannot express bidirectional
control flow in languages with plain algebraic effects, such as Effekt and
Koka. This prevents us from implementing generator, async-await, and com-
munication. These are particularly useful in real-world software, which is
often event-driven.

To solve this problem, we introduce bidirectional algebraic effects to Ef-
fekt language.

We chose Effekt language for the following reasons. First, Effekt is prac-
tical because it has many practical features, including records, and it has a
well-working compiler and runtime system. Second, Effekt takes a unique
approach to effect polymorphism, and we wonder the synergy that is oc-
curred when we mix this approach and bidirectional effects.

There are two major tasks to introduce bidirectional algebraic effects to
Effekt.

1. Adding effects to signature of operations.
Example: effect Yield(x: Int): Unit / {Replace, Reject}

2. Allowing resume to be passed a computation.
Example: resume { do Fail() }

In Chapter 4, we describes details of compiler and runtime system imple-
mentation to work programs with bidirectional effects well. Then in Chapter
5, we describes details of formalization to ensure the type safety.

19

Chapter 4

Implementation

In this chapter, we first explain the structure of the compiler and runtime
system of Effekt. Then we explain how to implement bidirectional algebraic
effects.

4.1 Effekt Compiler

The compiler of Effekt 1 consists of multiple modules (Phase in the code of Ef-
fekt compiler). The module Parser analyzes a given program and generates
an AST (Abstract Syntax Tree). The module Namer collects the definitions of
identifiers such as effects, variables, and parameters. It generates a mapping
from source identifiers to symbol which is a structure with a name and a type.
For example, Yield → EffectOp(Yield, [], [x: Int], Unit, [Replace,
Reject]) represents an operation Yield has a parameter x with Int, returns a
value of Unit, and may raise effects Replace and Reject. The module Typer
infers the type and effect of expressions and outputs the type of blocks, func-
tions, and resumptions. The module Transformer transforms an AST of Ef-
fekt into an AST of System Ξ. Finally, the AST is translated to program of the
target language such as JavaScript and Chez Scheme ((chez (chez scheme))).

We modified Parser to accept the extended syntax, Namer to register an
effectful operation with the context, and Typer to resolve the type of effectful
operations.

4.2 Modification of the Extension

Extending Effekt with bidirectional effects needs four modifications. First,
we modify the declaration and grammar of operations for the parser to accept
an effectful type (i.e. α → β/ε) instead of a plain type (i.e. α → β). The
changes are shown in following figure. We express added lines and deleted
lines by using “+” and “-”.

// /shared/src/main/scala/effekt/source/Tree.scala
case class Operation(id: IdDef, tparams: List[Id],
- params: List[ValueParams], ret: ValueType) extends Definition {
+ params: List[ValueParams], ret: Effectful) extends Definition {

type symbol = symbols.EffectOp

1https://github.com/effekt-lang/effekt

https://github.com/effekt-lang/effekt

20 Chapter 4. Implementation

}

Note that classes including Operation in Tree.scala represent the AST
of Effekt. In Tree.scala, we have changed the return type ret of operations
from ValueType to Effectful, which is a value type with an effect.

// /shared/src/main/scala/effekt/symbols/symbols.scala
case class EffectOp(name: Name, tparams: List[TypeVar],

params: List[List[ValueParam]], ret: Option[Effectful],
effect: UserEffect) extends Fun

+ {
+ def otherEffects: Effects = ret.get.effects - effect
+ def isBidirectional: Boolean = otherEffects.nonEmpty
+ }

Note that classes including EffectOp in symbols.scala represent the AST
of System Ξ. In symbols.scala, we add two methods. The method otherEffects
returns the additional effects that the operation may raise. The method isBidirectional
serves as a flag telling us whether the operation is bidirectional.

We modify Parser along with the modification of AST.

// /shared/src/main/scala/effekt/Parser.scala
lazy val effectOp: P[Operation] =

- idDef ~ maybeTypeParams ~ some(valueParams) ~/ (‘:‘ ~/> valueType)
+ idDef ~ maybeTypeParams ~ some(valueParams) ~/ (‘:‘ ~/> effectful)

^^ Operation

We also modify the parser so that resume accepts a block.

// /shared/src/main/scala/effekt/Parser.scala
lazy val resumeExpr: P[Expr] =

- (‘resume‘ ^^^ IdRef("resume")) ~ valueArgs
+ (‘resume‘ ^^^ IdRef("resume")) ~ args

^^ { case r ~ args => Call(r, Nil, List(args)) withPositionOf r }

Here, args means values and blocks.
As a second step, we modify Namer to register an operation with effectful

type with the context.

// /shared/src/main/scala/effekt/Namer.scala
val name = Context.freshTermName(id)
Context scoped {

val tps = tparams map resolve
- val tpe = Effectful(resolve(ret), Effects(List(effectSym)))
- val op = EffectOp(Name(id), tps, params map resolve, Some(tpe),
- effectSym)
+ val Effectful(tpe, otherEffs) = resolve(ret)
+ val retResolved = Effectful(tpe, otherEffs + effectSym)
+ val op = EffectOp(Name(id), tps, params map resolve,
+ Some(retResolved), effectSym)

Context.define(id, op)
op

}

4.2. Modification of the Extension 21

In Namer.scala, the modification is to accept effectful types as otherEffs.
Thirdly, we modify Typer to determine the appropriate type of resume.

If an operation Eff has an effectful type a → b / { Eff, E1, E2, ... En
}, the resume function in the handler of the operation has type:

(() → b / { E1, E2, ..., En }) → t

Here, t is the result type of try-with expression corresponding to resume.
This violates the specification that block values are second-class values in
Effekt. However, it is not a problem, because the block value is immediately
used in a function call of the form Eff() (E1, E2, ..., En) (we use an italic
font for the block). That is, the block value cannot be used as a first-class
value. When an operation does not have an effectful type, the type of resume
is b → t, which is the same as the original Effekt.

// /shared/src/main/scala/effekt/Typer.scala
case d @ source.OpClause(op, params, body, resume) =>

val effectOp = d.definition
- val bt = Context.blockTypeOf(effectOp)
- val ps = checkAgainstDeclaration(op.name, bt.params, params)
- val resumeType = BlockType(Nil, List(List(effectOp.ret.get.tpe)),
- ret / Pure)
+
+ val BlockType(_, pms, tpe / effs) = Context.blockTypeOf(effectOp)
+ val ps = checkAgainstDeclaration(op.name, pms, params)
+
+ val resumeType = if (effectOp.isBidirectional) {
+ // resume { e }
+ BlockType(Nil, List(List(BlockType(Nil, List(Nil),
+ tpe / effectOp.otherEffects))), ret / Pure)
+ } else {
+ // resume(v)
+ BlockType(Nil, List(List(tpe)), ret / Pure)
+ }

In Typer.scala, we modify the typer of handlers named OpClause to infer
resumeType (the type of resume) whether a effect operation effectOp is bidi-
rectional, that is, whether the operation has effects. If the operation is bidirec-
tional, the typer infers that the type of resume is (() → tpe / effectOp.otherEffects)
→ ret. Otherwise, the typer infers that the type is tpe → ret as before.

Finally, we modify the runtime system of Effekt to work correctly with ef-
fectful operations. An effectful operation call Eff() is evaluated as Eff()(E1,
E2, ..., En) by modifying the implementation of operation in runtime sys-
tem. By this modification, a block that is passed to resume can be evaluated
in the location of the initiating operation call. Needless to say, if effects are
raised in the block, these propagate from the location of the initiating op-
eration call upwards in the dynamic call stack in the same manner as plain
algebraic effects.

22 Chapter 4. Implementation

// /lib/effekt_runtime.js
for (var op in h) {

const impl = h[op];
cap[op] = function() {

const args = Array.from(arguments);
- return shift(p)(k => impl.apply(null, args.concat([k])))
+ const arity = impl.length - 1
+ const oargs = args.slice(0, arity)
+ const caps = args.slice(arity)
+ var r = shift(p)(k => impl.apply(null, oargs.concat([k])))
+ // resume { caps => e }
+ if (caps.length > 0) {
+ return r.then(f => f.apply(null, caps))
+ }
+ // resume(v)
+ else {
+ return r
+ }

}
}

Here, the modification is to run both form resume { e } and resume(v).
We leave resume() for backward compatibility, that is, we can still pass

values to resume. This does not require a separate typing rule because we
can express resume(x) as val tmp = x; resume { tmp }.

23

Chapter 5

Formalization

In this chapter, we give a formalization of Effekt with bidirectional effects.
In the following formalization, we highlight changes from the original

language in gray . Note that we give only changed definitions and proofs.

5.1 Extended Effekt

Figure 5.1 gives the specification of extended Effekt. At the level of syntax,
a key addition is ε in the effect signature, which represents the set of effects
to be raised by an operation. We modify effect environment accordingly. We
also consider this effect in typing rules related to the operation F. Specially,
because an operation call do F(e) may raise effects, we add the union of ε to
the conclusion of EFFECTCALL. Moreover, we modify resume to take a block
which results τ0 and raises ε.

24 Chapter 5. Formalization

� �
Syntax:

Statements s ::= ...

effect F(x : τ) : τ /ε ; s effect declaration

Syntax of Types:

Effect Environment Σ ::= ∅ | Σ, F : τ −→ τ /ε

Typing rules:

Γ|∆|Σ, F : τ1 −→ τ0 /ε1 ` s2 : τ2|ε2
[EFFECT]

Γ|∆|Σ ` effect F(x1 : τ1) : τ0 /ε1 ; s2 : τ2|ε2

Σ(F) = τ1 −→ τ0 /ε Γ ` e1 : τ1
[EFFECTCALL]

Γ|∆|Σ ` do F(e1) : τ0|{F} ∪ε

Σ(F) = τ1 −→ τ0 /ε1 Γ|∆|Σ ` s : τ|ε

Γ, x1 : τ1|∆, resume : (() −→ τ0/ε1) −→ τ/φ|Σ ` s′ : τ|ε0
[TRY]

Γ|∆|Σ ` try {s} with F {(x1 : τ1)⇒ s′} : τ|(ε\{F}) ∪ ε0� �
FIGURE 5.1: An extension of Effekt (Brachthäuser et al., 2020)

5.2 Extended System Ξ

Figure 5.2 defines the syntax of extended System Ξ. We add union types υ
which is used in the proofs to deal with both value types τ and block types
σ. We also add a new member c to the block environment ∆ to memorize
capabilities. Capabilities are implementation of operations, namely handlers.

In the typing rules, we use block types σ instead of value types τ for the
parameter of k (resume in Effekt) and the result of operation (cap and F).
This is because we let the block passed to resume to be evaluated in the loca-
tion of an operation call. The passed block is evaluated immediately by the
translation from operation call do F(e) to F(e)(F1, ..., Fn) as we men-
tioned in Chapter 4. This is reflected in the translation rule of operation call
do F(e1). We add two new typing rules CAPCALL and CAPVAR for distinc-
tion between blocks and capabilities. The difference of these is the result
type, that is, value types τ of blocks and block types σ of capabilities.

In the reduction rules, we make a change to the (cap) rule. Specifically, we
changed the argument y of resumption k to block value f for which resume
takes a block parameter.

5.2. Extended System Ξ 25

� �
Syntax of Types:

Union Types υ ::= τ | σ

Block Environment ∆ ::= ∅ | ∆, f : τ | ∆, c : τ → σ

Typing rules:

Ξ = Ξ1, l : τ, Ξ2 Γ, x1 : τ1|∆, k : σ0 → τ|Ξ1 ` s : τ
[CAP]

Γ|∆|Ξ ` capl {(x1 : τ1, k : σ0 → τ)⇒ s} : τ1 → σ0

c is a cap Γ|∆|Ξ ` c : τ → σ0 Γ|∆|Ξ ` e : τ
[CAPCALL(new rule)]

Γ|∆|Ξ ` c(e) : σ0

Γ | ∆, F : τ1 → σ0 | Ξ ` s : τ

Γ, x : τ1 | ∆, k : σ0 → τ | Ξ ` s′ : τ
[HANDLE]

Γ | ∆ | Ξ ` handle {F ⇒ s} with {(x, k)⇒ s′} : τ

∆(c) = τ → σ
[CAPVAR(new rule)]

Γ | ∆ | Ξ ` c : τ → σ

Reduction Rules:

(cap) #l · Hl · (capl{(x, k)⇒ s})(v)→ s[x 7→ v, k 7→ { f ⇒ #l · Hl · f }]

where f is a block
Translation Effect to System Ξ:

S [effect F(x1 : τ1) : τ0 /ε1 ; s] = S [s]

S [do F(e1)] = F(e1) (F1, ..., Fn) where F : τ1 → τ0/{F1, ..., Fn}� �
FIGURE 5.2: An extension of SystemΞ (Brachthäuser et al.,

2020)

26 Chapter 5. Formalization

5.3 Soundness Proofs of Extended Effekt and Sys-
tem Ξ

In this section, we try to give the soundness of extended System Ξ translated
from extended Effekt. One goal of this soundness is progress and preser-
vation. Note that we use the same numbering of theorems and lemmas as
Brachthäuser et al., 2020.

THEOREM 4.2 (PROGRESS OF SYSTEM Ξ) If ∅ | ∅ | ∅ ` s : τ, then
s is a value v or s 7→ s′.

THEOREM 4.3 (PRESERVATION OF SYSTEM Ξ) If ∅ | ∅ | ∅ ` s : τ
and s 7→ s′, then ∅ | ∅ | ∅ ` s′ : τ.

To give this proof, some lemmas and theorems are given. However Lemma
A.5cap have a problem and this problem prevents the proof of Theorem A.6.
We explain this with proofs. Remaining lemma and theorems can be found
in Appendix A.

5.3.1 Lemma A.5cap

(CONTEXT PLUGGING FOR CAPABILITIES) Given E : σ→ υ and
dEe = Ξ′, if Γ | ∆ | Ξ, Ξ′ ` s : σ where s = (capl{(x, k)⇒ s′′})(v) ,
then Γ | ∆ | Ξ ` E[s] : υ .

Case E = 2: Consider E = σ → σ and Ξ′ = ∅, if Γ | ∆ | Ξ, ∅ ` s : σ, then
obviously Γ | ∆ | Ξ ` E[s] : σ.

Case E = val x = E′; s′: From dE′e = dEe = Ξ′, E′ : σ → υ′′, and the induc-
tion hypothesis, we obtain:

Γ | ∆ | Ξ ` E′[s] : υ′′ (5.1)

Γ, x : υ′′ | ∆ | Ξ ` s′ : τ (5.2)

We apply (VAL) to 5.1 and 5.2 and obtain:

Γ, | ∆ | Ξ ` E[s] : τ (5.3)

Case E = #l{E′} From the premise and Ξ′ = dEe = l, dE′e, we obtain:

Γ | ∆ | Ξ, l : υ, Ξ′′ ` s : υ (5.4)

where Ξ′′ = dE′e. From E′ : σ→ υ and 5.4, we obtain:

Γ | ∆ | Ξ, l : υ ` E′[s] : υ (5.5)

We apply [DELIMIT] to 5.5 and obtain:

Γ | ∆ | Ξ ` E[s] : υ (5.6)

5.3. Soundness Proofs of Extended Effekt and System Ξ 27

2

The problem of Lemma A.5cap is the type of E[s] is υ (τ or σ) in 5.6. This
prevents the proof of Theorem A.6.

5.3.2 Theorem A.6

(PRESERVATION IN CONTEXT) Γ | ∆ | ∅ ` E[s] : τ, E : υ′ → τ,
and s→ s′, then Γ | ∆ | ∅ ` E[s′] : τ

Case (CAP) We have E : σ′ → τ and #l · Hl · (capl{(x, k) ⇒ s′′})(v) →
s′′[x 7→ v, k 7→ { f ⇒ #l · Hl · f }].
We use Lemma A.4cap to obtain:

Γ | ∆ | Ξ, Ξ′ ` (capl{(x, k)⇒ s′′})(v) : σ′′ (5.7)

with d#l{Hl}e = Ξ′

From rule [CAP-CALL], we have:

Γ | ∆ | Ξ, Ξ′ ` capl{(x, k)⇒ s′′} : τ1 → σ′′ (5.8)

Γ | ∆ | Ξ, Ξ′ ` v : τ1 (5.9)

From rule [CAP], we have:

Γ, x : τ1 | ∆, k : σ′′ → τ′ | Ξ ` s′′ : τ′ (5.10)

We show:

Γ | ∆ | Ξ ` s′′[x 7→ v, k 7→ { f ⇒ #l · H1[f]}] : τ′ (5.11)

using Lemma A1, A2, and following derivations:

Γ ` v : τ1 (5.12)

Γ | ∆ | Ξ ` { f ⇒ #l · H1[f]} : σ′′ → τ′ (5.13)

5.12 equals to 5.9. To derive 5.13, we show:

Γ | ∆, f : σ′′ | Ξ ` #l · H1[f] : τ′ (5.14)

We apply (BLOCK) to 5.14 and get 5.13.

We apply block context weakening to 5.7 and Γ | ∆ | Ξ′ ` f : σ′′, replace
(capl{(x, k)⇒ s′′})(v) with f , and get:

Γ | ∆, f : σ′′ | Ξ, Ξ′ ` f : σ′′ (5.15)

Finally, we apply Lemma A.5cap to 5.15 and get:

Γ | ∆, f : σ′′ | Ξ ` #l · Hl[f] : υ′′ (5.16)

28 Chapter 5. Formalization

To use 5.16, we must replace τ′ with υ′′ in the proof. We must modify the
result type of rule (BLOCK). This leads that the result type of all derivations
becomes υ, and it means that a block is treated as a first-class value. We
cannot change block type and we take an another approach to avoid this
disruption in the future.

29

Chapter 6

Examples

In this chapter, we present several examples to show the practical use of bidi-
rectional effects. These programs are fully under the type-safe and effect-safe,
that is, users can know their mistake at compile time. The type and effect
safety reduces bugs and removes the need for verbose tests.

6.1 Client-server Communication

Client-server communications are common along with popularization of the
Internet, such as HTTP.

Figure 6.1 is a chat system where the user can post messages and add
reactions. A record and functions in lines 3-6 are definitions of a communi-
cation library whose details are hidden. In lines 8-13, effects related to the
communication are defined. These are Connected meaning that a session be-
tween a server and a client is established, Message meaning data sent from
a client to a server (request) and Response meaning data sent from a server
to a client (response). A definition of an effect can have multiple operations
and these are handled by one identifier of the effect. Effect Message has two
operations message and reaction. Operation message meaning a message of
the chat and returns the ID of one. This has Response as the requirements of
a capability and it means the corresponding response to a client.

Function server (line 15-28) is a implementation of the server side. This
function listens to wait connections from clients (line 17), waits requests from
a connected client (line 19) as effects Message, and handles requests from a
client (line 21-27). The handler of Message.message makes a response, incre-
ments num_of_msg that denotes the total number of created messages, and
returns the number. The handler of Message.reaction makes a response
with message id and the name of a reaction (e.g. +1). This handler really adds
a reaction named name to the message of ID id in the production program.

Function client denotes a implementation of the client side. This func-
tion connects to a server localhost (line 32), sends two messages, and adds
reactions to each sent message (line 33-36). The handler of Response.response
prints a message from the server (line 38-42) and the handler of Connected
just prints “Connected” (line 43-45).

The flow of execution can be described in the following way. Note that
functions server and client are executed as one program. This is useful for
debugging. Of course these functions are separated into individual programs

30 Chapter 6. Examples

in the production usage. This program firstly executes function main which
calls function server, and this function calls function wait. Then, function
wait internally calls function client. In function client, effects Message
are raised and these effects are handled in function server. The handler of
Message raises an effect response back to the location where effect Message
is raised. This effect response handled in function client.

Processes in the server and the client are totally separated into two func-
tions, and these are written in natural way.

6.1. Client-server Communication 31

1 module chat
2
3 record Client()
4 def connect(host: String) : Unit / { Connected } = ...
5 def wait(c: Client) { cli: Unit } : Unit = ...
6 def accept { f: Client => Unit } : Unit = ...
7
8 effect Connected(): Unit
9 effect Message {

10 def message(msg: String): Int / { Response }
11 def reaction(id: Int, name: String): Unit / { Response } }
12 effect Response {
13 def response(msg: String): Unit }
14
15 def server() : Unit / { Console } = {
16 var num_of_msg = 0
17 accept { c =>
18 try {
19 c.wait { client() }
20 }
21 with Message {
22 def message(msg) = resume {
23 do response(msg);
24 num_of_msg = num_of_msg + 1;
25 num_of_msg }
26 def reaction(id, name) = resume {
27 do response("React to "++show(id)++" with "++show(name)) }
28 } } }
29
30 def client(): Unit / { Console, Message } = {
31 try {
32 connect("localhost")
33 var id = do message("Hello")
34 do reaction(id, "+1")
35 id = do message("World")
36 do reaction(id, "+1")
37 }
38 with Response {
39 def response(msg) = {
40 println("Server: " ++ show(msg))
41 resume(())
42 } }
43 with Connected {
44 println("Connected")
45 resume(()) } }
46
47 def main() = server()

FIGURE 6.1: An application of chat

32 Chapter 6. Examples

Connected
Server: Hello
Server: React to 1 with +1
Server: World
Server: React to 2 with +1

FIGURE 6.2: The result of Figure 6.1

6.2 Token Ring

Figure 6.3 is a more interesting example of communication implementing
token-ring. Token-ring is an implementation of ring network in which a to-
ken is passed around. Each node is connected to the next node and the last
node is connected to the first node. As a result, nodes are connected like a
ring. The node that has the token, has the right to send data. The node adds
data to the token and gives it to the next node. The receiver node takes data
from the token.

Figure 6.5 shows an example of token ring. If we assume that node 0
sends data to node 1, an empty token flows node 0 to node 1. Node 1 adds
data to the token and the token with data flows from node 1 to node2, then
to node 0. Lastly, node 0 obtains data from the token.

In Figure 6.3, effect Token is used to transfer data Frame which has source
and destination indices as well as the message (line 4-5). Effect Terminate is
used by function node to tell that it is the last node (line 7). Figure 6.6 shows
that how functions node and tokenRing are called and how the token flows.
Function tokenRing called in main calls function node. Function node either
calls the next node (line 12) or raises an effect Terminate if the current node
is the last one (line 14). Effect Terminate is handled in tokenRing (line 39-40).
This flow is shown in Figure 6.6 (left). Lines denote function call and dot-
ted lines denote flows of raised effect. Next, the handler of Terminate raises
Token back to the last node (line 40). This is the place where bidirectional ef-
fects are used. The handler of Token (line 15-33) catches effects in each nodes
and raises new effect Token (line 30, 32, and 33) An effect Token is eventually
handled in tokenRing (line 41-44) and function tokenRing is called to repeat
the flow as described above (line 43). This flow is shown in Figure 6.6 (right).

Figure 6.4 shows the result of Figure 6.3. Output with a number and a
value shows the token in each node. For example, 2 Some(Frame(5, 3, I’m
3!)) means the token has the frame and in node 2. If the token is in the target
node, the node outputs the source node and the message. In the result, node
3 sends “I’m 3!” to node 5 and we can see this by the flow of the data through
node 3 to node 5.

6.2. Token Ring 33

1 module tokenring
2 import immutable/option
3
4 record Frame(destination: Int, source: Int, message: String)
5 effect Token(data: Option[Frame]): Unit
6
7 effect Terminate(): Unit / { Token }
8
9 def node(id: Int, N: Int) : Unit / { Token, Terminate, Console } = {

10 try {
11 if (id < N) {
12 node(id + 1, N) }
13 else {
14 do Terminate() } }
15 with Token { data =>
16 println(id); println(data)
17
18 val newData = data match {
19 case None() => None[Frame]()
20 case Some(frame) =>
21 if (frame.destination == id) {
22 println(" Data sent from: "); println(frame.source);
23 println(" Message: "); println(frame.message)
24 None[Frame]() }
25 else { data } }
26
27 newData match {
28 case None =>
29 if (id == 3) {
30 do Token(Some(Frame(5, id, "I’m 3!"))) }
31 else {
32 do Token(None) }
33 case Some(_) => do Token(newData) } } }
34
35 def tokenRing(N: Int, loopCount: Int, loopNum: Int,
36 data: Option[Frame]) : Unit / { Console } = {
37 try {
38 node(0, N) }
39 with Terminate {
40 resume { do Token(data) } }
41 with Token { data =>
42 if (loopCount < loopNum) {
43 tokenRing(N, loopCount + 1, loopNum, data) }
44 else { () } } }
45
46 def main() = tokenRing(5, 0, 2, None[Frame]())

FIGURE 6.3: An application of token ring

34 Chapter 6. Examples

5 None()
4 None()
3 None()
2 Some(Frame(5, 3, I’m 3!))
1 Some(Frame(5, 3, I’m 3!))
0 Some(Frame(5, 3, I’m 3!))
5 Some(Frame(5, 3, I’m 3!))
Data sent from: 3
Message: I’m 3!

4 None()
3 None()
2 Some(Frame(5, 3, I’m 3!))
1 Some(Frame(5, 3, I’m 3!))
0 Some(Frame(5, 3, I’m 3!))
5 Some(Frame(5, 3, I’m 3!))
Data sent from: 3
Message: I’m 3!

4 None()
3 None()
2 Some(Frame(5, 3, I’m 3!))
1 Some(Frame(5, 3, I’m 3!))
0 Some(Frame(5, 3, I’m 3!))

FIGURE 6.4: The result of Figure 6.3 (processed)

node 0

node 1

node 2

Empty token

Token with data

To
ken

 w
ith

 d
ata

FIGURE 6.5:
An example
of token ring

tokenRing

node 0

node 1

node 4

...

Term
in

ate

tokenRing

node 0

node 1

node 4

To
ken Token

Token

...

1. Get last node 2. Let the token flow

FIGURE 6.6: An example of
token ring

35

Chapter 7

Related works

7.1 Shallow Handlers

There are two kinds of plain handlers. One is deep handlers used in languages
explained before, such as Effekt and Koka. The other is shallow handlers.
The difference between shallow handlers and deep handlers is whether the
resumption includes try-with clause. For example, consider the following
code:

1 try {
2 do Exn()
3 do Exn()
4 } with Exn {
5 resume(42)
6 }

As we explained in Chapter 2, resume in deep handlers is the computation
after evaluating do Exn() in line 2, that is, resume is try { 2; do Exn() }
with Exn { resume(42) } . Note that a symbol 2 represents a “hole”, i.e.,
the evaluation position. If the same effect is raised after resumption, the effect
is handled by the same handler.

On the other hand, resume in shallow handlers does not include try-with
clause. In our particular example, resume is just do Exn(). This means the
second do Exn() is handled by the outer handler.

Shallow handlers are useful for programs with mutually recursive func-
tions that raise effects to each other, such as ping and pong mentioned in
Chapter 2. It has been shown that using shallow handlers to implement
countdown and pipes leads to better performance in terms of execution time
Hillerström and Lindley, 2018. Using bidirectional effects, we can implement
such programs while keeping track of effects of operation calls. For example,
if the bidirectional effect Eff is defined as:

effect Eff() : Unit / { Read, Print }

Then we know that an operation call do Eff() may raise effects Read and
Print. This sequencing of effects can be used for providing readable error
messages. For example, if a user forget to write the handler of Print in the
following program:

36 Chapter 7. Related works

def main() : Unit / {} = {
try {

Eff()
} with Eff { resume { () }
} with Read { resume(()) }

}

The compiler with bidirectional effects reports the following error:

[error] test.effekt:5:1: Unhandled effects: Print
def main() : Unit / {} = {

In addition, bidirectional effects are easier to reason about, because they
are based on deep handlers, which have a simpler semantics compared to
shallow handlers (Kammar et al., 2013; Lindley et al., 2017);

7.2 Session Types

Session types (Honda et al., 1998) are a type discipline for communication-
based programming. Users can write how nodes to communicate and what
data is transferred with types. As we saw in chapter 6, bidirectional effects
can also express programs with communication. Bidirectional effects do not
support features of session types, for example orders of communication, sub-
typing, and preventing deadlocks. One of advantage of bidirectional effects
is that users can write communication programs type safely with familiar
grammar such as Java.

37

Chapter 8

Conclusion

We extended Effekt language with bidirectional algebraic effects to allow ma-
nipulation of complex control flow in a potentially practical language with
algebraic effects. We found that implementation of bidirectional effect to the
compiler and the runtime system of Effekt was easy thanks to the carefully
designs of these. However, it was not possible to prove soundness of the ex-
tended Effekt by simply modifying the original proof because blocks (lamb-
das) are not first-class values. Blocks should be treated as pseudo first-class
values because blocks are passed through resume and a operation call. We
showed that some programs with bidirectional control flow can be imple-
mented by extended Effekt, for example generator and communication.

As future work, there are three topics remaining. First, we complete for-
malization. To finish the soundness proof, we modify the formalize and
proofs. Second, we modify the compiler and runtime system to work com-
munication examples really. We need to modify the compiler to generate a
server and a client program separately, and the runtime system to let these
program communicate over TCP. Third, we measure performances such as
compiling time and execution time to examine effects of this extension.

39

Bibliography

Biernacki, Dariusz, Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski (Dec.
2019). “Binders by Day, Labels by Night: Effect Instances via Lexically
Scoped Handlers”. In: Proc. ACM Program. Lang. 4.POPL. DOI: 10.1145/
3371116. URL: https://doi.org/10.1145/3371116.

Brachthäuser, Jonathan Immanuel, Philipp Schuster, and Klaus Ostermann
(Nov. 2020). “Effects as Capabilities: Effect Handlers and Lightweight Ef-
fect Polymorphism”. In: Proc. ACM Program. Lang. 4.OOPSLA. DOI: 10.
1145/3428194. URL: https://doi.org/10.1145/3428194.

(chez (chez scheme)). https://www.scheme.com/.
Effekt Language: Home. https://effekt-lang.org/.
Fowler, Martin (2004). Inversion of Control Containers and the Dependency Injec-

tion pattern. https://martinfowler.com/articles/injection.html.
Hillerström, Daniel and Sam Lindley (2018). “Shallow effect handlers”. In:

Asian Symposium on Programming Languages and Systems. Springer, pp. 415–
435.

Honda, Kohei, Vasco T Vasconcelos, and Makoto Kubo (1998). “Language
primitives and type discipline for structured communication-based pro-
gramming”. In: European Symposium on Programming. Springer, pp. 122–
138.

Kammar, Ohad, Sam Lindley, and Nicolas Oury (2013). “Handlers in Action”.
In: Proceedings of the 18th ACM SIGPLAN International Conference on Func-
tional Programming. ICFP ’13. Boston, Massachusetts, USA: Association
for Computing Machinery, 145–158. ISBN: 9781450323260. DOI: 10.1145/
2500365.2500590. URL: https://doi.org/10.1145/2500365.2500590.

Leijen, Daan (2017). “Type Directed Compilation of Row-Typed Algebraic
Effects”. In: Proceedings of Principles of Programming Languages (POPL’17),
Paris, France. URL: https : / / www . microsoft . com / en - us / research /
publication / type - directed - compilation - row - typed - algebraic -
effects/.

Lindley, Sam, Conor McBride, and Craig McLaughlin (2017). Do be do be do.
arXiv: 1611.09259 [cs.PL].

Osvald, Leo, Grégory Essertel, Xilun Wu, Lilliam I. González Alayón, and
Tiark Rompf (Oct. 2016). “Gentrification Gone Too Far? Affordable 2nd-
Class Values for Fun and (Co-)Effect”. In: SIGPLAN Not. 51.10, 234–251.
ISSN: 0362-1340. DOI: 10.1145/3022671.2984009. URL: https://doi.org/
10.1145/3022671.2984009.

Plotkin, Gordon and Matija Pretnar (2013). “Handling Algebraic Effects”. In:
Logical Methods in Computer Science 9.4. Ed. by AndrzejEditor Tarlecki.
ISSN: 1860-5974. DOI: 10.2168/lmcs- 9(4:23)2013. URL: http://dx.
doi.org/10.2168/LMCS-9(4:23)2013.

https://doi.org/10.1145/3371116
https://doi.org/10.1145/3371116
https://doi.org/10.1145/3371116
https://doi.org/10.1145/3428194
https://doi.org/10.1145/3428194
https://doi.org/10.1145/3428194
https://www.scheme.com/
https://effekt-lang.org/
https://martinfowler.com/articles/injection.html
https://doi.org/10.1145/2500365.2500590
https://doi.org/10.1145/2500365.2500590
https://doi.org/10.1145/2500365.2500590
https://www.microsoft.com/en-us/research/publication/type-directed-compilation-row-typed-algebraic-effects/
https://www.microsoft.com/en-us/research/publication/type-directed-compilation-row-typed-algebraic-effects/
https://www.microsoft.com/en-us/research/publication/type-directed-compilation-row-typed-algebraic-effects/
https://arxiv.org/abs/1611.09259
https://doi.org/10.1145/3022671.2984009
https://doi.org/10.1145/3022671.2984009
https://doi.org/10.1145/3022671.2984009
https://doi.org/10.2168/lmcs-9(4:23)2013
http://dx.doi.org/10.2168/LMCS-9(4:23)2013
http://dx.doi.org/10.2168/LMCS-9(4:23)2013

40 Bibliography

Pretnar, Matija (2015). “An Introduction to Algebraic Effects and Handlers.
Invited tutorial paper”. In: Electronic Notes in Theoretical Computer Science
319. The 31st Conference on the Mathematical Foundations of Program-
ming Semantics (MFPS XXXI)., pp. 19 –35. ISSN: 1571-0661. DOI: https:
/ / doi . org / 10 . 1016 / j . entcs . 2015 . 12 . 003. URL: http : / / www .
sciencedirect.com/science/article/pii/S1571066115000705.

Zhang, Yizhou, Guido Salvaneschi, and Andrew C. Myers (Nov. 2020). “Han-
dling Bidirectional Control Flow”. In: Proc. ACM Program. Lang. 4.OOP-
SLA. DOI: 10.1145/3428207. URL: https://doi.org/10.1145/3428207.

https://doi.org/https://doi.org/10.1016/j.entcs.2015.12.003
https://doi.org/https://doi.org/10.1016/j.entcs.2015.12.003
http://www.sciencedirect.com/science/article/pii/S1571066115000705
http://www.sciencedirect.com/science/article/pii/S1571066115000705
https://doi.org/10.1145/3428207
https://doi.org/10.1145/3428207

41

Appendix A

Soundness Proofs of extended
Effekt and System Ξ

A.0.1 Lemma A.1

(EXPRESSION VALUE SUBSTITUTION) Given a statement Γ, x : τ′ | ∆ | Ξ `
s : τ and a value Γ ` v : τ′, we have Γ | ∆ | Ξ ` s[x 7→ v] : τ.

Case (CAP) Straightforward

Case (CAPCALL) Straightforward

Case (HANDLE) Straightforward

Case (CAPVAR) Straightforward

A.0.2 Lemma A.2

(BLOCK VALUE SUBSTITUTION) Given a statement Γ | ∆, f : σ | Ξ `
s : τ and a block value Γ | ∆ | Ξ ` w : σ, we have Γ | ∆ | Ξ ` s[f 7→
w] : τ.

Case (CAP) Straightforward

Case (CAPCALL) Straightforward

Case (HANDLE) Straightforward

Case (CAPVAR) Straightforward

A.0.3 Lemma A.2’

(CAPABILITY VALUE SUBSTITUTION)
Given a statement Γ | ∆, c : τ → σ | Ξ ` s : τ and a block value
Γ | ∆ | Ξ ` w : τ → σ , we have Γ | ∆ | Ξ ` s[c 7→ w] : τ.

Case (CAP) Straightforward

Case (CAPCALL) Straightforward

Case (HANDLE) Straightforward

Case (CAPVAR) Straightforward

42 Appendix A. Soundness Proofs of extended Effekt and System Ξ

A.0.4 Lemma A.3

(LABEL CONTEXT WEAKENING) If Γ | ∆ | Ξ ` s : τ then for l /∈ Ξ
and Ξ = Ξ1, Ξ2 we have Γ | ∆ | Ξ1, l : τ′, Ξ2 ` s : τ.

Case (CAP) Straightforward

Case (CAPCALL) Straightforward

Case (HANDLE) Straightforward

Case (CAPVAR) Straightforward

A.0.5 Lemma A.4cap

(CORRESPONDENCE OF LABELS FOR CAPABILITIES) If Γ | ∆ | Ξ `
E[s] : υ where E : σ′ → υ and s = (capl{(x, k)⇒ s′′})(v) , then

Γ | ∆ | Ξ, Ξ′ ` s : σ′ with dEe = Ξ′.

This proof is the same as the original proof. Note that if E = 2, then
υ = σ, otherwise υ = τ.

2

A.0.6 Theorem 5.1

(TRANSLATION PRESERVES WELL-TYPEDNESS) If Γ | ∆ | Σ ` s :
τ | ε, then Γ | T [∆] + T [ε] | ∅ ` S [s] : τ.

Case (EFFECT) Straightforward

Case (EFFECTCALL) From the assumptions of [EFFECTCALL], we have:

Γ ` e1 : τ1 (A.1)

Σ(F) = τ1 → τ0/ε′ (A.2)

From (A.2), we know that the type of F in the translated block context
is τ1 → τ0.
From [BLOCKVAR] and ∆′(F) = τ1 → τ0, we derive:

Γ | ∆′ | ∅ ` F : τ1 → τ0 (A.3)

where ∆′ = T [∆] + T [{F} ∪ ε′]

Finally we apply [CALL] and obtain:

Γ | T [∆] + T [{F} ∪ ε′] | ∅ ` F(e1) : τ0

Appendix A. Soundness Proofs of extended Effekt and System Ξ 43

Case (TRY) From the assumptions of [TRY], we have:

Σ(F) = τ1 −→ τ0/ε1 (A.4)
Γ|∆|Σ ` s : τ|ε (A.5)

Γ, x1 : τ1|∆, resume : (() −→ τ0/ε1) −→ τ/φ|Σ ` s′ : τ|ε0 (A.6)

From (A.4), the type of F in the translated block context is τ1 → τ0.

From (A.5) and the IH, we have Γ | T [∆] + T [ε] | ∅ ` S [s] : τ. By
applying weakening, we can derive:

Γ | T [∆] + T [(s\{F}) ∪ ε0], F : τ1 → τ0 | ∅ ` S [s] : τ (A.7)

Similarly, from (A.6) and the IH, we have Γ, x : τ1 | T [∆]+T [ε0], resume :
(()→ τ0)→ τ | ∅ ` S [s′] : τ, and by weakening, we obtain:

Γ, x : τ1 | T [∆] + T [(s\{F}) ∪ ε0], r : ((T [ε0])→ τ0)→ τ | ∅ ` S [s′] : τ
(A.8)

Lastly, using (A.7), (A.8), and [HANDLE], we derive:

Γ | T [∆] + T [(s\{F}) ∪ ε0] | ∅ ` handle {F ⇒ S [s]} (A.9)

with {(x, resume)⇒ S [s′]} : τ

2

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Background
	Algebraic Effects
	Effekt Language
	Bidirectional Effects

	Problems and Proposal
	Implementation
	Effekt Compiler
	Modification of the Extension

	Formalization
	Extended Effekt
	Extended System
	Soundness Proofs of Extended Effekt and System
	Lemma A.5cap
	Theorem A.6

	Examples
	Client-server Communication
	Token Ring

	Related works
	Shallow Handlers
	Session Types

	Conclusion
	Bibliography
	Soundness Proofs of extended Effekt and System
	Lemma A.1
	Lemma A.2
	Lemma A.2'
	Lemma A.3
	Lemma A.4cap
	Theorem 5.1

