TOKYO INSTITUTE OF TECHNOLOGY

MASTER THESIS

Supporting Multiple Inheritance in a

Python DSL for GPGPU
Author: Supervisor:
Fathul Asrar ALFANSURI Prof. Hidehiko MASUHARA
Student Number:
19M38053

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

in the

Programming Research Group
Department of Mathematical and Computing Science

February 28, 2022

https://www.titech.ac.jp/
https://prg.is.titech.ac.jp/people/fathul-asrar-alfansuri/
http://prg.is.titech.ac.jp/people/masuhara/
https://prg.is.titech.ac.jp/
https://educ.titech.ac.jp/is/

iii

Declaration of Authorship

I, Fathul Asrar ALFANSURI, declare that this thesis titled, “Supporting Multiple In-
heritance in a Python DSL for GPGPU” and the work presented in it are my own. I
confirm that:

This work was done wholly or mainly while in candidature for a research de-
gree at this University.

Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

Where I have consulted the published work of others, this is always clearly
attributed.

Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

I have acknowledged all main sources of help.

Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

“It excites me that with a sequence of words called “codes’ given to machines called ‘comput-

ers’, you can create many things!
From a simple ’hello world!’ to a visually stunning and complex open space world

within video games!”

Fathul Asrar Alfansuri

vii

TOKYO INSTITUTE OF TECHNOLOGY

Abstract

School of Computing
Department of Mathematical and Computing Science

Master of Science

Supporting Multiple Inheritance in a Python DSL for GPGPU

by Fathul Asrar ALFANSURI

Object-support in GPGPU domain specific languages enables highly parallel object-
oriented programming on GPUs. This paper improves object-support in Sanajeh,
a Python DSL. Sanajeh only supports simple inheritance, in which it is difficult to
represent multiple classes in distinct class hierarchies that share common behaviors.
We address this problem by creating a version of Sanajeh that supports multiple in-
heritance. This Sanajeh version transforms multiple inheritance class hierarchy into
single inheritance class hierarchy through class flattening and code refactor at the
Python level. The transformation process analyzes each class’ definitions in the hi-
erarchy, reduces the hierarchy relationship by flattening non-primary parent classes
into its child class through linearization, and refactors any types and references they
have to the other parts of the code. We evaluate this work by reimplementing agent-
based modeling simulation programs used as benchmark by DynaSOAr [8] using
multiple-inheritance, and comparing their execution result and code effectiveness.
We shown that this extension does not change the expected result of a program
rewritten in multiple-inheritance. While the execution time is 2% slower than the
original code, the source code become easier to maintain through code reuse and
improves its scalability. Through this result, this work contributes to the improve-
ment of NVIDIA-based GPU utilization on high-level Python language.

HTTPS://WWW.TITECH.AC.JP/
https://www.titech.ac.jp/about/organization/schools/organization04.html
https://educ.titech.ac.jp/is/

iX

Acknowledgements

I would like to express my deepest gratitude and acknowledgements to people and
entities who have helped me in finishing this dissertation.

The first and foremost is to my supervisor, Prof. Hidehiko Masuhara, who ac-
cepted me as a Master student in his laboratory of Programming Research Group
(PRG). He helped me numerous times with great patience, not just as a supervisor
to aid my studies, but also as a secondary parent that helped me on my daily life in
Japan, especially during the very hard times of COVID-19.

I also would not forget the PRG lab members, who allowed me to experience a
multi-cultural environment for studies and daily lives. Very special mention to Luth-
fan Anshar Lubis, a fellow Indonesian student who helped me getting accustomed
into my new life in Japan, as well as his great help in this research.

I would also like to thank the PPI Tokodai, a community of Indonesian students
in Tokyo Tech. As a first timer of living in another country, they helped me with the
daily life guides as well as a familiar environment that resembles home.

Last but not least, is the Japanese Government for the MEXT scholarship, in
which this dissertation as well as my whole new experience of living in Japan would
not be possible without it.

Contents

Declaration of Authorship
Abstract
Acknowledgements

1 Introduction

2 Background

21 Sanajeh
22 DynaSOAT e
221 Structureof Array o
222 Memoryblocks o oo
223 Fakepointer o
3 Problem statement
3.1 Single inheritance expressiveness
3.2 Custommemorylayout
4 Proposal
41 Implementationapproach
42 Multiple inheritancedesign 0 L
4.3 Hierarchy conversion algorithm
43.1 Inspecting class hierarchy
43.2 Remove mixin-like classes from hierarchy
4.3.3 Reinsert mixin-likeclasses
434 Resolveambiguity
5 Implementation
51 Classlnspector
52 Sanajeh modification o o oo
52.1 CallGraphAnalyzer.
522 Feldexpansion0 ..
53 Virtual function

6 Case study

6.1 Evaluationmethod
6.2 Wa-Tor Simulation e
6.3 Result e

7 Related Work
7.1 GPGPUwithOOPapproach
7.2 Techniques of multiple inheritance
7.3 Language feature conversion, .

xi

iii

vii

ix

Xii

8 Conclusion

Bibliography

25

27

xiii

List of Figures

21 Sanajehprocessflow. o oL 3
2.2 DynaSOAr Structure of Array layout. 6
3.1 An OOP relationship of bird, horse and pegasus. 8

4.1 Mixin and Sanajeh?2 inheritance of Wa-Tor simulation and their usage
of linearization. Top-left: Mixin inheritance. Top-right: Mixin inher-
itance viewed in Python/Sanajeh. Bottom-left: Linearization used to
resolve inheritance conflict in mixin inheritance. Bottom-right: Lin-

earization used to modify hierarchy., 11
42 An example of Sanajeh2 inheritance hierarchy (top-left), and its con-

version (top-right) L L oo 12
4.3 SanajehBaseClass inserted to converted hierarchy to be the common

ancestor forallclasses. 13

6.1 Class hierarchy of Wa-Tor simulations. 20

Listings

2.1
2.2
2.3
24
2.5
4.1

4.2

43

6.1
6.2

A excerptof Sanajehcode L 0L
Compiled Sanajeh code into CUDA/C++
Difference between Array-of-Structure and Structure-of-Array layout .
Difference between Array-of-Structure and Structure-of-Array layout .
Example of field access calculation
An example of Winged Animal being used as parameter type. In con-

verted hierarchy, Winged Animal class is duplicated and become am-

biguous.
The solution to listing 4.1, by renaming the type into SanajehBaseClass

anddowncasting. L o
An example of super call ambiguity and its solution..
Breed Behavioron Fishclass,
Breed Behavior on Sharkclass

XV

xvii

List of Abbreviations

GPGPU General-Purpose computing on Graphics Processing Units

oor
HPC
SMMO
DSL
SIMD
AOS
SOA
FFI
AST

Object-Oriented Programming
High-Performance Computing
Single-Method Multiple-Objects
Domain Specific Language
Single-Instruction Multiple-Data
Array of Structures

Structure of Arrays

Foreign Function Interface
Abstract Syntax Tree

Chapter 1

Introduction

General-Purpose programming for Graphics Processing Unit (GPGPU) allows pro-
grammers to write generic programs and run them on Graphical Processing Units
(GPU). Originally, GPU was meant to compute shaders and graphics in 3D appli-
cations, but nowadays GPU is used in broader applications such as artificial intelli-
gence and crypto mining. Programming languages for GPGPU have been improved
in recent years to provide more efficient parallel code execution that runs on GPUs.

One such improvement is the support for object-oriented programming. This
enables programmers who are already familiar with object-oriented programming
(OOP) to utilize the GPU more effectively. In a similar fashion to Single-Instruction
Multiple Data (SIMD) architecture, OOP uses the Single-Method Multiple-Object
(SMMO) [7] programming model. In this model, the code runs a single method for
every object of the class in parallel.

Another improvement to the GPGPU is the high-level language support. Sanajeh
[3] is a Python Domain Specific Language (DSL) for GPGPU that uses both OOP and
SMMO paradigms. The DSL supports a single inheritance mechanism for code reuse
and type references. It is backed by a lower-level CUDA framework for SMMO ap-
plications called DynaSOAr [8]. This framework manages GPU memory allocation
and deallocation in Structure-of-Array (SOA) data layout to improve data coalesc-
ing; a critical optimization to GPU programming.

However, while Sanajeh’s single-inheritance feature provides a good code struc-
ture, it is often not enough to represent several kinds of behaviors. For example, sin-
gle inheritance limits programmers to implement common behaviors that are shared
between classes from different hierarchies. This leads to code duplication as well as
reduces the scalability of the applications themselves.

In this dissertation, we propose a version of Sanajeh, named Sanajeh2, which
supports multiple inheritance. This version of Sanajeh allows programmers to uti-
lize code reuse more flexibly and implements common behaviors such as mixins [1]
and traits [2]. We achieve this by designing the OOP with mixin-like multiple inher-
itance, as well as an algorithm to convert the class hierarchy into the one with single
inheritance.

The structure of this paper is as follows. We first address the current situation
of Sanajeh (Section 2) and its problem (Section 3). We then explain our approach
to this problem by designing the multiple inheritance feature as well as its chal-
lenges and how to solve those challenges (Section 4). After that, we discuss the
implementation (Section 5). Next comes the evaluation of Sanajeh2 by examining a
DynaSOAr benchmark program, Wa-Tor simulation (Section 6). Finally, we discuss
related works (Section 7), and then conclude the paper (Section 8).

Chapter 2

Background

This section describes current Sanajeh library [3] as well as DynaSOAr [8], its under-
lying CUDA /C++ library.

2.1 Sanajeh

Sanajeh CallGraph Host Python
Code Analyzer Code Interpreter
(run in CPU)

Foreign Function
Interface

Dynamic
library
(Runiin
GPU)

DynaSOAr
code
(CUDA/C++)

Device

code NvVCC

Py2Cpp

FIGURE 2.1: Sanajeh process flow.

Sanajeh uses ahead-of-time compilation to execute its code. During compilation,
the original code is inspected and divided into two parts: host code and device code, as
shown in Figure 2.1. The host code is preserved as Python code and will be executed
on CPU, while the device code will be executed on GPU. The device code is converted
into CUDA /C++ code then compiled into a dynamic library, as shown in listing 2.1
and 2.2. The host code calls the dynamic library through Foreign Function Interface
(FFI).

To identify which part is the device code, Sanajeh uses CallGraphAnalyzer to find
classes and functions that will be called in GPU. Any classes that will be created
or perform SMMO operations on GPU will be flagged as device code. Any classes,
functions, and variables that call or get called by a device code will also be flagged
as device code as well.

Sanajeh uses a slightly different syntax than the original Python, as shown in list-
ing 2.1. As a Python DSL, Sanajeh inherits Python language’s base design. However,
as an intermediary to DynaSOAr, Sanajeh follows some of the library’s language de-
sign instead. In particular, Sanajeh uses static types by utilizing Python’s annotation
feature. At the same time, Sanajeh uses single inheritance since DynaSOAr is cur-
rently designed to only support single inheritance.

R IO U1 WN -

g -
NG W= OO

W N =

4 Chapter 2. Background

LISTING 2.1: A excerpt of Sanajeh code

class Cell:
def __init__(self):
self .neighbors_: list[Cell] = [None]=4
self .agent_ref: Agent = None
self.id_: int = None
self .agent_type_: int = 0
self .neighbor_request_: list[bool] = [None]+5

def Cell(self, cell_id: int):
random.seed (cell_id)
self.agent_ref = None
self.id_ = cell_id
self .agent_type_ = 0
self .prepare ()
cells[cell_id] = self

cells: list[Cell] = DeviceAllocator.array (kSizeX+kSizeY)

LISTING 2.2: Compiled Sanajeh code into CUDA /C++

class Cell : public AllocatorT :: Base {
public:
declare_field_types(Cell, curandState, DeviceArray<Cell=x,
4>, Agent+, int, int, DeviceArray<bool, 5>)
Field <Cell, 0> random_state_;
Field <Cell , 1> neighbors_;
Field <Cell , 2> agent_ref;
Field <Cell, 3> id_;
Field <Cell , 4> agent_type_;
Field <Cell , 5> neighbor_request_;

__device__ Cell(int cell_id);
__device__ void setup();
//

1

__device__ Cell::Cell(int cell_id) {
curand_init (kSeed, cell_id, 0, &random_state_);
this —>agent_ref = nullptr;
this—>id_ = cell_id;
this —>agent_type_ = 0;
this —>prepare();
cells[cell_id] = this;
}

__device__ Cell* cells[kSizeX =* kSizeY];

2.2 DynaSOAr

DynaSOAr is a CUDA/C++ framework for SMMO applications. This framework
provides object support for GPGPU by using classes and single inheritance. The
SMMO paradigm is provided through its API, where it allows a parallel invoca-
tion of a class method, in which all objects belonging to that class will execute that
method. DynaSOAr also supports dynamic object creation and destruction.

OO T WN =

= e e e e e
NI WIN = OO

OO T = WN -

I S N o
OO NI UTk WN P OO

2.2. DynaSOAr 5

2.21 Structure of Array

This framework uses Structure-of-Array (SOA) layout for its GPU memory alloca-
tion (Figure 2.2). In most implementation of C++, the data members of a class are
stored sequentially. On the other hand, SoA data layout groups each field member
of a class in an array. For example, a Point class will have an array of pos_x and
array of pos_y instead of an array of contiguous (pos_x, pos_y), as shown in Listing
2.3).

Memory layout of a child class is placed similar to the AoS layout in that the
array of child class members are put after the array of its parent class members, as
shown in Listing 2.4.

LISTING 2.3: Difference between Array-of-Structure and Structure-
of-Array layout

// Point class definition
class Point {
float pos_x;
float pos_y;

// AoS memory layout
struct AoS_Heap_Point {

Point p[100];
)i

// SoA memory layout

struct SoA_Heap_Point {
float pos_x[100];
float pos_y[100];

LISTING 2.4: Difference between Array-of-Structure and Structure-
of-Array layout

// Point3D class definition
class Point3D : public Point {
float pos_z;

}

// AoS memory layout
struct AoS_Heap_Point3D {

Point3D p3d[100];
)i

// SoA memory layout

struct SoA_Heap_Point3D {
// members of Point
float pos_x[100];
float pos_y[100];

// members of Point3D
float pos_z[100];

Chapter 2. Background

2.2.2 Memory blocks

DynaSOAr splits the heap memory into blocks. Each block can only contain one
class type, and stores the object members in SoA layout. Blocks are dynamically
initialized and reassigned into a class type at runtime. Every block has a fixed size
determined at compile time, which is based on the size of the smallest class. As a
result, every block can only hold a set amount object depending on class size: Blocks
of a larger class will contain fewer objects of that class.

To further illustrate, consider the heap representation in figure 2.2. Each blocks
has the same size. Blocks of class Point have 64 slots of Point objects, while Blocks
of class Point3D will only have 42 slots. These maximum number of slots per block

are known at compile time, but different for each class type.

Point Point3D Empty Point

— < | = bl IR b —| ~ N~ ~ N
AEHEREREE A R EEE
2} [%2] [2] [2} [2] (2] [72]

o) A Re; 810 ;3 o|o B1o|o 3
Q ala ala s ala alala S

FIGURE 2.2: DynaSOAr Structure of Array layout.

2.2.3 Fake pointer
In order to access an object’s field, a custom operation is required. In DynaSOAr, a
pointer to an object is a fake pointer. This custom pointer consists of:

* b: Memory address of the block this object is stored in.
¢ i: The index position of this object in this block. (i-th position in the array)
¢ n: The block size, which is dependant of the class type of the block.

The exact location of an object’s field is calculated as represented in Listing 2.5.
The calculation of member pos_y is the same between Point and Point3D class,

which means that DynaSOAr supports single inheritance.

LISTING 2.5: Example of field access calculation

struct Point3D_pointer ({
Block=* b;
int i;
int n;

}

float* pos_y = b + // address of the block
sizeof (int) = n + // array of pos_x
sizeof (int) =» i // array of pos_y

O OO UTHk WN -

Chapter 3

Problem statement

In GPGPU, implementing real-world application is difficult due to single-inheritance.
For example, in a simulation program such as agent-based simulations, parallel OOP
is desirable. This is due to the usually large number of objects and each object ex-
ecutes the same operations on each timestep. Implementing these applications in
Sanajeh would beneficial. However, often there are multiple object types that share
several common behaviors. It is difficult to express this model only through single
inheritance.

3.1 Single inheritance expressiveness

A concrete example of the aforementioned difficulties can be described as follows.
Consider a simple class hierarchy of horse, bird and pegasus (a mythical horse with
wings and could fly) as shown in Figure 3.1a. A bird may have method fly as its
movement behavior, while a horse uses method run instead. Logically, we can define
an “IS-A” relationship between them; i.e. pegasus is a horse and a bird. Therefore,
a pegasus may be able to both fly and run. In the simulation, there are many horses,
birds, and pegasus on a field, and on each tick of time, all horse instances (and its
children instances, the pegasi) executes run method and all birds and pegasi doing
fly method.

To express these kinds of hierarchy, single inheritance is not enough. While
Python and CUDA actually supports multiple inheritance, Sanajeh is restricted into
single inheritance design. There are two approaches that can be used as a workaround
for this representation by using only single inheritance: simply copying methods/-
fields and using mixin structure. These approaches have their own disadvantages
that can be reduced by using multiple inheritance.

On the first approach, the hierarchy can be defined by letting pegasus class to
inherit from the horse class, and then copy bird class” definition directly into the
pegasus class (Figure 3.1b). However, whenever a user updates the implementation
of bird class she must also updates the copied definition in the pegasus class.

The other approach for this hierarchy is to redefine the logical structure by de-
riving the classes of the three animals from mixin instead, i.e. CanFly and CanRun
mixin (Figure 3.1c). Unfortunately, this approach does not translate well in Python
since the mixin will still be considered as a parent class instead. The graph will be
viewed as multiple inheritance hierarchy and current Sanajeh will not accept this
structure.

8 Chapter 3. Problem statement

Bird Horse Bird Horse
Fly Run ~1Fly Run
Pegasus Pegasus
Fly bbby D> Fly
Run Run

(A) Multiple inheritance (B) Single inheritance

CanFly CanRun .

l.__-___-____-.l !._________-__.I

! Fly 5 ! Run :

TR N TR
Bird Pegasus Horse

(C) Mixin-based inheritance
FIGURE 3.1: An OOP relationship of bird, horse and pegasus.

3.2 Custom memory layout

As described in Background section, the underlying library, DynaSOAr, utilizes a
custom memory layout to optimize GPU computation. However, it makes Dyna-
SOAr difficult to implement multiple inheritance, even if the CUDA /C++ itself sup-
ports multiple inheritance. Current Sanajeh adheres to this restriction by limiting its
OOP mechanism to single inheritance. In particular, the device code part of Sanajeh
must be in single inheritance hierarchy.

Chapter 4

Proposal

This chapter describes our proposal to address the problem: Sanajeh2, a version
of Sanajeh that supports multiple inheritance and virtual function. First, we discuss
different ways of implementing multiple inheritance for Sanajeh2, and the reasoning
for doing the hierarchy conversion. Then, we will discuss the basis of the hierarchy
conversion, as well as the general algorithm of the conversion. Meanwhile, Virtual
Function support does not require in-depth discussion, and will be described in the
next chapter.

4.1 Implementation approach

We consider two approaches of implementing multiple inheritance for Sanajeh2:
1. Implement multiple inheritance on DynaSOAr (C++ level).
2. Implement multiple inheritance on Sanajeh (Python level).

The first approach relates to the fact that Sanajeh only supports single inheritance
due to DynaSOAr limitation. By implementing multiple inheritance directly in Dy-
naSOAr, Sanajeh no longer be limited to single inheritance. The second approach
is to implement multiple inheritance at Python-level, while still using DynaSOAr’s
single inheritance structure. This would require a hierarchy conversion to allow
Sanajeh2 codes to run on DynaSOAr.

We decided to implement multiple inheritance at Python level. Compared to the
first approach, implementation at DynaSOAr level is more difficult. DynaSOAr re-
quires different, custom implementation for multiple inheritance than the standard
C++.

Designing a new multiple inheritance implementation such as data layout and
calculating field access in DynaSOAr would require many considerations, as C++
is a powerful low-level language with many features. One such considerations is
virtual inheritance, in that in diamond pattern a parent class can be virtual (shared
parent data) or non-virtual (duplicated parent data). The paper [11] noted that these
variations are part of the complexity of C++ multiple inheritance. Among the exam-
ples provided in the paper to show the problems of C++ multiple inheritance, more
than half of them discussed the non-virtual inheritance and casting between parent
and child class.

Calculating field access in DynaSOAr with multiple inheritance is not simple.
Standard C++ multiple inheritance uses a simple casting operation to access parents
field members. In non-virtual inheritance case, casting between child and parent
type is done by using an offset. Therefore, to access a parent field, the child pointer
is moved by an offset to parent data starting location, and then offsetting the pointer
again to the member data. Meanwhile, DynaSOAr object pointer is a fake pointer

10 Chapter 4. Proposal

that basically points to its block position. Casting from child type to parent type
and vice versa would need additional computation and information, as opposed to
simple offset. This is further complicated when accomodating the virtual inheritance
case.

On the other hand, Python’s multiple inheritance is simpler. Inheritance is al-
ways virtual: parent fields are never duplicated in the child class. Member functions
are also virtual, which means that the complexity of casting this pointer between
parent and child classes are not present.

This second approach requires a mechanism to convert multiple inheritance hi-
erarchy into single inheritance hierarchy. Sanajeh2 also uses DynaSOAr as its lower
level CUDA framework, with its limitation of single inheritance unchanged. Since
Sanajeh uses ahead-of-time compilation, we can apply a code transformation to user-
created code before its translation into CUDA code.

4.2 Multiple inheritance design

We use a design similar to Mixin for Sanajeh2 multiple inheritance. Mixin design
allows a class to inherit from two types of parent class: a “true parent” as in single
inheritance, and several “mixin parent” to grant additional functionalities. To re-
solve inheritance conflict, mixin uses linearization. Both mechanism (two types of
parent and linearization) is used in Sanajeh2 multiple inheritance design.

The difference between mixin and Sanajeh2 design lies in the hierarchy and how
linearization is used. Mixin design is actually a single inheritance hierarchy, while
Sanajeh?2 is a multiple inheritance hierarchy. Mixin linearization is used to “view”
the class hierarchy as a single inheritance to resolve inheritance conflict. On the other
hand, Sanajeh2 uses linearization to actually modify the hierarchy itself.

To illustrate, consider the example shown in figure 4.1. In mixin design, both
Fish and Shark class has one “true parent” named Agent, and using a “mixin parent”
named BreedingBehavior (top-left hierarchy). The inheritance conflict resolution for
both Fish and Shark are resolved by linearization of mixin parents (bottom-left hi-
erarchy). Meanwhile, there is no distinction between mixin and non-mixin classes
in Python: it is a multiple inheritance hierarchy (top-right). Instead resolving in-
heritance conflict, linearization is used to modify the hierarchy so that hierarchy
becomes single inheritance hierarchy (bottom-right).

In detail, we categorize the classes in the hierarchy according to its inheritance
usage:

1. Prime Parent. Prime Parent is a parent class that retain its parent-child rela-
tionship in the single-inheritance version.

2. Mixin-like Parent. Mixin-like Parent is also treated as parent class, but due
to conversion into single inheritance, the parent-child relation is severed and
preserved through other means.

To simplify the conversion algorithm, we define that the Prime Parent of a class
is the first parent in the class” definition. Users can reorder parent list of a class to
determine a Prime Parent that will retain its parent-child relationship with minimum
modification. All other parents will be considered as Mixin-like Parents and have
their relationship modified in the resulting hierarchy.

4.3. Hierarchy conversion algorithm 11

Breeding Breeding
Agent Behavior Agent Behavior
A
Inherits : W.It.h \
v MIXIN
Fish Shark Fish Shark
Agent Agent
i T
i inheritance conflict i Inherits
! resolution !

Breeding Breeding Breeding Breeding
Behavior Behavior Behavior Merged Behavior
E E anherits T
Fish Shark Fish Shark

FIGURE 4.1: Mixin and Sanajeh2 inheritance of Wa-Tor simulation
and their usage of linearization. Top-left: Mixin inheritance. Top-
right: Mixin inheritance viewed in Python/Sanajeh. Bottom-left: Lin-
earization used to resolve inheritance conflict in mixin inheritance.
Bottom-right: Linearization used to modify hierarchy.

4.3 Hierarchy conversion algorithm

Our algorithm for hierarchy conversion is as follows:

1. Inspect class hierarchy, labelling classes into Prime Parent and Mixin-like Par-
ent classes.

2. Remove Mixin-like classes from original hierarchy, which leaves the remaining
classes to form single inheritance hierarchy.

3. Flatten the Mixin-like classes into its inheriting classes by linearization and
re-insertion in between the original inheritance, and duplicate if necessary.

4. Resolve ambiguities from duplication and reinsertion of Mixin-like classes,
such as type rename.

4.3.1 Inspecting class hierarchy

The first step is to generate the class hierarchy and label each classes. The general
flow of the algorithm is to traverse the hierarchy for classes that has multiple parents.

12 Chapter 4. Proposal

Animal Animal
ﬂnherit:\ /inherits\
Mammal Wirllged Mammal Wipged

Animal Animal1
T T Winged T
Animal2
Bat Falcon | Falcon
Bat

FIGURE 4.2: An example of Sanajeh?2 inheritance hierarchy (top-left),
and its conversion (top-right)

Parent classes that are not the first in the parent list are marked as Mixin-like classes.
Other classes are defaulted to Prime Parent classes.

Consider the hierarchy example in figure 4.2. It shows that Bat class has 2 par-
ents: Mammal and WingedAnimal. It is up to the user to order the parent list in
the class definition, and in this example the Mammal is set as the Prime Parent, and
Winged Animal becomes Mixin-like Parent. It is possible for a class to be a Prime Par-
ent of one inheriting class, and be a Mixin-like Parent of another inheriting class, like
the Winged Animal class. In this case, the Mixin-like Parent label takes precedence.

The class hierarchy will be fully labeled as either Prime Parent or Mixin-like Par-
ent classes. The class relationship between Prime Parent classes will result in a single
inheritance hierarchy, which will become the main hierarchy. Mixin-like parents will
be linearized into its inheriting classes based on the next step.

4.3.2 Remove mixin-like classes from hierarchy

To form single inheritance hierarchy, all inheritance relationships between a class
and its mixin-like parent are removed. This is similar to Mixin design that without
mixin parents, the class hierarchy is a single inheritance hierarchy.

4.3.3 Reinsert mixin-like classes

Mixin-like classes are reinserted back to the hierarchy. To preserve single inheritance
property, these classes are reinserted by placing them between the existing relation-
ship.

The general flow of this step is to inspect each class in the hierarchy, starting from
the top. For each inspected class do the following;:

1. List all Mixin-like classes that this class inherits, respecting the order from the
parent list.

2. Linearize these classes by ordering them from left to right: each classes inherits
the class to the right. If the class has parent(s), Linearize them first, and set the
topmost ancestor to inherit the class to the right.

4.3. Hierarchy conversion algorithm 13

3. The Mixin-like classes are now a stack of single inheritance hierarchy. Remove
classes that are already inherited by class from the stack.

4. Put the stack in between this class and its Prime Parent class.

Every inspected class linearize their Mixin-like classes separately. This may re-
sult in the duplication of some classes. At the end of inspections, if the duplicated
classes inherits the same class, they can be merged. If merging is not possible, the
duplicated classes are renamed by appending a number.

4.3.4 Resolve ambiguity

The linearization from the previous step may cause ambiguity and inconsistency.
The ambiguities and inconsistencies that may arise are as follows:

1. A duplicated class is used as a variable type.

2. The super () call is used, but the direct parent of the class is changed from the
hierarchy.

To illustrate the first example, consider the converted hierarchy in figure 4.2. The
Winged Animal class is duplicated and cannot be merged. If it is used as variable or
parameter type, the type will be ambiguous between Winged Animall or Winged An-
imal2.

Sanajeh
BaseClass

T

Animal

/ql nheritsD\

Winged
Animal

Wiri;ed T

Animal2
| Falcon

Mammal

Bat

FIGURE 4.3: SanajehBaseClass inserted to converted hierarchy to be
the common ancestor for all classes.

A solution to this ambiguity is to rename the type to be the common ancestor
class of the duplicated classes. We insert a new, empty base class named Sanaje-
hBaseClass to the converted hierarchy (figure 4.3. All classes that does not have a
parent will inherit from this class. This way, SanajehBaseClass is the common ances-
tor for all classes.

I UT = WN -

O O IO Ul WN -

14 Chapter 4. Proposal

LISTING 4.1: An example of Winged Animal being used as parameter
type. In converted hierarchy, Winged Animal class is duplicated and
become ambiguous.

// Original method
__device__ void Bat::Mate(WingedAnimal+ other);

// A function that calls the method
__device__ void Bat::Propose() {
WingedAnimal =other;
this —>Mate(other);
}

LISTING 4.2: The solution to listing 4.1, by renaming the type into
SanajehBaseClass and down casting.

// Original method, now using template
template <typename T>
__device__ void Bat::Mate(T* req);

// wrapper to the method, generated by Classlnspector
__device__ void Bat:: Mate_Cast(SanajehBaseClass* other) {
// Attempt to downcast to WingedAnimall
WingedAnimall other_WingedAnimall = other-—>cast<WingedAnimall>();
if (other_WingedAnimall!=nullptr) return this->Mate<WingedAnimall>(
other_WingedAnimall) ;

// Attempt to downcast to WingedAnimal2
WingedAnimal2 other_WingedAnimal2 = other-—>cast <WingedAnimal2>();
if (other_WingedAnimal2!=nullptr) return this->Mate<WingedAnimal2>(
other_WingedAnimal2) ;
}

// A function that calls the method
__device__ void Bat::Propose() f{
WingedAnimal +other;
this —>Mate_Cast(other);
}

Since the code will be translated into CUDA/C++, down casting from Sanaje-
hBaseClass to its actual runtime class is required to access the class’ field members
and functions. We resolve this by iteratively casting them into its possible classes, as
shown in listing 4.1 and 4.2.

The second ambiguity can also be seen in the hierarchy of figure 4.2. If the orig-
inal WingedAnimal contains a super () call in its methods, it will be ambiguous.
Python’s Method Resolution Order (MRO) for Winged Animall will refer to Animal
class, and Mammal class for WingedAnimal2. This ambiguity can be easily solved
by changing the super parameter into its appropriate classes, as shown in listing 4.3.

O O NN Ul WN =

4.3. Hierarchy conversion algorithm

15

LISTING 4.3: An example of super call ambiguity and its solution.

###HHHHHHHH A R
Definition in original hierarchy
class WingedAnimal (Animal) :
def Run(self):
super () .Run() # will refer to Animal.Run()

HHHFHAHHHHAHHAHAHHAHHAHAHHAHHAH AR
Definition in converted hierarchy
class WingedAnimall (Animal) :
def Run(self):
super (WingedAnimall, self) .Run() # will refer to Animal.Run()

class WingedAnimal2 (Mammal) :
def Run(self):
super (Mammal, self) .Run() # will refer to Animal.Run()

17

Chapter 5

Implementation

We did several things to implement Sanajeh2. First, we implemented the hierarchy
conversion algorithm in the form of ClassInspector. In addition, we also implement
virtual function as part of Sanajeh2. Furthermore, we decided to disable Field Ex-
pansion optimization of the original sanajeh.

There are parts of Sanajeh2 specifications described in previous section that hasn’t
been implemented yet. Specifically, the last step of hierarchy conversion has not
been implemented. However, current stage of implementation is sufficient to test
our algorithm for the example program that we use, the Wa-Tor simulation.

5.1 ClassInspector

The ClassInspector class generates a Directed Acyclic Graph (DAG) of the class hi-
erarchy, as well as defining the class node information. The graph is generated using
Python’s ast library and using visitor pattern. ClassInspector generates the AST of
the source code then visits the nodes to gather information about class relationships.
The class node stores the following informations:

¢ Class name.

AST node of the class.

list of parents class nodes.

list of children class nodes.

Number of duplications.

ClassInspector does the conversion algorithm in two steps. The first step is to
use NodeVisitor to traverse the AST of input code to gather information of class
hierarchy. Second step is to use NodeTransformer to transform the AST so that it
become single inheritance hierarchy.

The general flow of the first step is as follows:

1. Generate AST of the input source code.

2. Visit AST to generate DAG class nodes and obtain parent names. The AST
does not contain information about class’ children.

3. cross-reference each class nodes to obtain parent/children node references.
4. Visit AST to mark classes as Prime Parent or Mixin-like classes.

Afterwards, the second step of hierarchy conversion begins, which does the fol-
lowing:

18 Chapter 5. Implementation

1. Create a new class named SanajehBaseClass, and add it to the Module body.
2. Traverse the AST. For each class definition, do the following:

(a) If it has no parent, set its parent to SanajehBaseClass.

(b) Linearize Mixin-like parents as described in 4.3.3.

(c) If a duplication happens, store the info on the duplicated class, including
the numbering.

3. Traverse the AST. For each class definition, do the following:

(@) Check its children for duplication caused by previous step.

(b) If found, merge the duplicated class as one class, joining their children.
4. Modify the Module node to generate new definitions for duplicated classes.

Aside from implementing hierarchy conversion, we also modify the initializa-
tion step. We require users to explicitly call initialization/constructor methods for
each of the parent classes. This is to simplify the translation step from Python to
CUDA/C++.

5.2 Sanajeh modification

We decide to modify some of the Sanajeh’s logic and design in order to support
multiple inheritance.

5.2.1 CallGraphAnalyzer

Initially, CallGraphAnalyzer marks portion of the code as device code if it is being
referenced by another device code. We expand this further by marking a class as
device code if it is a parent or a child of a device code class.

5.2.2 Field expansion

Sanajeh implements field expansion as a performance optimization. However, as we
implement our extension, class references are used to great extent that we decided
to sacrifice this optimization for a more robust code.

5.3 Virtual function

Virtual Function is implemented as a member function of Sanajeh2 library. Dyna-
SOAr does not have a built-in API for virtual function, but provided an example on
how to achieve the same result. It iteratively casts the self variable into each sub-
classes on the original hierarchy, starting from the lowest subclass (Subclasses that
does not have any children). If the cast is successful, it runs that subclass” method.

19

Chapter 6

Case study

We use DynaSOAr benchmark programs as a basis for our evaluation. The case
study consists of the following steps for the benchmark program:

1. Discuss its single inheritance disadvantages that can be reduced or eliminated
by an implementation using multiple inheritance.

2. Rewrite the program into the multiple inheritance alternative.
3. Compare the result of the rewritten program against the original.

4. Compare the source code of both programs.

6.1 Evaluation method

We first discuss the implementation of benchmark program. These programs was
written using single inheritance paradigm. However, the implementation code are
not necessarily the most optimal way to write these programs. It is due to the single-
inheritance limitation of DynaSOAr that this is the only representation currently
available. Thus, we examine the parts where it may cause problems and can be
solved by using a multiple inheritance approach.

After we found the parts to be improved, we design a multiple inheritance alter-
native that will address the problems, and rewrite the program for Sanajeh2. This
multiple inheritance version is converted into a single inheritance version to be able
to run on original Sanajeh.

This work is evaluated in two aspects: its correctness and its effectiveness. Since
it is difficult to properly define the correctness of our algorithm, the first aspect is
evaluated by comparing both its output and the original single inheritance version.
Sanajeh2’s conversion is said to be correct if the algorithm will not change the ex-
pected result of the program.

The effectiveness of our work is evaluated by comparing the original code of
both the single inheritance and multiple inheritance. Specifically, we will discuss
about the code size, performance, maintainability and scalability between the two of
them.

As of now, we have successfully implemented one of the benchmark programs
that has a multiple-inheritance alternative which we thought would be more effec-
tive. The DynaSOAr program is Wa-Tor, an agent-based simulation program.

6.2 Wa-Tor Simulation

Wa-Tor is an agent-based simulation where two types of agent, fish and shark, coex-
ists in a planet shaped like torus. It simulates a predator and prey relationship and

20 Chapter 6. Case study

Cell
Cell 4

A referenced by'
referenced by . s

: Breeding

Al Behavior
Agent \
/qlnheritg\
Fish Shark
Fish Shark

(A) Original Wa-Tor

(B) Wa-Tor with multiple inheritance

FIGURE 6.1: Class hierarchy of Wa-Tor simulations.

how it affects population. Fish and sharks are able to move and reproduce, while
shark will eat nearby fish. It is simulated in a 2D grid: a point may only be filled
with either a Fish object, a Shark object, or an empty spot. Both Fish and Shark ob-
jects move randomly by checking its empty neighbors. If there are no empty spots,
both classes remains on their spot. A Shark will try to occupy a neighboring Fish,
which is defined as the shark eating the fish, removing the Fish object. A class dia-
gram of this simulation is represented in Figure 6.1a.

The current implementation shows that there is a code reduplication in Fish and
Shark class, as shown in listing 6.1 and 6.2. The code that is duplicated represents the
breed logic for the two agents. While one can put this logic directly on Agent class,
this may cause some problems in scalability. For example, consider the case that we
will add more type of agents which does not necessarily has this breed behavior. If
the number of agent types that does not use it outweighs the agent types that uses it,
the egg_timer_ field will be a waste of space and the code that implements the breed
will be unreachable.

Thus, our implementation aims to reduce this duplication by separating the breed
logic from the agents, and put them as another class to be inherited with. This way,
whenever we add another agent, we can opt in whether to use the breeding behavior
by simply inheriting from it and add few lines of method invocation.

6.3 Result

We run the simulation on a machine equipped with NVIDIA TITAN Xp GPU with
12GB of memory. The simulation parameters are 100x100 cell size, and 100 steps
for each run. Rendering mode is used to compare the visual output, and no-render
mode is used to compare the execution time.

Both implementation yields similar result. Due to the non-deterministic nature,
we don’t know if changing the code structure may affect the random generation,
even if we use the same seed. Thus, we observe the result by checking the rendered
simulation of both programs. The two programs renders similar behavior of agent
movements, breed behavior and predatory actions. Both simulation also shown sim-
ilar observation of population dynamics between Fish and Shark, as is expected on

O O N ONU = WN =

O O N ONUT = WN =

6.3. Result 21

LISTING 6.1: Breed Behavior on Fish class

__device__ void Fish::prepare() {
egg_timer_++;
// Fallback: Stay on current cell.
new_position_ = position_;

/!
}

__device__ void Fish::update() {
Cell* old_position = position_;

if (old_position != new_position_) {
old_position—>leave () ;
new_position_->enter (this);

if (kOptionFishSpawn && egg_timer_ > kSpawnThreshold) ({
autor new_fish = new(device_allocator) Fish(curand(&random_state_));

assert (new_fish != nullptr);
old_position—>enter (new_fish) ;
egg_timer_ = (uint32_t) 0;

LISTING 6.2: Breed Behavior on Shark class

__device__ void Shark::prepare() {
egg_timer_++;
energy_—-—;

//
}

__device__ void Shark::update() {

if (kOptionSharkDie && energy_ == 0) {
position_->kill () ;
} else {
Cell+ old_position = position_;
if (old_position != new_position_) {
//

if (kOptionSharkSpawn && egg_timer_ > kSpawnThreshold) ({
autox new_shark =
new(device_allocator) Shark(curand(&random_state_));

assert (new_shark != nullptr);
old_position —>enter (new_shark) ;
egg_timer_ = 0;

}
}
}
}

wa-tor simulation. Therefore, it is safe to say that our algorithm is correct for this
benchmark.
There is a tradeoff between performance and code efficiency, as shown in table

22 Chapter 6. Case study

Single Inheritance version Multiple Inheritance version

Execution time 17.644 seconds 18.018 seconds
Source code size 309 lines 330 lines

TABLE 6.1: Execution result of Wa-Tor simulation.

6.1. On average, our version runs 2% slower than the original. This may be due to
the code divergence from using virtual function.

On the other hand, the separation of BreedBehavior logic improves scalability
and maintainability. In terms of code size, our version has 349 lines of code (LoC)
against 330 LoC of the original. However, this is due to the overhead of BreedBee-
havior class declaration, and there are only 2 classes that uses them. Further agent
types that uses this logic will only need to put this class as its parent without addi-
tional LoC, as opposed to repeatedly copying the logic into each class. Furthermore,
any changes to breeding logic will be concentrated on the definition of this class
rather than individually change every agent types that uses this logic. In addition,
should there be another behavior added to the agents (e.g. VirusInfectionBehavior),
agent types can choose whether to use this behavior simply by inheriting this class.

23

Chapter 7

Related Work

In this chapter, we discuss related work in the following three categories: (7.1) OOP
support for GPGPU, (7.2) implementation techniques for multiple inheritance, and
(7.3) Language feature conversion.

7.1 GPGPU with OOP approach

There is some popular language with OOP features that supports GPGPU utiliza-
tion, such as Java, Javascript, C-family, and Python itself.

Jcuda [12] for Java, GPU js [6] for Javascript, Ikra-ruby [5] for Ruby, and PyCUDA
[4] for Python provides a simple interface to access GPU functions. However, rather
than directly supporting OOP for GPGPU from their language feature, they simply
provide an API abstraction for codes to be run on GPU in the fashion of functional
programming.

CUDA is a dialect of C++, a language that supports OOP. As a result, program-
ming in CUDA /C++ allows limited OOP-style programming. Ikra-Cpp [9] is a CU-
DA /C++ DSL for OOP approach with a Structure-of-Array layout to optimize mem-
ory access. DynaSOAr [8] is a framework on top of Ikra-Cpp which enables dynamic
memory allocation/deallocation, a common feature in general OOP.

7.2 Techniques of multiple inheritance

Multiple inheritance is an OOP feature that is long considered both powerful and
complicated, as presented by its diamond problem. Many work tries to workaround
the problematic part while maintaining its advantages. Java uses Interfaces as a way
to introduce sub-type information while avoiding the diamond problem. Mixin [1]
introduces another type of parent class that can be linearized to resolve inheritance
conflict. Traits [2] provides a code-reusability mechanism to mimic multiple inheri-
tance.

7.3 Language feature conversion

Modular Class-based Reuse Mechanisms [10] defines a modular meta-level runtime
architecture that converts several code reuse mechanisms into a single inheritance
environment. The work involves converting a language with several code reuse fea-
tures (including multiple inheritance) to be able to run in a Virtual Machine (VM)
which is optimized for single inheritance. This work is tailored to convert languages
with multiple inheritance feature into a Virtual Machine that runs on single inher-
itance. Compared to that, Sanajeh2 converts its multiple inheritance feature into
Sanajeh with single inheritance.

25

Chapter 8

Conclusion

We present a design of OOP for GPGPU with Mixin-like multiple inheritance and
the algorithm to convert the class hierarchies into single inheritance hierarchies, as a
version of the Sanajeh library named Sanajeh2. This version of Sanajeh will increase
code maintainability and scalability on writing highly parallel object-oriented pro-
gramming.

We use a DynaSOAr benchmark program, Wa-Tor, to evaluate our work. We had
shown that our algorithm does not affect the expected result of the original code. At
the same time, we also showed that it provides code maintainability and scalability
while discussing its tradeoff with performance.

The hierarchy conversion algorithm is different than Python’s built-in C3 Lin-
earization. Thus, in a more complex hierarchy, the inheritance order might be differ-
ent than what the user expected as Python DSL. In the future, this can be resolved
by incorporating Python’s built-in linearization into our conversion method.

While it is possible to convert multiple inheritance hierarchy into a single inher-
itance hierarchy;, it does sacrifice some of the safety features such as type-checking.
This can lead to a discussion about improved multiple-to-single inheritance conver-
sion algorithms. Furthermore, this paper only shows that our algorithm can convert
several multiple inheritance programs into single inheritance. A further examina-
tion of the algorithm’s soundness and validity to convert any multiple inheritance
code into a single inheritance hierarchy is still open to be discussed in the future. In
fact, this leads to another discussion about whether any multiple inheritance code
can be converted into a single inheritance code without changing the expected result.

27

Bibliography

[1] Gilad Bracha and William Cook. “Mixin-based inheritance”. In: ACM Sigplan
Notices 25.10 (1990), pp. 303-311.

[2] Stéphane Ducasse et al. “Traits: A mechanism for fine-grained reuse”. In: ACM
Transactions on Programming Languages and Systems (TOPLAS) 28.2 (2006), pp. 331-
388.

[3] Chenxin Jizhe. “Nested object support in an object-oriented domain-specific
language for GPGPU”. MA thesis. Tokyo Institute of Technology, 2021.

[4] Andreas Klockner etal. “PyCUDA and PyOpenCL: A scripting-based approach
to GPU run-time code generation”. In: Parallel Computing 38.3 (2012), pp. 157-
174.

[5] Hidehiko Masuhara and Yusuke Nishiguchi. “A data-parallel extension to ruby
for GPGPU: toward a framework for implementing domain-specific optimiza-
tions”. In: Proceedings of the 9th ECOOP Workshop on Reflection, AOP, and Meta-
Data for Software Evolution. 2012, pp. 3-6.

[6] Fazli Sapuan, Matthew Saw, and Eugene Cheah. “General-purpose computa-
tion on GPUs in the browser using GPU.js”. In: Computing in Science & Engi-
neering 20.1 (2018), pp. 33-42.

[7] Matthias Springer. “Memory-Efficient Object-Oriented Programming on GPUs”.
PhD thesis. Tokyo Institute of Technology, 2019.

[8] Matthias Springer and Hidehiko Masuhara. “DynaSOAr: a parallel memory
allocator for object-oriented programming on GPUs with efficient memory ac-
cess”. In: 33rd European Conference on Object-Oriented Programming. 2019, 17:1—
17:37.

[9] Matthias Springer and Hidehiko Masuhara. “Ikra-Cpp: A C++/CUDA DSL
for object-oriented programming with structure-of-arrays layout”. In: Proceed-
ings of the 2018 4th Workshop on Programming Models for SIMD/Vector Processing.
2018, pp. 1-9.

[10] Pablo Tesone et al. “Implementing modular class-based reuse mechanisms on
top of a single inheritance VM”. In: Proceedings of the 33rd Annual ACM Sympo-
sium on Applied Computing. 2018, pp. 1030-1037.

[11] Daniel Wasserrab et al. “An operational semantics and type safety prooffor
multiple inheritance in C++". In: Proceedings of the 21st annual ACM SIGPLAN
conference on Object-oriented programming systems, languages, and applications.
2006, pp. 345-362.

[12] Yonghong Yan, Max Grossman, and Vivek Sarkar. “JCUDA: A programmer-
friendly interface for accelerating Java programs with CUDA”. In: European
Conference on Parallel Processing. Springer. 2009, pp. 887-899.

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Background
	Sanajeh
	DynaSOAr
	Structure of Array
	Memory blocks
	Fake pointer

	Problem statement
	Single inheritance expressiveness
	Custom memory layout

	Proposal
	Implementation approach
	Multiple inheritance design
	Hierarchy conversion algorithm
	Inspecting class hierarchy
	Remove mixin-like classes from hierarchy
	Reinsert mixin-like classes
	Resolve ambiguity

	Implementation
	ClassInspector
	Sanajeh modification
	CallGraphAnalyzer
	Field expansion

	Virtual function

	Case study
	Evaluation method
	Wa-Tor Simulation
	Result

	Related Work
	GPGPU with OOP approach
	Techniques of multiple inheritance
	Language feature conversion

	Conclusion
	Bibliography

