
Practical Aspects of
Monadic Equational Reasoning in Coq

Ayumu Saito1 and Reynald Affeldt2

1 Tokyo Institute of Technology, School of Computing,
Department of Mathematical and Computing Science

2 National Institute of Advanced Industrial Science and Technology (AIST)

Abstract Functional programs with side effects represented by monads are amenable
to equational reasoning. This approach to program verification is called monadic equa-
tional reasoning and has been experimented several times using proof assistants based
on dependent type theory. In order to improve such formalizations, we extend Monae,
an existing Coq library that supports monadic equational reasoning. First, to improve
the scalability of Monae, we reimplement its hierarchy of effects using a generic tool
to build hierarchies of mathematical structures and extend it with the array and the
plus monad. Second, we discuss a recurring technical difficulty due to the shallow
embedding of monads in the proof assistant. Concretely, it often happens that the
return type of monadic functions is not informative enough to complete formal proofs,
in particular termination proofs. We explain a principled approach using dependent
types to deal with this problem. Third, we augment Monae with an improved theory
about nondeterministic permutations and, thanks to these contributions, we are finally
able to completely formalize derivations of quicksort by Mu and Chiang.

1 Introduction

Functional programming languages are suitable for equational reasoning because of their referen-
tial transparency. However, most practical programs have effects. Still, programs written with
monads to represent effects are amenable to equational reasoning: this is called “monadic equa-
tional reasoning” [GH11]. Monadic equational reasoning has been used to verify several programs
(e.g., [GH11, OSC12, Mu19b, Mu19a, PSM19, MC20]) and some of these experiments come with
formalizations in the dependently typed proof assistants Coq and Agda (e.g., [OSC12, PSM19,
ANS19, MC20]).

The Coq library Monae [Mon21] is an effort to provide a library for formal verification of
monadic equational reasoning. It already proved useful by uncovering errors in pencil-and-paper
proofs (e.g., [ANS19, Sect. 4.4]), leading to new fixes for known errors (e.g., [AN21]), and provid-
ing clarifications for the construction of monads used in probabilistic programs (e.g., [AGNS21,
Sect. 6.3.1]).

In this paper, we report on several improvements of Monae that are of general interest for
the formal verification of monadic equational reasoning. Before explaining our contributions, let
us illustrate concretely the main ingredients of monadic equational reasoning in a proof assistant.

Example of proof by monadic equational reasoning Let us assume that we are given a
type monad for monads with the Ret notation for the unit and the�= notation for the bind operator
(� being a version of the bind operator whose continuation ignores its argument). We can use
this type to define a generic function that repeats a computation mx:

Fixpoint rep {M : monad} n (mx : M unit) := if n is n.+1 then mx � rep n mx else skip.

1

rep n tick= get �= (put \o addn n) (initial goal)
rep 0 tick= get �= (put \o addn 0) (base case)
get �= put= get �= (put \o addn 0) (by getputskip)

rep n.+1 tick= get �= (put \o addn n.+1) (inductive case)
(get �= (put \o succn)) � (get �= (put \o addn n)) = get �= (put \o addn n.+1) (by inductive hyp.)

get �= (fun x ⇒ (put \o succn) x � (get �= (put \o addn n))) = get �= (put \o addn n.+1) (by bindA)
(put \o succn) m � (get �= (put \o addn n)) = (put \o addn n.+1) (by extensionality)
((put \o succn) m � get) �= (put \o addn n) = (put \o addn n.+1) m (by bindA)

(put m.+1 � Ret m.+1) �= (put \o addn n) = (put \o addn n.+1) m (by putget)
put m.+1 � (Ret m.+1 �= (put \o addn n)) = (put \o addn n.+1) m (by bindA)

put m.+1 � (put \o addn n) m.+1 = (put \o addn n.+1) m (by bindretf)
put (n + m.+1) = (put \o addn n.+1) m (by putput)
put (n + m.+1) = put (n + m.+1) (by addSnnS)

Figure 1. Intermediate goals displayed by Coq when executing the proof script for tick fusion
(see Sect. 1)

Let us also assume that we are given a type stateMonad T for monads with a state of type T
equipped with the usual get and put operators. We can use this type to define a tick function
(succn is the successor function of natural numbers and \o is function composition):
Definition tick {M : stateMonad nat} : M unit := get �= (put \o succn).

Let us use monadic equational reasoning to prove “tick fusion” [OSC12, Sect. 4.1] (in a state
monad; addn is the addition of natural numbers):
Lemma tick_fusion n : rep n tick = get �= (put \o addn n).

Despite the side effect, this proof can be carried out by equational reasoning using standard
monadic laws. Computations in any monad satisfy the following laws:

bindA ∀ A B C (m : M A) (f : A → M B) (g : B → M C),
(m �= f) �= g = m �= (fun a ⇒ f a �= g)

bindretf ∀ A B (a : A) (f : A → M B), Ret a �= f = f a
bindmret ∀ A (m : M A), m �= Ret = m

Computations in a state monad moreover satisfy the following laws:

putput ∀ s s’, put s � put s’ = put s’
putget ∀ s, put s � get = put s � Ret s
getputskip get �= put = skip
getget ∀ A (k : T → T → M A),

get �= (fun s ⇒ get �= k s) = get �= fun s ⇒ k s s

The following proof script (written with the SSReflect proof language [The21]) shows that tick
fusion can be proved by a sequence of rewritings involving mostly monadic laws (see Fig. 1 for the
intermediate goals displayed by Coq or [OSC12, Sect. 4.1] for a pencil-and-paper proof):
Lemma tick_fusion n : rep n tick = get �= (put \o addn n).
Proof.
elim: n ⇒ [|n ih]; first by rewrite /= −getputskip.
rewrite /= /tick ih bindA; bind_ext ⇒ m.
by rewrite −bindA putget bindA bindretf putput /= addSnnS.
Qed.

This example illustrates the main ingredients of a typical formalization of monadic equational
reasoning: monadic functions (such as rep and tick) are encoded as functions in the language of
the proof assistant (this is a shallow embedding), monadic equational reasoning involves several
monads with inheritance relations (here the state monad satisfies more laws than a generic monad).

In this paper, our contribution is to improve an existing formalization of monadic equational
reasoning. More specifically, we address the following issues:

2

Figure 2. The hierarchy of monads provided by Monae [Mon21] at the time of this writing

• In monadic equational reasoning, monadic effects are the result of the combination of sev-
eral interfaces. The formalization of these interfaces and their combination in a coherent
and a reusable hierarchy requires advanced formalization techniques. The largest hierar-
chy [ANS19] we are aware of uses the technique of packed classes [GGMR09]. This approach
is manual and verbose, and therefore is error-prone and does not scale very well. In this
work, we reimplement and extend this hierarchy using a more scalable approach (Sect. 2).

• As we observe in the above example, monadic functions are written with the language of
the proof assistant. Though this shallow embedding is simple and natural, in practice it is
also the source of small inconvenience when proving lemmas in general and when proving
termination in particular. Indeed, contrary to a standard functional programming language,
say, Haskell, a type-based proof assistant requires termination proofs for every function
involved. However, it happens that the tooling provided by proof assistants to deal with
non-structurally recursive functions is at best bothersome for monadic equational reasoning.
We explain how to deal with such proofs in a principled way (Sections 3 and 4).

• Last, we demonstrate the usefulness of the two previous contributions by completing an
existing formalization of quicksort (Sect. 5) and as a by-product enriching our library of
monadic equational reasoning, in particular, with theories of nondeterministic permutations.

2 An extensible implementation of monad interfaces
In this section, we explain how we formalize a hierarchy of interfaces for monads used in monadic
equational reasoning. This hierarchy is a conservative extension of previous work [ANS19, AN21,
AGNS21] that we have reimplemented using a generic tool called Hierarchy-Builder [CST20]
for the formalization of hierarchies of mathematical structures. This provides us with a hierarchy
that is easier to extend with new monads as we will demonstrate with the plus monad and the
array monad and that does not suffer type inference problems (see Sect. 6).

2.1 Formalizing a hierarchy of monads using Hierarchy-Builder

Our hierarchy starts with the definition of functors on the category Set of sets. The domain and
codomain of functors are fixed to the type Type of Coq, which can be interpreted as the universe
of sets in set-theoretic semantics. In this setting, a functor is defined as a function M of type
Type → Type that represents the action on objects and a function actm that represents the action
on morphisms. Using Hierarchy-Builder, this definition takes the form of a record isFunctor
called a mixin (line 1):

1 HB.mixin Record isFunctor (M : Type → Type) := {
2 actm : ∀ A B, (A → B) → M A → M B ;
3 functor_id : FunctorLaws.id actm ; (* actm id = id *)
4 functor_o : FunctorLaws.comp actm }. (* actm (g o h) = actm g o actm h *)
5 HB.structure Definition Functor := {M of isFunctor M}.
6 Notation functor := Functor.type.

3

The actions on objects and morphisms appear at lines 1 and 2 respectively. The function actm
satisfies the functor laws (lines 3 and 4). The type of functors is obtained by declaring the mixin
as a structure (line 5). Finally, line 6 defines a notation for convenience. Given a functor M and a
morphism f, we note M # f the action of M on f.

Then, given two functors M and N, we formalize natural transformations as a family of func-
tions f of type ∀ A, M A → N A (notation: M // N) that satisfies the following predicate:

Definition naturality (M N : functor) (f : M // N) :=
∀ A B (h : A → B), (N # h) \o f A = f B \o (M # h).

We formalize the type of natural transformations as a packed class [GGMR09]. Packed classes
are actually what Hierarchy-Builder implements. However, the current implementation of
Hierarchy-Builder does not handle completely hierarchies of morphisms yet. That is why we
resort to a manual encoding. The packed class for natural transformations consists of a mixin
(line 4) and a structure (line 5). The verbose re-definition of the structure at line 6 is required in
the absence of Hierarchy-Builder for type inference to work as intended.

1 Module Natural.
2 Section natural.
3 Variables M N : functor.
4 Record mixin_of (f : M // N) := Mixin { _ : naturality M N f }.
5 Structure type := Pack { cpnt : M // N ; mixin : mixin_of cpnt }.
6 Definition type_of (phM : @phantom (Type → Type) M) (phN : @phantom (Type → Type) N) := type.
7 Module Exports.
8 Notation nattrans := type.
9 Coercion cpnt : type � Funclass.
10 Notation "M =⇒ N" := (@type_of _ _ (@Phantom (Type → Type) M) (@Phantom (Type → Type) N)).
11 Identity Coercion type_of_type : type_of � type.
12 End Exports.
13 End Natural.

(The modifier @ in Coq disables implicit arguments.) As a result of this declaration, we obtain
in particular the notation M =⇒ N of natural transformations from the functor M to the functor N
(see line 10).

Finally, a monad is defined by two natural transformations: the unit ret (line 2 below) and the
multiplication join (line 3) that satisfy three monad laws (lines 7–9). The interface provided by
the mixin further provides an identifier for the bind operator (line 4). It also features two equations
that respectively link (i) the action on morphisms with bind and unit (line 5) and (ii) bind with
its definition in term of unit and multiplication (line 6).

1 HB.mixin Record isMonad (M : Type → Type) of Functor M := {
2 ret : idfun =⇒ M ;
3 join : M \o M =⇒ M ;
4 bind : ∀ A B, M A → (A → M B) → M B ;
5 fmapE : ∀ A B (f : A → B) (m : M A), ([the functor of M] # f) m = bind _ _ m (@ret _ \o f) ;
6 bindE : ∀ A B (f : A → M B) (m : M A), bind _ _ m f = join _ (([the functor of M] # f) m) ;
7 joinretM : JoinLaws.left_unit ret join ;
8 joinMret : JoinLaws.right_unit ret join ;
9 joinA : JoinLaws.associativity join }.
10 HB.structure Definition Monad := {M of isMonad M &}.
11 Notation monad := Monad.type.

The fmapE and bindE equations are not surprising because they correspond to standard monadic
laws. They are necessary to make the action on morphisms of the functor agree with the multi-
plication/bind of the monad. For their addition, we have been guided by Hierarchy-Builder,
which has recently been extended to detect such needs in general (this is an instance of “forgetful
inheritance” [ACK+20]). Hereafter, we use Ret as a notation for (@ret _ _).

4

Note that the above definition of monads is not the interface one uses to define a new monad.
Using Hierarchy-Builder, one rather uses factories to instantiate structures. Factories present
themselves as a smaller mixin from which the actual definition is recovered:

HB.factory Record Monad_of_ret_bind (M : Type → Type) of isFunctor M := {
ret : idfun =⇒ M ;
bind : ∀ A B, M A → (A → M B) → M B ;
fmapE : ∀ A B (f : A → B) (m : M A), ([the functor of M] # f) m = bind _ _ m (@ret _ \o f) ;
bindretf : BindLaws.left_neutral bind ret ;
bindmret : BindLaws.right_neutral bind ret ;
bindA : BindLaws.associative bind }.

This is closer to the textbook definition of a monad and does not require the simultaneous definition
of the unit, the multiplication and bind.

2.2 Extension with the array monad and the plus monad

The array monad The array monad extends a basic monad with a notion of indexed array
(see, e.g., [MC20, Sect. 5.1]). It provides two operators to read and write indexed cells. Given an
index i, aget i returns the value stored at i and aput i v stores the value v at i. These operators
satisfy the following laws (where S is the type of the cells’ contents):

aputput ∀ i v v’, aput i v � aput i v’ = aput i v’
aputget ∀ i v A (k : S → M A), aput i v � aget i �= k = aput i v � k v
agetputskip ∀ i, aget i �= aput i = skip
agetget ∀ i A (k : S → S → M A),

aget i �= (fun v ⇒ aget i �= k v) = aget i �= fun v ⇒ k v v
agetC ∀ i j A (k : S → S → M A),

aget i �= (fun u ⇒ aget j �= (fun v ⇒ k u v)) =
aget j �= (fun v ⇒ aget i �= (fun u ⇒ k u v))

aputC ∀ i j u v, (i 6= j) ∨ (u = v) →
aput i u � aput j v = aput j v � aput i u

aputgetC ∀ i j u A (k : S → M A), i 6= j →
aput i u � aget j �= k = aget j �= (fun v ⇒ aput i u � k v)

For example, aputput means that the result of storing the value v at index i and then storing the
value v’ at index i is the same as the result of storing the value v’. The law aputget means that
it is not necessary to get a value after having stored it provided this value is directly passed to
the continuation. Other laws can be interpreted similarly.

Thanks to Hierarchy-Builder, the array monad can be simply implemented by extending
a basic monad with the following mixin (note that the type of indices is an eqType, i.e., a type
with decidable equality, as required by the laws of the array monad):

HB.mixin Record isMonadArray S (I : eqType) (M : Type → Type) of Monad M := {
aget : I → M S ;
aput : I → S → M unit ;
aputput : ∀ i s s’, aput i s � aput i s’ = aput i s’ ;
aputget : ∀ i s A (k : S → M A), aput i s � aget i �= k = aput i s � k s ;
(* other laws omitted to save space, see [Mon21, file hierarchy.v] for details *) }.

HB.structure Definition MonadArray S (I : eqType) := { M of isMonadArray S I M & }.
Notation arrayMonad := MonadArray.type.

The plus monad We define the plus monad following [PSM19] and [MC20, Sect. 2]. It extends a
basic monad with two operators: failure and nondeterministic choice. These operators satisfy three
groups of laws: (1) failure and choice form a monoid, (2) choice is idempotent and commutative,
and (3) failure and choice interact with bind according to the following laws (where [~] is a
notation for nondeterministic choice):

5

left_zero ∀ A B (f : A → M B), fail A �= f = fail B
right_zero ∀ A B (m : M A), m � fail B = fail B
left_distributivity ∀ A B (m1 m2 : M A) (f : A → M B),

m1 [~] m2 �= f = (m1 �= f) [~] (m2 �= f)
right_distributivity ∀ A B (m : M A) (f1 f2 : A → M B),

m �= (fun x ⇒ f1 x [~] f2 x) = (m �= f1) [~] (m �= f2)

We take advantage of monads already available in Monae [AGNS21] to implement the plus
monad with a minimal amount of code while staying conservative. Indeed, we observe that the
needed operators and most laws are already available in Monae. The monads failMonad and
failR0Monad (which inherits from failMonad and comes from [AN21]) introduce the failure oper-
ator, and the left_zero and right_zero laws. The monad altMonad introduces nondeterministic
choice and the left_distributivity law. The monad altCIMonad (which extends altMonad) in-
troduces commutativity and idempotence of nondeterministic choice. Finally, nondetMonad and
nondetCIMonad (which is the combination of altCIMonad and nondetMonad) are combinations of
failMonad and altMonad; these monads are coming from [ANS19]. In other words, only the right-
distributivity law is missing.

We therefore implement the plusMonad by extending above monads with the right-distributivity
law as follows. First, we defined the intermediate prePlusMonad by adding right-distributivity to the
combination of nondetMonad and failR0Monad (below alt is the identifier behind the notation [~]).

HB.mixin Record isMonadPrePlus (M : Type → Type) of MonadNondet M & MonadFailR0 M := {
alt_bindDr : BindLaws.right_distributive (@bind [the monad of M]) (@alt _) }.

HB.structure Definition MonadPrePlus := {M of isMonadPrePlus M & }.
Notation prePlusMonad := MonadPrePlus.type.

Second, plusMonad is defined as the combination of nondetCIMonad and prePlusMonad:

HB.structure Definition MonadPlus := {M of MonadCINondet M & MonadPrePlus M}.
Notation plusMonad := MonadPlus.type.

The plus-array monad Finally, we can combine the array and the plus monad to obtain the
plusArrayMonad [MC20, Sect. 5]:

HB.structure Definition MonadPlusArray S (I : eqType) := {M of MonadPlus M & isMonadArray S I M}.
Notation plusArrayMonad := MonadPlusArray.type.

The resulting hierarchy of monad interfaces is depicted in Fig. 2.

3 Difficulties with the termination of monadic functions
Functions defined in a proof assistant based on dependent types need to terminate to preserve logi-
cal consistency. In practice, providing termination proofs is bothersome, in particular when it is not
at the heart of the target formalization. For example, in their derivations of quicksort, Mu and Chi-
ang postulate the termination of several functions using the Agda pragma {-# TERMINATING #-},
which is not safe in general [Agd21].

The goal of this section is to illustrate concretely difficulties when proving the termination of
functions in the context of monadic equational reasoning in Coq. We first recall standard tooling
to prove termination (Sect. 3.1) and provide concrete examples of difficulties (Sect. 3.2).

3.1 Background: standard Coq tooling to prove termination

3.1.1 The Function command

In Coq, the Function command [The21, Chapter Functional induction] provides support to prove
the termination of functions whose recursion is not structural. For example, functional quicksort
can be written as follows (the type T below can be any ordered type [Mat21]):

6

Function qsort (s : seq T) {measure size s} : seq T :=
match s with
| [::] ⇒ [::]
| h :: t ⇒ let: (ys, zs) := partition h t in qsort ys ++ h :: qsort zs
end.

The function call partition h t returns a pair of lists that partitions t with elements smaller
(resp. greater) than h. The annotation {measure size s} indicates that the size of the input list is
expected to decrease. Once the Function declaration of qsort is processed, Coq asks for a proof that
the arguments are indeed decreasing, that is, proofs of size ys < size s and size zs < size s.
Under the hood, Coq uses the well-known accessibility predicate [BC04, Chapter 15]. To the best
of our knowledge, Agda users enjoy almost no automation when dealing with general recursion.

At first sight, the approach using Function is appealing: the syntax is minimal and, as a by-
product, it automatically generates additional useful lemmas, e.g., in the case of qsort, lemmas
capturing the fixpoint equation of qsort and expressing structural induction/recursion principles
over objects of type qsort [The21, Chapter Functional induction].

3.1.2 The Program/Fix approach

The Program/Fix approach is more primitive and verbose than the Function approach, but it is
also more flexible and robust to changes w.r.t. hidden automation. It is a combination of the
Program command for dependent type programming [The21, Chapter Program] and of the Fix
definition from the Coq.Init.Wf module for well-founded fixpoint of the standard library. For the
sake of explanation, let us show how to define functional quicksort using this approach.

First, one defines an intermediate function qsort’ similar to the declaration that one would
write with the Function command except that its recursive calls are to a parameter function (f
below). This parameter function takes as an additional argument a proof that the measure (here
the size of the input list) is decreasing. These proofs appear as holes (_ syntax) to be filled next:

Program Definition qsort’ (s : seq T) (f : ∀ s’, (size s’ < size s) → seq T) : seq T :=
if s isn’t h :: t then [::] else
let: (ys, zs) := partition h t in f ys _ ++ h :: f zs _.

Second, one defines the actual qsort function using Fix. This requires a (trivial) proof that
the order chosen for the measure is well-founded:

Definition qsort : seq T → seq T := Fix (@well_founded_size _) (fun _ ⇒ _) qsort’.

3.2 Limitations of Coq standard tooling to prove termination

In the context of monadic equational reasoning, the standard tooling provided by Coq to prove
termination is not always sufficient. We illustrate this with the example of a function that computes
permutations nondeterministically: the perm function from [MC20], below written in Agda.

split : {{_ : MonadPlus M}} → List A → M (List A × List A)
split [] = return ([] , [])
split (x :: xs) = split xs >>= λ {(ys, zs) → return (x :: ys, zs) || return (ys, x :: zs)}

{-# TERMINATING #-}
perm : {{_ : MonadPlus M}} → List A → M (List A)
perm [] = return []
perm (x :: xs) = split xs >>= λ { (ys , zs) → liftM2 (_++[x]++_) (perm ys) (perm zs) }

The function split splits a list nondeterministically. The notation || corresponds to nondetermin-
istic choice (the notation [~] in Sect. 2.2). The function perm uses split and liftM2, a generic
monadic function that lifts a function h : A -> B -> C to apply to a monadic function of type
M A -> M B -> M C.

7

3.2.1 Difficulty with the Function approach

First, we observe that since it is structurally recursive, split can be encoded directly in Coq as a
Fixpoint (using the altMonad, see Sect. 2.2) 1:

Fixpoint splits {M : altMonad} A (s : seq A) : M (seq A * seq A) :=
if s isn’t x :: xs then Ret ([::], [::])
else splits xs �= (fun ’(ys, zs) ⇒ Ret (x :: ys, zs) [~] Ret (ys, x :: zs)).

However, the Function command fails to define directly the perm function2:

Fail Function qperm {M : altMonad} A (s : seq A) {measure size s} : M (seq A) :=
if s isn’t x :: xs then Ret [::] else splits xs �=

(fun ’(ys, zs) ⇒ liftM2 (fun a b ⇒ a ++ x :: b) (qperm ys) (qperm zs)).

It seems that the Function command cannot deal automatically with the recursive call that appears
after bind (�=), which is related to our use of a shallow embedding for monads.

3.2.2 Difficulty with the Program/Fix approach

Applying the Program/Fix approach to define qperm does not fail immediately but leads to a dead
end. To explain this, let us define an intermediate function qperm’ as we explained in Sect. 3.1.2:

Program Definition qperm’ {M : altMonad} A (s : seq A)
(f : ∀ s’, size s’ < size s → M (seq A)) : M (seq A) :=

if s isn’t x :: xs then Ret [::] else
splits xs �=
(fun a ⇒ liftM2 (fun a b ⇒ a ++ x :: b) (f a.1 _) (f a.2 _)).

As expected, Coq asks the user to prove that the size of the list is decreasing. The first generated
subgoal is:

xxs : ∀ s’ : seq A, size s’ < size (x :: xs) → M (seq A)
x : A
xs : seq A
a, b : seq A

==
size a < (size xs).+1

There is no way to prove this goal since there is no information about the list a. We propose
solutions to deal with this problem in the next section.

4 Add dependent types to return types for formal proofs
In this section, we explain that we can always enrich the return type of monadic functions with
dependent types to complete formal proofs, in particular to prove termination in the context of
monadic equational reasoning.

4.1 Add dependent types to called functions to prove termination

We explain how to prove the termination of the qperm function that we introduced in Sect. 3.2.2.
The idea is to augment the return type of the called function splits with dependent types so that
the Program/Fix approach succeeds.

The splits function is defined such that its return type is M (seq A * seq A) (Sect. 3.2.1). We
add information about the size of the returned lists by providing another version of splits whose
return type is M ((size s).-bseq A * (size s).-bseq A), where s is the input list and n.-bseq A
is the type of lists of size less than or equal to n (the type of “bounded-size lists” comes from the
MathComp library [Mat21]).

1Since Coq already has a split tactic, we call the function splits.
2We call this function qperm to avoid conflicts with other definitions of permutations.

8

Fixpoint splits_bseq {M : altMonad} A (s : seq A)
: M ((size s).-bseq A * (size s).-bseq A) :=

if s isn’t x :: xs then Ret ([bseq of [::]], [bseq of [::]])
else splits_bseq xs �= (fun ’(ys, zs) ⇒

Ret ([bseq of x :: ys], widen_bseq (leqnSn _) zs) [~]
Ret (widen_bseq (leqnSn _) ys, [bseq of x :: zs])).

The body of this definition is the same as the original one provided one ignores the notations
and lemmas about bounded-size lists. The notation [bseq of [::]] is for an empty list seen a
bounded-size list. The lemma widen_bseq captures the fact that a m.-bseq T list can be seen as a
n.-bseq T list provided that m ≤ n:

Lemma widen_bseq T m n : m ≤ n → m.-bseq T → n.-bseq T.

Since leqnSn n is a proof of n ≤ n.+1, we understand that widen_bseq (leqnSn _) turns a n.-bseq A
list into a n.+1.-bseq A list. Last, the notation [bseq of x :: ys] triggers MathComp automa-
tion (using canonical structures [Mat21]) to build a n.+1.-bseq A list using the fact that ys is
itself a n.-bseq A list.

Next, we re-define qperm’ (following Sect. 3.2.2) using splits_bseq (instead of splits):

Program Definition qperm’ {M : altMonad} A (s : seq A)
(f : ∀ s’, size s’ < size s → M (seq A)) : M (seq A) :=

if s isn’t x :: xs then Ret [::] else
splits_bseq xs �=
(fun ’(ys, zs) ⇒ liftM2 (fun a b ⇒ a ++ x :: b) (f ys _) (f zs _)).

The proofs required by Coq to establish termination now contain in their local context the addi-
tional information that the lists a and b are of type (size xs).-bseq A and (size ys).-bseq A,
which allows for completing the termination proof.

Finally, the function qperm can be defined using Fix as explained in Sect. 3.1.2:

Definition qperm {M : altMonad} A : seq A → M (seq A) :=
Fix well_founded_size (fun _ ⇒ M _) qperm’.

The nonderministic computation of permutations using nondeterministic selection is another
example of this approach [GH11, Sect. 4.4] (see [Mon21, file fail_lib.v]).

4.2 Add dependent types with a dependently-typed assertion

The approach explained in the previous section is satisfactory when the needed type already
available in some standard library. It is less practical otherwise. Yet, we can reach a similar result
using “dependently-typed assertions”.

For the fail monad M, it is customary to define assertions as follows. A computation guard b
of type M unit fails or skips according to a boolean value b:

Definition guard {M : failMoand} b : M unit := if b then skip else fail.

An assertion assert p a is a computation of type M A that fails or returns a according to whether
p a is true or not:

Definition assert {M : failMonad} A (p : pred A) a : M A := guard (p a) � Ret a.

Similarly, we define a dependently-typed assertion that fails or returns a value together with a
proof that the predicate is satisfied:

Definition dassert {M : failMonad} A (p : pred A) a : M { a | p a } :=
if Bool.bool_dec (p a) true is left pa then Ret (exist _ _ pa) else fail.

We illustrate the alternative approach of using dassert with a non-trivial property of the
qperm function: the fact that it preserves the size of its input (this is a postulate in [MC20]). This
statement uses the generic preserves predicate:

9

Definition preserves {M : monad} A B (f : A → M A) (g : A → B) :=
∀ x, (f x �= fun y ⇒ Ret (y, g y)) = (f x �= fun y ⇒ Ret (y, g x)).

Lemma qperm_preserves_size {M : prePlusMonad} A : preserves (@qperm M A) size.

In the course of proving qperm_preserves_size (by induction of the size of the input list), we
run into the following subgoal (we abbreviate the continuations following splits in the code of
qperm as the functions k1 and k2 to keep the displayed code short):

s : seq A
ns : size s < n

====================
do x ← splits s; (fun x : seq A * seq A ⇒ k1 x.1 x.2) =
do x ← splits s; (fun x : seq A * seq A ⇒ k2 x.1 x.2)

If we use the extensionality of bind to make progress (by applying the tactic bind_ext ⇒ -[a b].),
we add to the local context two lists a and b that correspond to the output of splits:

s : seq A
ns : size s < n
a, b : seq A

====================
k1 a b = k2 a b

As in Sect. 3.2.2, we cannot make progress because there is no size information about a and b.
Instead of introducing a new variant of splits, we use dassert and bind to augment the return
type with the information that the concatenation of the returned lists is of the same size as the
input (as defined by dsplitsT below):

Definition dsplitsT A n := {x : seq A * seq A | size x.1 + size x.2 == n}.
Definition dsplits {M : nondetMonad} A (s : seq A) : M (dsplitsT A (size s)) :=

splits s �= dassert [pred n | size n.1 + size n.2 == size s].

The equivalence between splits and dsplits can be captured by an application of fmap that
projects the witness of the dependent type:

Lemma dsplitsE {M : prePlusMonad} A (s : seq A) :
splits s = fmap (fun x ⇒ (dsplitsT1 x, dsplitsT2 x)) (dsplits s) :> M _.

We can locally introduce dsplits using dsplitsE to complete our proof of qperm_preserves_size.
Once dassert is inserted in the code, we can use the following lemma to lift the assertions to the
local proof context:

Lemma bind_ext_dassert {M : failMonad} A (p : pred A) a B (m1 m2 : _ → M B) :
(∀ x h, p x → m1 (exist _ x h) = m2 (exist _ x h)) →
dassert p a �= m1 = dassert p a �= m2.

This leads us to a local proof context where the sizes of the output lists are related to the input
list s with enough information to complete the proof:

s : seq A
ns : size s < n
a, b : seq A
ab : size a + size b == size s

====================
k1 a b = k2 a b

See [Mon21, file example_iquicksort.v] for the complete script.
Although we use here a dependently-typed assertion to prove a lemma, we will see in the next

section an example of termination proof where dassert also comes in handy. Nevertheless, dassert
requires to work with a monad that provides at least the failure operator.

10

5 A complete formalization of quicksort derivation
In this section, we apply the techniques we explained so far to provide a complete formalization
of quicksort derivations [MC20]. Beforehand we need to complete our theory of computations of
nondeterministic permutations (Sect. 5.1). Then we will explain the key points of specifying and
proving functional quicksort (Sect. 5.3) and in-place quicksort (Sect. 5.4). These proofs rely on
the notion of refinement (Sect. 5.2).

5.1 Formal properties of nondeterministic permutations

The specifications of quicksort by Mu and Chiang rely on the properties of nondeterministic per-
mutations as computed by qperm. The function qperm is indeed a good fit to specify quicksort,
but it is not the most obvious definition [MC20, Sect. 3] and its shape makes proving its prop-
erties painful, intuitively because of two non-structural recursive calls and the interplay with the
properties of splits. As a matter of fact, Mu and Chiang postulates many properties of qperm in
their Agda formalization, e.g., its idempotence (using the Kleisli symbol):
Lemma qperm_idempotent {M : plusMonad} (E : eqType) :

qperm >=> qperm = qperm :> (seq E → M (seq E)).

The main idea to prove these postulates is to work with a simpler definition of nondeterministic
permutations, namely iperm, defined using nondeterministic insertion:
Fixpoint insert {M : altMonad} A (a : A) (s : seq A) : M (seq A) :=

if s isn’t h :: t then Ret [:: a] else
Ret (a :: h :: t) [~] fmap (cons h) (insert a t).

Fixpoint iperm {M : altMonad} A (s : seq A) : M (seq A) :=
if s isn’t h :: t then Ret [::] else iperm t �= insert h.

Since insert and iperm each consist of one structural recursive call, their properties can be estab-
lished by simple inductions, e.g., the idempotence of iperm:
Lemma iperm_idempotent {M : plusMonad} (E : eqType) :

iperm >=> iperm = iperm :> (seq E → M _).

The equivalence between iperm and qperm can be proved easily by first showing that the recursive
call to iperm can be given the same shape as qperm:
Lemma iperm_cons_splits (A : eqType) (s : seq A) u :

iperm (u :: s) = do a ← splits s; let ’(ys, zs) := a in
liftM2 (fun x y ⇒ x ++ u :: y) (iperm ys) (iperm zs).

We can use this last fact to show that iperm and qperm are equivalent
Lemma iperm_qperm {M : plusMonad} (A : eqType) : @perm M A = @qperm M A.

Thanks to iperm_qperm, all the properties of iperm can be transported to qperm, providing formal
proofs for several postulates from [MC20] (see Table 1).

5.2 Program refinement

The rest of this paper uses notion of program refinement introduced by Mu and Chiang [MC20,
Sect. 4]. This is about proving that two programs obey the following relation:
Definition refin {M : altMonad} A (m1 m2 : M A) : Prop := m1 [~] m2 = m2.
Notation "m1 ⊆ m2" := (refin m1 m2).

As the notation symbol indicates, it represents a relationship akin to set inclusion, which means
that the result of m1 is included in that of m2. We say that m1 refines m2. The refinement relation
is lifted as a pointwise relation as follows:
Definition lrefin {M : altMonad} A B (f g : A → M B) := ∀ x, f x ⊆ g x.
Notation "f ⊆̇ g" := (lrefin f g).

11

Definition/lemma in [MC20] Coq equivalent in [Mon21]
file Implementation.agda
ext postulate standard axiom of functional extensionality
file Monad.agda
write-write-swap postulate not used
writeList-++ postulate see writeList_cat (file array_lib.v)
writeList-writeList-comm postulate see writeListC (file array_lib.v)
file Nondet.agda
returnvperm postulate see refin_qperm_ret (file fail_lib.v)
perm-idempotent postulate see Sect. 5.1
perm-snoc postulate see qperm_rcons (file fail_lib.v)
sorted-cat3 postulate see Sect. 5.3
perm-preserves-length postulate see Sect. 4.2
perm-preserves-all postulate see Sect. 5.3
perm TERMINATING see Sect. 4.1
mpo-perm TERMINATING commutation of computations (see Sect. 5.3)
partl/partl-spec TERMINATING see partl (file example_iqsort.v), solved by currying
partl’/partl’-spec TERMINATING see qperm_partl (file example_iqsort.v)
mpo-partl’ TERMINATING commutation of computations (see Sect. 5.3)
qsort/qsort-spec TERMINATING see Sect. 3.1.1
file IPartl.agda
ipartl/ipartl-spec TERMINATING see Sect. 5.4, solved by currying
introduce-swap [MC20, eqn 11] postulate see refin_writeList_rcons_aswap (file array_lib.v)
introduce-read postulate not used
file IQSort.agda
iqsort/iqsort-spec TERMINATING see Sect. 4.2
introduce-read postulate see writeListRet (file array_lib.v)
introduce-swap [MC20, eqn 13] postulate see refin_writeList_cons_aswap (file array_lib.v)

Table 1. Admitted facts in [MC20] and their formalization in [Mon21] (Lemmas xyz-spec require
the TERMINATING pragma as a consequence of the function xyz being postulated as
terminating.)

5.3 A complete formalization of functional quicksort

Using the techniques described above, we formalized quicksort as a pure function as Mu and Chiang
did [MC20]. We explain how we proved in Coq the few axioms in their Agda formalization.

What we actually prove is the correctness as a sort algorithm of the qsort function of Sect. 3.1.1.
We proved it by showing that it refines an algorithm that is obviously correct. This algorithm
is slowsort: a function that filters only the sorted permutations of all permutations derived by
qperm, which is obviously correct as a sorting algorithm, but of course cannot be used in practice.
Definition slowsort {M : plusMonad} T : seq T → M (seq T) := qperm >=> assert sorted.

Using the refinement relation, the specification that qsort should meet can be written as follows:
Lemma qsort_spec : Ret \o qsort ⊆̇ slowsort.

Among the axioms left by Mu and Chiang that we prove, we can distinguish axioms about
termination and axioms about equational reasoning. As for the former, we have explained the
termination of qperm and qsort in Sect. 4. As for the axioms about equational reasoning, the
main3 one is perm-preserves-all which is stated as follows (using the Agda equivalent of the
preserves predicate we saw in Sect. 4.2):
postulate

perm-preserves-all : {{_ : MonadPlus M}} {{_ : Ord A}}
→ (p : A → Bool) → perm preserves (all p)

3There is another axiom sorted-cat3, but its proof is easy using lemmas from MathComp.

12

This lemma says that all permutations as a result of perm preserves the fact that all the elements
satisfy p or not. In Coq, we proved the equivalent (using guard) rewrite lemma guard_all_qperm:

Lemma guard_all_qperm {M : plusMonad} T B (p : pred T) s (f : seq T → M B) :
qperm s �= (fun x ⇒ guard (all p s) � f x) =
qperm s �= (fun x ⇒ guard (all p x) � f x).

The proof of guard_all_qperm is not trivial: it is carried out by strong induction, requires the
intermediate use of the dependently-typed version of splits (Sect. 4.1), and more importantly
because it relies on the fact that guard commutes with computations in the plus monad. This
latter fact is captured by the following lemma:

Definition commute {M : monad} A B (m : M A) (n : M B) C (f : A → B → M C) : Prop :=
m �= (fun x ⇒ n �= (fun y ⇒ f x y)) =
n �= (fun y ⇒ m �= (fun x ⇒ f x y)).

Lemma commute_plus_guard {M : plusMonad} b B (n : M B) C (f : unit → B → M C) :
commute (guard b) n f.

Its proof uses induction on syntax as explained in [ANS19, Sect. 5.1].
We claim that our formalization is shorter than Mu and Chiang’s. It is difficult to compare

the total size of both formalizations in particular because the proof style in Agda is verbose (all
the intermediate goals are spelled out). Yet, we manage to keep each intermediate lemmas under
the size of 15 lines. For example, the intermediate lemma slowsort’-spec in Agda is about 170
lines, while our proof in Coq is written in 15 lines (see partition_slowsort_spec [Mon21]), which
arguably is more maintainable.

5.4 A complete formalization of in-place quicksort

We now explain how we formalize the derivation of in-place quicksort by Mu and Chiang [MC20].
The first difficulty is to prove the termination of in-place quicksort function. Let us first explain

the Agda implementation (which has termination postulated). The partition step is performed by
the function ipartl:

{-# TERMINATING #-}
ipartl : {{_ : Ord A}} {{_ : MonadArr A M}} → A → N → (N × N × N) → M (N × N)
ipartl p i (ny , nz , 0) = return (ny , nz)
ipartl p i (ny , nz , suc k) =

read (i + ny + nz) >>= λ x →
if x ≤b p then swap (i + ny) (i + ny + nz) >> ipartl p i (ny + 1 , nz , k)

else ipartl p i (ny , nz + 1 , k)
where open Ord.Ord {{...}}

The function ipartl takes a pivot p, an index i to the array (from which the contents correspond
to some list, say, ys ++ zs ++ xs), and the three sizes of the lists yz, zs, and xs. It returns the
sizes of the two partitions. The code makes use of the array monad (Sect. 2.2). The swap function
uses the read/write operators of the array monad to swap two cells of the array.

The quicksort function iqsort takes an index and a size; it is a computation of the unit type.
The code selects a pivot (line 5), calls ipartl (line 6), swaps two cells (line 7) and then recursively
calls itself on the partitioned arrays:

1 {-# TERMINATING #-}
2 iqsort : {{_ : Ord A}} {{_ : MonadArr A M}} → N → N → M T
3 iqsort i 0 = return tt
4 iqsort i (suc n) =
5 read i >>= λ p →
6 ipartl p (i + 1) (0 , 0 , n) >>= λ { (ny , nz) →
7 swap i (i + ny) >>
8 iqsort i ny >> iqsort (i + ny + 1) nz }

13

We encode this definition in Coq and prove its termination using the technique we explained
in Sect. 4.2. First, observe that the termination of the function ipartl need not be postulated: its
curried form is accepted by Agda and Coq because the recursion is structural. However, the direct
definition of iqsort in Coq using the Program/Fix approach (Sect. 3.1.2) fails for the same reasons
as explained in Sect. 3.2.2: it turns out that the termination proof requires more information about
the relation between the input and the output of ipartl than the mere fact that it is a pair of
natural numbers. We therefore introduce a dependently-typed version of ipartl that extends the
return type of ipartl to M {n : nat * nat | (n.1 ≤ x + y + z) ∧ (n.2 ≤ x + y + z)} (where
x, y, z are the sizes of the lists input to ipartl) so as to ensure that the sizes returned by the
partition function are smaller than the size of the array being processed4:

Definition dipartlT y z x := {n : nat * nat | (n.1 ≤ x + y + z) ∧ (n.2 ≤ x + y + z)}.
Definition dipartl {M : plusArrayMonad T Z_eqType} p i y z x : M (dipartlT y z x) :=

ipartl p i y z x �= dassert [pred n | (n.1 ≤ x + y + z) ∧ (n.2 ≤ x + y + z)].

Using dipartl instead of ipartl allows us to complete the definition of iqsort using the Program/Fix
approach (the notation %:Z is for injecting natural numbers into integers):

Program Fixpoint iqsort’ {M : plusArrayMonad E Z_eqType} ni
(f : ∀ mj, mj.2 < ni.2 → M unit) : M unit :=

match ni.2 with
| 0 ⇒ Ret tt
| n.+1 ⇒ aget ni.1 �= (fun p ⇒

dipartl p (ni.1 + 1) 0 0 n �= (fun nynz ⇒
let ny := nynz.1 in let nz := nynz.2 in
aswap ni.1 (ni.1 + ny%:Z) �
f (ni.1, ny) _ � f (ni.1 + ny%:Z + 1, nz) _))

end.

See [Mon21, file example_iquicksort.v] for the complete termination proof. Note that our in-place
quicksort is a computation in the plus-array monad which is the only array monad that provides
the failure operator in our hierarchy at the time of this writing. Anyway, the following refinement
proof requires the plus-array monad.

The specification of in-place quicksort uses the same slowsort function as for functional quick-
sort (Sect. 5.3):

Lemma iqsort_slowsort {M : plusArrayMonad E Z_eqType} i xs :
writeList i xs � iqsort (i, size xs) ⊆ slowsort xs �= writeList i.

The function writeList i xs writes all the elements of the xs list to the array starting from the
index i. This is just a recursive application of the aput operator we saw in Sect. 2.2:

Fixpoint writeList {M : arrayMonad T Z_eqType} i s : M unit :=
if s isn’t x :: xs then Ret tt else aput i x � writeList (i + 1) xs.

Most of the derivation of in-place quicksort is carefully explained by Mu and Chiang in their paper
[MC20]. In fact, we did not need to look at the Agda code except for the very last part which is
lacking details [MC20, Sect. 5.3]. Our understanding is that the key aspect of the derivation (and
of the proof of iqsort_slowsort) is to show that the function ipartl refines a simpler function
partl that is a slight generalization of partition used in the definition of functional quicksort
(Sect. 3.1.1). In particular, this refinement goes through an intermediate function that fusions
qperm (Sect. 4.1) with partl; this explains the importance of the properties of idempotence of
qperm whose proof we explained in Sect. 5.1.

4The type Z_eqType is the type of integers equipped with decidable equality. This is a slight generalization of
the original definition that is using natural numbers.

14

6 Related work
The hierarchy of interfaces we build in Sect. 2 is a reimplementation and an extension of previous
work [ANS19, AN21]. The latter was built using packed classes written manually. The use of
Hierarchy-Builder is a significant improvement: it is less verbose and easier to extend as
seen in Sect. 2.2. It is also more “robust”; indeed, we discovered that previous work [AN21,
Fig. 1] lacked an intermediate interface, which was making troubling type inference (see [Hie21]
for details). Note that type classes provide an alternative approach to the implementation of a
hierarchy of monad interfaces (see, e.g., [MC20]). Hierarchy-Builder has advantages: it helps
designing a hierarchy for example by detecting forgetful inheritance (Sect. 2.1).

The examples used in this paper stem from the derivations of quicksort by Mu and Chi-
ang [MC20]. Together with their paper, the authors provide as accompanying material a formal-
ization in Agda. It contains axiomatized facts (see Table 1) that are arguably orthogonal to the
issue of quicksort derivation but that reveals issues that need to be addressed to improve formal-
ization of monadic equational reasoning. In this paper, we explained in particular how to complete
their formalization, which we actually rework from scratch, favoring equational reasoning; in other
words, our formalization is not a port.

For the purpose of this work, we needed in particular to formalize a thorough theory of non-
deterministic permutations (see Sect. 5.1) It turns out that this is a recurring topic of monadic
equational reasoning. They are written in different ways depending on the target specification: us-
ing nondeterministic selection [GH11, Sect. 4.4], using nondeterministic selection and the function
unfoldM [Mu19a, Sect. 3.2], using nondeterministic insertion [Mu19b, Sect. 3], or using liftM2
[MC20, Sect. 3]. The current version of Monae has a formalization of each.

This paper is focusing on monadic equational reasoning but this is not the only way to verify
effectful programs using monads in Coq. For example, Jomaa et al. have been using a Hoare
monad to verify properties of memory isolation [JNGH18], Maillard et al. have been developing a
framework to verify programs with monadic effects using Dijkstra monads [MAA+19], Christiansen
et al. have been verifying effectful Haskell programs in Coq [CDB19], and Letan et al. have been
exploring verification in Coq of impure computations using a variant of the free monad [LR20].

7 Conclusion
We reported on various techniques that can be applied to formal monadic equational reasoning,
and also on the complete formalization of functional quicksort and in-place quicksort as their
application. For that purpose, we used an existing Coq library called Monae. To ease the
addition of new monad interfaces, we reimplemented the hierarchy of interfaces of Monae using
Hierarchy-Builder and illustrated this extension with the plus-array monad. We also observed
a recurring technical issue due to the shallow embedding of monadic functions, whose termination
is not easy to guarantee using Coq’s standard commands. We proposed solutions using dependent
types. We applied these techniques and the extension of Monae to the formalization of quicksort
derivations by Mu and Chiang that we were able to formalize without admitted facts.

As a result of the above experiment, we have substantially improved the Monae library for
formalization of monadic equational reasoning. As for future work, we plan to further enrich the
hierarchy of interfaces and to apply Monae to other formalization experiments (e.g., [SPWJ19,
PSM19]). We also plan to investigate the use of Monae as a back-end for the formal verification
of Coq programs, for example as generated automatically from OCaml [Gar21].

Acknowledgements The authors would like to thank Cyril Cohen and Enrico Tassi for their assistance
with Hierarchy-Builder, the members of the Programming Research Group of the Department of
Mathematical and Computing Science at the Tokyo Institute of Technology for fruitful discussions, and
the anonymous reviewers of PPL2022 for their comments. The second author acknowledges the support
of the JSPS KAKENHI Grant Number 18H03204.

15

References
[ACK+20] Reynald Affeldt, Cyril Cohen, Marie Kerjean, Assia Mahboubi, Damien Rouhling, and

Kazuhiko Sakaguchi. Competing inheritance paths in dependent type theory: A case study in
functional analysis. In 10th International Joint Conference on Automated Reasoning (IJCAR
2020), Paris, France, July 1–4, 2020, Part II, volume 12167 of Lecture Notes in Computer
Science, pages 3–20. Springer, 2020.

[Agd21] Agda. Agda’s documentation v2.6.2.1, 2021. Available at https://agda.readthedocs.io/
en/v2.6.2.1/.

[AGNS21] Reynald Affeldt, Jacques Garrigue, David Nowak, and Takafumi Saikawa. A trustful monad
for axiomatic reasoning with probability and nondeterminism. Journal of Functional Program-
ming, 31:e17, 2021.

[AN21] Reynald Affeldt and David Nowak. Extending equational monadic reasoning with monad
transformers. In 26th International Conference on Types for Proofs and Programs (TYPES
2020), volume 188 of Leibniz International Proceedings in Informatics, pages 2:1–2:21. Schloss
Dagstuhl, Jun 2021.

[ANS19] Reynald Affeldt, David Nowak, and Takafumi Saikawa. A hierarchy of monadic effects for
program verification using equational reasoning. In 13th International Conference on Math-
ematics of Program Construction (MPC 2019), Porto, Portugal, October 7–9, 2019, volume
11825 of Lecture Notes in Computer Science, pages 226–254. Springer, 2019.

[BC04] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Development -
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science.
An EATCS Series. Springer, 2004.

[CDB19] Jan Christiansen, Sandra Dylus, and Niels Bunkenburg. Verifying effectful Haskell programs
in Coq. In 12th ACM SIGPLAN International Symposium on Haskell (Haskell 2019), Berlin,
Germany, August 18-23, 2019, pages 125–138. ACM, 2019.

[CST20] Cyril Cohen, Kazuhiko Sakaguchi, and Enrico Tassi. Hierarchy builder: Algebraic hierarchies
made easy in Coq with Elpi (system description). In 5th International Conference on Formal
Structures for Computation and Deduction, FSCD 2020, June 29-July 6, 2020, Paris, France
(Virtual Conference), volume 167 of LIPIcs, pages 34:1–34:21. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2020.

[Gar21] Jacques Garrigue. Proving the correctness of OCaml typing by translation into Coq. The 17th
Theorem Proving and Provers meeting (TPP 2021), Nov 2021. Presentation.

[GGMR09] François Garillot, Georges Gonthier, Assia Mahboubi, and Laurence Rideau. Packaging math-
ematical structures. In 22nd International Conference on Theorem Proving in Higher Order
Logics (TPHOLs 2009), Munich, Germany, August 17–20, 2009, volume 5674 of Lecture Notes
in Computer Science, pages 327–342. Springer, 2009.

[GH11] Jeremy Gibbons and Ralf Hinze. Just do it: simple monadic equational reasoning. In 16th
ACM SIGPLAN international conference on Functional Programming, ICFP 2011, Tokyo,
Japan, September 19–21, 2011, pages 2–14. ACM, 2011.

[Hie21] Hierarchy Builder. Hierarchy builder wiki—missingjoin. Available at https://github.com/
math-comp/hierarchy-builder/wiki/MissingJoin, 2021.

[JNGH18] Narjes Jomaa, David Nowak, Gilles Grimaud, and Samuel Hym. Formal proof of dynamic
memory isolation based on MMU. Sci. Comput. Program., 162:76–92, 2018.

[LR20] Thomas Letan and Yann Régis-Gianas. FreeSpec: specifying, verifying, and executing impure
computations in Coq. In 9th ACM SIGPLAN International Conference on Certified Programs
and Proofs (CPP 2020), New Orleans, LA, USA, January 20–21, 2020, pages 32–46. ACM,
2020.

[MAA+19] Kenji Maillard, Danel Ahman, Robert Atkey, Guido Martínez, Catalin Hritcu, Exequiel Rivas,
and Éric Tanter. Dijkstra monads for all. Proc. ACM Program. Lang., 3(ICFP):104:1–104:29,
2019.

16

https://agda.readthedocs.io/en/v2.6.2.1/
https://agda.readthedocs.io/en/v2.6.2.1/
https://github.com/math-comp/hierarchy-builder/wiki/MissingJoin
https://github.com/math-comp/hierarchy-builder/wiki/MissingJoin

[Mat21] MathComp. The mathematical components repository. Available at https://github.
com/math-comp/math-comp, 2021. Version 1.13.0. See https://github.com/math-comp/
math-comp/blob/master/mathcomp/ssreflect/tuple.v#L460-L499 for the bseq type.

[MC20] Shin-Cheng Mu and Tsung-Ju Chiang. Declarative pearl: Deriving monadic quicksort. In 15th
International Symposium on Functional and Logic Programming (FLOPS 2020), Akita, Japan,
September 14–16, 2020, volume 12073 of Lecture Notes in Computer Science, pages 124–138.
Springer, 2020.

[Mon21] Monae. Monadic effects and equational reasoning in Coq. Available at https://github.com/
affeldt-aist/monae, 2021. Version 0.4.0.

[Mu19a] Shin-Cheng Mu. Calculating a backtracking algorithm: An exercise in monadic program
derivation. Technical report, Academia Sinica, 2019. TR-IIS-19-003.

[Mu19b] Shin-Cheng Mu. Equational reasoning for non-determinism monad: A case study of spark
aggregation. Technical report, Academia Sinica, 2019. TR-IIS-19-002.

[OSC12] Bruno C. D. S. Oliveira, Tom Schrijvers, and William R. Cook. MRI: Modular reasoning
about interference in incremental programming. Journal of Functional Programming, 22:797–
852, 2012.

[PSM19] Koen Pauwels, Tom Schrijvers, and Shin-Cheng Mu. Handling local state with global state. In
13th International Conference on Mathematics of Program Construction (MPC 2019), Porto,
Portugal, October 7–9, 2019, volume 11825 of Lecture Notes in Computer Science, pages 18–44.
Springer, 2019.

[SPWJ19] Tom Schrijvers, Maciej Piróg, Nicolas Wu, and Mauro Jaskelioff. Monad transformers and
modular algebraic effects: what binds them together. In 12th ACM SIGPLAN International
Symposium on Haskell (Haskell 2019), Berlin, Germany, August 18–23, 2019, pages 98–113.
ACM, 2019.

[The21] The Coq Development Team. The Coq Proof Assistant Reference Manual. Inria, 2021. Available
at https://coq.inria.fr. Version 8.14.1.

17

https://github.com/math-comp/math-comp
https://github.com/math-comp/math-comp
https://github.com/math-comp/math-comp/blob/master/mathcomp/ssreflect/tuple.v#L460-L499
https://github.com/math-comp/math-comp/blob/master/mathcomp/ssreflect/tuple.v#L460-L499
https://github.com/affeldt-aist/monae
https://github.com/affeldt-aist/monae
https://coq.inria.fr

	Introduction
	An extensible implementation of monad interfaces
	Formalizing a hierarchy of monads using Hierarchy-Builder
	Extension with the array monad and the plus monad

	Difficulties with the termination of monadic functions
	Background: standard Coq tooling to prove termination
	The !Function! command
	The !Program!/!Fix! approach

	Limitations of Coq standard tooling to prove termination
	Difficulty with the !Function! approach
	Difficulty with the !Program/Fix! approach

	Add dependent types to return types for formal proofs
	Add dependent types to called functions to prove termination
	Add dependent types with a dependently-typed assertion

	A complete formalization of quicksort derivation
	Formal properties of nondeterministic permutations
	Program refinement
	A complete formalization of functional quicksort
	A complete formalization of in-place quicksort

	Related work
	Conclusion

