
Information and Software Technology 156 (2023) 107132

A
0

A
P
P
a

b

c

A

K
C
A
E

1

t
e
u
p
h
d
c
e
o

m
t
A

h
R

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

n expressive and modular layer activation mechanism for Context-Oriented
rogramming
aul Leger a,∗, Nicolás Cardozo b, Hidehiko Masuhara c

Escuela de Ingeniría, Universidad Católica del Norte, Coquimbo, Chile
Systems and Computing Engineering Department, Universidad de los Andes, Colombia
Tokyo Institute of Technology, Japan

R T I C L E I N F O

eywords:
ontext-Oriented Programming
ctivation mechanisms
MA

A B S T R A C T

Context. There is a trend in the software industry towards building systems that dynamically adapt their
behavior in response to their surrounding environment, given the proliferation of various technological devices,
such as notebooks, smartphones, and wearables, capable of capturing their execution context. Context-oriented
Programming (COP) allows developers to use layer abstractions to adapt software behavior to the context. A
layer is associated with a context and can be dynamically activated in direct response to gathered information
from its surrounding execution environment. However, most existing layer activation mechanisms have been
tailored specifically to address a particular concern; implying that developers need to tweak layer definitions
in contortive ways or create new specialized activation mechanisms altogether if their specific needs are not
supported.
Objective. Complementing ideas to expressively declare activation mechanism models with interfaces that
define conditionals of activation mechanisms modularly, this paper proposes an Expressive and Modular
Activation mechanism, named EMA.
Method. To propose EMA, we analyze existing activation mechanisms in COP regarding activation features
and scope strategies. After, we propose the design of EMA and validate it with a case study discussion.
Results. Using a concrete JavaScript implementation of EMA, named EMAjs, we can implement two Web
applications: a smartphone application as an example to illustrate EMAjs in action, and an application of
home automation to discuss and compare our proposal.
Conclusions. Our proposed mechanism allows developers to instantiate different activation scope strategies
and interfaces to decouple the declaration of activation mechanism conditionals from the base code.
. Introduction

Context-awareness is important for building pervasive systems as
hey have to adapt their behavior according to their current context of
xecution, gathered from the surrounding environment (e.g., location,
sers’ preferences) [1]. The Context-oriented Programming (COP) [2]
aradigm allows developers to dynamically change the software be-
avior in response to an identified context. COP languages provide
ynamic adaptations by means of layers that identify contexts [3] as
oncrete situations sensed from the surrounding environment, and
xecute partial methods [4] that are specialized fine-grained behavior
f the system’s base code.

A layer is activated or deactivated following a defined activation
echanism. Whenever the system identifies the execution of a context,

he layer associated to the context activates, otherwise, it deactivates.
large number of activation mechanisms have been proposed in the

∗ Corresponding author.
E-mail address: pleger@ucn.cl (P. Leger).

literature [2,5–14], each, tailored to address a particular development
need. Given the target to specific needs, these mechanisms seldom share
the same semantics, for example, event-based mechanisms activate a
layer when a pattern of triggered events happens. As a consequence,
developers end up tweaking layer declarations in contortive ways,
or creating new specialized activation mechanisms. We highlight two
problems from this observation. First, each activation mechanism offers
a single and fixed semantics to activate a layer (Fig. 1a). However,
interaction between layers can be complex, requiring different mech-
anisms for their activation. To enable such interaction and increase the
flexibility of the system, we require an activation and scoping model
that unifies different mechanisms. For example, a global activation
scope causes a smartphone to reduce the precision of calculations
whenever its battery level is low (i.e., the context). However, some
vailable online 13 December 2022
950-5849/© 2022 Elsevier B.V. All rights reserved.

ttps://doi.org/10.1016/j.infsof.2022.107132
eceived 7 September 2022; Received in revised form 28 November 2022; Accepte
d 6 December 2022

https://www.elsevier.com/locate/infsof
http://www.elsevier.com/locate/infsof
mailto:pleger@ucn.cl
https://doi.org/10.1016/j.infsof.2022.107132
https://doi.org/10.1016/j.infsof.2022.107132
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2022.107132&domain=pdf

Information and Software Technology 156 (2023) 107132P. Leger et al.

i
c
l
s
i
i
m
d
t
t
p
s

s
w

Fig. 1. Comparison between existing activation mechanisms and our proposal.
t
o
m

c
t

operations may require higher precision, and would benefit from a
local activation scope to keep the precision for those instances. Second,
most activation mechanisms keep a close relationship with the system’s
base code, implying a coupling between the layer declaration, its use,
and the base code. This is so because developers implicitly depend on
variable references or method invocations in the base code to declare a
conditional (Fig. 1b), increasing the fragility of dynamically adaptive
programs. Changes in base code or a conditional declaration may
spuriously activate or deactivate layers [15]. A similar problem has
been identified in other areas like aspect-oriented programming [16],
known as the fragile pointcut problem [17].

To address the previous issues, we propose an EMA mechanism
for COP languages. As Fig. 1c shows, EMA complements ideas to
expressively declare customized activation mechanism scope strate-
gies [18] with interfaces to define conditionals of these mechanisms
that remove implicit dependencies with the base code [19].1 EMA uses
a unified activation mechanism interpreter that enables managing case
by case activation scoping strategies by means of dedicated predicates
to arbitrate interaction among layers. In addition, this language al-
lows developers to specify interfaces to exhibit part of the internal
system’s state (i.e., field values) and behavior (i.e., method executions)
of an object, using predicate conditionals to explicitly associate variable
dentifiers available in these interfaces. As a consequence, developers
an define layers with low coupling to the base code, in which the
ayer itself can include the particular specification of its activation
cope strategy. Our proposal works because these two complementary
deas help each other: scope strategies use interfaces to be defined, and
nterfaces with scope strategies expressed in another layer component
ake simpler conditional definitions. Finally, as a benefit for EMA
evelopers, layers improve their reuse, flexibility, and their modularity
o be applied in adaptive software systems. To highlight the novel of
his proposal, we develop a reference frame that compares the existing
roposals in terms of activation mechanisms and scope supported. In
ummary, this paper makes the following four contributions:

1. An Expressive and Modular layer Activation (EMA), which pro-
vides an expressive API for layers scoping, and interfaces be-
tween layers and the base code. With these features, EMA allows
developers to enhance the modular definition of layers because
their specification contains its scope and variable conditions to
be (de)activated.

2. A concrete implementation in JavaScript, named EMAjs, with a
preliminary performance evaluation.

3. A discussion of two applications that use our concrete imple-
mentation, where one is compared to object-oriented paradigm
and context-oriented paradigm without EMAjs. Additionally, we
discuss the threats to validate our proposal.

1 Basic and immature notions of these two ideas have been pre-
ented independently and disconnected at the Context-Oriented Programming
orkshop.
2

4. An extensive and updated reference frame that compares COP
languages in terms of activation mechanisms and scope sup-
ported.

The rest of this paper is organized as follows. We motivate the
need of an expressive and modular layer activation mechanism using
a prototypical example of a smartphone’s adaptive display orientation
application in Section 2. Based on this motivation, Section 3 presents
the background of COP concepts required for our approach and a
comparison of existing COP languages. Section 4 presents the idea and
details of EMA, while its implementation details are made explicit by
extending JavaScript with COP capabilities. Section 5 shows the val-
idation through the implementation of two applications using EMAjs,
performance evaluation, and threats to validate our proposal. Section 6
presents COP approaches related to our proposal, and finally, Section 7
closes the paper with the conclusion and avenues of future work.

Availability . The current implementation of EMAjs is open-source and
available at https://github.com/pragmaticslaboratory/EMAjs [20]. In
addition, a running example presented in this paper is available at http:
//pleger.cl/sites/emajs (revision 903fdae). Our proposal currently
supports Nodejs (v16) [21], and the Google Chrome (v90) [22] and
Mozilla Firefox (v88) [23] browsers, without the need for an extension.

2. Motivation: A mobile video game with an adaptive user inter-
face

This section presents a variation of the context-aware smartphone
display prototypical example [5,11,19]. We use a smartphone video
game application with an adaptive layout interface with respect to the
device’s orientation. In COP, dynamic adaptations are carried out by
means of software (re)composition as response to layer activation. This
example motivates the difficulties and interaction intricacies between
existing activation mechanisms, which supports the expression and
modularity problems in activation mechanisms for COP languages.

The application offers the feature to adapt its layout and behavior
to support the landscape and portrait orientations in such a way that
the layout of the interface is always parallel to the ground, regardless
of the physical orientation of the device. Fig. 2 shows the way the
interface adapts by rearranging the distribution of displayed icons on
the screen, in response to physical orientation changes, between Portrait
and Landscape. As in the figure shows, an additional feature is Keep
Orientation, which allows users to fix displayed components on the
screen, even if the device rotates (e.g., the video game scene). Imple-
mentations of such specialized features are crosscutting concerns [16] as
hey are scattered across many places in the base code, tangled with
ther concerns. Tangled features defining crosscutting concerns can be
odularly implemented by means of COP abstractions.

Fig. 3 shows an excerpt the smartphone application with two
lasses. The Screen class captures the physical orientation and ro-
ates window components in the application, and the wComponent

class is in charge of displaying the application components using a
display() method. The behavior of the application is specialized

https://github.com/pragmaticslaboratory/EMAjs
http://pleger.cl/sites/emajs
http://pleger.cl/sites/emajs
http://pleger.cl/sites/emajs

Information and Software Technology 156 (2023) 107132P. Leger et al.
Fig. 2. A video game with the (almost) full adaptive mode.
Fig. 3. Implicit relation and dependency between base code and layers with their activation mechanisms in the smartphone example.
by three layers: Landscape, Portrait, and KeepOrientation.
Landscape displays window components using a landscape layout,
for example, the icons in a menu bar with their name showing to the
right. Portrait displays window components using a portrait layout,
for example, the icons in a menu bar with their name underneath
the icon. Finally, KeepOrientation keeps specific displayed compo-
nents fixed on the screen, even if the device rotates (e.g., the video game
scene in Fig. 2). Note that the changes to the display() method to
customize the way components appear on the screen crosscuts objects
from different classes of the application (e.g., icons, labels, scene).

Whereas previous layers can be implicitly activated when a variable
changes its value, the KeepOrientation layer is explicitly activated
on an object of a window component. Therefore, we have at least two
different ways to deal with the activation of layers: global activation
and per-instance (object) activation. In addition, triggering the dynamic
adaptation of the behavior associated to each of the layers Landscape
and Portrait, these layers need to access the angle variable from
the Screen class, implying an implicit dependency between these two
layers and the base code.

Summary . Taking into account the situation described for the smart-
phone display orientation example, we highlight two problems that
arise from the existing activation mechanisms in COP languages:

1. Lack of an expressive activation mechanism scope strategy that
allows developers to have customized and specialized scope
semantics for a layer.

2. Coupling between layers and base code with implicit dependen-
cies, making fragile programs that use COP.
3

As a consequence of these previous two problems, the reuse, flex-
ibility, and modularity of layers are hindered. To the best of our
knowledge, existing COP languages do not allow developers to cus-
tomize an expressive scope strategy together with decoupling layers
and the base code. As our proposal does, previous both features put
together make it possible to define full-fledged modularized layers.

3. Context-Oriented Programming

COP [2] allows programmers to develop software systems that adapt
their behavior at runtime according to identified contexts from the
surrounding execution environment. The implementation of behavior
adaptations, together with their associated layers and their activation,
crosscut several concerns of the system. Before diving into our proposed
approach in the next section, this section introduces the main concepts
of COP, and discusses the existing activation mechanisms and scoping
strategies. Finally, this section discusses different COP languages in
terms of the two previous features.

3.1. Layers

The main abstraction in COP languages is a layer [4],2 which encap-
sules the components to modularly implement the dynamic adaptation
of base code behavior. This dynamic adaptation is carried out by

2 Layers are sometimes refer to as contexts [5]. Following most of works
(discussed in this paper), we will use the term layers as language abstractions
for dynamic adaptations that are related to an identified context.

Information and Software Technology 156 (2023) 107132P. Leger et al.
Fig. 4. Layer method and its partial method.
partial method [4] definitions, which specialize method implementa-
tions (known as layered methods) in object-oriented languages (Fig. 4).
Snippet 1 illustrates the definition of a layer with a partial method in
the smartphone application example using ServalCJ [11,14], a Java-
like for COP. In ServalCJ, developers can define layers (Lines 1–3).
Within a class declaration, ServalCJ developers can express how a
layer modifies the class behavior (Lines 10–15). In this case, when
the Landscape layer is activated, the display() behavior will be
the one declared in the method inside the layer (Lines 11–13), rather
than the base definition in the wComponent class (Lines 6–8). In COP
languages, a partial method can execute the original implementation of
its layered method using a construct like proceed.

1 layer Landscape {
2 //other code
3 }

5 class wComponent {
6 void di sp lay () {
7 //implementation
8 }

10 layer Landscape {
11 void di sp lay () {
12 //variation for the display method
13 }
14 }
15 }

Snippet 1: Partial method and layer definition in ServalCJ

3.2. Layer activation mechanisms

As a layer is dynamically activated and deactivated, its associated
partial methods are respectively composed with and withdrawn from
the system. Activation mechanisms in layers establish how and when a
layer must be activated. We can find different kinds of mechanisms to
activate layers: Imperative mechanisms [2,5] activate layers explicitly
in the system execution workflow, using constructs as with or acti-
vate, implicit mechanisms [8,10–12,24,25] activate layers whenever a
specified condition is satisfied, and event-based mechanisms [9,26] use
event matching triggers in combination with imperative and implicit
mechanisms [13,14]. Using the smartphone application example, Fig. 5
illustrates the three mechanisms to activate the Landscape layer
when the angle of rotation for the smartphone exceeds a threshold. Un-
like the imperative activation mechanism, other activation mechanisms
use a conditional that must be satisfied to activate a layer, as Snippet
2 describes. The snippet shows the manual management of relations
between layers. For example, the interaction between Portrait and
Landscape must explicitly deactivate the opposite layer whenever
one of the two layers is activated. To resolve relations and activation
conflicts between layers, COP languages add ad hoc constructs to
existing activation mechanisms.
4

Snippet 2: Layer activation interaction management
activate Landscape i f (Screen . angle > THRESHOLD) ;
activate P o r t r a i t when ! Landscape ;

3.3. Layer activation scope strategies

We differentiate when a layer is active from when a layer has to be
applied. The last is the scope strategy for an activated layer, meaning
that the layer may keep active although its scope does not apply in a
certain portion of a program execution. This difference can be useful
for several examples when we need:

1. a persistent layer which keeps information in an active layer and
not applied, e.g., the rotation angle that activated the landscape
layer.

2. not apply an active layer in some particular place without an ex-
ecution of the enter and exit transition process, e.g., the KeepOri-
entation layer.

3. to apply a layer to specific objects that could be created un-
der some conditions, e.g., objects created by untrusted third
applications inside of the video game like advertisements.

4. to apply a layer considering the relation with other (de)active
layers, e.g., Landscape and Portrait layers.

5. any combination of previous ones, e.g., our proposal.

Researchers have already discussed different scope strategies (com-
binations of lexical and dynamic scope) in programming languages
[27], and particularly in areas related to COP [28–30]. Specifically in
COP, ContextJS [31] allows developers to express some scope strategies
to a layer (more in the next section).

3.4. Context-oriented languages

In the body of literature, we can find several COP languages, starting
by ContextL [4] which is one of the first COP language. Ordered by the
release year, this section briefly describes COP languages in terms of
activation mechanisms and scope strategies (summarized in Table 1).

ContextL. In 2005, Costanza and Hirschfeld proposed ContextL [4]
as an extension of the Common Lisp Object System (CLOS) [42] to
support context-oriented programming. ContextL uses an explicit ac-
tivation mechanism utilizing the construct with-active-layers,
and layers are dynamically scoped to a specific control flow of a code
block.

Ambience. González et al. propose Ambience [34], an implementation
of the AmOS [43] object system to support COP. Although the language
uses the term context to refer to a layer, we can find the same concep-
tual abstractions that the rest of COP languages. Similar to ContextL,
the language uses and an explicit activation mechanism, and layers are
dynamically scoped to a specific control flow and global.

ContextJ. A Java extension to support COP is ContextJ [2,26]. The
language uses an explicit activation mechanism through the with

Information and Software Technology 156 (2023) 107132P. Leger et al.

c
c
i
S
(
a
b
o
m

E
l
c
a
A
o

P
p
t
u

C
f
t

Fig. 5. Activating the Landscape layer using three different activation mechanisms.
Table 1
Activation mechanism and scope strategies of existing COP languages.
Year COP Language Language Activation mechanism Scope strategies

2005 ContextL [4] CLOS Explicit Control flow
2007 ContextS [32] Squeak Explicit Control flow
2007 PyContext [33] Python Implicit Control flow
2007 Ambience [34] CLOS-like Explicit Control flow & global
2008 ContextJ [2] Java Explicit Control flow
2009 NextEJ [35] Java-like Explicit Control flow
2010 ContextErlang [36] Erlang Explicit Per-actor

2010 JCOP [26]
(ContextJ variation) Java Event-Based Control flow

2010 ContextPy [37] Python Explicit Control flow & global
2010 ContextLua [38] Lua Explicit Control flow
2010 Subjective-C [5] Objective-C Explicit Global & per-thread
2011 EventCJ [9] Spoofax/IMP Event-Based Per-object

2011 ContextJS [31] JavaScript Explicit Control flow & global &
per-object (customizable)

2013 ServalCJ [39]
(or Javanese) Java-like Implicit Per-object & global

2013 L [40] Java-like Explicit Control flow
2013 Context Traits [6] JavaScript Explicit Global & per-object
2015 Congolo [41] Golo Implicit Module
2017 ServalCJ extension [11] Java-like Implicit Per-object & global
2018 Emfrp extension [12] Emfrp Implicit Global
construct and follows the scope of a control flow of dynamic extent.
A ContextJ variant is JCop [26], which uses join points and pointcuts
from AspectJ [44] to support an event-based activation mechanism.

Subjective-C. An extension of Objective-C is proposed to enable
ontext-orientation for mobile devices [5]. Subjective-C acts as a pre-
ompiler on top of Objective-C using metaprogramming to dynam-
cally modify method implementations during method dispatch. In
ubjective-C adaptations use an explicit (de)activation mechanism
with dedicated @activate and @deactivate abstractions), immediately en-
cting such (de)activation. In Subjective-C adaptations are scoped
oth globally and locally to all objects in an execution thread. More-
ver, Subjective-C was the first language to reconcile multiple scoping
echanisms in a single (de)activation model [7].

ventCJ. This is a compiler that is built on the top of Spoofax/IMP
anguage workbench [45]. EventCJ [9] translates developer pieces of
ode to AspectJ and Java. The compiler enables to developers to use
n event-based activation mechanism using the matching of join points.
dditionally, EventCJ layers have can define a per-object scope instead
f the dynamic extent of a specific control flow like ContextJ.

yContext. A Python extension to support COP [33]. PyContext sup-
orts an implicit activation mechanism that verifies which layers are ac-
ive before a layered method is executed. Similarly ContextJ, PyContext
ses a scope that follows a specific control flow.

ontextJS. Lincke et al. propose ContextJS [31], a JavaScript extension
or COP. The proposal uses an explicit activation mechanism. Regarding
he scope strategies, ContextJS offers an open customization for scope
5

strategies that allow developers to express dynamic extent of a block
code, per-object with restrictions, and global.

ContextErlang. An Erlang extension to support COP [36] in distributed
and concurrent environments. ContextErlang is used to develop self-
adaptive applications that based actor-oriented programming. The ex-
tension uses an explicit activation mechanism which is scoped by
actors.

ServalCJ. Kamina et al. propose ServalCJ [39], a Java-like language
that supports COP. Similar to PyContext, the language supports an im-
plicit activation mechanism that activates layers when conditionals are
satisfied. In [11], ServalCJ is extended to support an implementation
variant of implicit activation that uses reactive values to activate layers.
This variant allows a layer to be (de)activated immediately when its
associated conditional changes. ServalCJ supports two scope strategies:
per-object and global layer activations.

Context Traits. Context Traits [6] posits a compositional way to enable
dynamic variations to the contexts based on the concepts of traits
and trait (re)composition. This language uses an explicit activation
mechanism in which the (de)activations take place immediately after
they are called. Similar to our approach, enables de adaptation of
specific object instances, or all objects of a class, depending on the
association of behavior variations with object instances or their class
representative.

Congolo. Golo [46] is a lightweight dynamic language for the Java
Virtual Machine (JVM). Congolo [41] is a COP extension for Golo,
which uses an implicit activation mechanism, the extension follows the
per-module scope strategy.

Emfrp extension. Emfrp is a pure-FRP (Functional Reactive Program-
ming) language for small-scale embedded systems [47]. In [12], Watan-

abe proposes a COP extension for Emfrp. Similar to ServalCJ, the

Information and Software Technology 156 (2023) 107132P. Leger et al.

f

extension uses an implicit activation mechanism and supports a global
scope.

COP languages like ContextS [32], ContextPy [37], L [40], NextEJ
[35], and ContextLua [38] (mainly) propose to use an explicit activa-
tion mechanism and its scope follows the control flow or a global layer
activation. In addition, we can find other proposals like Lambic [24]
and Flute [25], proposed COP language introducing the definition
and realization of adaptations to the context for group behavior and
reactive programming, respectively. Finally, we can find alternatives
to address issues related to context-oriented implementations that go
beyond the concepts of layers like the language Korz [48] and context-
oriented behavioral programming [49]; however, these proposals are
beyond the scope of this paper.

4. EMA

This section presents EMA, an expressive and modular activation
mechanism for COP. Our proposal complements ideas to expressively
declare customized activation mechanism [18] with interfaces to define
conditionals of these mechanisms that remove implicit dependencies
with the base code [19]. Using the smartphone application example, we
describe how each idea to work together in EMA as a complementary
manner.

4.1. An expressive API for scoping

To manage layer activation scope, we define an expressive API
(Application Programming Interface) that enables developers to acti-
vate/deactivate multiple layers simultaneously, defining dedicated and
customized scoping strategies for each particular activation.

Layer (de)activation is performed using our defined API to explicitly
and expressively state the scope in which a layer is active. As an
example of the need for this scope in activation mechanisms, consider
the activation of the Landscape layer in our video game application, de-
ined in Section 3.2 using ServalCJ as activate Landscape if(Screen.angle >

THRESHOLD). If such conditional is not satisfied, the layer is deactivated.
Such activation mechanisms present two problems.

First, the activation mechanism explicitly targets a specific layer.
For example, each activation and deactivation of the Landscape and
Portrait layers in the video game application must be managed inde-
pendently, even though they refer to the same system property. This
hinders the conciseness of activations, opposed to implicit or more
flexible mechanisms. Second, scoping rules in activation mechanisms
are managed uniformly. However, different layers may require different
scopes to assure the correct system behavior. For example, in the
video game application, the Landscape layer can be activated with a
global scope, applying the specialized behavior to all entities in the
system, while the KeepOrientation layer may be applied to specific objects
(e.g., instances of wComponent) for which we do not want to change the
orientation along with the device.

To the best of our knowledge, the purpose of our expressive scoping
API within EMA arises from the observation that there is no unifying
interface for scoping the activation/deactivation of layers that is in-
dependent from a COP language. We address both problems existing
in common activation mechanisms in COP. The idea behind our API
is to enable layer (de)activation through the use of the interface to
which layers subscribe (Section 4.2). The activation scopes are defined
as functions on layers’ interfaces, which are able to apply the action to
multiple layers simultaneously.

The expressive scoping API for layer activation and deactivation
used in EMA is defined in Table 2. Each function specifies the action
(activate or deactivate) to execute over a set of layers specified by a
predicate over a conditional (predicate) on conditions over interfaces,
and applying the activation/deactivation on a particular scope.

The activation and deactivation functions effectively actuate over all
layers satisfying the condition predicate on the interface. By default,
6

Table 2
Flexible layer activation/deactivation API.

𝐿𝑎𝑦𝑒𝑟𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 ∶∶= activate(𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 [, 𝑆𝑐𝑜𝑝𝑒])
𝐿𝑎𝑦𝑒𝑟𝐷𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 ∶∶= deactivate(𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 [, 𝑆𝑐𝑜𝑝𝑒])

𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 ∶∶= {𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒}(𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛)
𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 ∶∶= between | allOf | atLeastOne |

atMostOne | unique
𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 ∶∶= 𝑅𝑎𝑛𝑔𝑒 | 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑃 𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒

𝑆𝑐𝑜𝑝𝑒 ∶∶= 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 | 𝐶𝑙𝑎𝑠𝑠 | 𝑇ℎ𝑟𝑒𝑎𝑑

all layer activations and deactivations use a global scope.
𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑃 𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑠 (e.g., RotationCondition) specify a predicate that the
interface must satisfy to enact the required action. For example,
activate(allOf(RotationCondition)) results in the activation of the layer
(Landscape) for all the program entities that satisfies the specified
𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑃 𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒:

Rotat ionCondit ion = () => Screen . angle > THRESHOLD

The predicates atLeastOne, atMostOne respectively activate any (possibly
several), and at most one, of the layers satisfying the given 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛.
The unique predicate lets us express the condition where just the speci-
fied layer satisfying the condition must be active (all other layers are
implicitly deactivated). In the example in Snippet 2, assuring the acti-
vation of Portrait takes place when Landscape is inactive, can be expressed
as activate(unique(RotationCondition)). Finally, the between predicate enables
the activation of all layers for which the 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 is satisfied, specified
as a 𝑅𝑎𝑛𝑔𝑒 query. In addition to 𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑠, each action
can specify the 𝑆𝑐𝑜𝑝𝑒 of the activation/deactivation for the layers,
following any of the existing five models:

(1) local to the lexical scope in which the adaptation is defined/-
called [4] (using withCurrentScope),

(2) local to all the objects in the current execution thread [7] (using
a specific 𝑡ℎ𝑟𝑒𝑎𝑑 id),

(3) global to all objects and all execution threads [50] (default
behavior not specifying the 𝑆𝑐𝑜𝑝𝑒),

(4) local to a specific object instance [9] (specifying an object
𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 as 𝑆𝑐𝑜𝑝𝑒), and

(5) specific to all object instances of a type [51] (specifying a 𝐶𝑙𝑎𝑠𝑠
as 𝑆𝑐𝑜𝑝𝑒).

As a consequence, EMA eases the layer activation scope from two
perspectives. First, we provide a unified interface to scope adaptations
using different mechanisms within the same application. Second, we
enable the selection of many layers based on their interfaces.

4.2. Interfaces

Fig. 6a shows the implicit dependency between base programs and
layers through program variables used in conditional declarations to
activate layers, which is problematic for code maintenance and reuse.
EMA uses interfaces [19] to decouple such implicit dependency. Taking
inspiration from Open Modules [52] and other related proposals [53–
55], interfaces allow developers to exhibit field values and method
executions (with a return value) from any object of a class. Note
that exhibiting a method without a return value would not make
sense to define a 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛, as conditions are defined for base-level
values; therefore that is not allowed. Exhibited values are used in the
𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑃 𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 declaration to activate and deactivate layers. For
example, Fig. 6b shows the Screen class exhibiting the angle variable as
a rotation interface (shown in the white square in the figure), to satisfy
the conditional requirements of the Landscape layer. Interfaces also accept
expressions as values to address the problem of context reuse. For
example, consider a new device (e.g., tablet) whose rotation angle is
provided in radians. As the layer requires the rotation in degrees, the

expression rotation: angleInRadian∗180/PI is used in the interface definition

Information and Software Technology 156 (2023) 107132P. Leger et al.

t
a
r
t
t

4

d
t
s
e
o
s
L

a
s
f
t
a
i
b
a
d

Fig. 6. Coupling due to the implicit dependency between base program and layers, and how interfaces can decouple them.
Fig. 7. Application of EMA to the smartphone example.
4

J
o
a
u

p
c

[
i
m
f
t
f
i
t
b

w
i

o reconcile both implementations, as shown in Fig. 6c. As a layer is
n object, its conditional evaluation can be exhibited to other layers to
esolve activation conflicts. Through interfaces, developers can replace
he implicit dependency between layer definition and activation, and
he base program.

.3. Complementing an expressive scoping API and interfaces

EMA, as an expressive and modular activation mechanism, allows
evelopers to define customized activation mechanisms according to
heir needs. This proposal is carried out by putting together an expres-
ive API for scope strategies and interfaces, in which developers can
xpressively and modularly define layers. Fig. 7 shows the application
f EMA for the case of the smartphone video game. First, we can
ee that developers can customize different scope strategies to layers:
andscape and Portrait use a global scope to modify window components,
nd KeepOrientation uses a per-object activation scope (i.e., video game
cene). Second, the Screen class exhibits the angle field as a rotation inter-
ace to satisfy the requirements for the Landscape and Portrait layers. In
his way, the layer definitions are now decoupled from the smartphone
pplication, i.e., the base program. Notice that both scope API and
nterfaces are powered when they cooperate with each other. This is
ecause the scope API are defined as interfaces on layers, and this API
llows developers to remove scope restrictions from the conditional
efinitions used by interfaces to (de)activate a layer.
7

p

.4. EMAjs

This section presents a concrete implementation of EMA as a
avaScript library, named EMAjs [20].3 Readers should note that while
ur implementation uses the object-oriented paradigm, the model is
gnostic to a concrete paradigm could be implemented, for example,
sing functions as first-class entities.

In EMAjs, we introduce two main abstractions to increase the ex-
ressiveness and modularity of layer activation: interfaces, and dedi-
ated scoping rules.

Interfaces are implemented using a reactive programming style
19]. Interfaces are created using the exhibit language abstraction. All
nterfaces are registered and kept in a signalInterfacePool as part of a
anagement object, EMA. Upon creation, we associate the new inter-

ace with the layers deployed in the environment, as a condition for
he layer activation/deactivation. Layer activation conditions, coming
rom interfaces, are created as reactive signals, so that whenever the
nterface value changes, the layer condition is evaluated reactively. If
he condition is satisfied, the layer is activated, otherwise the layer
ecomes inactive.

In addition to the layer activation/deactivation using interfaces,
e extend the scoping of layers following a declarative set of rules

mplementing different predicates applicable to layers and the program

3 The EMAjs implementation is available at: https://github.com/
ragmaticslaboratory/EMAjs.

https://github.com/pragmaticslaboratory/EMAjs
https://github.com/pragmaticslaboratory/EMAjs

Information and Software Technology 156 (2023) 107132P. Leger et al.

s

d
b

e

P
a

u

s
a
w
L
p

l
s

entities they affect [18]. Scoping rules can be specified by developers
upon the explicit activation/deactivation of a layer, using the activate
/deactivate abstractions. At layer activation/deactivation developers
can specify the activation conditions and restrictions, the extend of
the layers’ effect, and the entities over which the layer is applied,
as explained in Section 4.1. To do this, the EMA manager filters the
application of the layer to the application entities based on the given
predicate to the activation, applying the layers exclusively for the entity
instances specified in the activation conditions and for the specified
extend (i.e., global or local).

These two additions to COP languages, together with the definition
of partial methods, helps us define dynamic adaptations to the context
that are more expressive and modular, as we explain in the following
section.

5. Validation

We now present the validation of our work evaluating the modular-
ity and flexibly benefits of the features to scope adaptations introduced
in EMA. To do this we use the EMAjs implementation on two COP
systems, coming from different applications domains. Additionally, we
compliment this evaluation of the new features in EMA with a per-
formance evaluation, contrasting EMA to implementations using layers
and objects, to gauge the speed-up incurred by implementing interfaces.
Finally, we put in perspective the results of our validation with a
discussion of the limitations and threats to validity of our approach.

5.1. EMA application

We validate the features introduced in EMA by means of two
applications from different domains and sizes, these are: a smartphone
video game application, and a smart-home environment.

The smartphone application is used to show case the main features
introduced with EMA, in a small scale application. Additionally, the
contexts in this application are characterized as internal to the appli-
cation — that is, they are monitored variables from the system objects.
The smart home application is a larger scale application in which
context changes are driven by variables external to the system gathered
through sensors. With this application we evaluate further EMA’s fea-
tures with respect to the modularity and flexibility of COP applications
by comparing it with alternative implementations using other COP
languages (i.e., without EMA), and object-oriented implementations.

Overall, our validation shows that using EMA in context-aware
applications leads to solutions that are more expressive and modular
than their counterparts using other COP languages.

5.1.1. Smartphone video game application
The first part of the validation consists of a description of the

smartphone vide game application implementation using EMAjs,4 to
howcase the main components of EMA at work.

First, system objects may use the exhibit construct to define inter-
faces. This construct takes an object and creates an interface from
specified object properties (both fields or methods with return values).
Snippet 3 shows the definition of the rotation interface, taken from the
angle field in the Screen prototype object.

EMA.exhibit(Screen , { ro t a t i on : "angle" }) ;

Snippet 3: Defining and exhibiting an interface

Second, we add a Condition as a function object providing a user-
efined predicate that specifies the situations in which a layer should
ecome active. Condition predicates should be defined in terms of

4 The full running implementation is available at: http://pleger.cl/sites/
majs.
8

an interface to capture a particular situation from the system state.
Layers define a conditional property listing all the condition entities
that may be applicable to the layer. Snippet 4 shows the definition
of the Landscape layer (Lines 1–6) and a RotationCondition object (Line
8). Similarly the ServalCJ extension [11], layers may also define two
optional methods, to execute predefine actions as soon as the layer is
activated (onEnter()), and as soon as the layer is deactivated (onExit()).
artial method definitions are associated with the layers in which they
pply by means of the addPartialMethod construct. This construct takes a

layer, a prototype object, a method selector, and its partial implemen-
tation, to associate the partial implementation to the method selector in
the prototype. In our case, Lines 11–13 define the behavior variation to
the display method of the wComponent prototype object. Finally, developers
se the EMA.layer method to deploy a layer (Line 14).

1 l e t Landscape = {
2 cond i t iona l : [Rotat ionCondit ion] ,
3 //optional methods
4 onEnter : function () { Screen . r o t a t e () ; } ,
5 onExit : function () { . . . }
6 } ;

8 l e t Rotat ionCondit ion = ()=> ro ta t i on > THRESHOLD;

10 EMA.addPartialMethod(Landscape ,
11 wComponent , d isplay , function () {
12 //method variation
13 }) ;
14 EMA.layer(Landscape) ;

Snippet 4: Defining and exhibiting an interface

Finally, the activation and scoping mechanisms of layers and their
associated partial methods become available to the runtime system
by means of the new activate and deactivate constructs. Snippet 5
hows some of the different mechanisms, available in EMA, to scope the
ctivation and deactivation of layers. Line 1 uses a global scoping, in
hich all layers satisfying the RotationCondition predicate become active.
ine 2 also uses an activation with global scoping, where the unique
redicate assures that only the layers that satisfy the RotationCondition are

active, implicitly deactivating all other layers. Line 3 uses a scoping rule
in which all layers satisfying FixedCondition become active exclusively for
the gameScreen object instance, while other objects are unaffected by the
ayer. Line 4 uses a scoping rule in which, at least, one of the layers
atisfying RotationCondition deactivates from a specific execution thread.

1 EMA.activate(Rotat ionCondit ion) ;
2 EMA.activate(unique(Rotat ionCondit ion)) ;
3 EMA.activate(allOf(FixedCondit ion) , gameScreen) ;
4 EMA.deactivate(atLeastOne(Rotat ionCondit ion) , thread) ;

Snippet 5: Scoping mechanisms for layer (de)activation

From the implementation of the smartphone application, in Snippet
6, we note two characteristics that help us to support the statements of
this paper when compared to implementations in other COP languages:

1. We note the decoupling between the base behavior, layers, and
partial method definitions. The use of interfaces allows us to define
layers and partial methods as modules independent of base code,
i.e., class definitions. In the Screen class (Line 1 in Snippet 6), we can
see the class declaration is independent from the declarations for
the Landscape and KeepOrientation layers (Line 10). Approaches as that
of ServalCJ follow a layer-in-class declaration [56] as in Snippet
1. Additionally, interfaces prevent the dependency between base-
level variables and layer activation conditions (Line 6 in Snippet 6),
increasing its modularity. A second point of decoupling takes place
between the definition of partial methods and layers. We define
partial methods outside of layers, unlike other COP languages, to
let base programmers define the specialization of their system’s
behavior for any layer, and not just the ones defined by them. The

http://pleger.cl/sites/emajs
http://pleger.cl/sites/emajs

Information and Software Technology 156 (2023) 107132P. Leger et al.

b
m

addPartialMethod method lets developers associate: a layer, the class on
which it takes effect, and the specialized behavior (Line 17).

2. EMAjs allows developers to define different scoping mechanism to
take effect in each activation instance of a layer (Line 28). Effec-
tively, this implies that developers are able to express individual
layer activations with different scoping mechanisms at different
execution points. As consequence, layer activation is more flexible,
allowing for richer interaction between adaptations.

1 l e t Screen = {
2 angle : ge tDev ice In f () . o r i en ta t ion ,
3 r o t a t e : function () {/* implementation */}
4 }

6 EMA.exhibit(Screen , { ro t a t i on : "angle" }) ;
7 l e t Rotat ionCondit ion = ()=> ro ta t i on > THRESHOLD;
8 l e t FixedCondit ion = ()=> ro ta t i on == "fixed" ;

10 l e t Landscape = {
11 condi t ion : ()=> Rotat ionCondit ion ;
12 }
13 l e t KeepOrientat ion = {
14 condi t ion : ()=> FixedCondit ion ;
15 }

17 EMA.addPartialMethod(Landscape , wComponent , ’display’ , function ()
{

18 (’#grid’) . w2grid ({
19 columns : [
20 { icon : ’icon1’} ,
21 { capt ion : ’new’} ,
22 // ...
23 { icon : ’icon5’} ,
24 { capt ion : ’share’} ,
25]}) ;
26 }) ;
27 l e t gameScreen = new wComponent () ;
28 EMA.activate(unique(Rotat ionCondit ion)) ;
29 EMA.activate(allOf(FixedCondit ion) , gameScreen) ;

31 EMA.layer(Landscape) ;
32 EMA.layer(KeepOrientat ion) ;

Snippet 6: Video game application in EMAjs

5.1.2. Home automation system
We use a home automation system as a case study to evaluate the

modularity and flexibility of EMA. The home consists of different rooms
and appliances within those rooms that users can interact with. For this
case study we focus on the behavior of door ring alerts.

The base behavior of the alert system is to advertise visitors at the
front door of the home with a ringtone. The base alert sounds in a
standard chime installed at the door to provide visitors feedback about
the action. To advertise the alert to home inhabitants, the ringtone
should echo throughout the home. However, such alerts should echo
only in the rooms occupied by a user; which is defined as an adaptation
to the regular behavior. Whenever a user enters a room, the ring alert
is forwarded to the appliances in the room (e.g., TV, radio, soundbar)
by echoing the sound. A second adaptation is defined to manage
alerts according to the appliances currently in use. Alerts should not
disrupt the regular behavior of appliances, and therefore alternative
notification options are used. For example, in the case of a TV, the
alert is displayed as a text message on the screen rather than as sound.
The home should also make sure that ring alerts do not echo in babys’
rooms, not to disturb them. Moreover, if all rooms are occupied, the
alert should sound on a single device, to avoid loud disturbances.

The purpose of this case study is to highlight the advantages of
the activation and scoping mechanisms proposed in EMA with respect
to the modularity and flexibility of adaptations and their activation.
For this purpose we follow the evaluation strategy from the litera-
9

ture [57], where we compare the implementation of three versions h
of the case study. The first version implements adaptation definition
through the use of the strategy design pattern. Adaptation activation
is made explicit with manual global variables’ manipulation, scoped
globally. The second version implements a standard COP definition
of adaptations with explicit activation and global scoping. The third
version implements the system using EMA to manage both activation
and scoping. Activation is implicit using exposed interfaces, and the
scoping is tailored to each specific situation.

We compare the expressiveness and flexibility of the three adapta-
tion models used in terms of the LOC required to define the modularity
for three aspects for adaptation (i.e., base system logic, adaptation logic,
and activation logic) in terms of their scattering and tangling in the
system.

To evaluate the modularity of EMA, we first measure how expressive
is the language. We do this by measuring the LOCs for our case study,
taking into account the special situations described before. Our hypoth-
esis is that, if EMA is more expressive, then it should require a lower
implementation effort (i.e., LOCs) to develop the application concerns.
Moreover, as EMA improves on the definition and management of
dynamic adaptations, there should be a reduction in the percentage
of code dedicated to these concerns. Fig. 8 shows the results of this
measurement. The results confirm our hypothesis, that a more expres-
sive approach reduces the total LOCs in the application. This reduction
comes from the effort reduction (i.e., LOC) in the adaptation logic
and adaptation management concerns. This way developers can focus
on the core logic of their application, rather than in the adaptation
concerns. The EMAjs version of the case study is 0.21𝑥 more concise
than its counter part using design patterns. When evaluating each of the
concerns in the application, we observe that we reduce the adaptation
logic in 0.17𝑥 and the adaptation management logic in 1.98𝑥, yielding
an increase in the application logic of 1.38𝑥. Note that the increase
in the application logic does not imply an increase in the LOCs for
this concern, rather it highlights the importance of this concern in the
application.

To continue the evaluation of the expressiveness of the applications,
we turn our attention to the system modularity. Fig. 9 shows a division
of the modules required to develop the application. Each of the modules
represent a specific entity in the case study (in the x-axis) and the
quantity of concerns that are defined/used within the module (y-axis).
From Fig. 9, we observe that as we move towards more expressive
languages, the complete system becomes more cleanly modularized,
reducing the number of concerns used per module (i.e., object file).
Note that there is still some modules with multiple concerns, these
correspond to the definition of layers, and the orchestration for the
whole system. In the former case, we could split the definition of layers
into individual modules, however this would increase the number of
files. Given that the application is small, we preferred keeping all the
definitions to a file. In the latter case, the concerns could also be split
into different modules. This division depends on the characteristics and
controls of the systems (e.g., sensors) on the edge of the application.
We note that in most cases for small application, at least one file will
orchestrate the complete system, and therefore, containing all concerns.

Finally, Listings 7–9 complement our evaluation on modularity, in
this case showing the behavior and corresponding adaptations for the
situations when both a regular user and a baby are in a room.5 Note
that the color scheme in the listings follows the division of Fig. 8
into application logic, adaptation logic, and adaptation management.
The dotted lines in the listings represent different application modules.
From the code snippets it is possible to see how the code becomes more
modular, by cleanly separating the three different concerns. First, we

5 The purpose of the code snippets is to show the interplay and tangling
etween the three adaptation aspects, rather than to focus on the imple-
entation details. The full implementation of the application is available at:
ttps://github.com/pragmaticslaboratory/EMAjs [20].

https://github.com/pragmaticslaboratory/EMAjs

Information and Software Technology 156 (2023) 107132P. Leger et al.

g
w
i
s
l
t
v

Fig. 8. LOCs percentage per application concern.
Fig. 9. LOCs percentage per application concern.
ain modularity by separating the adaptation logic from the base logic,
hen moving from the strategy pattern based implementation to an

mplementation using COP. However, in the latter implementation, we
till observe, adaptation managing code tangled with the application
ogic. With EMA, we can remove that last dependency by exhibiting
he appropriate interfaces, rather than by depending on each specific
ariable in the code.

Snippet 7: Pattern-based implementation of the case study
function Room(name, appliances) {
this.strategy = null;
this.users = 0;
this. baby = false;
this.userExit = function() {

this.users = Math.max(0, this.users -1);
if(this.users === 0)

this.strategy = null;
else

this.strategy = new OccupiedStrategy(this);
};
this.babyInRoom = function() {

this.baby = true;
this.userEnter();
this.strategy = new BabyRoomStrategy(this);

};
}

function OccupiedStrategy(p) {
Room.call(p.name, p.appliances);
this.playSound = function() {

p.appliances.forEach(a => {
a.playSound (" Advertise ");
console.log (" ring alarm on ");

})
}

}
OccupiedStrategy.prototype=new Room;

function BabyRoomStrategy(p) {
Room.call(p.name, p.appliances);
this.playSound = function() {

console.log (" Not playing a sound as the baby sleeps ");
}

}
BabyRoomStrategy.prototype = new Room

Snippet 8: COP implementation of the case study
let Room = {

users: 0,
baby: false,
userExit: function() {

this.users = Math.max(0, this.users - 1);
if(this.users === 0)

EMA.deactivate(OccupiedLayer);
else

EMA.activate(OccupiedLayer);
},
babyInRoom: function() {

this.baby = true;
this.userEnter();
EMA.activate(BabyRoomLayer);

}

10
}

EMA.addPartialMethod(OccupiedLayer , Home.rooms, " playSound " ,

function() {
this.appliances.forEach(a => {

a.playSound (" Advertise ");
console.log (" ring alarm on ");

})
}

);

EMA.addPartialMethod(BabyRoomLayer , Home.rooms, " playSound " ,
function() {

if(this.baby)
console.log (" Not playing a sound as the baby sleeps ");

}
);

let OccupiedLayer = {name :" occupied " , condition: " " , enter:

function() {}, exit: function() {}};
EMA.deploy(OccupiedLayer);
let BabyRoomLayer = {name: " babyRoom " , condition: " " , enter:

function() {}, exit: function() {}};
EMA.deploy(BabyRoomLayer);

Snippet 9: EMAjs implementation of the case study
let Room = {

users: new Signal(0),
baby: new Signal(0),
userExit: function() {

this.users.value = Math.max(0, this.users.value - 1);
if(this.users.value === 0)

this.fullHome.value = Math.max(0,this.fullHome.value -1);
},
babyInRoom: function() {

this.baby.value += 1;
}

}

EMA.exhibit(Room, {occupied: Room.users});
EMA.exhibit(Room, {withBaby: Room.baby});

EMA.addPartialMethod(OccupiedLayer , Home.rooms, " playSound " ,

function() {
this.appliances.forEach(a => {

a.playSound (" Advertise ");
console.log (" ring alarm on ");

})
}

);

EMA.addPartialMethod(BabyRoomLayer , Home.rooms, " playSound " ,
function() {

if(this.baby)
console.log (" Not playing a sound as the baby sleeps ");

}
);

let OccupiedLayer = {name :" occupied " , condition: " occupied > 0" ,

enter: function() {}, exit: function() {}};
BabyCondition = " withBaby > 0"
let BabyRoomLayer = {name: " silent " , condition: BabyCondition ,

enter: function() {}, exit: function() {}};

To evaluate the flexibility of EMA, we focus our attention in the in-
teraction between the OccupiedRoom and BabyRoom adaptations. The
OccupiedRoom adaptations modifies the behavior of alerts in a room,

Information and Software Technology 156 (2023) 107132P. Leger et al.

w
h
u
h
b
g

u
u
c
t
b
a

Fig. 10. Three pieces of code used for the EMAjs performance evaluation: (a) Only creates objects, (b) creates objects and deploys layers, and (c) creates objects and interfaces.
henever a user is in it. The BabyRoom adaptation has a similar effect,
owever, the behavior of both adaptations differs. As a consequence,
sing COP, if there is a user in a room, and a baby in other room of the
ouse, the behavior observed upon an alert will correspond to the same
ehavior. This an undesired behavior, as we unintentionally capture a
lobal behavior for all adaptations.

EMA makes it possible to scope adaptations for each specific sit-
ation, offering a greater flexibility to apply adaptations and avoid
ndesired/unintentional behavior. Using the layer activation for a spe-
ific object instance, as shown in Snippet 10, for the case of activating
he specialized behavior for a baby in a room, this behavior will only
e visible for that specific object instance. All other rooms will behave
ccording to their corresponding occupancy.

Snippet 10: Scoping adaptations to specific object instance

bedroom . babyInRoom () ;
EMA. a c t i v a t e (atMostOne (BabyCondition) , bedroom) ;

5.2. Performance evaluation

The paper proposal focuses on defining an expressive modular
activation mechanism for COP; hence, we have not sacrificed any
potentially valuable feature on the basis of its expected cost. Even so,
it is valuable to have an outline of performance for programming lan-
guage proposals. Therefore, we carried out a preliminary performance
evaluation using EMAjs. We used Nodejs (v16) [21] on Macbook Pro
(2020), 2 GHz Quad-Core Intel Core i5 with 16 GB of RAM running
macOS Monterey, and EMAjs GitHub revision 903fdae (May 18, 2021).

Fig. 10 shows the three JavaScript programs executed to evalu-
ate EMAjs performance. The first program creates up to 600 objects
(Fig. 10a), the second one creates/deploys up to 600 objects/layers
with one interface (Fig. 10b), and the last one creates up to 600 ob-
jects/interfaces with one layer (Fig. 10c). Using these three programs,
Fig. 11 shows a preliminary performance evaluation of the current
EMAjs implementation. The figure shows the average time in ms (y-
axis) of 100,000 executions vs the creation of objects/layers/interfaces
(x-axis), respectively for each of the programs. Although EMAjs does
not observe every statement trying to activate a layer or execute a
partial method (Figs. 10b and 10c), the current implementation is
clearly slower than a program without EMAjs (Fig. 10a). Additionally,
an incremental use of interfaces affects performance. These results
could be due to the propagation of data stream in an unoptimized and
naive reactive programming implementation [58]. In JavaScript, we
can find proposals like Flapjax [59] and RxJS [60] that have also faced
performance issues to extend this language with reactive programming.
Note that in the two programs that use layers (Figs. 10b and 10c), we
can see that the scope strategy is only executed only once. This is so
because the scope strategy overhead is hidden compared to remaining
statements executed.
11
5.3. Threats to validity

We now present the threats to the validity of our evaluation, and
discuss possible limitations of our approach.

Threats to external validity refer to the generalization of the results
from our evaluation. The evaluation presented in this work is based on
the development of two applications coming from different domains,
to account for different types of interactions between adaptations for
different contexts. Moreover, the applications are of different sizes to
remove possible bias with respect to the contexts used in the appli-
cation, and the conditions in which they should take place. While
many different types of interactions are covered by the applications
showcased in the validation, we cannot claim that these are exhaus-
tive. Therefore, EMA may not cover all possible interactions between
adaptations. However, we argue that the flexibility of interfaces and
the possibility to extend the activation language, can ease this problem
by extending our proposal.

Threats to construct validity refer to the cases in which the evaluation
is not exhaustive or selective enough. In this case, the modularity anal-
ysis of the smart home application is restricted to the implementations
provided by the authors, experts in exploiting the modularity of the
three application versions. A wider evaluation with users providing
their own implementations of the three application versions can pro-
vide a more faithful evaluation of the modular capabilities of both COP
and EMA, as it would be used in the wild.

The proposed evaluation is successful in validating the objectives
and contributions of EMA. However, we note that further empirical
evaluation could strengthen the arguments of the paper with the con-
tributions of practitioners. Moreover, this would help us in positing
EMA as a viable and usable technology with benefits for developers.
Furthermore, the application of EMA to more domains can help us in
positioning its contributions within the software development industry.

6. Related work

Different proposals related to ideas behind EMA exist. In [61],
the author presents software development based on open implemen-
tations, which push software modularity through guidelines for the
construction of abstractions that can encapsulate customized behavior
semantics. In this line, proposals for JavaScript can be found [62,63].
Particularly in COP, for example, we can find ContextJS [31] as an open
implementation for layer composition, which allows developers to use
JavaScript to implement customized scope strategies. We next discuss
proposals related to the expressive declaration of scope strategies and
decoupling between layers and the base code.

Group behavior. Group behavior is proposed for COP [24,25] to enable
the activation of a group of layers, according to the satisfaction of
a predicate associated to partial behavior definitions. Here, partial
methods are associated with a predicate expressing conditions about
the internals of the system or its surrounding environment. Whenever
a method is called, all predicates of all partial methods matching the

method signature are evaluated. The behavior selected corresponds

Information and Software Technology 156 (2023) 107132P. Leger et al.
Fig. 11. A preliminary performance evaluation about EMAjs.
to valid predicates. The definition of group behavior is beneficial to
adapt the behavior of different program entities beyond their class
definition. Groups of objects can be defined explicitly by programmers
or implicitly by a specific shared property [64]. Although EMA does
not directly support the feature of group behavior, the expressive API
for scoping allows developers to emulate this feature because of two
reasons. First, the conditional to activate a layer might be shared among
(several) objects, allowing to activate a set of layers (with specific
behaviors) when a certain conditional is satisfied. Second, the group
behavior activations can be accurate in different contexts using the
expressive API for scoping available in EMA.

Decoupling layers and base code. This challenge is not completely
new in the COP community. For example, the authors in [65] present
a software architecture to modularly integrate each abstraction and
mechanism of COP into the software development process. However,
the architecture is particularly proposed for context-aware systems [1],
where dynamic behavior adaptations is part of main functionalities
of a system. Regarding the explicit decoupling between abstractions
from different paradigms, we find different proposals [52,53,55] that
decouple implicit dependencies between aspects of aspect-oriented pro-
gramming [16] and base code. For instance, in Join Point Interfaces
(JPI) [53], base code developers must explicitly establish what join
points are exhibited by objects of a class; allowing the modular reason-
ing of the application of an aspect. Inspired by JPI, EMA uses interfaces
to decouple references of variables used in conditionals used to activate
layers and variables in base code. These interfaces additionally allow
developers to exhibit expressions composed of variables or method exe-
cutions that come from different objects. As a conclusion, to the best of
our knowledge, EMA presents the first approach to explicitly decouple
the layers and base code of an application in the COP community.

7. Conclusion and future work

Our lives are being saturated with many computing devices, and
systems that dynamically adapt their behavior according to their sur-
rounding execution environment (e.g., users’ preferences). Such systems
12
are becoming ever bigger and more complex. COP [2] provides abstrac-
tions, like layers, to modularly implement these systems as a means to
reduce their complexity. A layer is used to dynamically adapt method’s
behavior when the layer becomes active. In the literature, there is a
significant number of activation mechanisms, which have been tailored
to satisfy specific developers’ needs [2,5–14]. Therefore, when devel-
opers face unforeseen needs, they end up tweaking layer declarations
in contortive ways, or creating new specialized activation mechanisms.
To address the previous issue, this paper proposes to complement two
ideas [19,66] to present an Expressive and Modular Activation mecha-
nism (EMA), which allows developers to define customized mechanism
scope strategy and decouple the implicit dependency between acti-
vation conditionals and base code. As a consequence, layers improve
their reuse, flexibility, and their modularity to be applied in different
scenarios of adaptive software systems.

This paper shows the usability and effectiveness of EMA in devel-
oping expressive and modular context-aware systems. In the future, we
strive to offer a more robust report on the benefits and disadvantages
of EMA, by integrating EMA to current COP language implementations,
exploring different base abstractions from those used in EMAjs, like
ServalCJ [11,14] or Subjective-C [5].

CRediT authorship contribution statement

Paul Leger: Conceptualization, Methodology, Software, Validation,
Investigation, Resources, Writing – original draft, Writing – review &
editing, Project administration, Funding acquisition. Nicolás Cardozo:
Software, Validation, Resources, Writing – original draft, Writing – re-
view & editing. Hidehiko Masuhara: Conceptualization, Methodology,
Investigation, Visualization, Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Information and Software Technology 156 (2023) 107132P. Leger et al.
Data availability

No data was used for the research described in the article.

References

[1] M. Satyanarayanan, Pervasive computing: Vision and challenges, IEEE Pers.
Commun. 8 (4) (2001) 10–17.

[2] R. Hirschfeld, P. Costanza, O. Nierstrasz, Context-oriented programming, J.
Object Technol. 7 (3) (2008) 125–151.

[3] A. Dey, G. Abowd, Towards a better understanding of context and context-
awareness, in: Proceedings of the Workshop on the What, Who, Where, When,
Why and How of Context-Awareness, Karlsruhe, Germany, 2000.

[4] P. Costanza, R. Hirschfeld, Language constructs for context-oriented program-
ming: An overview of ContextL, in: Proceedings of the Dynamic Languages
Symposium, San Diego, California, 2005, pp. 1–10.

[5] S. González, N. Cardozo, K. Mens, A. Cádiz, J.-C. Libbrecht, J. Goffaux,
Subjective-C: Bringing context to mobile platform programming, in: Proceed-
ings of the Third International Conference on Software Language Engineering,
Eindhoven, The Netherlands, 2011, pp. 246–265.

[6] S. González, K. Mens, M. Colacioiu, W. Cazzola, Context traits: Dynamic
behaviour adaptation through run-time trait recomposition, in: Proceedings of
International Conference on Aspect-Oriented Software Development, Fukuoka,
Japan, 2013, pp. 209–220.

[7] N. Cardozo, S. González, K. Mens, Uniting global and local context behavior
with context Petri nets, in: Proceedings of the International Workshop on
Context-Oriented Programming, Beijing, China, 2012, pp. 1–3.

[8] S. Ramson, J. Lincke, R. Hirschfeld, The declarative nature of implicit layer
activation, in: Proceedings of the International Workshop on Context-Oriented
Programming, COP, London, UK, 2017, pp. 7–16.

[9] T. Kamina, T. Aotani, H. Masuhara, EventCJ: A context-oriented programming
language with declarative event-based context transition, in: Proceedings of the
Tenth International Conference on Aspect-Oriented Software Development, Porto
de Galinhas, Brazil, 2011, pp. 253–264.

[10] M. von Löwis, M. Denker, O. Nierstrasz, Context-oriented programming: Beyond
layers, in: Proceedings of International Conference on Dynamic Languages,
Lugano, Switzerland, 2007, pp. 143–156.

[11] T. Kamina, T. Aotani, H. Masuhara, Push-based reactive layer activation in
context-oriented programming, in: Proceedings of the 9th International Workshop
on Context-Oriented Programming, COP, Barcelona, Spain, 2017, pp. 17–22.

[12] T. Watanabe, A simple context-oriented programming extension to an FRP
language for small-scale embedded systems, in: Proceedings of the 10th Inter-
national Workshop on Context-Oriented Programming: Advanced Modularity for
Run-Time Composition, Amsterdam, Netherlands, 2018, pp. 23–30.

[13] T. Aotani, T. Kamina, H. Masuhara, Unifying multiple layer activation mecha-
nisms using one event sequence, in: Proceedings of 6th International Workshop
on Context-Oriented Programming, COP, Uppsala, Sweden, 2014, pp. 1–6.

[14] T. Kamina, T. Aotani, H. Masuhara, Generalized layer activation mechanism
for context-oriented programming, LNCS Trans. Modul. Compos. 9800 (2016)
123–166.

[15] K. Mens, B. Duhoux, N. Cardozo, Managing the context interaction problem: A
classification of conflict resolution techniques in dynamically adaptive software
systems, in: Proceedings of the International Workshop on Live Adaptation of
Software Systems, Brussels, Belgium, 2017, pp. 8:1–8:6.

[16] G. Kiczales, J. Irwin, J. Lamping, J. Loingtier, C. Lopes, C. Maeda, A. Mendhekar,
Aspect-oriented programming, in: M.M. (general editor), et al. (Eds.), Special
Issues in Object-Oriented Programming, 1996.

[17] K. Gybels, J. Brichau, Arranging language features for more robust pattern-
based crosscuts, in: Proceedings of the 2nd ACM International Conference on
Aspect-Oriented Software Development, AOSD, Boston, MA, USA, 2003, pp.
60–69.

[18] N. Cardozo, A declarative language for context activation, in: Proceedings of
the International Workshop on Context-Oriented Programming, Amsterdam, The
Netherlands, 2018.

[19] P. Leger, H. Masuhara, I. Figueroa, Interfaces for modular reasoning in
context-oriented programming, in: International Workshop on Context-Oriented
Programming and Advanced Modularity, Virtual Event, USA, 2020, pp. 1–7.

[20] EMAjs Website, A JavaScript library of an expressive and modular activa-
tion mechanism for context-oriented programming, 2022, https://github.com/
pragmaticslaboratory/EMAjs. Last visited: 11/08/2022.

[21] NodeJS, A JavaScript runtime built for the server side, 2021, URL https://nodejs.
org, (v16.0).

[22] Google Chrome, A free and open-source web browser, 2022, URL https://www.
google.com/chrome, (v104.0).

[23] Firefox, A free and open-source web browser, 2021, URL https://www.mozilla.
org, (v103.0).

[24] J. Vallejos, S. González, P. Costanza, W. De Meuter, T. D’Hondt, K. Mens,
Predicated generic functions: Enabling context-dependent method dispatch, in:
Proceedings of the 9th International Conference on Software Composition, no.
6144, Malaga, Spain, 2010, pp. 66–81.
13
[25] E. Bainomugisha, J. Vallejos, C. De Roover, A. Lombide Carreton, W. De Meuter,
Interruptible context-dependent executions: A fresh look at programming
context-aware applications, in: Proceedings of the International Symposium on
New Ideas, New Paradigms, and Reflections on Programming and Software
Proceedings, Tucson, Arizona - USA, 2012.

[26] M. Appeltauer, R. Hirschfeld, H. Masuhara, M. Haupt, K. Kawauchi, Event-
specific software composition in context-oriented programming, in: Software
Composition, Malaga, Spain, 2010, pp. 50–65.

[27] É. Tanter, Beyond static and dynamic scope, in: Proceedings of the 5th ACM
Dynamic Languages Symposium, DLS, Orlando, FL, USA, 2009, pp. 3–14.

[28] É. Tanter, Expressive scoping of dynamically-deployed aspects, in: Proceedings of
the 7th ACM International Conference on Aspect-Oriented Software Development,
AOSD, Brussels, Belgium, 2008, pp. 168–179.

[29] É. Tanter, J. Fabry, R. Douence, J. Noyé, M. Südholt, Expressive scoping of
distributed aspects, in: Proceedings of the 8th ACM International Conference on
Aspect-Oriented Software Development, AOSD, Charlottesville, USA, 2009, pp.
27–38.

[30] R. Toledo, P. Leger, É. Tanter, AspectScript: Expressive aspects for the web,
in: Proceedings of the 9th ACM International Conference on Aspect-Oriented
Software Development, AOSD, Rennes and Saint Malo, France, 2010, pp. 13–24.

[31] J. Lincke, M. Appeltauer, B. Steinert, R. Hirschfeld, An open implementation for
context-oriented layer composition in contextjs, Sci. Comput. Programm. 76 (12)
(2011) 1194–1209.

[32] R. Hirschfeld, P. Costanza, M. Haupt, An introduction to context-oriented
programming with ContextS, in: Generative and Transformational Techniques
in Software Engineering II: International Summer School, GTTSE 2007, Braga,
Portugal, July 2-7, 2007. Revised Papers, Springer, Braga, Portugal, 2008, pp.
396–407.

[33] M. von Löwis, M. Denker, O. Nierstrasz, Context-oriented programming: Beyond
layers, in: Proceedings of the International Conference on Dynamic Languages,
Lugano, Switzerland, 2007, pp. 143–156.

[34] S. González, K. Mens, P. Heymans, Highly dynamic behaviour adaptability
through prototypes with subjective multimethods, in: Proceedings of the 2007
Symposium on Dynamic Languages, DLS, Montreal, Quebec, Canada, 2007, pp.
77–88.

[35] T. Kamina, T. Tamai, Towards safe and flexible object adaptation, in: Interna-
tional Workshop on Context-Oriented Programming, ACM, Genova, Italy, 2009,
pp. 1–6.

[36] G. Salvaneschi, C. Ghezzi, M. Pradella, ContextErlang: A language for distributed
context-aware self-adaptive applications, Sci. Comput. Program. 102 (2015)
20–43.

[37] R. Hirschfeld, M. Perscheid, C. Schubert, M. Appeltauer, Dynamic contract layers,
in: 25th Symposium on Applied Computing, ACM, Lausanne, Switzerland, 2010,
pp. 2169–2175.

[38] B.H. Wasty, A. Semmo, M. Appeltauer, B. Steinert, R. Hirschfeld, ContextLua:
Dynamic behavioral variations in computer games, in: Proceedings of the 2nd
International Workshop on Context-Oriented Programming, Maribor, Slovenia,
2010.

[39] T. Kamina, T. Aotani, H. Masuhara, A unified context activation mecha-
nism, in: Proceedings of the 5th International Workshop on Context-Oriented
Programming, Montpellier, France, 2013, pp. 1–6.

[40] R. Hirschfeld, H. Masuhara, A. Igarashi, L: Context-oriented programming
with only layers, in: Proceedings of the 5th International Workshop on
Context-Oriented Programming, ACM, Montpellier, France, 2013, pp. 1–5.

[41] B. Maingret, F. Le Mouël, J. Ponge, N. Stouls, J. Cao, Y. Loiseau, To-
wards a decoupled context-oriented programming language for the Internet of
Things, in: Proceedings of the 7th International Workshop on Context-Oriented
Programming, Prague, Czech Republic, 2015, pp. 1–7.

[42] D.G. Bobrow, L.G. DeMichiel, R.P. Gabriel, S.E. Keene, G. Kiczales, D.A. Moon,
Common lisp object system specification, SIGPLAN Not. 23 (1988) 1–142.

[43] S. González, K. Mens, A. Cádiz, Context-oriented programming with the ambient
object system, J. UCS. 14 (20) (2008) 3307–3332.

[44] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W. Griswold,
An overview of AspectJ, in: Proceedings of the European Conference on
Object-Oriented Programming, Vol. 2072, 2001, pp. 327–354.

[45] L.C. Kats, E. Visser, The spoofax language workbench: Rules for declarative
specification of languages and IDEs, in: Proceedings of the ACM Interna-
tional Conference on Object Oriented Programming Systems Languages and
Applications, Reno/Tahoe, USA, 2010, pp. 444–463.

[46] J. Ponge, F. Le Mouël, N. Stouls, Golo, a dynamic, light and efficient language for
post-invokedynamic JVM, in: Proceedings of the 2013 International Conference
on Principles and Practices of Programming on the Java Platform: Virtual
Machines, Languages, and Tools, Stuttgart, Germany, 2013, pp. 153–158.

[47] K. Sawada, T. Watanabe, Emfrp: A functional reactive programming language
for small-scale embedded systems, in: International Conference on Modularity,
2016, pp. 36–44.

http://refhub.elsevier.com/S0950-5849(22)00241-5/sb1
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb1
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb1
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb2
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb2
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb2
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb3
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb3
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb3
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb3
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb3
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb4
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb4
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb4
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb4
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb4
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb5
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb5
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb5
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb5
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb5
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb5
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb5
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb6
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb6
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb6
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb6
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb6
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb6
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb6
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb7
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb7
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb7
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb7
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb7
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb8
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb8
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb8
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb8
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb8
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb9
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb9
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb9
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb9
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb9
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb9
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb9
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb10
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb10
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb10
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb10
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb10
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb11
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb11
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb11
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb11
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb11
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb12
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb12
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb12
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb12
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb12
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb12
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb12
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb13
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb13
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb13
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb13
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb13
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb14
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb14
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb14
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb14
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb14
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb15
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb15
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb15
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb15
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb15
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb15
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb15
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb16
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb16
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb16
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb16
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb16
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb17
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb17
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb17
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb17
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb17
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb17
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb17
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb18
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb18
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb18
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb18
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb18
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb19
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb19
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb19
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb19
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb19
https://github.com/pragmaticslaboratory/EMAjs
https://github.com/pragmaticslaboratory/EMAjs
https://github.com/pragmaticslaboratory/EMAjs
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://www.google.com/chrome
https://www.google.com/chrome
https://www.google.com/chrome
https://www.mozilla.org
https://www.mozilla.org
https://www.mozilla.org
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb24
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb24
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb24
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb24
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb24
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb24
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb24
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb25
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb25
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb25
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb25
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb25
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb25
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb25
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb25
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb25
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb26
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb26
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb26
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb26
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb26
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb27
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb27
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb27
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb28
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb28
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb28
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb28
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb28
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb29
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb29
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb29
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb29
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb29
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb29
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb29
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb30
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb30
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb30
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb30
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb30
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb31
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb31
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb31
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb31
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb31
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb32
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb32
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb32
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb32
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb32
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb32
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb32
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb32
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb32
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb33
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb33
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb33
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb33
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb33
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb34
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb34
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb34
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb34
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb34
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb34
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb34
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb35
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb35
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb35
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb35
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb35
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb36
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb36
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb36
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb36
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb36
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb37
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb37
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb37
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb37
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb37
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb38
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb38
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb38
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb38
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb38
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb38
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb38
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb39
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb39
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb39
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb39
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb39
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb40
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb40
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb40
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb40
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb40
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb41
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb41
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb41
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb41
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb41
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb41
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb41
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb42
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb42
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb42
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb43
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb43
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb43
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb44
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb44
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb44
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb44
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb44
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb45
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb45
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb45
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb45
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb45
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb45
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb45
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb46
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb46
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb46
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb46
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb46
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb46
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb46
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb47
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb47
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb47
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb47
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb47

Information and Software Technology 156 (2023) 107132P. Leger et al.
[48] D. Ungar, H. Ossher, D. Kimelman, Korz: Simple, symmetric, subjective, context-
oriented programming, in: Onward! 2014 - Proceedings of the 2014 ACM
International Symposium on New Ideas, New Paradigms, and Reflections on
Programming and Software, Part of SPLASH 2014, Portland, USA, 2014, pp.
113–131.

[49] A. Elyasaf, Context-oriented behavioral programming, Inf. Softw. Technol. 133
(2021) 106504.

[50] S. González, Programming in Ambience: Gearing Up for Dynamic Adaptation
to Context (Ph.D. thesis), Université catholique de Louvain, 2008, Coll. EPL
211/2008. Promoted by Prof. Kim Mens.

[51] T. Kühn, M. Leuthäuser, S. Götz, C. Seidl, U.A. mann, A metamodel family for
role-based modeling and programming languages, in: International Conference
on Software Language Engineering, Västerås, Sweden, 2014, pp. 141–160.

[52] J. Aldrich, Open modules: Modular reasoning about advice, in: European
Conference on Object-Oriented Programming, Glasgow, UK, 2005, pp. 144–168.

[53] E. Bodden, É. Tanter, M. Inostroza, Join point interfaces for safe and flexible
decoupling of aspects, 23 (1), 2014, pp. 1–41.

[54] W.G. Griswold, K. Sullivan, Y. Song, M. Shonle, N. Tewari, Y. Cai, H. Rajan,
Modular software design with crosscutting interfaces, 23 (1), 2006, pp. 51–60.

[55] F. Steimann, T. Pawlitzki, S. Apel, C. Kästner, Types and modularity for implicit
invocation with implicit announcement, ACM Trans. Softw. Eng. Methodol. 20
(1) (2010) 1–43.

[56] M. Appeltauer, R. Hirschfeld, M. Haupt, J. Lincke, M. Perscheid, A comparison
of context-oriented programming languages, in: International Workshop on
Context-Oriented Programming, Genova, Italy, 2009, pp. 1–6.

[57] N. Cardozo, K. Mens, Programming language implementations for context-
oriented self-adaptive systems, Inf. Softw. Technol. 143 (2022) 106789.
14
[58] E. Amsden, A Survey of Functional Reactive Programming Concepts, Imple-
mentations, Optimizations, and Applications, Tech. Rep., Rochester Institute of
Technology, 2011.

[59] L. Meyerovich, A. Guha, J. Baskin, G. Cooper, M. Greenberg, A. Bromfield, S.
Krishnamurthi, Flapjax: A programming language for Ajax applications, in: Pro-
ceedings of the 24th ACM SIGPLAN Conference on Object Oriented Programming
Systems Languages and Applications, Orlando, Florida, USA, 2009, pp. 1–20.

[60] Apache, RxJS: A reactive extensions for JavaScript (v7.5.6), 2018, URL https:
//rxjs.dev.

[61] G. Kiczales, Towards a new model of abstraction in software engineering, in:
Proceedings of the IMSA 92 Workshop on Reflection and Metalevel Architectures,
Tokyo, Japan, 1992.

[62] P. Leger, É. Tanter, R. Douence, Modular and flexible causality control on the
web, Sci. Comput. Program. 78 (9) (2013) 1538–1558.

[63] P. Leger, É. Tanter, H. Fukuda, An expressive stateful aspect language, Sci.
Comput. Program. 102 (2015) 108–141.

[64] P. Rein, S. Ramson, J. Lincke, T. Felgentreff, R. Hirschfeld, Group-based behavior
adaptation mechanisms in object-oriented systems, IEEE Softw. 34 (6) (2017)
78–82.

[65] K. Mens, N. Cardozo, B. Duhoux, A context-oriented software architec-
ture, in: Proceedings of the 8th International Workshop on Context-Oriented
Programming, COP, Rome, Italy, 2016, pp. 7–12.

[66] N. Cardozo, Emergent software services, in: Proceedings of the 2016 ACM
International Symposium on New Ideas, New Paradigms, and Reflections on
Programming and Software, Amsterdam, Netherlands, 2016, pp. 15–28.

http://refhub.elsevier.com/S0950-5849(22)00241-5/sb48
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb48
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb48
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb48
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb48
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb48
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb48
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb48
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb48
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb49
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb49
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb49
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb50
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb50
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb50
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb50
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb50
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb51
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb51
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb51
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb51
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb51
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb52
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb52
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb52
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb53
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb53
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb53
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb54
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb54
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb54
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb55
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb55
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb55
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb55
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb55
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb56
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb56
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb56
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb56
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb56
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb57
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb57
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb57
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb58
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb58
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb58
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb58
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb58
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb59
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb59
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb59
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb59
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb59
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb59
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb59
https://rxjs.dev
https://rxjs.dev
https://rxjs.dev
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb61
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb61
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb61
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb61
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb61
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb62
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb62
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb62
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb63
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb63
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb63
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb64
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb64
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb64
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb64
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb64
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb65
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb65
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb65
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb65
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb65
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb66
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb66
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb66
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb66
http://refhub.elsevier.com/S0950-5849(22)00241-5/sb66

	An expressive and modular layer activation mechanism for Context-Oriented Programming
	Introduction
	Motivation: A Mobile Video Game with an Adaptive User Interface
	Context-Oriented Programming
	Layers
	Layer Activation Mechanisms
	Layer Activation Scope Strategies
	Context-Oriented Languages

	EMA
	An Expressive API for Scoping
	Interfaces
	Complementing an Expressive Scoping API and Interfaces
	EMAjs

	Validation
	EMA application
	Smartphone Video Game Application
	Home Automation System

	Performance Evaluation
	Threats to Validity

	Related Work
	Conclusion and Future Work
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	References

