
BatakJava: An Object-Oriented Programming
Language with Versions

Luthfan Anshar Lubis
luthfanlubis@prg.is.titech.ac.jp

Tokyo Institute of Technology
Meguro, Tokyo, Japan

Yudai Tanabe
yudaitnb@prg.is.titech.ac.jp

Tokyo Institute of Technology
Meguro, Tokyo, Japan

Tomoyuki Aotani
tomoyuki-aotani@mamezou.com

Mamezou Co., Ltd.
Tokyo, Japan

Hidehiko Masuhara
masuhara@acm.org

Tokyo Institute of Technology
Meguro, Tokyo, Japan

Abstract

Programming with versions is a recent proposal that sup-
ports multiple versions of software components in a program.
Though it would provide greater freedom for the program-
mer, the concept is only realized as a simple core calculus,
called 𝜆VL, where a value consists of 𝜆-terms with multi-
ple versions. We explore a design space of programming
with versions in the presence of data structures and module
systems, and propose BatakJava, an object-oriented program-
ming language in which multiple versions of a class can be
used in a program. This paper presents BatakJava’s language
design, its core semantics with subject reduction, an imple-
mentation as a source-to-Java translator, and a case study to
understand how we can exploit multiple versions in Batak-
Java for developing an application program with an evolving
library.

CCS Concepts: · Software and its engineering → Ob-

ject oriented languages; Software evolution; · Theory
of computation → Type theory.

Keywords: backward compatibility, dependency problem,
Java

ACM Reference Format:

Luthfan Anshar Lubis, Yudai Tanabe, Tomoyuki Aotani, and Hide-
hiko Masuhara. 2022. BatakJava: An Object-Oriented Programming
Language with Versions. In Proceedings of the 15th ACM SIGPLAN

International Conference on Software Language Engineering (SLE ’22),

December 06ś07, 2022, Auckland, New Zealand. ACM, New York,
NY, USA, 13 pages. https://doi.org/10.1145/3567512.3567531

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

SLE ’22, December 06ś07, 2022, Auckland, New Zealand

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9919-7/22/12. . . $15.00

https://doi.org/10.1145/3567512.3567531

1 Introduction

Software is developed by composing many building blocks,
which are continuously updated [18]. Each release of the
software is distinguished from one another using versions.
Through updates, developers improve performance, fix bugs,
and provide new features [3, 5].

Some updates of components are incompatible, which are
not welcomed but necessary. An incompatible update oc-
curs when a software using an older version of its compo-
nents no longer work correctly when the components are
replaced with new version. Incompatible updates of the li-
brary programs (we call them upstream programs) are not
always welcomed by the developers of the library users
(we call them downstream developers) because they require
the downstream developers to change their programs; the
cost for update can discourage the developers to use newer
versions [17, 21]. Incompatible updates are necessary for
many reasons such as performance, simplicity, and modular-
ity [4, 5], and in fact common [16, 22].

Existing techniques regarding incompatible updatesmostly
try to identify or evade incompatible changes. Semantic ver-
sioning [27] dictates conventions into versioning to help indi-
cate which update introduces incompatible changes. Foo et al.
introduced efficient static analysis to find API incompatibili-
ties in library upgrades [11]. Other tools automatically repair
dependency errors in programs and project builds [19, 23].
In contrast, programming with versions in 𝜆VL [30] pro-

posed a novel approach to embrace incompatible changes
by allowing a program to use both older and newer ver-
sions at the same time. 𝜆VL, a core calculus based on the
concept of programming with versions, has versioned values,
record-like entities that denote multiple possibilities of a
value computed in different versions. The main focus of the
calculus is a well-defined semantics and a static type sys-
tem that chooses łversion compatiblež computations from
different versions.
However, 𝜆VL has not explored a design space with data

structures and module systems. Extending 𝜆VL to support

222

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3567512.3567531
https://doi.org/10.1145/3567512.3567531

SLE ’22, December 06ś07, 2022, Auckland, New Zealand Luthfan Anshar Lubis, Yudai Tanabe, Tomoyuki Aotani, and Hidehiko Masuhara

class Rectangle {

int x; int y; float h; float w;

Rectangle(int x, int y, float h, float w) {

this.x = x; this.y = y; this.h = h; this.w = w; }

int x() { return x; }

int y() { return y; }

float h() { return h; }

float w() { return w; }

float perimeter() { return 2*h+2*w; }

boolean equivalent(Rectangle r) {

return x == r.x() && y == r.y()

&& h == r.h() && w == r.w();

}}

class Square extends Rectangle {

Square(int x, int y, float h) { super(x, y, h, h);

}}

class Example {

void main() {

Rectangle rec = new Rectangle(1,1,2,3);

Square sq = new Square(1,1,2);

float perSq = sq.perimeter();

boolean eq = rec.equivalent(sq);

}}

Listing 1. Initial definition of the graphics library and down-
stream program

data structures and modules would require significant de-
velopment in its formalizations. 𝜆VL manages versions as
types’ resources through the coeffect system. This system
restricts variables from having different types in different
versions.

Hence, rather than extending 𝜆VL, we propose a class-
based object-oriented programming BatakJava based on the
concept of programming with versions. This paper presents
the language design along with the core calculus FBJ and its
implementation as a source-to-Java translator. In BatakJava,
multiple implementations of the same class are annotated
with different versions to allow them to coexist in a program.
An instance can represent multiple versions of a class with-
out requiring users to specify the version for each instance.
BatakJava addresses 𝜆VL’s limitation in updating decla-

rations. Different versions of class declarations in Batak-
Java can freely modify the previously existing structure of
a class, from its field, constructor, and method declarations.
BatakJava also supports class inheritance and allows version
updates to alter superclass. To allow these modifications,
BatakJava employs constraint-based typing to check version
availability along with the compatibility of definitions and
expressions in the program.

class Rectangle {

Point p; float h; float w;

Rectangle(int x, int y, float h, float w) {

this.p = new Point(x,y);

this.h = h; this.w = w; }

Rectangle(Point p, float h, float w) {

this.p = p; this.h = h; this.w = w; }

int x() { return p.x(); }

int y() { return p.y(); }

float h() { return h; }

float w() { return w; }

float area() { return 2*h+2*w; }

boolean equal(Rectangle r) {

return x() == r.x() && y() == r.y()

&& h == r.h() && w == r.w();

}}

class Point {

int x; int y;

Point(int x; int y) { this.x = x; this.y = y; }

int x() { return x; }

int y() { return y; }

}

class Example {

void main() {

Rectangle rec = new Rectangle(1,1,2,3);

float area = rec.area();

Square sq = new Square(1,1,2);

float perSq = sq.perimeter();

boolean eq = rec.equal(sq);

}}

Listing 2. Updated definition of the graphics library and
downstream program

Through programming with versions, BatakJava aims to
allow users to safely program in a multi-version environ-
ment. With a multi-version environment, users can avoid
dependency hell and reduce migration cost through gradual
version updates.

BatakJava focuses on the fundamental mechanism to de-
tect and resolve version incompatibilities within the scope
of API changes. To handle semantic changes, BatakJava pro-
vides low-level version selections on expression level and
import declarations to choose the desired semantic.
The prototype implementation of BatakJava is used to

demonstrate our proposal’s usability with real-world pro-
grams. Programs in BatakJava are compiled into Java.
In summary, our contributions are as follows:

ś The design of BatakJava, a Java-like object-oriented pro-
gramming language based on the concept of programming
with versions (Section 2)

223

BatakJava: An Object-Oriented Programming Language with Versions SLE ’22, December 06ś07, 2022, Auckland, New Zealand

ś FBJ, a formal semantics of the core part of BatakJava, its
type safety statement and proof (Section 3)

ś An implementation of the prototype language BatakJava
(Section 4)

ś A case study that applies BatakJava to a real-world pro-
gram containing dependency problems (Section 5)

2 Programming with Versions

We demonstrate the features of BatakJava through an ex-
ample program using an evolving graphics library. We first
show an implementation in pure Java so as to highlight the
problems with versions. Then, we show an implementation
in BatakJava where the version problems are resolved. Note
that the example demonstrates the version problems on both
the library and the application (library user) sides.

2.1 Motivating Example in Java

The example scenario has two steps: defining the upstream
(library) and downstream (application) components, and
changing the upstream.

Initial Definition. The upstream graphics library consists of
class Rectangle and Square that inherits Rectangle (List-
ing 1).
The class Rectangle has fields x, y, h, and w represent-

ing the x-y coordinates of its top left corner, height, and
width. A constructor initializes all four fields. There are
getter methods for all fields. The method perimeter cal-
culates the perimeter of a Rectangle instance. The method
equivalent checks the equivalence between the instance
with another Rectangle instance. Square inherits the struc-
ture from Rectangle, with a slightly modified constructor.
The main method in the class Example in Listing 1 uses

both Rectangle and Square. It creates a Rectangle and a
Square instances, and then invokes methods on them.

Updated Definition. The class Rectangle in Listing 2 is the
updated version containing several incompatible1 changes
to the original implementation.
We changed the structure of the class by replacing the

x-y coordinates with a Point, changing Rectangle’s get-
ter methods, and added a new constructor that accepts a
Point. The method perimeter is removed, area is added,
and equivalent is renamed into equal. The class Example
(Listing 2) remains the same except for a new invocation of
the method area on rec; equivalent is replaced by equal.
This program does not compile in Java because Example

requires the new version of Rectangle for area and the
older version for perimeter (through Square) at the same
time. Note that manually renaming with versions (name
mangling) cannot resolve the problem. For example, we
could rename the initial Rectangle as Rectangle_old, let
Square inherit from Rectangle_old, and keep the updated

1By incompatibility, we refer to binary incompatibility in Java [12]

class Rectangle!1 {

Rectangle!1(int x, int y, float h, float w) {...}

... }

class Square!1 {

Square!1(int x, int y, float h) {...}

... }

class Example!1 {

void main() {

Rectangle rec = new Rectangle(1,1,2,3);

Square sq = new Square(1,1,2);

float perSq = sq.perimeter();

boolean eq = rec.equivalent(sq);

}}

Listing 3. Initial upstream and downstream definitions re-
named with versions

Rectangle with the same name. However, it would fail to
type check rec.equal(s) as the method requires the new
version of Rectangle but receives a subtype of Rectangle_
old.

2.2 Motivating Example in a Language with

Versions

We rewrite the example in the syntax of BatakJava. We show
the usage of versions and their effect from the two perspec-
tives, namely the upstream graphics library and the down-
stream user, then demonstrate how multi-version program-
ming solves the problem presented in the updated Example.

class Rectangle!2 {

Rectangle!2(int x, int y, float h, float w) {...}

Rectangle!2(Point p, float h, float w) {...}

... }

class Point!1 {

Point!1(int x, int y) {...}

... }

1 class Example!2 {

2 void main() {

3 Rectangle rec = new Rectangle(1,1,2,3);

4 float area = rec.area();

5 Square sq = new Square(1,1,2);

6 float perSq = sq.perimeter();

7 boolean eq = rec.equal(sq);

8 }}

Listing 4. Updated upstream and downstream definitions
renamed with versions

224

SLE ’22, December 06ś07, 2022, Auckland, New Zealand Luthfan Anshar Lubis, Yudai Tanabe, Tomoyuki Aotani, and Hidehiko Masuhara

Upstream. We annotate the graphics library definition with
versions. Versions are integer numbers treated as elements
of types. A class and its instances are identified by their
class names and versions. Syntactically, the definitions only
change in class names and their constructor declarations.
The graphics library in Listing 1 and 2 are rewritten into
Listing 3 and 4.

The suffix !1 attached to Rectangle denotes that the class
is the version 1 definition of the class. We annotate the ini-
tial definition of Rectangle, Square, and Point as version
1 and the updated Rectangle as version 2. Constructor dec-
larations are also renamed to match their class names. The
different versions annotations on both Rectangle!1 and
Rectangle!2 distinguish them and allow a program to use
both simultaneously.

Other definitions requiring class annotations, such as for-
mal parameters, field, and method declarations, remain un-
changed. In the implemented language, users are not ex-
pected to annotate each class annotation with their desired
versions, as to avoid human errors in choosing versions. De-
termining the compatible version for each class annotation
is left to the typing system. To handle semantic changes,
manual version selections are provided for expressions and
import declarations.
BatakJava tackles the limitations of 𝜆VL which does not

allow modifications of data structure across versions. Batak-
Java does not impose any restriction on how a class can
evolve in a different version, allowing all changesmade in the
class Rectangle!2. Newer versions can modify all aspects
of a class definition, including changes in fields, methods,
constructors, and superclass.
Another key aspect of BatakJava is the flexible usage of

multiple versions in the program. Not only that a down-
stream program can access multiple versions of an upstream
library, but also a newer version’s definition can access an
older version’s definition and vice versa. For example, an
instance of class Rectangle!1 can receive constructor and
method arguments of class Rectangle!2. This is allowed as
long as the arguments are compatible with the constructor
and method’s body.
This idea of mixing versions also exhibits a form of ad-

hoc version polymorphism in which a single method defi-
nition can represent multiple different signatures. This can
be observed in the method equal in Listing 2 that takes a
Rectangle instance as its argument r. The argument r is
required to invoke the getter methods x, y, h, and w. All of
these methods are available in both Rectangle version 1 and
2, hence the method equal in Rectangle!2 is able to accept
both versions of Rectangle as its argument.

Downstream. The updated header of Example that uses both
Rectangle!1 and Rectangle!2 is shown in Listing 4. We
suffix the class name with !2 since it is the version 2 defini-
tion of the class.

The body of the main method in Example!2 in Listing 4
does not require any version annotation, but is assumed to
have access to both versions of Rectangle. The inclusion of
two versions of Rectangle here changes the interpretation
of each statement in the method.

The candidate versions for an instance are determined by
the constructor used to create the instance and the conse-
quent computations executed on that instance. Eventually,
after all the related computations are considered, one spe-
cific version that is compatible with all the computations is
chosen for the instance.
The version of an instance has to be consistent and an

instance’s version cannot switch from one to another version
during runtime. BatakJava requires this because an instance
may have different representations in different versions.
Switching version during runtime without a well-defined
adapter means an instance can change into a different in-
stance completely. From a user standpoint, this will make it
difficult for users to keep track of the instances existing in
the program. From a design standpoint, it is also difficult to
manage objects whose structures can change in the middle
of an operation.
new Rectangle(1,1,2,3) in line 4 is instantiated using

the constructor with signature (int,int, int,int) that
is defined in both Rectangle!1 and Rectangle!2. The in-
stance is treated as an instance of Rectangle!1 or Rectan
gle!2 and the functionalities found in both versions can be
used by this instance. In contrast, new Square(1,1,2) in
line 6 which has only Square!1 to instantiate, does not have
any other variation.
The variable assignment on rec in line 3 declares a vari-

able of class Rectangle initialized with new Rectangle

(1,1,2,3). This assignment binds the class and version of
the instance with the class and version of variable rec. This
implies that if rec uses computations specific to Rectan

gle!2, the instantiation new Rectangle(1,1,2,3) in line
4 will also be restricted to Rectangle!2.

Such a restriction is applied by the method invocation
rec.area() in line 5. Since themethod area is only available
in Rectangle!2, this invocation constrains its receiver rec
and the instantiation to Rectangle!2.
Another important element that can vary due to the in-

clusion of versions is the superclass. As class definitions do
not specify which version of the superclass it inherits, the
version has to be determined in other ways. Similar to the in-
stance’s version, the superclass of an instance is determined
by the constructor used during instantiation and subsequent
computations such as method invocations.
We can observe a superclass restriction for the variable

sq by the method invocation sq.perimeter() in line 7. The
method perimeter is a method that Square!1 can possibly
inherit from Rectangle!1. However, the class definition of
Square!1 does not specify which version of Rectangle it
inherits. This method invocation then imposes constraint

225

BatakJava: An Object-Oriented Programming Language with Versions SLE ’22, December 06ś07, 2022, Auckland, New Zealand

indirectly on the superclass Rectangle that Square inherits
from Rectangle!1.

In line 8, the variable rec invokes themethod equalwhich
is also specific to Rectangle!2. This does not contradict
with the previous method invocation that requires rec to
be restricted to Rectangle!2. equal requires an argument
of class Rectangle, which as we have observed before, is
compatible with both Rectangle!1 and Rectangle!2. The
variable sq has Rectangle!1 as its possible superclass, hence
the method invocation is allowed.
For the typing to work in the program, the version for

each object has to be consistent. For example, invoking
area by rec constrains the variable to Rectangle!2. If then
perimeter, a method that is only available in Rectangle!1,
is invoked by rec, the program will result in type error be-
cause the variable rec cannot be both Rectangle!1 and
Rectangle!2 during runtime. sq also cannot invoke both
methods because during runtime it cannot have both Rect

angle!1 and Rectangle!2 as its superclass.

3 Core Calculus

We introduce the core calculus Featherweight BatakJava
(FBJ) based on Featherweight Java (FJ) [14] to capture the
essence of the object-oriented programming paradigm with
class. FBJ extends FJ through the addition of version numbers
to class declarations.

To handle variations that appear from the introduction of
version numbers, FBJ is equipped with a constraint-based
typing system. Solving the constraint generated during typ-
ing will provide version assignments for expressions and
declarations inside the program. The typing system gener-
ates constraints on the variables in the program, to then be
inferred by a separate solver. The dynamic semantics of the
calculus is defined for the version-assigned program.

3.1 Paths

Paths:

𝑝𝑎𝑡ℎ𝑠 (Object) = []

class C!n extends D#N {...}

p ∈ 𝑝𝑎𝑡ℎ𝑠 (D)

n :: p ∈ 𝑝𝑎𝑡ℎ𝑠 (C)

Figure 1. Paths definition

A path p is a sequence of versions where the elements
trace the version of the class and its ancestors. 𝑝𝑎𝑡ℎ𝑠 is a
collection of path whose definition is shown in Figure 1.
In the class definition L, the superclass of C!n is not fixed,
denoting that an instance of such class can inherit one of
the possibly many versions of D. This implies that there are

Figure 2. Paths example

P ::= L e;

L ::= class C!n extends D#N {C#N f; K M}

K ::= C!n(C#N f){super(f); this.f = f;}

M ::= C#N m(C#N x){ return e; }

e ::= x | e.f | e.m(e) | new C#N(e)

| new C#p(e) | (C#p) e

T ::= X#N | C#p

v ::= new C#p(e)

p ::= n::p | n

Figure 3. Syntax of FBJ

multiple paths that the class C!n can inherit from. In other
words, the type of an object does not depend only on its class
version, but also on the version of its ancestors.

3.2 Syntax

Figure 3 shows the syntax of FBJ. In most parts FBJ syntax
is identical with FJ; it differs only in the requirement for
version-related annotations as highlighted in the figure. The

metavariables C and D range over class names; f and g range
over field names; m ranges over methods names; n, o range
over version numbers; p, q range over paths. X represents
class variables, while N and Q are path variables. this is a
reserved variable that is implicitly bound in every method
declaration, while super calls the method or constructor of
the superclass. Overlines are used to denote sequences sepa-
rated by commas or semicolons. For example, e is shorthand
for a possibly empty sequence e1, · · · , e𝑛 , similarly also with

C#N, M, n, etc. Sequences of field declarations, formal param-
eters, and method declarations are assumed to contain no
duplicate names.
FBJ extends FJ through the addition of version number

annotation n in the class declaration L. This denotes declar-
ing a class C with version n. Accordingly, the constructor
declaration K also has the version number attached.

A type can be a type variable X#N, where X is a class vari-
able and N is a path variable. C#p is a type of concrete class
C with a concrete path p. For convenience, we will call this a

226

SLE ’22, December 06ś07, 2022, Auckland, New Zealand Luthfan Anshar Lubis, Yudai Tanabe, Tomoyuki Aotani, and Hidehiko Masuhara

Fields Lookup:

𝑓 𝑖𝑒𝑙𝑑𝑠 (Object, []) = ∅

class C!n extends D#N {C#N f; K M}

𝑓 𝑖𝑒𝑙𝑑𝑠 (D, p) = D#Q g

𝑓 𝑖𝑒𝑙𝑑𝑠 (C, n :: p) = D#Q g, C#N f

Method Type Lookup:

class C!n extends D#N {C#N f; K M}

B#Q m(B#Q x){ return e; } ∈ M

𝑚𝑡𝑦𝑝𝑒 (m, C, n :: p) = B#Q → B#Q

class C!n extends D#N {C#N f; K M} m ∉ M

𝑚𝑡𝑦𝑝𝑒 (m, C, n :: p) =𝑚𝑡𝑦𝑝𝑒 (m, D, p)

Method Body Lookup:

class C!n extends D#N {C#N f; K M}

B#Q m(B#Q x){ return e; } ∈ M

𝑚𝑏𝑜𝑑𝑦 (m, C, p) = x.e

class C!n extends D#N {C#N f; K M} m ∉ M

𝑚𝑏𝑜𝑑𝑦 (m, C, n :: p) =𝑚𝑏𝑜𝑑𝑦 (m, D, p)

Figure 4. Auxillary definitions for FBJ

concrete type. We illustrate this with the example shown in
Figure 2. An instance of class Square!n, depending on which
version of Rectangle it inherits, will have different paths
of different lengths and values. If it inherits Rectangle!1,
then the path is [n,1], otherwise it is [n,2,1].

An FBJ program P consists of a sequence of classes L and
an expression e. Class, constructor, and method declarations
are similar to FJ except that the types of the fields, formal
parameters, and method return types are affixed with path
variables. Object instantiations and cast expressions have
two expressions, one where the class is affixed with a path
variable N and another one with a concrete path p. The ex-
pression with the concrete path is the expression we obtain
after assigning the program with versions obtained from the
inference.
Figure 4 shows the auxiliary definitions required for the

typing and evaluation rules. The definition only differs from
FJ with its inclusion of path.

3.3 Constraints

The subtyping and typing rules in FBJ generate constraints
on the variables found in the program. A constraint R is in
disjunctive normal form, where a literal is either a constraint
on a class variable or a path variable.

An example of constraint on class variable is {X = C}, con-
straining the variable X to the class C. While an example of

Concrete Type Subtyping:

C#p <: C#p

class C!n extends D#N { . . . } p ∈ 𝑝𝑎𝑡ℎ𝑠 (D)

C#(n :: p) <: D#p

C#p <: D#p′ D#p′ <: E#p′′

C#p <: E#p′′

Type Variable Subtyping:

C𝑗 ∈ 𝑑𝑜𝑚(CT) p𝑗𝑘 ∈ 𝑝𝑎𝑡ℎ𝑠 (C)

q𝑖 ∈ 𝑝𝑎𝑡ℎ𝑠 (D) C𝑗#p𝑗𝑘 <: D#q𝑖

X#N <: D#Q |
⊕

𝑖, 𝑗,𝑘 {X#N = C𝑗#p𝑗𝑘 ∧ Q = q𝑖 }

Figure 5. Subtyping in FBJ

constraint on path variable is {N = p}, constraining the vari-
able N to the path p. Both constraints can also be expressed
together as {X#N = C#p}.
Addition ⊕ and multiplication ⊗ are defined as follow.

R ⊕ P ≜ R ∨ P

R ⊗ P ≜
∨

[r ∧ p | r ∈ R, p ∈ P]

The addition of two constraints is the disjunction of the
two constraints. The multiplication of two constraints is
the disjunction of pair-wise conjunction between the two
constraints.

A solution 𝜎 is a mapping from class and path variables to
class names and paths. R ⊨ 𝜎 is read as "solution 𝜎 does not
contradict with constraint R". Given that the constraint is in
disjunctive normal form, it has the following properties.

1. If R1 ⊨ 𝜎 and R2 ⊨ 𝜎 , then R1 ⊗ R2 ⊨ 𝜎 .
2. If R1 ⊨ 𝜎 then for any constraint R2, R1 ⊕ R2 ⊨ 𝜎 .

3.4 Subtyping

Figure 5 shows the subtyping relation in FBJ. The first three
relations are subtyping relations between concrete types.
The first rule is reflection, where a class is the subtype of
itself, only if the paths are equal. The second relation is the
relation induced by the class definition. Given the path n :: p,
the subtyping relation checks whether the rest of the path p

is a valid path for the superclass D. The third relation is the
transitive subtyping relation.
The final subtyping relation is between a type variable

X#N and a type with concrete class and path variable D#Q. To
check if the relation holds, all applicable types for X#N and
path Q are searched through and those that apply are added
to the constraint.

3.5 Typing

The typing rules for FBJ is shown in Figure 6. The typing
judgement for expressions has the form Γ ⊢ e : T | R which

227

BatakJava: An Object-Oriented Programming Language with Versions SLE ’22, December 06ś07, 2022, Auckland, New Zealand

Typing Rules:

Γ(x) = C#N p𝑘 ∈ 𝑝𝑎𝑡ℎ𝑠 (C)

Γ ⊢ x : X#N |
⊕

𝑘 {X = C ∧ N = p𝑘 }
(T-Var)

Γ ⊢ e0 : X0#N0 | R0 Γ ⊢ e : X#N | R C𝑗 ∈ 𝑑𝑜𝑚(CT)

p𝑗𝑘 ∈ 𝑝𝑎𝑡ℎ𝑠 (C𝑗) 𝑚𝑡𝑦𝑝𝑒 (m, C𝑗 , p𝑗𝑘) = D𝑗𝑘#Q𝑗𝑘 → D𝑗𝑘#Q𝑗𝑘

X#N <: D𝑗𝑘#Q𝑗𝑘 | P𝑗𝑘 q𝑙 ∈ 𝑝𝑎𝑡ℎ𝑠 (D𝑗𝑘)

Γ ⊢ e0.m(e) : X#N |
⊕

𝑗,𝑘,𝑙 ({X#N = D𝑗𝑘#Q𝑗𝑘

∧ Q𝑗𝑘 = q𝑙 ∧ X0#N0 = C𝑗#p𝑗𝑘 } ⊗ R0 ⊗ R ⊗ P𝑗𝑘)

(T-Invk)

Γ ⊢ e0 : X0#N0 | R0 C𝑗 ∈ 𝑑𝑜𝑚(CT) p𝑗𝑘 ∈ 𝑝𝑎𝑡ℎ𝑠 (C𝑗𝑘)

𝑓 𝑖𝑒𝑙𝑑𝑠 (C𝑗 , p𝑗𝑘) = C𝑗𝑘#N𝑗𝑘 f𝑗𝑘 p𝑙 ∈ 𝑝𝑎𝑡ℎ𝑠 (C𝑗𝑘𝑖)

Γ ⊢ e0.f𝑖 : X#N |
⊕

𝑗,𝑘,𝑙 ({X#N = C𝑗𝑘𝑖#N𝑗𝑘𝑖

∧ N𝑗𝑘𝑖 = p𝑙 ∧ X0#N0 = C𝑗#p𝑗𝑘 } ⊗ R0)

(T-Field)

n𝑗 :: q𝑗 = p𝑗 ∈ 𝑝𝑎𝑡ℎ𝑠 (C) 𝑓 𝑖𝑒𝑙𝑑𝑠 (C, p𝑗) = C𝑗#N𝑗 f𝑗

Γ ⊢ e : X#N | R X#N <: C𝑗#N𝑗 | R𝑗

class C!n𝑗 extends D#Q {C#Q f; K M} OK | P𝑗

Γ ⊢ new C#N(e) : X#N |
⊕

𝑗 ({X = C

∧ N = p𝑗 ∧ Q = q𝑗 } ⊗ P𝑗 ⊗ R ⊗ R𝑗)

(T-New)

Γ ⊢ e0 : X0#N0 | R0

Γ ⊢ (C#p) e0 : X#N |
⊕

𝑘 ({X = C ∧ N = p} ⊗ R0)
(T-Cast)

Method Typing:

x : C#Q, this : C#(n :: p𝑘) ⊢ e0 : X0#N0 | R0
X0#N0 <: C0#Q0 | P

class C!n extends D#N { . . . } p𝑘 ∈ 𝑝𝑎𝑡ℎ𝑠 (D)

𝑚𝑡𝑦𝑝𝑒 (m, D, p𝑘) = D𝑘#N𝑘 → D𝑘#N𝑘

C0#Q0 m(C#Q x){ return e0; } OK in C!n

|
⊕

𝑘

(

{N = p𝑘 ∧ Q = N𝑘 ∧ Q0 = N𝑘

∧ D𝑘 = C ∧ D𝑘 = C0} ⊗ R0 ⊗ P
)

(T-Method)

Class Typing:

K = C!n(D′#Q′ g, C#N f){super(g); this.f = f;}

p𝑘 ∈ 𝑝𝑎𝑡ℎ𝑠 (D) 𝑓 𝑖𝑒𝑙𝑑𝑠 (D, p𝑘) = D#Q g

M OK in C!n | R

class C!n extends D#N {C#N f; K M} OK

|
⊕

𝑘 ({N = p𝑘 ∧ D′ = D ∧ Q′ = Q} ⊗ R)

(T-Class)

Figure 6. Typing rules for FBJ

reads as "in typing environment Γ, expression e has type T
under constraint R."

All the typing rules in FBJ assign either a fresh type vari-
able X#N. The rules are analogous to typing rules of FJ, except

Computation rules:

𝑓 𝑖𝑒𝑙𝑑𝑠 (C, p) = C#N f

(new C#p(e)).f𝑖
𝜎
−→ e𝑖

(R-Field)

𝑚𝑏𝑜𝑑𝑦 (m, C, 𝑝) = x.e0

(new C#p(e)).m(d)
𝜎
−→ [d/x, new C#p(e)/this] 𝜎 (e0)

(R-Invk)
C#[n] <: D#[o]

(D#[o])(new C#p(e))
𝜎
−→ new C#p(e)

(R-Cast)

Congruence rules:

e0
𝜎
−→ e′

0

e0.f
𝜎
−→ e′

0
.f

(RC-Field)

e0
𝜎
−→ e′

0

e0.m(e)
𝜎
−→ e′

0
.m(e)

(RC-Invk-Recv)

e𝑖
𝜎
−→ e′𝑖

v0.m(. . . , e𝑖 , . . .)
𝜎
−→ v0.m(. . . , e

′
𝑖 , . . .)

(RC-Invk-Arg)

e𝑖
𝜎
−→ e′𝑖

new C#p(. . . , e𝑖 , . . .)
𝜎
−→ new C#p(. . . , e′𝑖 , . . .)

(RC-New-Arg)

e0
𝜎
−→ e′

0

(C#p)e0
𝜎
−→ (C#p)e′0

(RC-Cast)

Figure 7. Computation and congruence rules for FBJ

that the rules in FBJ handle all the possible concrete typing
combinations for the expressions inside the constraint.

T-Var types a variable x which belongs to the typing envi-
ronment Γ. A variable can be mapped to a type with a path
variable, in which case this typing rule adds a constraint to
the path variable by checking through available paths for
class C.

T-Invk types a method invocation m with arguments e on
the receiver e0. The typing rule searches for the method m by
going through the class table. For every method m found, the
subtyping relation between the arguments and the method’s

parameters adds another set of constraints P𝑗𝑘 . X#N is then
bound to the type D𝑗𝑘#Q𝑗𝑘 found in the definition of method
m. The typing joins all the constraints in the assumptions
with the constraint on the fresh type variable X#N and the
receiver’s type X0#N0.

Starting with a receiver e0 with the type variable X0#N0, T-
Field searches through the class table for concrete types that
contain the field f𝑖 . If found, the possible concrete type for
this field is added to the constraint along with the constraint
on the receiver type.

228

SLE ’22, December 06ś07, 2022, Auckland, New Zealand Luthfan Anshar Lubis, Yudai Tanabe, Tomoyuki Aotani, and Hidehiko Masuhara

T-New behaves similar to T-Invk, except it checks the
arguments against 𝑓 𝑖𝑒𝑙𝑑𝑠 instead of𝑚𝑡𝑦𝑝𝑒’s parameters. An
important part of T-New is having the class typing in the
assumption. This is necessary because the superclass’ path Q

can change depending on what arguments are actually given
during object instantiation.
T-Cast packs FJ’s upcast, downcast, and stupid cast into

one rule. The correctness of the cast is checked during run-
time.
The typing judgement for method declarations has the

form M OK in C!n. The first and second lines of the assump-
tion add a subtyping constraint on the method body expres-
sion. The remaining assumptions are necessary for over-
riding. In FBJ, a class C!n has possibly multiple options of
superclass to inherit. Each of the superclass options can pos-
sibly have different typing for a method m, therefore it is
impossible to apply the same overriding rule that FJ has on
FBJ. Instead, we add constraint in the resulting method typ-
ing that ensures if there are multiple superclasses that have
method m defined, the overriding class C!n must have the
same typing with at least one of them. A constraint is also
then added to the superclass’ path variable N.

The class typing does a similar check to the method typing,
but on the fields’ names and types. If it has the same fields
with a particular superclass D#p𝑘 , then constraint is added
on the superclass’ path variable N along with the fields’ types

D′#Q′. The resulting constraint joins this constraint with the
constraint from method typing.

3.6 Evaluation

The reduction rules are shown in Figure 7 given by the rela-

tion e
𝜎
−→ e’ which reads as "expression e reduces to expres-

sion e’ under type substitution 𝜎". The type substitution 𝜎 is
obtained from solving the constraint generated during typ-
ing derivation. The rules are defined for expressions whose
variables are replaced by the type substitution 𝜎 .

The three computation rules are defined for field access,
method invocation, and casting. In R-Field, if f𝑖 is found
among the fields of C#p, then the argument as the same
position as f𝑖 is the result of the reduction. In R-Invk, once
the method body is found, the variables in the method body’s
expression itself need to be replaced by 𝜎 . Then, this in the
method body is replaced by the expression’s receiver object,
and the parameters x are substituted by the invocation’s

arguments d. In R-Cast, if the subtyping relation holds, the
reduction proceeds.

3.7 Subject Reduction

The subject reduction property states that given a valid sub-
stitution for an expression typing, then after reducing the
expression, the substitution will satisfy the constraint of
the new typing and also gives the same or narrower type
as before the reduction. Subject reduction guarantees that

class Square!1 extends Rectangle1 { ... }

class Rectangle!2 {

boolean equal(Rectangle2 r) { ... }

... }

1 class Example!2 {

2 void main() {

3 Rectangle3 rec = new Rectangle(1,1,2,3);

4 float area = rec.area();

5 Square sq = new Square(1,1,2);

6 float perSq = sq.perimeter();

7 boolean eq = rec.equal(sq);

8 }}

Listing 5. Program with indexed Rectangle

an object after evaluation will maintain the same class and
version number.

Theorem (Subject Reduction). If Γ ⊢ e : X#N | R, R ⊨ 𝜎 ,

𝜎 (e)
𝜎
−→ e′, then for some X′#N′, Γ ⊢ e′ : X′#N′ | R′, R′ ⊨ 𝜎 ,

𝜎 (X′#N′) <: 𝜎 (X#N).
Proof. We prove this theorem by induction on the typing

relation and analyzing the last rule used.

4 Implementation

We implemented a prototype language BatakJava, based
on FBJ. The language is implemented using ExtendJ [24], an
extensible Java compiler that supports bytecode compilation.
BatakJava programs are compiled into Java.

The key point of BatakJava implementation is the version
annotation on class definitions and the subsequent typing
and Java code generation. BatakJava compiler includes a
constraint-based version inference system and a Java code
generator.
Version inference checks and finds compatible version

assignments for each class annotation in a BatakJava pro-
gram. This consists of constraint generation and solving. The
failure to find a solution is equal to a typing error.

4.1 Version Inference

The first step of the version inference is constraint generation.
BatakJava follows the constraint generation described by
the typing rules of FBJ. A literal constraint in BatakJava is
described as {X=C!n}, which constrains a type variable X

to a specific class C!n. Type variables are assigned to each
expression and class annotation.
The generated constraints are then passed to the con-

straint solver Chocosolver [28] from which the solution is
used to guide the subsequent code generation phase. Other
constraint solvers can also be used for this purpose.

Constraint Generation Example. We describe the con-
straint generated by some of the expressions in mainmethod

229

BatakJava: An Object-Oriented Programming Language with Versions SLE ’22, December 06ś07, 2022, Auckland, New Zealand

of Example!2 in Listing 4 and class annotations related
to it. Since there are overlapping mentions of Rectangle,
Listing 5 shows the definition from Listing 4 with indexed
Rectangle to help distinguish their type variables. Figure 8
shows the type variables for the expressions and class an-
notations involved in the method. Each method invocation
generates fresh type variables on the parameters, here X2
refers to the original type variable associated with parameter
r of equal, and X′

2
is the fresh type variable for parameter r

generated by the invocation rec.equal(sq).
The object instantiation new Rectangle(1,1,2,3) in line

3 generates the following constraint.

{X4 = Rectangle!1} ∨ {X4 = Rectangle!2}

This denotes that the object instantiation with variable X4
is typed as Rectangle!1 or Rectangle!2. Constraints are
also generated in regards to the arguments and constructor’s
parameters, but since all the parameters are primitive types,
we skip the details for simplicity.

The object instantiation new Square(1,1,2) in line 5
generates constraint on its own type variable and the type
variable for its superclass Rectangle1. It results in

{X7 = Square!1 ∧ X1 = Rectangle!1} ∨ {X7 = Square!1

∧ X1 = Rectangle!2}

This denotes that the superclass Rectangle1 with variable
X1 can be typed either as Rectangle!1 or Rectangle!2.

The variable assignment in line 3 of the method generates
the following constraint.

{X4 = Rectangle!1 ∧ X3 = Rectangle!1}

∨ {X4 = Rectangle!2 ∧ X3 = Rectangle!2}

The constraint generation checks in which types the sub-
typing relation for the assignment stands. Here, because the
assigned variable rec and the object instantiation are both
of class Rectangle, the constraint requires them to be of the
same version for the subtyping relation to be valid.

Lastly we observe the constraint generation on rec.equal
(sq). The constraint involves the receiver object, method’s
argument, method’s parameter, and the expression itself. It
generates the following constraint.

{X3 = Rectangle!2 ∧ X6 = Square!1

∧ X1 = Rectangle!1 ∧ X2′ = Rectangle!1 ∧ X9 = bool} ∨

{X3 = Rectangle!2 ∧ X6 = Square!1

∧ X1 = Rectangle!2 ∧ X2′ = Rectangle!2 ∧ X9 = bool}

This method is available only in Rectangle!2, hence the
type variable of the receiver object is bound to that type. sq
can only by typed as Square!1, so X6 is bound to that type.
The method invocation also generates a fresh variable X′2
for the parameter r in equal’s parameters. The types bound
to X1 which represents Square!1’s superclass and X′2 have
to be the same. If the parameter is assigned as Rectangle!1,
then the argument sq has to inherit from that type so that the

Expression/Class Access Var
Rectangle1 X1
Rectangle2 X2, X

′
2

Rectangle3 X3
new Rectangle(1,1,2,3) X4
rec.area() X5
Square X6
new Square(1,1,2) X7
sq.perimeter() X8
rec.equal(sq) X9

Figure 8. Type variables for the example

Var Type Assignment
X1 Rectangle!1

X2 Rectangle!1 and Rectangle!2

X′
2

Rectangle!1

X3 Rectangle!2

X4 Rectangle!2

X5 float

X6 Square!1

X7 Square!1

X8 float

X9 boolean

Figure 9. Solution for the constraint generation

subtyping relation between the argument and the parameter
holds.
All the constraints, along with those not described here,

are joined together as a conjunction. A possible solution for
this constraint is shown by the type assignments in Figure 9.

Version Selection. The version of expressions in BatakJava
can be ambiguous if there are no following computations that
restrain their versions. For example, new Rectangle(1,1,

2,3) can assume both version 1 and 2 if the method area

is not invoked afterwards. This ambiguity contradicts the
requirement for a specific version for evaluating the expres-
sion. To handle this ambiguity, BatakJava chooses the latest
(largest) version as the default version for any object instan-
tiation when there are multiple solutions provided.

BatakJava also provides version selection to allow manual
control of versions by users. For example, version 1 is selected
for the Rectangle instance by the following selection.

Rectangle rec = new Rectangle#1#(1,1,2,3);

This expression will generate the following constraint.

{X4 = Rectangle!1}

4.2 Code Generation

The main gap between BatakJava and Java is BatakJava’s pol-
icy of allowing classes with the same fully qualified names

230

SLE ’22, December 06ś07, 2022, Auckland, New Zealand Luthfan Anshar Lubis, Yudai Tanabe, Tomoyuki Aotani, and Hidehiko Masuhara

but different versions to be defined in the program. The code
generation handles this by renaming definitions and decla-
rations using versions. However, the version assignments
remove the variability of a BatakJava program. For example,
the variability of the superclass Rectangle in Square!1.

Class names are rewritten during code generation. A class
C!n is renamed into C_ver_n. The class headers from the
ongoing example is rewritten into the following classes.

class Rectangle_ver_1 { ... }

class Rectangle_ver_2 { ... }

class Point_ver_1 { ... }

class Example_ver_2 { ... }

Rewriting the class Square!1 requires the type assignment
from the solution for the superclass access Rectangle1. Based
on the solution in Figure 9, the class header is renamed as
follows.

class Square_ver_1 extends Rectangle_ver_1 { ... }

Renaming class access and expressions are guided by the
solution obtained from the constraint solver. This conversion
can be observed on each body declaration of a class. Using
the solution in Figure 9, mainmethod is translated as follows.

void main() {

Rectangle_ver_2 rec = new Rectangle_ver_2(1,1,2,3);

float area = rec.area();

Square_ver_1 sq = new Square(1,1,2);

float perSq = sq.perimeter();

boolean eq = rec.equal(sq);

}

A special care is neededwith the compilation of themethod
equal in regards to its compatibility with both versions of
Rectangle. The compilation creates copies of the method
corresponding to the compatible combination of parameters
and return type.

boolean equal(Rectangle_ver_1 r) { ... }

boolean equal(Rectangle_ver_2 r) { ... }

The same is also applicable with the method equivalent in
Rectangle!1.

The other body declarations, such as constructor and field
declarations, are not compiled polymorphically.

5 Case Study

We implemented a simple text file processing program us-
ing the line reading and text splitting functionality from
the Guava library2. Classes necessary for the program are
rewritten in BatakJava.We simulated backward incompatible
changes in the rewritten Guava library and used BatakJava

2https://github.com/google/guava

// Before update

class Splitter!1 {

public static Splitter on(Pattern separator) {

// calls on(JdkPattern) }

public static Splitter on(JdkPattern separator {

... }

}

// After update

class Splitter!2 {

public static Splitter on(Regex separator) {

// calls on(GuavaPattern) }

public static Splitter on(GuavaPattern separator) {

... }

}

Listing 6. Class Splitter before and after update

to implement a working program using two versions of con-
flicting class definitions.

The rewritten Guava library consists of the static method
readlines found in the class Files in package com.google.
common.io and the class Splitter in package com.google.
common.base. The backward incompatible changes were
added into the class Splitter. To help introduce variation,
we also rewrote the regular expression library JavaVerbalEx-
pressions3 in BatakJava. Both Guava and the regular expres-
sion libraries use several JDK classes, including List and
Pattern.

Guava Library Update. A snippet of the definition of class
Splitter is shown in Listing 6. In the original implemen-
tation, the class Splitter is instantiated through the static
method on that accepts a Java’s Pattern and calls a dif-
ferent method on that takes a Guava class JdkPattern. In
the updated definition, to simulate backward incompatiblity,
we remove both the original methods. The first method’s
parameter is replaced by Regex and the second method’s pa-
rameter is replaced by GuavaPattern. JdkPattern, Regex,
and GuavaPattern are also BatakJava classes with versions.

File Processing Program. The main program in Listing 7
mixes the use of both versions of Splitter. The lines pro-
cessed by readlines are then split based on a regular expres-
sion. splitter and newSplitter use the method on with
argument Pattern (Splitter!1) and Regex (Splitter!2)
respectively. The compilation result is shown in Listing 8
where each Splitter is correctly inferred according to the
method invoked.

One significant limitation of BatakJava is that the current
inference does not scale linearly, so there will be issues in
applying this prototype naively to large codebases. For this
case study involving 41 class definitions and around 1200

3https://github.com/VerbalExpressions/JavaVerbalExpressions

231

https://github.com/google/guava
https://github.com/VerbalExpressions/JavaVerbalExpressions

BatakJava: An Object-Oriented Programming Language with Versions SLE ’22, December 06ś07, 2022, Auckland, New Zealand

// BatakJava program

public static void main(String[] args) {

List<String> lines = new Files()

.readLines(args[0], Charsets.UTF8);

Pattern pattern = Pattern.compile("@");

Splitter splitter = Splitter.on(pattern);

Regex newPattern = new Regex(...);

Splitter newSplitter = Splitter.on(newPattern);

for (String line: lines) {

splitter.split(line);

newSplitter.split(line);

}}

Listing 7. main method using both versions of Splitter

// Java program

public static void main(String[] args) {

List<String> lines = Files_ver_1

.readLines(args[0], Charsets_ver_1.UTF8);

Pattern pattern = Pattern.compile("@");

Splitter_ver_1 splitter

= Splitter_ver_1.on(pattern);

Regex_ver_1 newPattern = new Regex_ver_1(...);

Splitter_ver_2 newSplitter

= Splitter_ver_2.on(newPattern);

for (String line: lines) {

splitter.split(line);

newSplitter.split(line);

}}

Listing 8. main method after compilation

LOC, the compilation runs 2.1 times longer than the base
ExtendJ compilation.

6 Related Work

6.1 Version-Aware Programming Languages

Versioned Featherweight Java (VFJ) [6, 7] takes a similar
approach to BatakJava by introducing versions into the lan-
guage. However, VFJ treats versions as a first-class citizen in
a functional OOP language. While BatakJava incorporates
versions as elements of types, VFJ defines classes within
the context of version. It focuses on ensuring forward and
backward compatibility of programs.

Unison4 implements the idea of content-addressed code to
identify code not by their names, but by their hashes, through
the Unison codebase manager. This is analogous to declaring
a new version of a definition in BatakJava. However, Unison
only creates different hashes for different definitions where
both changes in the signature and body are uniformly treated

4https://www.unisonweb.org/

as differences. Unison and BatakJava are not different with
respect their inability to detect semantic changes.

6.2 Programming Paradigms

Context-oriented programming [13] (COP) focuses on mod-
ularizing behavioral variations of an object. The behavior
of an object is adapted dynamically following the runtime
context. This paradigm treats context explicitly in the form
of layer, in which the behavior of a class can be modified.
The concept has been implemented as extensions to Java [2],
Squeak/Smalltalk. Our proposal can be interpreted as spe-
cializing context as version, although, unlike COP, BatakJava
resolves the dependency during compile time.
Variational programming [8], based on the choice calcu-

lus [10], is a functional programming paradigm that allows
variations in the form of choices made up of left and right
alternative that supports pattern matching. From the per-
spective of versions, choices can be interpreted as an object
having different values in different versions.
Different versions of a class can be interpreted as a fam-

ily of class [9, 15]. Class updates can be encoded as class
inheritances. However, the family polymorphism approach
is restricted in the way that it cannot remove existing defini-
tions in further updates.

6.3 Package Manager Supports

Some package ecosystems such as npm5 for JavaScript, Cargo6

for Rust and Maven with its shade plugin7 include multiple
versions of the same definition through the use of name man-
gling. However, these methods are not incorporated into the
language’s semantics itself, resulting in wrongly identifying
the same package as two completely different packages.

6.4 Software Product Line

The introduction of version into the language allows soft-
ware’s components to be broken down and its variations to
be analyzed separately. A similar approach is taken in soft-
ware product line [25] technologies. Implementations have
been introduced, such as feature-oriented and delta-oriented
programming [31].
Feature-oriented programming [26] introduced features,

with a formalization in Feature Featherweight Java [1]. Fea-
tures can be seen as abstract subclasses ormixins. Objects can
be created by selecting desired features, allowing flexibility
and promoting code reuse. Delta-oriented programming [29]
works similarly as feature-oriented programming, with a
core module modifiable by delta modules that may refine or
remove existing code.

5https://www.npmjs.com/
6https://doc.rust-lang.org/cargo/
7https://maven.apache.org/plugins/maven-shade-plugin/

232

https://www.unisonweb.org/
https://www.npmjs.com/
https://doc.rust-lang.org/cargo/
https://maven.apache.org/plugins/maven-shade-plugin/

SLE ’22, December 06ś07, 2022, Auckland, New Zealand Luthfan Anshar Lubis, Yudai Tanabe, Tomoyuki Aotani, and Hidehiko Masuhara

7 Future Work and Conclusion

7.1 Comprehensive Evaluation

We need to conduct a more thorough evaluation of our pro-
totype to assess its viability. An empirical evaluation with
larger codebases will be conducted to measure the limitation
of the current compilation scheme. We also intend to con-
duct a use case experiment with programmers to measure
the usability of BatakJava in software evolution as well as
comparing it with already existing methods such as name
mangling.

7.2 Improving Compilation

The current version inference generates constraints expo-
nentially in regard to version numbers. Although BatakJava
works in smaller codebases, such as the case study introduced
in this paper, it does not scale with larger codebases. First,
BatakJava has to enable separate compilation to minimize
the burden of global version inference. Second, BatakJava
requires high-level version management that allows users
to better specify the version requirements of a program. By
doing so, the number of versions included during version
inference can be minimized.

Another issue with the current compilation scheme is that
it generates many code clones. Creating a new version of
a class without any change from the previous version may
generate two classes with identical implementations but
different naming. A possible approach to allow code reuse
is by extracting common parts from different versions of a
class and collecting them in a common ancestor.

7.3 Version Polymorphism

The absence of inheritance version polymorphism restricts
the flexibility in which the users can use multi-version envi-
ronment. Extending the calculus with version polymorphism
and proving its type safety are left as future work. This ex-
tension can be approached by assigning a unique variable
for each class annotation in the program, disallowing the
possibility of creating definitions that can assume more than
one version at the same time. A possible apporach to version
polymorphism is by extending the current calculus with let
polymorphism [20] on version numbers.

7.4 Semantic Versioning Support

Other approaches to version management, such as semantic
versioning, can also be incorporated into programming with
versions. Currently, a version is only an integer number that
does not hold meaning on its own. Incorporating the idea of
semantic versioning into BatakJava can be useful because the
typing system then can statically check whether the version
assigned to the program is appropriate or not.

7.5 Conclusion

Previous work on introducing versions as part of the lan-
guage semantics first introduced in 𝜆VL has shown potential
in handling dependency issues rooted in backward incom-
patible changes. However, its system lacks flexible support
for evolving data structures.
This paper aims to expand the support of version pro-

gramming to allow flexible definitions of data structures.
We formalized the idea in the calculus FBJ and a prototype
language BatakJava. The inclusion of versions in BatakJava
allows class declarations to be explicitly annotated with ver-
sions, allowing multiple versions of a class to be included in
a program. BatakJava does not put any special restrictions
on how a class of different versions can be declared.

Acknowledgments

We would like to thank our fellow lab members at Tokyo
Institute of Technology for the advice and discussions during
research for this paper. This work was supported by JSPS
KAKENHI grant numbers 18H03219.

References
[1] Sven Apel, Christian Kästner, and Christian Lengauer. 2008. Feature

Featherweight Java: A calculus for feature-oriented programming and

stepwise refinement. In Proceedings of the 7th international conference

on Generative programming and component engineering. 101ś112.

[2] Malte Appeltauer, Robert Hirschfeld, Michael Haupt, and Hidehiko

Masuhara. 2011. ContextJ: Context-oriented programming with Java.

Information and Media Technologies 6, 2 (2011), 399ś419.

[3] Christopher Bogart, Christian Kästner, James Herbsleb, and Ferdian

Thung. 2016. How to break an API: cost negotiation and community

values in three software ecosystems. In Proceedings of the 2016 24th

ACM SIGSOFT International Symposium on Foundations of Software

Engineering. 109ś120.

[4] Chris Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung.

2021. When and how to make breaking changes. ACM Trans. Softw.

Eng. Methodol 1, 1 (2021), 10ś1145.

[5] Aline Brito, Laerte Xavier, Andre Hora, and Marco Tulio Valente. 2018.

Why and how Java developers break APIs. In 2018 IEEE 25th Interna-

tional Conference on Software Analysis, Evolution and Reengineering

(SANER). IEEE, 255ś265.

[6] Luís Carvalho and João Costa Seco. 2019. Software Evolution with a

Typeful Version Control System. In International Conference on Soft-

ware Engineering and Formal Methods. Springer, 145ś161.

[7] Luís Carvalho and João Costa Seco. 2021. Deep Semantic Versioning for

Evolution and Variability. In 23rd International Symposium on Principles

and Practice of Declarative Programming. 1ś13.

[8] Sheng Chen, Martin Erwig, and Eric Walkingshaw. 2016. A calcu-

lus for variational programming. In 30th European Conference on

Object-Oriented Programming (ECOOP 2016). Schloss Dagstuhl-Leibniz-

Zentrum fuer Informatik.

[9] Erik Ernst. 2001. Family polymorphism. In European Conference on

Object-Oriented Programming. Springer, 303ś326.

[10] Martin Erwig and Eric Walkingshaw. 2011. The choice calculus: A

representation for software variation. ACM Transactions on Software

Engineering and Methodology (TOSEM) 21, 1 (2011), 1ś27.

[11] Darius Foo, Hendy Chua, Jason Yeo, Ming Yi Ang, and Asankhaya

Sharma. 2018. Efficient static checking of library updates. In Pro-

ceedings of the 2018 26th ACM Joint Meeting on European Software

233

BatakJava: An Object-Oriented Programming Language with Versions SLE ’22, December 06ś07, 2022, Auckland, New Zealand

Engineering Conference and Symposium on the Foundations of Software

Engineering. 791ś796.

[12] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. 2000. The Java

language specification. Addison-Wesley Professional.

[13] Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz. 2008.

Context-oriented programming. Journal of Object Technology 7, 3

(2008), 125ś151. https://doi.org/10.5381/jot.2008.7.3.a4

[14] Atsushi Igarashi, Benjamin C Pierce, and Philip Wadler. 2001. Feather-

weight Java: a minimal core calculus for Java and GJ. TOPLAS 23, 3

(2001), 396ś450.

[15] Atsushi Igarashi, Chieri Saito, and Mirko Viroli. 2005. Lightweight

family polymorphism. InAsian Symposium on Programming Languages

and Systems. Springer, 161ś177.

[16] Ameya Ketkar, Nikolaos Tsantalis, and Danny Dig. 2020. Understand-

ing type changes in java. In Proceedings of the 28th ACM Joint Meeting

on European Software Engineering Conference and Symposium on the

Foundations of Software Engineering. 629ś641.

[17] Raula Gaikovina Kula, Daniel M. German, Ali Ouni, Takashi Ishio, and

Katsuro Inoue. 2018. Do developers update their library dependencies?

Empir Software Eng 23, 1 (Feb. 2018), 384ś417. https://doi.org/10.1007/

s10664-017-9521-5

[18] Manny M Lehman. 1996. Laws of software evolution revisited. In

European Workshop on Software Process Technology. Springer, 108ś124.

[19] Christian Macho, Shane McIntosh, and Martin Pinzger. 2018. Automat-

ically repairing dependency-related build breakage. In 2018 IEEE 25th

International Conference on Software Analysis, Evolution and Reengi-

neering (SANER). IEEE, 106ś117.

[20] Robin Milner. 1978. A theory of type polymorphism in programming.

Journal of computer and system sciences 17, 3 (1978), 348ś375.

[21] Samim Mirhosseini and Chris Parnin. 2017. Can automated pull re-

quests encourage software developers to upgrade out-of-date depen-

dencies?. In 2017 32nd IEEE/ACM International Conference on Auto-

mated Software Engineering (ASE). IEEE, 84ś94.

[22] Shaikh Mostafa, Rodney Rodriguez, and Xiaoyin Wang. 2017. Experi-

ence paper: a study on behavioral backward incompatibilities of Java

software libraries. In Proceedings of the 26th ACM SIGSOFT Interna-

tional Symposium on Software Testing and Analysis. 215ś225.

[23] Suchita Mukherjee, Abigail Almanza, and Cindy Rubio-González. 2021.

Fixing dependency errors for Python build reproducibility. In Proceed-

ings of the 30th ACM SIGSOFT International Symposium on Software

Testing and Analysis. 439ś451.

[24] Jesper Öqvist. 2018. ExtendJ: extensible Java compiler. In Conference

Companion of the 2nd International Conference on Art, Science, and

Engineering of Programming. 234ś235.

[25] David Lorge Parnas. 1976. On the design and development of program

families. IEEE Transactions on software engineering 1 (1976), 1ś9.

[26] Christian Prehofer. 1997. Feature-oriented programming: A fresh look

at objects. In European Conference on Object-Oriented Programming.

Springer, 419ś443.

[27] Tom Preston-Werner. 2013. Semantic Versioning. https://semver.org/

[28] Charles Prud’homme, Jean-Guillaume Fages, and Xavier Lorca. 2019.

Choco Solver. Website, March (2019).

[29] Ina Schaefer, Lorenzo Bettini, Viviana Bono, Ferruccio Damiani, and

Nico Tanzarella. 2010. Delta-oriented programming of software

product lines. In International Conference on Software Product Lines.

Springer, 77ś91.

[30] Yudai Tanabe, Luthfan Anshar Lubis, Tomoyuki Aotani, and Hidehiko

Masuhara. 2021. A Functional Programming Language with Versions.

arXiv preprint arXiv:2107.07301 (2021).

[31] Thomas Thüm, Sven Apel, Christian Kästner, Ina Schaefer, and Gunter

Saake. 2014. A classification and survey of analysis strategies for

software product lines. ACM Computing Surveys (CSUR) 47, 1 (2014),

1ś45.

Received 2022-08-08; accepted 2022-09-30

234

https://doi.org/10.5381/jot.2008.7.3.a4
https://doi.org/10.1007/s10664-017-9521-5
https://doi.org/10.1007/s10664-017-9521-5
https://semver.org/

	Abstract
	1 Introduction
	2 Programming with Versions
	2.1 Motivating Example in Java
	2.2 Motivating Example in a Language with Versions

	3 Core Calculus
	3.1 Paths
	3.2 Syntax
	3.3 Constraints
	3.4 Subtyping
	3.5 Typing
	3.6 Evaluation
	3.7 Subject Reduction

	4 Implementation
	4.1 Version Inference
	4.2 Code Generation

	5 Case Study
	6 Related Work
	6.1 Version-Aware Programming Languages
	6.2 Programming Paradigms
	6.3 Package Manager Supports
	6.4 Software Product Line

	7 Future Work and Conclusion
	7.1 Comprehensive Evaluation
	7.2 Improving Compilation
	7.3 Version Polymorphism
	7.4 Semantic Versioning Support
	7.5 Conclusion

	Acknowledgments
	References

