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Chapter 1

Introduction

One of the problems currently confronting software developers is the cost of main-
taining dependent packages up-to-date. While updates bring many improvements,
they can also trigger problems in the client software. Despite the prevalence of these
incompatible updates, the differences between the old and new versions are often
implicitly described, making them difficult to debug. This problem has been exacer-
bated over the past few years owing to the escalating quantity of transitive package
dependencies.

One of the main factors making updates difficult is that most software systems
insist on making only a single version of a package available anywhere. This fact
leads to a lack of support for the simultaneous use of multiple versions in most
programming languages. Therefore, even when only a small portion of a program
requires updating, developers are obliged to carry out additional work, which often
delays the adoption of new versions.

We aim to develop a programming language with versions and motivates devel-
opers to update their software. Introducing expression-level version control as a
fundamental aspect of programming language enables the concurrent utilization of
multiple versions of a particular package. By allowing developers to use previous
versions of packages along with newer ones, they can implement updates incremen-
tally and avoid additional work on unaffected codes from the update. This results
in a more streamlined process of updating software, as developers can focus their
efforts on their tasks, without being impeded by the need to ensure compatibility
across the entire codebase.

Thesis Statement Establish the basis of programming language with versions, which al-
lows simultaneous use of multiple versions

This dissertation presents a programming language called VL, which is a func-
tional language with versions that incorporates versions as an intrinsic language ele-
ment. Unlike most existing programming languages that assume only one version of
each package, VL allows an access to multiple versions of external expressions to re-
fer to an individual version of external modules. This dissertation demonstrates the
feasibility of safe programming with multiple versions in a general-purpose func-
tional language. To this end, we investigate (a) a core calculus with a type system
for programming with versions, (b) a compilation method between lambda-based
functional languages and the core, and (c) an inference algorithm for determining
the version of each expression.

Core Calculus λVL is an extension of the linear lambda calculus, which allows a
single value to have multiple variations of versions. Such values are called versioned
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values, and they store version-specific definitions in record-like entities, along with
version labels indicating which version the definition exists. Function application
of versioned values represents multiple possible computations of a function and an
argument. The internal computation is extracted by specifying the label in the same
way as in a normal record. The type safety of λVL programs is explained by version
consistency, which ensures that every subterm has a consistent version definition,
thereby preventing λVL programs from being evaluated with versions where no def-
inition exists. Furthermore, the type system is designed as an instance of coeffect
calculus, which is a substructural calculus capable of analyzing various computa-
tional resources.

Girard’s Translation and Bundling We developed a compilation method that trans-
lates modules of lambda-calculus-based surface language, developed in multiple
versions, to a λVL program that behaves in a version-crossing manner. The entire
process involves two compilations: (1) Girard’s translation from a single version of
the surface language program to VLMini, a subset of λVL. We define the translation
as a generalization of Girard’s translation for linear lambda calculus. The compila-
tion replaces lambda abstractions with cotextual-let and dually inserts a promotion
for the argument of function application. The extended Girard’s translation allows
functions to capture version constraints of their argument value in the type system.
(2) The second translation, called bundling, bundles the top-level declarations of
each version of a VLMini program into a single versioned value. Bundling allows a
top-level symbol with the same name across versions to behave as a versioned value
representing multiple possibilities of computations.

Algorithmic Type Inference for λVL We develop algorithmic type inference rules
based on the declarative type system following Hindley-Milner type inference. The
constraints about versions are generated from either (1) bundling that generates a
dependency on a particular version for a top-level symbol or (2) type inference that
generates version consistency among variables. These constraints will be resolved
after all modules’ type inference/bundling is completed.

Implementation Finally, the author implements a VL language system with all the
above concepts of programming with versions. The VL system is implemented by
Haskell (GHC 9.2) and uses z3 as the constraint solver. Code generation special-
izes in a λVL program into a version-specialized Haskell program using the solution
from z3-solver. We observe how the proposed language system guarantees safety
in multiple versions through some examples. Furthermore, since the initial imple-
mentation strictly guarantees version consistency, we introduce a syntax extension
that can communicate the user’s intent to the type inference system and enable the
simultaneous use of multiple versions.

Summary In this dissertation, we show that for traditional functional languages
such as Haskell and the ML language family, multiple versions of a single package
can be used without compromising type safety. Although this dissertation focuses
on Haskell-like minimal languages, it will be possible to support the higher-level
language constructs such as user-defined data types and version polymorphisms.
The basic idea that values have versions also provides a theoretical basis for more
granular dependency checking, such as link-time dependency checking and seman-
tic versioning into language semantics.
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Outline

• Chapter 2 provides a detailed account of incompatibility issues. It introduces
version consistency through examples of small incompatibility issues and demon-
strates how existing technologies have been used to ensure version consis-
tency.

• Chapter 3 presents the advantages of language-based versioning in contrast to
existing technologies. Then, we introduce fundamental concepts in program-
ming with versions.

• Chapter 4 introduces λVL. We describe the syntax and dynamic and static se-
mantics of λVL, as well as a type-safe type system to ensure version consistency
at the expression level.

• Chapter 5 presents ideas for programming with versions on the Haskell-like
functional language VL. First, we introduce Bundling and Girard’s transfor-
mations, with version labels elaborated as identifiers to differentiate versions
in expressions. Moreover, we present a version inference algorithm for VL.

• Chapter 6 features an implementation of the VL language and a case study that
simulates an incompatible update made in a Haskell library. Additionally, we
explore the potential for further development of the language by identifying
issues with the current language implementation.

Finally, we conclude the dissertation by presenting a related work in chapter 7 and
conclusion in chapter 8.
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Chapter 2

Problem Statements

Contents

2.1 Component-based Development and Updates . . . . . . . . . . . . 5
2.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Motivating Example . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 External Tool Support for Dependency Conflict . . . . . . . . . . . 8
2.3 Problems caused by Dangling Dependency . . . . . . . . . . . . . 10

2.3.1 Situations Where Incompatibility Problems Occur . . . . . . 10
2.3.2 Declarative Dependency Requirements . . . . . . . . . . . . 11
2.3.3 Name Mangling when Dependency Conflicts . . . . . . . . . 12
2.3.4 Problems Caused by Name Mangling . . . . . . . . . . . . . 12

2.4 Indirect Dependencies Complicate Incompatibility Problems . . 13

2.1 Component-based Development and Updates

2.1.1 Introduction

Current software systems are composed of various software components. These
software components are usually called packages, a collection of several modules
(which, unlike packages, are provided by programmatic language features). Since
packages are responsible for the means of code distribution, continuously evolving
packages’ implementations are distinguished by their versions. A newer version usu-
ally improves the older ones by adding features, improving performance, or fixing
bugs. Developers can notice the availability of newer implementations of externally
developed packages by checking their version numbers and deciding whether they
should replace the packages currently in use with new ones.

Updates are essential parts of modern software development with the growing
popularity of component-based development. Upstream developers provide new
implementations of software packages as a new version, and downstream develop-
ers incorporate improvements of packages (e.g., security fixes, added features, or
performance improvements) through updates. In recent years, package manage-
ment for many programming languages has moved to a model where packages are
stored in package repositories, and specific versions are provided to client software
as required. Using such tools has simplified the update process compared to previ-
ous ad-hoc manual efforts. [Die+19a]

One of the problems software developers face today is the cost of updating de-
pendent packages. While new versions bring many improvements, they can also
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AppDir

Hash

ver 1

ver 1
ver 1

AppDir

Hash

update

ver 1

||ver 2
ver 1

After the update of Dir to version 2, the two direct/indirect de-
pendencies to Hash cause a conflict.

FIGURE 2.1: Minimal configuration before (top) and after (bottom)
the update that causes dependency hell.

cause problems for client software. A new version of a package can either be com-
patible or incompatible (or with “breaking changes”) from older versions. When it is
compatible, we can replace an older version with the new one without a problem.
Otherwise, we would need to modify our program to use the newer version. [DJB14;
RvV17] Even though such incompatible updates are common, [RDV14] the differ-
ences between old and new versions are often only implicitly described, making de-
bugging difficult to debug. [Beu+99] This problem has been getting worse recently
as packages have increasingly become transitive dependencies. Some recent stud-
ies have observed that dependency-related errors are among the most frequently
encountered. [Seo+14]

In this chapter, we focus on incompatibilities and the existing methods to manage
them. Each package continually evolves for projects that rely on frequently updated
open-source packages, so compatibility issues are inevitable. [DJB14; RvV17; Art+12;
Die+19b; Bav+15; Bog+16]

2.1.2 Motivating Example

We explain a small example to illustrate the essence of incompatibility problems.
Here, we consider a scenario in which a breaking change is introduced to a depen-
dent package during the development of an application App.

The top of Figure 2.1 shows the App dependencies. App is a file explorer and
provides hash-based file search. This feature is developed using the system library
Dir and the cryptographic library Hash. Note that Dir also depends on Hash.

App, Dir, and Hash in version 1 are shown in Figure 2.2. The pseudo-code is
written in a Haskell-like language. Hash defines a function makeHash to generate
a hash value from a given string using the MD5 algorithm. The function match
determines whether the first argument string and the second argument hash are
equal under the relation of the function makeHash. Dir defines a function exists
that determines if a file with a file name equal to the given hash exists.

App uses the makeHash defined in Hash to convert a string given from standard
input into a hash. Then, using exists defined in Dir, it prints Found if such a file
exists; otherwise, it results in an error Not Found. Assuming that there is a file
with the required name in the directory, the executable of App with the dependency
shown on top of Figure 1 will print Found on the standard output.
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1 -- App version 1
2 import Dir (exists)
3 import Hash (makeHash)
4

5 main :: ()
6 main () = let str = getArg () in
7 let digest = makeHash str in
8 if exists digest then print "Found"
9 else error "Not found"

1 -- Dir version 1
2 import Hash (match)
3

4 exists :: String -> Bool
5 exists hash =
6 let filelist = getFileList () in
7 foldLeft
8 (\(acc, fn) -> acc || match fn hash)
9 false

10 filelist

1 -- Hash version 1
2 makeHash :: String -> String
3 makeHash str = (* generate hash based on MD5 *)
4

5 match :: String -> String -> Bool
6 match str hash = (makeHash str) == hash

FIGURE 2.2: App, Dir, and Hash modules before update.

1 -- Hash version 2
2 makeHash :: String -> String
3 makeHash str = (* generate hash based on SHA-3 *)
4

5 match :: String -> String -> Bool
6 match str hash = (makeHash str) == hash

FIGURE 2.3: Hash module after update.
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Now, the App developer updated Hash from version 1 to version 2 due to security
concerns, as shown in Figure 2.3. Figure 2.3 shows the updated version of Hash.
Version 2 of Hash uses SHA-3 as the new hashing algorithm.

After the update, the dependencies of App are changed, as shown at the bottom
of Figure 2.1. In the updated dependency, it is important to note that Dir continues
to use version 1 of Hash so that App and Dir require different versions of Hash. The
situation in Dir can occur for various reasons. For example, Dir has already aban-
doned its maintenance, or perhaps other functions in Dir must continue to use the
functionality provided by version 1 of Hash.

This update does not change the App code but causes problems with App. The
build systems reject the program when multiple versions of the same package are
required. Even if the programs were successfully compiled with a technique that
allows multiple versions, such as name mangling, the program would result in an
error with an output Not found.

This unexpected output is due to the difference between the two versions re-
quired for Hash: App uses version 2 of makeHash in line 7 of App. On line 7 of App,
makeHash from Hash version 2 generates a hash value with SHA-3, and the value is
assigned to digest. On the other hand, exists uses version 1 of match (including
makeHash) to determine hash equivalence, so exists compares the hashes gener-
ated by two completely different algorithms, SHA-3 and MD-5. As a result, on line
8 of App, exists digest evaluates to false against the expected behavior.

This example suggests considering the consistency of versions using values pro-
duced by packages. As long as the results of Hash in two versions were used inde-
pendently, there would be no problem. However, it would be semantically incorrect
if these results were compared.

Therefore, developers use buildtools with dependency analysis functionalities to
avoid the simultaneous use of multiple versions in actual development. Such a tool
will collect and analyze the dependencies for each package and reject the combina-
tion of packages where incompatible versions are needed simultaneously, as in the
bottom of Figure 2.1.

2.2 External Tool Support for Dependency Conflict

As in the file explorer example in the previous section, incompatible versions can in-
troduce bugs into the application due to incompatibilities between versions. Many
systems, programming languages, and execution environments allow programs to
use only one-version-at-a-time for each package to avoid the unintended use of dependent-
package versions. The limitation of such systems stems from the fact that the main-
tenance cost can be huge when a program simultaneously requires a new and an
older version. [Bav+15] These systems can be classified according to which units the
constraints of one package version are imposed.

• Per device: Traditional package managers provided by Unix-like OS distribu-
tions, such as apt1, rpm2, pacman3, or FreeBSD Ports4 are classified in this
category. Since these tools do not allow the use of different versions across
multiple projects, each time we install a package, it can break the behavior

1https://tracker.debian.org/pkg/apt (January 11, 2023)
2http://rpm.org/index.html (January 11, 2023)
3https://archlinux.org/pacman/ (January 11, 2023)
4https://www.freebsd.org/ports/ (January 11, 2023)

https://tracker.debian.org/pkg/apt
http://rpm.org/index.html
https://archlinux.org/pacman/
https://www.freebsd.org/ports/


2.2. External Tool Support for Dependency Conflict 9

of other software or cause dependency conflicts. These tools require ad hoc
efforts to install multiple versions of the same package simultaneously. For
example, rpm clarifies that it does not care about the installed package version
and recommends that developers give each version a unique name to manage
a particular version if they must care about its version. 5

• Per project: Most package managers specialized in specific programming lan-
guages, such as cabal 6, stack 7, opam 8, PyPI 9, and maven 10 are classified in
this category. [Aba+20] The main idea in these packages is to sandbox depen-
dencies. The idea of sandboxing is adopted by cabal and stack and solves the
problem of dependency conflicts between projects. Sandboxing ensures that
every project has an isolated location for its dependencies. In other words, in-
stalling a package in one project does not affect other sandboxes. For example,
even though package A depends on version 1.0.0 of package C and package B
depends on 2.0.0 of package C, package A and B can be installed simultane-
ously. However, using multiple versions of a package in a single project build
is impossible. For example, when maven detects a dependency conflict, it will
only adopt the version closest to that package on the dependency graph. 11

As a different approach for unifying versions, stack provides a curated set of
packages called resolver, which guarantees no dependency conflicts between
the versions of a package registered in the resolver. If developers stick to the
packages within a resolver, they can avoid the tedious task of finding a com-
patible version of a package.

However, it is difficult to permanently fix versions of every package in a device or
project, so many techniques have been developed recently to mitigate one-version-
at-a-time limitation for more flexibility. We can classify those techniques in the unit
of software components that allow different versions.

• Device: For packages that are only allowed to exist in one version on a device
(e.g., operating system standard libraries like the C standard library (libc)),
OS-level virtualization software enables one to use different versions in the vir-
tualized environment. For example, traditional UNIX-like operating systems
only allow one version of the OS standard library; OS-level virtualization soft-
ware, such as Docker [Mer14] and QEMU [Bel05], can provide environments
with different versions.

• Process: For a package (or a library) linked to a program, a dynamic loading
mechanism can provide a different version for a different process of the pro-
gram. For example, with the shared library mechanism in UNIX-like operating
systems, a compiled program can run with a different library version by pro-
viding a different load path. More advanced mechanisms, e.g., OSGi [All18],
automatically load the appropriate versions.

5https://rpm.org/user_doc/multiple_versions.html (January 11, 2023)
6https://cabal.readthedocs.io/en/stable/ (January 11, 2023)
7https://docs.haskellstack.org/en/stable/ (January 11, 2023)
8https://opam.ocaml.org/ (January 11, 2023)
9https://pypi.org/ (January 11, 2023)

10https://maven.apache.org/ (January 11, 2023)
11https://maven.apache.org/guides/introduction/introduction-to-

dependency-mechanism.html#Transitive_Dependencies (January 11, 2023)

https://rpm.org/user_doc/multiple_versions.html
https://cabal.readthedocs.io/en/stable/
https://docs.haskellstack.org/en/stable/
https://opam.ocaml.org/
https://pypi.org/
https://maven.apache.org/
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#Transitive_Dependencies
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#Transitive_Dependencies
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AppPackage A

Package B

ver 1

ver 1
ver 1

AppPackage A

Package B

update

ver 2

||ver 1
ver 2

After an update of Package A to version 2, the two direct/indi-
rect dependencies to Package B cause a dependency conflict.

FIGURE 2.4: Minimal configuration before (top) and after (bottom) an
update that causes dependency hell.

• Package: Some modern and sophisticated package managers allow loading two
versions of the required package. Such features can be found in npm 12 for
JavaScript, cargo 13 for Rust, and Maven with the shade plugin 14 for Java. For
example, npm handles multiple versions of the same package through nested
dependencies 15. npm manages all packages with version numbers and limits
the scope of a package to its direct dependencies. When a developer needs dif-
ferent package versions, npm places the later required versions in the depen-
dency graph as nested dependencies. This approach allows multiple versions
to coexist in the same project, but using two or more objects simultaneously
derived from different versions can lead to confusing runtime errors because
the javascript runtime does not recognize the difference between objects of two
versions. The other two tools utilize a similar technique to that of npm with
name mangling that will be described in section 2.3.3.

2.3 Problems caused by Dangling Dependency

While the npm and cargo method may seem like solutions to compatibility prob-
lems, they are not silver bullets. The cause of the corner cases of both approaches is a
dangling dependency. A dangling dependency is an indirect dependency that includes
a transitive dependency in its interface. When development software depends on a
package with a dangling dependency, the package’s interface in the transitive de-
pendency is exposed to the development software as a direct dependency, resulting
in a direct dependency on multiple versions simultaneously. All of the techniques in
section 2.2 will fail if multiple versions are required as direct source dependencies.
This section details the reason by introducing a problem in name mangling in cargo.

2.3.1 Situations Where Incompatibility Problems Occur

Figure 2.4 shows a situation where the developer updates the software called App.
The upper and lower halves show the configurations before and after the update.

12https://www.npmjs.com/ (February 1, 2021)
13https://doc.rust-lang.org/cargo/ (February 1, 2021)
14https://maven.apache.org/plugins/maven-shade-plugin/ (February 1, 2021)
15https://npm.github.io/how-npm-works-docs/npm3/how-npm3-works.html (Jan-

uary 11, 2023)

https://www.npmjs.com/
https://doc.rust-lang.org/cargo/
https://maven.apache.org/plugins/maven-shade-plugin/
https://npm.github.io/how-npm-works-docs/npm3/how-npm3-works.html
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On the upper half, App depends on Package A version 1 and Package B version
1, and also, the package A version 1 depends on the package B version 1. In this
configuration, there is no incompatibility problem.

Suppose that the developer of App decided to switch the version of Package A
from 1 to 2. The two versions 1 and 2 of Package A are compatible, but the depen-
dency on Package B has been changed from version 1 to 2 that are incompatible.
Since types exposed in Package B are often re-exported by Package A, the update
of Package A can introduce unintended direct dependencies on Package B into App.
Since App itself requires Package B version 1, it is impossible to use Package A ver-
sion 2 without modifying App to support Package B version 2.

2.3.2 Declarative Dependency Requirements

Many package managers, including npm and cargo, employ semantic versioning
or similar conventions so that package users can automatically update dependent
packages while maintaining compatibility. For this purpose, all package developers
need to define the version requirements of their dependent package properly.

The semantic versioning recommendation [Pre13] specifies that version numbers
are a sequence that consists of major, minor, and patch versions separated by dots
as in MAJOR.MINOR.PATCH. The semantic versioning strategy can explain to users
of a package what types of change will occur in the new release, and users can use
version numbers as a guide to decide whether to accept the new release. For exam-
ple, when incrementing the minor version of a package (e.g., 1.2.1 ⇒ 1.3.0), all
changes should be backward compatible with previous versions. On the contrary,
incompatible code changes are only permitted when the MAJOR level is incremented
(e.g., 1.2.1⇒ 2.0.0).

Dependencies are usually described in terms of the range of dependent package
versions that the client software allows. For example, Figure 2.4 shows a situation
where the developer updates software called App. On the upper half, App depends
on Package A version 1.0.0 and Package B version 1.0.0, and also the package A
version 1 depends on the package B version 1.0.0.

The cargo user can specify the dependencies of Figure 2.4 in manifest files of
package App and Package A as follows:

1 [package]
2 name = "App"
3 [dependencies]
4 A = "1.0.0"
5 B = "1.0.0"

1 [package]
2 name = "A"
3 version = "1.0.0"
4 [dependencies]
5 B = "1.0.0"

In cargo, 1.0.0 means >=1.0.0 && <2.0.0. This requirement shows the
range of backward compatible versions with 1.0.0 based on SemVer. The depen-
dency resolver in Cargo collects these two manifest files and automatically retrieves
the latest version that meets all requirements for each package. Assuming that all
packages only have 1.0.0 and 2.0.0 for simplicity, the requirements above are
satisfied by getting 1.0.0 for all packages.
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Package B

1.0.0

1.0.0
1.0.0

AppPackage A

Package B Package B
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2.0.0

1.0.02.0.0

FIGURE 2.5: Minimal package configuration in cargo to accept multi-
ple versions of Package B by name mangling.

2.3.3 Name Mangling when Dependency Conflicts

The Rust compiler’s name mangling scheme is defined in RFC 2603, 16 it assigns
a unique mangled name to each identifier for every combination of crate, module,
type, and crate version, without collisions. Name mangling is a mechanism to al-
leviate the one-version-at-a-time limitation by mangling (or shading) their package
names. When an App developer decides to switch Package A from version 1 to ver-
sion 2 that requires Package B version 2, then the manifest file is modified as on the
left below. Due to the modification, cargo refers to the manifest file of Package A
version 2 as on the right below.

1 [package]
2 name = "App"
3 [dependencies]
4 A = "2.0.0" // modified
5 B = "1.0.0"

1 [package]
2 name = "A"
3 version = "2.0.0" // updated
4 [dependencies]
5 B = "2.0.0" // updated

In this example, both App and Package A have a dependency on Package B,
but App and Package A require versions >=1.0.0 && <2.0.0 and >=2.0.0 &&
<3.0.0 of Package B, respectively. Since there is no version of Package B that sat-
isfies both constraints simultaneously, the traditional dependency analyzer reports
this situation as a dependency error.

Cargo, on the other hand, allows the two versions to coexist by creating two
copies of each version of Package B for App and Package A, as shown in the lower
half of Figure 2.5. In this way, even if the same function name exists in different
versions of a package, it is possible to determine the correct version of the function
needed for each package. This solution merely replicates Package B into two com-
pletely different packages. However, it allows different versions of the same package
to coexist in a dependency graph, mitigating the limitations of the one-version-at-a-
time policy in a sense, but cause some limitations described in the next section.

2.3.4 Problems Caused by Name Mangling

Name mangling is one reasonable mitigation measure, but it leads to type-level in-
compatibilities [Tol17; Coa19]. This approach collapses when values derived from
different package versions are inevitably mixed in the same code, due to a dangling
dependency. For example, consider a situation where Package B is a framework that

16https://rust-lang.github.io/rfcs/2603-rust-symbol-name-mangling-v0.html

https://rust-lang.github.io/rfcs/2603-rust-symbol-name-mangling-v0.html
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provides type Key representing a cryptographic hash key, and Package A is a library
that includes Key in its interface. Suppose that the definitions of Key are the same
in v1.0.0 and v2.0.0, and some breaking changes in other parts lead to the increment
of the major version as follows.

1 // package B v1.0.0
2 pub type Key = /* complicated */

1 // package B v2.0.0
2 pub type Key = /* Same as v1.0.0 */

Here, we simplify the code syntax, including function definitions, extern, and
semicolons, as we want to avoid addressing Rust-specific issues. Using the Key
defined in Package B, the APIs in Package A and App are written as follows.

1 // package A v2.0.0
2 fn gen_key() -> Key // from v2.0.0

1 // App
2 let x: (A::Key) = gen_key() // error

Package A provides the gen_key function for generating hash keys. Note that
the return type of gen_key is Key defined in Package B v2.0.0.

In this example, the App program above will be rejected by the Rust type system.
The expected version for the type Key is v1.0.0, but Package A v2.0.0 relies on Pack-
age B v2.0.0, so the gen_key function only returns the Key object in v2.0.0. The Rust
compiler gives v1.0.0 and v2.0.0 of type Key completely different identifiers so that
A::Key in the type declaration of x and Key in the return type of gen_key are com-
pletely different ones. Therefore, the programmer is eventually notified that "Key is
not equal to Key" (which may look strange, but error reporting does not use inter-
nally mangled names) even if the definitions provided by both versions of Package
B do not change at all.

2.4 Indirect Dependencies Complicate Incompatibility Prob-
lems

Despite the advancement of techniques to isolate and analyze dependencies in sec-
tion 2.2, many developers are still plagued with compatibility problems. Incom-
patibility problems are more likely to occur when there are transitive dependencies
between subcomponents. [Art+12; Bog+16] For more complex software with many
dependencies, a huge amount of work is required to update a single package. Since
it is common to develop with multiple packages with the growing popularity of de-
velopment with centralized package registries, programmers often encounter this
problem. [DMG19]

Even worse, if a program indirectly depends on two incompatible versions of a
package, the only way to solve the problem is to wait for the developers of the in-
termediate package to catch up the downstream updates. As shown in Figure 2.6,
suppose that App used Package C, which in turn depends on Package B version 1.
In the situation, resolving conflicts between Packages A and C requires the App de-
veloper to contact the maintainer of Package C, and multiple developers to work
together to coordinate their dependencies. Otherwise the developer abandons Pack-
age C and rewrite the same functionality from scratch by yourself. If Package C were
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AppPackage A

Package CPackage B

ver 1

ver 1ver 1
ver 1

AppPackage A

Package CPackage B

update

ver 2
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After an update of Package A to version 2, the two indirect de-
pendencies from App to Package B cause a dependency conflict.

FIGURE 2.6: Package configuration before (top) and after (bottom)
an update cause dependency hell, with no direct dependencies on

Package B.

outdated or closed source, the App developer would have no way of resolving the
conflict on their own.

The nature of the problem is that all inter-operators must use compatible ver-
sions of the package. This problem, called "version-lock" [Pre13] i.e., the inability to
upgrade a package without having to release new versions of every dependent pack-
age, is a threat to software reuse. Indeed, many developers are unwilling to update
dependencies unless there is a significant update [Bav+15]. This fact has a tremen-
dous impact on the ecosystem when Package B is widely used, such as a wrapper of
libc and openssl [Tol17].
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Chapter 3

Programming with Versions
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3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Advantages of Language-Based Versioning . . . . . . . . . . . . . 15
3.3 Language Features in Programming with Versions . . . . . . . . . 16
3.4 Intuition to Language-based Approach . . . . . . . . . . . . . . . . 17

3.1 Overview

We investigate programming languages that support multiple versions inside a mod-
ule by following this technology trend that supports multiple versions with a finer
computation unit. In contrast to previous technical efforts that focused on avoiding
the simultaneous use of multiple versions as direct dependencies, we focus on pro-
gramming to simultaneously use multiple versions of a package. As there are few
attempts to develop such languages, it needs to be clear what language abstractions
are suitable to represent multiple versions and what kind of safety we can guarantee.

We establish a foundation for more freely combining and controlling different
versions through a language-based approach. We develop a programming language
called VL, with a notion of versions. A VL program can depend on multiple versions
of a package, and static checks ensure that each value is dispatched to the appropri-
ate implementation. We develop λVL as a core calculus for such surface languages.
λVL has the terms for combining multiple versions of definitions and the type system
for identifying version-safe programs in multiple versions.

This chapter first describes the advantages of a language-based approach in sec-
tion 3.2 and then illustrates core features through programming with λVL in section
4.2.

3.2 Advantages of Language-Based Versioning

The language-based versioning here is to perform dependency analysis at the term
level as an alternative to dependency analysis on package managers of traditional
languages. Language-based versioning assumes a core language that supports the
version as an intrinsic language element. The difference between language-based
and package-based versioning is that an individual version can be assigned to every
expression. In language-based versioning, all expressions are implicitly expected to
have multiple versions of their definitions and are evaluated statically or dynami-
cally in the appropriate version. Since package-based versioning requires a single
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version of a dependent package to be defined outside of the language semantics, it
is impossible to use multiple versions of a program in a naive way. This language
feature of language-based versioning allows the following features.

• Expression-level version selection.
The language-based approach allows different implementations to be refer-
enced for the same symbol in a program. This feature allows programmers to
write programs with a mixture of values from multiple versions, such as the
program in section 2.3.4. This feature allows programmers to incremental up-
date dependent packages. With package-based versioning, the dependent ver-
sions must be consistent throughout the entire program, which entailed heavy
implementation costs and discouraged programmers from updating a depen-
dent package. With language-based versioning, programmers do not have to
make the extra effort to unify dependent package versions, even if they are in
the middle of an update. It also allows partially updated development pro-
grams to be verified with existing unit tests.

• Exhaustive static analysis on multiple version combinations.
In the language-based approach, every value implicitly has multiple versions
of the definition, so the language system considers multiple combinations of
versions. With package-based versioning, on the other hand, a static analysis
of the program is performed only on specific version combinations. For exam-
ple, a program for multiple package versions of C uses a preprocessor macro
(#ifdef) to obtain the package version number from the system and dispatch
the appropriate implementation before compilation. Since the version of the
dependent package is determined outside of the language semantics, only pro-
grams with fixed versions in advance are subject to type checking.

3.3 Language Features in Programming with Versions

The research question is, ”What are the essential features in a language with programming
with versions?” For the sake of discussion here, we assume a module-based develop-
ment, which has become the standard today. Here we do not consider a module
system with a high-level abstraction that ML-family languages have. Still, a typi-
cal module system that handles namespace and module dependencies, such as that
Haskell has. We will also identify packages with modules. In other words, all pack-
ages consist of a single module, and versions are held in the units of modules instead
of packages.

In order to allow the simultaneous use of multiple versions, the VL should have
the following features.

• Module interfaces, written in a version-crossing manner.
Unlike existing language interfaces, symbols from external modules in VL are
expected to behave as programs with multiple versions of their implementa-
tions. Following this principle, a module interface of VL should provide the
interface for multiple module versions.

• Semantic analysis to analyze the availability of a program.
The VL program can have multiple interpretations, depending on which ver-
sion is specified for each subterm. Some of these versions may differ from
the programmer’s assumptions, and some may not have subterms with defi-
nitions. Semantic analysis is needed to record and analyze the availability of
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each program so that we preclude incorrect versions from enormous combina-
tions of multiple versions.

3.4 Intuition to Language-based Approach

To elaborate on this idea, we will rewrite the codes in section 2.3.4 in VL. The cur-
rent VL does not have user-defined data types and records, but we use these here
to illustrate the basic idea of language-based approach. We give a definition of the
type Key in both versions of Module B as follows.

1 -- Module B v1.0.0
2 data Key = Key { ... }

1 -- Module B v2.0.0
2 data Key = Key { ... }

Given the above two versions of Module B, we write its interface of VL in a
version-crossing manner, where individual symbols are given version information.
For example, the interface of Module B is the following.

1 -- Interface of Module B
2 data Key @ [(B, 1.0.0)], [(B, 2.0.0)]

The module interface indicates available versions and the type of each symbol. In
the interface of Module B, we denote the module name and version number pair
after @ that records which version of the type is provided. Here, the type Key is
annotated by [(B, 1.0.0)] and [(B, 2.0.0)]. These annotations enable the
user of Package B to access both versions of definitions with the type Key. Which
version of the computation is evaluated will be determined later by the semantic
analysis as the available versions.

Similarly to the codes in section 2.3.4, we can write gen_key in VL as follows.

1 -- Module A version 1.0.0
2 import B
3 -- (gen_key does not exist)
4 ...

1 -- Module A version 2.0.0
2 import B
3 gen_key :: Key
4 gen_key = ...

1 -- Interface of Module A
2 import B
3 gen_key :: Key @ [(A, 2.0.0)]

Since gen_key is implemented only in version 2 of Module A, the module inter-
face indicates that it is available only in (A, 2.0.0).

1 -- Module App
2 import A
3 import B
4 main :: Key = gen_key

Consequently, the program in Module App will be interpreted in VL as follows.
The type system calculates the version shared by all the values in the data flow by
using type checking and rejects them if they do not exist. In this example, the Key
provided in Package B has definitions for both versions, and the gen_key provided
in Package A has a definition for the Key in version 2.0.0 of Package A. As a result,
the App code is available in the combination of version 2.0.0 of Package A and both
versions of Package B.
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The VL language system works as described above by default. However, pro-
grammers often want to write programs that depend on a specific version of a de-
pendent package as in existing languages. If we want to describe a user-defined
version dependency in VL program as in section 2.3.4, rewrite version 2.0.0 of Mod-
ule A as follows.

1 -- Module A version 2.0.0
2 import B version 2.0.0 as Bv2
3 gen_key :: Bv2.Key
4 gen_key = ...

1 -- Interface of Module A
2 import B
3 gen_key :: Key @ [ (A, 2.0.0), (B, 2.0.0) ]

The import statement of version 2.0.0 of Module B as Bv2 expresses a depen-
dency on the specific version of Module B, and the interface incorporates this imple-
mentation by adding (B, 2.0.0) to the annotation.

In the same way, the App program is changed to specify version 1.0.0 of Module
B.

1 -- Module App
2 import A
3 import B version 1 as Bv1
4 main : Bv1.Key = gen_key // type error

In this case, the VL type system outputs a type error to the main function because
the type of gen_key is Key of version 2.0.0 of Module B, even though the main
function expects a that of version 1.0.0 of Module B.

This approach is different from the name mangling. While name mangling treats
the two versions as completely different packages, the language-based approach as-
sumes a kind of identity for the two versions, and the difference between the two
versions is captured by the constraints. The type system keeps track of which ver-
sion all variables depend on, so it is possible to report to the programmer what is
causing the version mismatch.
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4.1 Versions within a Language Semantics

A language-based approach requires a version-crossing interface and a mechanism
to know in which version each symbol is available. Therefore, the core language
must have (1) a notation that expresses a value that consists of sub-values of multiple
versions and (2) a mechanism for analyzing which versions of a program may be
available in more than one version.

We developed a core calculus λVL to achieve them. It realizes (1) and (2) by:

1. versioned values: records of multiple values distinguished by their version, and

2. type systems: statically checks the version to which all subterms in the program
agree.

4.1.1 Versioned values

Versioned values represent multiple versions of computation and bundle them as a
single value. Versioned values allow us to bundle multiple versions of values. For
example, the versioned value {v1 = λx.x, v2 = λx.x + 1} represents a versioned
function whose initial implementation (v1) is an identity function, and its next im-
plementation (v2) is a successor function.
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A function application of a versioned function to a versioned value is also a ver-
sioned value. This versioned value consists of version-specific terms obtained by ap-
plying version-specific functions to the corresponding values in the versioned value
in a version-wise manner. For example, we obtain {v1 = 1, v2 = 3} if we apply
{v1 = λx.x, v2 = λx.x + 1} to {v1 = 1, v2 = 2}. If a function and its arguments have
a different set of versions, the application is calculated on the common part of each
version set. For example, we obtain {v1 = 1} if we apply {v1 = λx.x, v2 = λx.x + 1}
to {v1 = 1}.

4.1.2 Type System of λVL

We develop a calculus called λVL based on the coeffect calculus [Bru+14] to guaran-
tee type safety. A coeffect calculus is a type system derived from linear type sys-
tems [Gir87; Wad90] and a type system scheme for analyzing the usage of various
computational resources, not just the number of times a variable is used. Just as
other coeffect calculi track their computational resources, λVL attaches version num-
bers to types, such as x : 2{v1,v2}T, meaning x is a variable of type T and computable
under versions v1 and v2. The λVL type system collects the annotated type informa-
tion for the program and calculates the set of versions needed to run the program.
The type system ensures at least one consistent version where the program can be
evaluated.

In this chapter, we will demonstrate how these features are achieved by introduc-
ing the core features of λVL.

4.2 A Taste of λVL

4.2.1 Versioned Values

λVL is an extension of the coeffect calculus with versioned values that have multiple
components tagged with versions. One way to construct versioned values is through
versioned records {li = ti}1,2. We denote labels (li) to distinguish the different versions
of values, and the values inside the versioned record are called version-specific terms.
Versioned records provide a mechanism to write programs independent of a spe-
cific version. For example, we can write as follows to denote a default key length
parameter 1024 and 4096 in versions 1 and 2, respectively.

{l1 = 1024, l2 = 4096}.

Another way to construct a versioned value is through suspensions [t]. The sus-
pension [t] promotes the term t to a versioned value such as [1] and [λx.x]. The
two constructors for versioned values delay the inside computation until a specific
version is later determined.

To conduct a suspended computation, programmers can use extractions t.l. The
extraction t.l extracts the version-specific term according to the label l from the ver-
sioned value returned by t. For example, consider the case where version 1 generates

1We will sometimes abbreviate a sequence as ∗, i.e. li denotes l1, ..., ln and li = ti denotes l1 =
t1, ..., ln = tn.

2Although our system, which we will describe in detail in section 4, explicitly states the default
label such as {l = t | lk}, we omit it here for simplicity.
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a key with a bit length of 1024, but version 2 generates one of length 4096. To gen-
erate a key with the appropriate bit length for each version and then retrieve the
version-specific term in version 2, we can write as follows.

{l1 = gen_key 1024, l2 = gen_key 4096}.l2.

4.2.2 Versioned Function Application

Functions with different version-specific values across different versions are also
represented as versioned values, called versioned functions. For example, v3.20 and
v3.22 of GDK 3 provide different-named functions with the same functionality. GDK
versions before 3.22 provide gdk_screen_get_n_monitors that tells the number
of connected physical monitors. However, versions 3.22 later provide the same func-
tionality function gdk_display_get_n_monitors and deprecate gdk_screen_
get_n_monitors.

We can write as follow to define a new function that can retrieve the number of
connected monitors in both versions.

{l1 = gdk_screen_get_n_monitors,
l2 = gdk_display_get_n_monitors}.

Hereafter, we call this versioned function get_n_monitors.
We need to pass a versioned value for the argument to apply a versioned func-

tion. Here, we can use contextual let-binding let [x] = t1 in t2 to apply a versioned
function. For example, we apply the versioned function get_n_monitors to the ver-
sioned value {l1 = ()} as follows.

let [ f ] = get_n_monitors in let [x] = {l1 = ()} in [ f x] (4.1)

This program first extracts the function gdk_screen_get_n_monitors from
get_n_monitors and binds it to f ; then it extracts the value () from {l1 = ()} and
binds it to x.

4.2.3 Versioned-Independent Programs

In the previous example, {l1 = ()} was bound to x and had only one definition
with l1. However, if both the versioned function and versioned value have mul-
tiple definitions, the language should evaluate the functional application in multi-
version contexts. We achieve this by using the suspension [t]. For example, we apply
get_n_monitors to {l1 = (), l2 = ()}, both of which have two definitions with l1 and
l2 as follows.

let [ f ] = get_n_monitors in let [x] = {l1 = (), l2 = ()} in [ f x]

This program returns a suspended computation that can return an integer value
available in l1 and l2. Since the two version-specific terms in {l1 = (), l2 = ()} are
the same, and we can rewrite the above program as follows.

let [ f ] = get_n_monitors in let [x] = [()] in [ f x].
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4.2.4 Types of Versioned Values

The type of a versioned value is denoted as 2rT. The index r, called the version
resources, indicates which version-specific terms are available in the versioned value.
This notion of type comes from coeffect calculus, and the exact method of calculating
r is based on the version resource semiring described later in section 4.

For example, assuming that both version-specific functions in get_n_monitors
have type Unit → Int, the above example programs are typed as follows.

{l1 = (), l2 = ()} : 2{l1,l2}Unit

get_n_monitors : 2{l1,l2}(Unit → Int)

The type 2{l1,l2}Unit denotes that this versioned value has version-specific terms of
type Unit and they are available in both versions l1 and l2.

The contextual let-binding let [x] = t1 in t2 propagates the version requirements
through the captured variable x. For example, the Eq. 4.1 program is typed as fol-
lows.

let [ f ] = get_n_monitors in let [x] = {l1 = ()} in [ f x] : 2{l1}Int (4.2)

where the result type has resource l1 because get_n_monitors and {l1 = ()} only
have l1 as their shared labels.

Note that the extraction t.l makes the type of t lose the version resource. Once
extracted, a version-specific term can be used with terms from other versions. For
example, the type of the following program no longer has a version resource.

let [ f ] = get_n_monitors in let [x] = {l1 = ()} in [ f x].l1 : Int (4.3)

4.2.5 Ensuring a Consistent Version of the Computation

The λVL type system ensures that all necessary implementation versions exist. In
other words, if a program extracts a specific version of a value even though all the
version values in the program do not have a shared label, the type system will reject
such a program. The first example is a variant of Eq. 4.2.

let [ f ] = get_n_monitors in let [x] = {l3 = ()} in [ f x] : 2∅Int

The type system keeps track of the available versions of each variable by a set of
labels in the context. In this example, it records {l1, l2} for f , and {l3} for x. For each
promotion, the type system calculates the shared version resource in the context that
should be multiplied by the term. In the program type above, [ f x] is given version
resource ∅ = {l1, l2} ∩ {l3}, which indicates that there is no shared version avail-
able. It means no longer possible to extract any version-specific computation from
this program, and the type system will reject such extractions. The type system can
report the reason for the ill-versioned extraction by using the version information
recorded in the context.

let [ f ] = get_n_monitors in let [x] = {l3 = ()} in [ f x].l3 : (rejected)
– ERROR: f and x are expected to be available in l3, but f is not available in l3.
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The second example is a variation of Eq. 4.3. The following program is rejected
because {l1 = ()} has no definition of l2.

let [ f ] = get_n_monitors in let [x] = {l1 = ()} in [ f x].l2 : (rejected)
– ERROR: f and x are expected to be available in l2, but x is not available in l2.

4.3 Syntax of λVL

λVL is an extension of the coeffect calculus ℓRPCF [Bru+14] and GrMini [OLE19].
We defined the version resource algebra and extended the coeffect calculus by adding
versioned terms. The terms and types of λVL are as follows:

Definition 4.3.1 (Lambda VL Syntax).

t ::= x | t1 t2 | λx.t︸ ︷︷ ︸
λ-terms

| n︸︷︷︸
constructors

| [t] | let [x] = t1 in t2︸ ︷︷ ︸
coeffect terms

|

{l = t | li} | t.l | ⟨l = t | li⟩︸ ︷︷ ︸
versioned terms

(terms)

A, B ::= Int︸︷︷︸
Integer

| A → B︸ ︷︷ ︸
function types

| 2r A︸︷︷︸
versioned types

(types)

Most of the terms in λVL derive from linear λ-calculus. Additional terms in-
troduce and eliminate versioned values. Versioned values can be declared through
promotions [t] and versioned records {l = t | li}. The type of versioned values 2r A
are indexed by a version resource r, where r ranges over the elements of the version
resource semiring R described in section 4.4. The versioned records {l = t | li} has a
default label along with a pair of labels and version-specific definitions. In the cur-
rent design, programmers can note a default label li ∈ {l} for the case of multiple
versions of calculation results. The default label is overridden in the dynamic se-
mantics described in section 4.6. The term [t] is a promotion of version necessity
and allows t to be used to track the use of version resources in a program. The term
let [x] = t1 in t2 provides an elimination for version necessity and provides version-
aware let-binding. Finally, the versioned computations ⟨l = t | li⟩ represent interme-
diate terms whose evaluation in the default version is postponed. We assume that
versioned computations appear only in intermediate terms during evaluation and
not in the user’s code.

4.4 Version Resources

The λVL type system is parameterized by the version resource semiring R. It cap-
tures how a program depends on its context by tracking version information on the
variables used in the program. Version resources r ∈ R appear in types with 2-
constructors and contexts with [∗]r-notions to denote the sets of versions on which
the programs implicitly depend.

The version resources r are given by the following.

Definition 4.4.1 (Version Resouces).

r ::= ⊥ | ∅ | {li} | r1 ∪ r2 (version resources)
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Intuitively, an element of R is a set of labels such as {l1} and {l1, l2}. The lan-
guage produced by this grammar is equivalent to the elements of the version re-
source semiring R.

Definition 4.4.2. [Version resource semiring] The version resource semiring is given
by the structural semiring (semiring with preorder) (R,⊕, 0,⊗, 1,⊑), defined as fol-
lows.

0 = ⊥ 1 = ∅ ⊥ ⊑ r
r1 ⊆ r2

r1 ⊑ r2

r1 ⊕ r2 =


r1 r2 = ⊥
r2 r1 = ⊥
r1 ∪ r2 otherwise

r1 ⊗ r2 =


⊥ r1 = ⊥
⊥ r2 = ⊥
r1 ∪ r2 otherwise

where ⊥ is the smallest element of R, and r1 ⊆ r2 is the standard subset relation
over sets defined only when both r1 and r2 are not ⊥.

The fact that version resource semiring is structural semiring with pre-order [Bru+14]
is proven in appendix A.1.1. The multiplication ⊗ represents that if a value is used
in version li, then all values in that data flow must also be available in version li;
we can apply the versioned function with resource {l1} to both a versioned value
with resource {l1} and {l1, l2}. The addition ⊕ represents splitting the data flow of
a value in a typing context. Values with resource {li, l j} are also allowed to be used
in the context of li, and likewise for lj; thus, {li} ∪ {lj} = {li, lj}.

0 = ⊥ is the smallest element indicating an irrelevant resource. Conversely,
1 = ∅ explicitly indicates that the value has no version restrictions. A 1-indexed
versioned value can be used as any versioned value unless it is a 0-indexed ver-
sioned value. These intuitive explanations will be detailed later in the typing rules.

4.5 The Declarative Type System of λVL

Typing judgments of the type system are of the form Γ ⊢ t : A with typing contexts
Γ. A typing context Γ (or we sometimes note ∆) is a set of typed variables defined as
follows.

Definition 4.5.1 (Typing Contexts).

Γ ::= ∅ | Γ, x : A | Γ, x : [A]r (contexts)

Typing contexts are either empty ∅ or extended with a linear variable assump-
tion x : A or a versioned assumption x : [A]r. For a versioned assumption, x can
behave non-linearly, with substructural behavior captured by the semiring element
r ∈ R, which describes x’s use in a term. We denote a versioned context by [Γ], the
typing context in which every assumption is a versioned assumption.

Figure 4.1 shows the typing rules for λVL. The typing rules for λ-terms are (INT),
(VAR), (APP), and (ABS). (VAR) shows that linear variables can only be typed in a
single context including themselves. Note that the typing rules for splitting a data
flow, such as (APP), include context concatenation +, which permits the splitting
version resources as defined in Def. 4.5.2.
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λVL typing rules Γ ⊢ t : A

∅ ⊢ n : Int
(INT)

x : A ⊢ x : A
(VAR)

Γ, x : A ⊢ t : B
Γ ⊢ λx.t : A → B

(ABS)

Γ1 ⊢ t1 : A → B Γ2 ⊢ t2 : A
Γ1 + Γ2 ⊢ t1 t2 : B

(APP)

Γ1 ⊢ t1 : 2r A Γ2, x : [A]r ⊢ t2 : B
Γ1 + Γ2 ⊢ let [x] = t1 in t2 : B

(LET)

Γ ⊢ t : A
Γ, [∆]0 ⊢ t : A

(WEAK)
Γ, x : A ⊢ t : B

Γ, x : [A]1 ⊢ t : B
(DER)

[Γ] ⊢ t : A
r · [Γ] ⊢ [t] : 2r A

(PR)

Γ, x : [A]r, Γ′ ⊢ t : B r ⊑ s
Γ, x : [A]s, Γ′ ⊢ t : B

(SUB)
Γ ⊢ t : 2r A l ∈ r

Γ ⊢ t.l : A
(EXTR)

[Γi] ⊢ ti : A⋃
i({li} · [Γi]) ⊢ {l = t | li} : 2{l}A

(VER)

[Γi] ⊢ ti : A⋃
i({li} · [Γi]) ⊢ ⟨l = t | li⟩ : A

(VERI)

FIGURE 4.1: λVLtyping rules

Definition 4.5.2. [Context concatenation , & +] Two typing contexts can be con-
catenated by "," if they contain disjoint assumptions. Furthermore, the versioned
assumptions appearing in both typing contexts can be combined using the context
concatenation + defined with the addition ⊕ in the version resource semiring as
follows.

∅ + Γ = Γ
(Γ, x : A) + Γ′ = (Γ + Γ′), x : A iff x /∈ dom(Γ′)

Γ + ∅ = Γ
Γ + (Γ′, x : A) = (Γ + Γ′), x : A iff x /∈ dom(Γ)

(Γ, x : [A]r) + (Γ′, x : [A]s) = (Γ + Γ′), x : [A](r ⊕ s)

The (WEAK) rule provides weakening only for version assumptions indexed by
0. Since 0 = ⊥ is defined as an irrelevant resource in R, this rule indicates that
adding unneeded versioned assumptions to the typing context does not prevent the
term from type checking, just as in linear type systems. The (DER) rule converts a
linear assumption into a versioned assumption indexed by 1. This rule indicates the
intuition that the linear assumption does not have any restrictions on versions. The
(PR) rule introduces a version necessity indexed by r to a term and propagates the
assumption into the context using the context multiplication · defined in Def. 4.5.3.

Definition 4.5.3. [Context multiplication · by a resource] Assuming that a context
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contains only version assumptions, denoted [Γ] in typing rules, then Γ can be mul-
tiplied by a version resource r ∈ R by using the product ⊗ in the version resource
semiring, as follows.

r · ∅ = ∅ r · (Γ, x : [A]s) = (r · Γ), x : [A](r ⊗ s)

Informally, r · Γ requires all assumptions in Γ to be available in that version. This
property is the cornerstone of the type system and will be illustrated in Example
4.5.6 with examples.

The (SUB) rule weakens the version assumption based on the order defined in
the version resource semiring. For example, suppose a value is typable in a context
where a variable is only available in version 1. In that case, the value should also
be typable, even if the variable is available in both versions 1 and 2. The (SUB)
rule formalizes this intuition using the preorder in the version resource semiring.
This rule is detailed in Example 4.5.5. The (LET) rule provides a way to remove
the versioned necessity assigned to a term. From the perspective of term reuse, the
version necessity assigned to a term (2r A) is converted to a version assumption
([A]r) and add it to the context of the body typing. Note that the contexts of the
subterms are combined by context concatenation + likewise in the (APP) rule.

The last two rules (VER) and (VERI) are for version records. The context of a ver-
sion record is the sum of typing contexts multiplied by the version resource corre-
sponding to each version-specific term. The summation of typing contexts is defined
as follows:

Definition 4.5.4. [Context summation
⋃

] Using the context concatenation +, sum-
mation of typing contexts is defined as follows:

n⋃
i=1

Γi = Γ1 + · · ·+ Γn

Note that the type of the versioned computation and the extraction in (VERI)
and (EXTR) have lost their version resource. In our current design, once a versioned
value is evaluated in a particular version, it becomes a common value that can be
used with other versioned values. The concluding types of these two rules illustrate
this feature.

To aid in understanding the type system, we show some important facts in the
following example.

Example 4.5.5 (Weakening version resources).

Any linear assumption in the environment can be regarded as an arbitrary ver-
sioned assumption. This fact can be obtained by a combination of the rules (VAR),
(DER), and (SUB) as follows.

(VAR)
f : Int → Int ⊢ f : Int → Int

(DER)
f : [Int → Int]1 ⊢ f : Int → Int 1 ⊑ r

(SUB)
f : [Int → Int]r ⊢ f : (Int → Int)

The example describes the intuition that a linear assumption has no constraints on
variable use for its versions.

As shown above, the (SUB) rule allows the versioned resources in a context can
be increased. This fact supports the intuition that a term that is typed with versioned
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assumptions only available in a particular version will still be typed with versioned
assumptions that are available in more versions.

Example 4.5.6 (Ensuring the existence of consistent versions).

The purpose of the type system is to ensure that all versions needed to evaluate a
given program exist. The type system ensures this property by allocating resources
with consisten and shared labels. The following program, a simplified version of the
program in 4.2.5, is an example of a faulty program.

let [ f ] = {l1 = id, l2 = succ | l1} in let [y] = {l1 = 1 | l1} in [ f y].l2

Type-checking this program halfway yields the following derivation tree.

...

...

ERROR: {l2} ∪ r cannot be a subset of {l1} (PR)
{l1}·( f : [Int → Int]{l1,l2}, y : [Int]{l1}) ⊢ [ f y] : 2{l2}∪rX

(EXTR)
{l1}·( f : [Int → Int]{l1,l2}, y : [Int]{l1}) ⊢ [ f y].l2 : X

(LET)
f : [Int → Int]{l1,l2} ⊢ let [y] = {l1 = 1 | l1} in [ f y].l2 : X

(LET)
∅ ⊢ let [ f ] = {l1 = id, l2 = succ | l1} in let [y] = {l1 = 1 | l1} in [ f y].l2 : X

For clarity, the largest shared version resource is specified outside the context in this
derivation tree such as {l1}·( f : [Int → Int]{l1,l2}, y : [Int]{l1}). Now recall that (PR)
requires the same version resources for the entire context as introduced in the term.
The largest shared resource in the context is {l1}, but the resource in the term must
have {l2} as a subset. As a result, the type checker reports this discrepancy. In this
way, we use the nature of ⊗ to guarantee that each version value has a consistent
version.

4.6 Dynamic Semantics

We give the small-step operational semantics of λVL in Figure 4.2. The rules follow
the lazy-evaluation strategy; i.e., only functions t are evaluated to values to evalu-
ate applications t t′. The operational semantics of λVL consists of two main parts –
evaluation and default version overwriting. The λVL evaluation proceeds by alternating
between reduction and default version overwriting.

We define values and evaluation context of λVL as follows.

Definition 4.6.1 (Values).

v ::= n | λx.t | [t] | {l = t | li} (values)

Definition 4.6.2 (Evaluation contexts).

E ::= [·] | E t | E.l | let [x] = E in t (evaluation contexts)

Figure 4.2 shows the dynamic semantics for λVL. The λVL has five reduction
rules. The (E-ABS) rule is the β-reduction rule for the lazy evaluation strategy, and
(E-CLET) is a rule for contextual let-bindings. Each uses the captured x to assign a
value according to the substitutions. Substitutions are given by a partial function of
forms (t � x)t or (t � x)t and it remove versioned value constructors with both vari-
able and term together in the (�□) and (�ver) rules. A well-typed versioned value
bound to a contextual-let binding will have its outer versioned value constructors
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Evaluation rule

t ; t′

E[t] −→ E[t′]

Reduction rules

(λx.t) t′ ; (t′ � x)t
(E-ABS)

let [x] = v in t ; (v � [x])t
(E-CLET)

[t].l ; t@l
(E-EX1)

{l = t | lk}.li ; ti@li
(E-EX2)

⟨l = t | lk⟩ ; tk@lk
(E-VERI)

Substitutions

(t′ � x)t = [t′/x]t
(�var)

(t � x)t′ = t′′

([t]� [x])t′ = t′′
(�□)

({l = t | li}� [x])t = [⟨l = t | li⟩/x]t
(�ver)

Default version overwriting

n@l ≡ n x@l ≡ x (λx.t)@l ≡ λx.(t@l) (t u)@l ≡ (t@l) (u@l)

let [x] = t1 in t2@l ≡ let [x] = (t1@l) in (t2@l)

[t]@l ≡ [t] {l = t | li}@l′ ≡ {l = t | li} (t.l)@l′ ≡ (t@l′).l

l′ ∈ {l}
⟨l = t | li⟩@l′ ≡ ⟨l = t | l′⟩

l′ /∈ {l}
⟨l = t | li⟩@l′ ≡ ⟨l = t | li⟩

FIGURE 4.2: λVLdynamic semantics

removed along with the variable. A term that will eventually be substituted into x
loses its outermost version resource.

The next three reduction rules are for extracting versioned values. As explained
above, a versioned value can only be evaluated when it is extracted. The two ver-
sioned values – promotions and versioned records – are evaluated to terms that lose
their version resources along with the @-notation by extraction. The @-notation is a
function for overriding a default version; it scans through the sub terms recursively
and overwrites default versions of all intermediate terms ⟨l = t | li⟩ with its label l.
Eventually, these intermediate terms are evaluated into version-specific terms using
the (E-VERI) rule.

Example 4.6.3 (Evaluation process of a versioned function application).
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To aid in understanding the dynamic semantics, we show an evaluation process
of the versioned function application presented in the introduction.

let [ f ] = {l1 = λx.x, l2 = λx.x + 1 | l1} in let [y] = {l1 = 1, l2 = 2 | l1} in [ f y]

Both version function f and version variable have different definitions with labels
l1 and l2. This program intuitively evaluates to {l1 = 1, l2 = 3} – precisely, to a
suspended versioned computation that is expected to evaluate to 1 and 3 in each
version. Hereafter, we abbreviate λx.x as id and λx.x + 1 as succ.

And next, since {l1 = 1, l2 = 2 | l1} is a value, the program is evaluated as fol-
lows.

−→ [{l1 = id, l2 = succ | l1}� [ f ]] (let [y] = {l1 = 1, l2 = 2 | l1} in [ f y]) (E-CLET)

= [⟨l1 = id, l2 = succ | l1⟩/ f ] (let [y] = {l1 = 1, l2 = 2 | l1} in [ f y]) (�ver)

= (let [y] = {l1 = 1, l2 = 2 | l1} in [⟨l1 = id, l2 = succ | l1⟩ y]) (substitution)

Note that in the first two lines, the (�ver) rule simultaneously removes the versioned
constructors of [x] and {l1 = id, l2 = succ | l1}. The term eventually assigned to f is
a versioned computation that inherits the default version l1.

The program is evaluated as well for y.

−→∗ [⟨l1 = id, l2 = succ | l1⟩ ⟨l1 = 1, l2 = 2 | l1⟩] (E-CLET, �ver, substitution)

The result suspended versioned computation contains the respective computations
for labels l1 and l2; thus, we can obtain the result value by extraction, as shown
below.

let [ f ] = {l1 = id, l2 = succ | l1} in let [y] = {l1 = 1, l2 = 2 | l1} in [ f y].l1
−→∗ [⟨l1 = id, l2 = succ | l1⟩ ⟨l1 = 1, l2 = 2 | l1⟩].l1 (E-CLET, �ver, substitution)
−→ (⟨l1 = id, l2 = succ | l1⟩ ⟨l1 = 1, l2 = 2 | l1⟩)@l1 (E-EX1)
≡ ⟨l1 = id, l2 = succ | l1⟩@l1 ⟨l1 = 1, l2 = 2 | l1⟩@l1 (def-ver overwriting)
≡∗ 1

We can perform the same extraction for l2 and obtain 3.

4.7 Metatheory

We give a precise formalization to some properties of λVL. Appendix A provides
collected rules in this section, further auxiliary definitions, supplemental lemmas,
and proofs.

As with other coeffect calculi, there are two variants of the substitution lemmas,
one through linear assumptions and the other through versioned assumptions. We
give the proofs by structural induction on the typing derivation, which is somewhat
tricky. We must carefully manage how version resources are divided in the typing
context; thus, we would like to adopt a generalized form of the versioned substitu-
tion lemma.



30 Chapter 4. Lambda VL

Lemma 4.7.1. [Well-typed linear substitution]

∆ ⊢ t′ : A
Γ, x : A, Γ′ ⊢ t : B

}
=⇒ Γ + ∆ + Γ′ ⊢ [t′/x]t : B

Lemma 4.7.2. [Well-typed versioned substitution]

[∆] ⊢ t′ : A
Γ, x : [A]r, Γ′ ⊢ t : B

}
=⇒ Γ + r · ∆ + Γ′ ⊢ [t′/x]t : B

We further claim that for well-typed versioned values in λVL, an extraction for l ∈
r always succeeds. Here we need type preservation for the default version overwrite
function @.

Lemma 4.7.3. [Type safety for default version overwriting @]
For any version label l:

Γ ⊢ t : A =⇒ Γ ⊢ t@l : A

Lemma 4.7.4. [Type-safe extraction for versioned values]

[Γ] ⊢ v : 2r A =⇒ ∀lk ∈ r. ∃t′.

{
v.lk −→ t′ (progress)
[Γ] ⊢ t′ : A (preservation)

Using the above lemmas, we give a notion of λVL type safety as follows.

Theorem 4.7.5. [Type preservation for reductions]

Γ ⊢ t : A
t ; t′

}
=⇒ Γ ⊢ t′ : A

Theorem 4.7.6. [Type preservation for evaluations]

Γ ⊢ t : A
t −→ t′

}
=⇒ Γ ⊢ t′ : A

Theorem 4.7.7. [λVL progress]

∅ ⊢ t : A =⇒ (value t) ∨ (∃t′.t −→ t′)
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Chapter 5

Programming with Versions on
Ordinary Functional Languages
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5.1 Overview

This chapter presents techniques for realizing programming with versions in an or-
dinary functional program developed per package. We elaborate this approach by
compiling a functional language with a Haskell-like syntax, called VL, into VLMini,
a subset of λVL excluding the label-dependent terms. The entire translation consists
of three parts: Girard’s translation, Bundling, and an algorithmic type inference in Figure
5.1.

VL

VL

VLMini

VLMini

VLMini Constraints
Girard’s Translation

Girard’s Translation

bundling

type inference

FIGURE 5.1: Translation Overview.
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Girard’s Translation for VLMini An abstract syntax tree of a VL program for each
module and version is translated into a VLMini program with extended Girard’s
transformation. Girard’s transformation is originally a translation of the simply-
typed λ-calculus into an intuitionistic linear calculus. [Gir87] The idea is to replace
every intuitionistic arrow A → B with !A ⊸ B, and subsequently unbox via let
in abstraction and promote when applying. [OLE19] Following the Orchard nota-
tion [OLE19], we extend Girard’s translation for applying the translation between
VL and VLMini.

Bundling Bundling is a translation to treat top-level definitions in multiple mod-
ule versions as versioned values. Intuitively, bundling is the automatic generation
of a versioned record. It records the availability of top-level symbols in each ver-
sion and treats them as a single versioned record. The bundling also generates con-
straints on the version label from the meta-information of each module as a straight-
forward correspondence of the type inference rules of versioned records to conform
to the constraint-based type inference rules described below. This method allows
programmers to automatically generate information equivalent to that contained in
λVL label-dependent terms without incurring superfluous implementation costs re-
lated to term-level versioning.

Algorithmic Type Inference We present version inference rules for VLMini pro-
grams. Intuitively, the inference system synthesizes the available versions of the
program from the term structure. First, the inference system assigns a version re-
source variable to every subterm of the VLMini program, just like a type variable in
traditional Hindley-Milner type inference. Version resource variables are lifted into
the type environment by contextual-let and pattern matching, and constraints are
generated between each version resource variable by promotion.

5.1.1 Motivation

This compilation approach is motivated by the following λVL-specific difficulties.

• Complex syntax derived from substructural language. λVL described in the pre-
vious chapter is a core calculus based on the concept of programming with
versions. However, since λVL was not designed as a surface language, its com-
plex syntax and semantics only provide primitive constructs to manipulate
versioned values. Terms related to version resources, such as promotion [t]
and contextual let bindings let [x] = t1 in t2, require programmers to under-
stand the λVL type system and prevent them from implementing the logic on
which the developer wants to focus.

• Versions exposed to the program. The λVL program includes versions as part of
label-dependent terms such as versioned records {li = ti} and extractions t.l.
Version labels are a cross-cutting concern in λVL for all modules and corre-
spond with each module’s version. However, since hundreds of modules are
used in actual development, it is difficult for a programmer to know which
label corresponds to which definition in each module.
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5.1.2 Intuition to the Compilation

Our solution to mitigate the two difficulties listed above is translating a functional
language based on λ-calculus using externally defined version information to con-
struct specific terms of λVL.

This idea is based on the following intuitions. First, since new versions are usu-
ally released for each package in an existing programming language, it is feasible to
determine which version of the symbol is available. For example, before and after
the update, the Hash modules in Figures 2.2 and 2.3 provide functions makeHash
and match. These programs are distinct, and no program belongs to both versions.
Therefore, it is possible to assign each version of the definition to a label mechani-
cally. Therefore, it would be possible to obtain a program with sufficient information
for a versioned record by mechanically assigning the definition of each version to a
version label for constructing a versioned record.

Second, since the λVL type system knows the available versions of all programs
by semantic analysis, it is also feasible to assign the required labels to extraction. For
example, a program {l1 = ..., l2 = ... | ...} will be indicated to be available with labels
l1 and l2 by the type system as with a type 2{l1,l2}A. Although we need to priori-
tize these two labels, it should be possible to design type inference and unification
algorithms to determine the appropriate version label from these alternatives.

5.2 An Intermediate Language, VLMini

Following the above intuition, the target language addressed in this chapter, called
VLMini, is the language in which the label-dependent terms are removed from λVL.
It has the same terms as ℓRPCF and GrMini, but unlike those two calculi, VLMini is
specialized to take version resources as coeffects.

5.2.1 Syntax

The syntax of VLMini is defined as follows.

Definition 5.2.1 (VLMini terms).

t ::= x | t1 t2 | λp.t︸ ︷︷ ︸
λ-terms

| [t]︸︷︷︸
promotion

| Ct0, ..., tn︸ ︷︷ ︸
constructors

| case t of pi 7→ ti︸ ︷︷ ︸
case

(terms)

p ::= x︸︷︷︸
variables

| _︸︷︷︸
wildcard

| [p]︸︷︷︸
promoted patterns

| n | Cp0, ..., pn︸ ︷︷ ︸
constructors

(patterns)

C ::= (, )︸︷︷︸
pairs

| [, ]︸︷︷︸
lists

(data constructors)

VLMini has all the terms except for versioned records {li = ti | lk}, intermediate
term ⟨li = ti | lk⟩, and extractions t.lk. Here, lambda abstraction applied to a pro-
moted pattern is a syntax sugar of cotextual-let in λVL.

Definition 5.2.2 (Syntax sugar for contextual-let).

let [p] = t1 in t2 ≜ (λ[p].t2) t1 (syntax sugar)

Another important change is data constructors introduction Ct1, ..., tn and elimi-
nation case t of pi 7→ ti. VLMini allows lists and pairs as data constructors. The data
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constructors must account for nontrivial operations in algorithmic type inference for
VLMini. The data structures are provided as pairs and lists.

5.2.2 Types and Kinds

Types and version resources are almost the same as λVL and are defined as follows.

Definition 5.2.3 (VLMini types).

A, B ::= Int | KA1, ..., An | α | A → B | 2r A (types)
K ::= (, ) | [, ] (type constructos)
r ::= ⊥ | ∅ | {li} | α | r1 ⊕ r2 | r1 ⊗ r2 (version resources)

The ⊕ and ⊗ here are the sum and product defined in version resource semir-
ing as well as λVL. Type constructors are also added to the type in response to the
VLMini term having a data constructor.

Also, assuming a typical development that utilizes multiple modules, we clarify
the definition of version labels.

Definition 5.2.4 (Version labels).

l ::= [Mi 7→ Vi] (version labels)

where M is a metavariable over module names, and V is a metavariable over version
numbers.

A version label is a vector of modules and their corresponding versions, in which
Mi is unique. Given modules and their versions, the corresponding set of version la-
bels characterizes the variation of programs of a version value. The size of a version
label set is proportional to the product of the number of modules and the number
of versions. The translations and inferences in this chapter aim to use constraints to
represent the appropriate version labels for all type variables since the version label
space is huge for large projects.

The remaining difference from λVL is type variables α. Since VLMini is a monomor-
phic language, type variables act as unification variables; type variables are intro-
duced during the type inference and are expected to be either concrete types or a set
of version labels as a result of constraint resolution.

To distinguish those two kinds of type variables, we introduce kinds κ as follows.

Definition 5.2.5 (VLMini kinds).

κ ::= Type | Labels (kinds)

The kind Labels is given to type variables that can take a set of labels {li} and is
used to distinguish them from type variables of Type during algorithmic type infer-
ence.

5.2.3 Constraints

Constraints generated by bundling and algorithmic type inference are of the follow-
ing form.
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Definition 5.2.6 (Constraints).

C ::= ⊤ | C1 ∧ C2 | C1 ∨ C2︸ ︷︷ ︸
propositional formulae

| α ⪯ α′︸ ︷︷ ︸
variable dependencies

| α ⪯ L︸ ︷︷ ︸
label dependencies

(constraints)

L ::= ⟨⟨Mi 7→ Vi⟩⟩ (dependent versions)

where M is a metavariable over module names, and V is a metavariable over version
numbers.

Constraints comprise propositional formulae, variable dependencies (α ⪯ α′), and
label dependencies (α ⪯ L). Constraints represent dependencies between variables
and on specific versions, and a type variable α that occurs in constraints is a type
variable that is expected to be classified as Labels. Hence after we will abbreviate
(C1 ∧ ... ∧ Cn) as

∧n
i=1 Ci.

A variable dependency intuitively requires that α ⊑ α′, i.e., that the resource vari-
able α be less than α′ under the partial order defined by version resource semiring.
Similarly, A label dependency is represented by a dependent version L, a sequence
of pairs of a module name Mi and a corresponding version number Vi, which implies
that "a version label expected for the type variable α must be Vi for module Mi." For
example, assuming that versions 1.0.0 and 2.0.0 exist for modules A and B, respec-
tively, the minimal upper bound set of version labels satisfying α ⪯ ⟨⟨A → 1.0.0⟩⟩ is
α = {{A = 1.0.0, B = 1.0.0}, {A = 1.0.0, B = 2.0.0}}, and if the constraint resolution
is successful, α will be specialized with either of two elements.

5.3 Girard’s Translation for VLMini

This compilation is based on Girard’s translation [Gir87] of simply-typed lambda
calculus to intuitionistic linear calculus. Orchard [OLE19] note that any term and
type derivation of a simply-typed lambda calculus can be translated into GrMini.
Following Orchard’s approach, we extend Girard’s translation as a translation be-
tween VL and VLMini.

Girard’s translation for VLMini from the simply-typed lambda calculus to VLMini
is described as follows.

Definition 5.3.1 (Girard’s translation).

JnK ≡ n
JxK ≡ x

Jλp.tK ≡ λ[p].JtK
Jt sK ≡ JtK [JsK]

The idea is to replace all occurrences of A → B with 2r A → B using the appro-
priate version resource r ∈ R, and replaced all lambda abstractions and function
applications by using contextual let-binding and promotion. For each version re-
source r ∈ R, the appropriate version resource will be inferred later by the type
inference.

To give the readers a better understanding, we will illustrate the translation pro-
cess using a simple multi-versioned functional program, as shown in Figure 5.2.
Suppose there are two modules called Main and M. Then, the main function defined
in the Main module is translated to the following VLMini program.
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1 -- Main
2 main :: Int
3 main = id n

1 -- M version 1
2 id :: Int -> Int
3 id n = n
4 n :: Int
5 n = 1

1 -- M version 2
2 id :: Int -> Int
3 id n = n
4 n :: Int
5 n = 2

FIGURE 5.2: Simple example program written in VL (Haskell subset).

Example 5.3.2 (main after applying Girard’s translation).

main : Int
main = id [n]

Here, the argument n of the function application is promoted. Similarly, the id
in M version 1 is translated into the VLMini program as follows.

Example 5.3.3 (id and n after applying Girard’s translation).

id : 2rInt → Int
id = λ[n].n
n : Int
n = 1

where r is a resource variable that will later be instantiated into a set of appropri-
ate version labels by type inference. The same translation can be applied to M version
2.

5.4 Bundling

In order to refer to variables from external modules as versioned values in VLMini
programs, the bundling treats the top-level symbols of external modules as version
records. This section describes the intuition behind the bundling and then discusses
the techniques to achieve this in constraint generation.

5.4.1 Intuition to the Bundling

The bundling uses externally defined version information to generate version labels.
Using the simple example in Figure 5.2 again, we will explain the purpose of the
bundling.
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We first consider the variation of external module versions needed to compile
the program in the Main module. In this example, the modules and versions to be
considered are Main, M version 1, and M version 2. Since the Main module
itself is not an external module of Main and is therefore not a candidate for variation,
we have two version labels to be generated for M version 1 and M version 2.

M version 1 ; l1, M version 2 ; l2

We then use these version labels to bundle the top-level elements. For example,
the top-level symbols id, n of module M are translated into the following λVL pro-
gram. Although λVL does not support type annotation, the types to be inferred are
explicitly indicated here for illustrative purposes.

id : 2{l1,l2}(2rInt → Int)

id = {l1 = λn′.let [n] = n′ in n, l2 = λn′.let [n] = n′ in n}
n : 2{l1,l2}Int

n = {l1 = 1, l2 = 2}

The labels are tagged with corresponding version definitions for id and n. A version
1 definition of id and n is stored as an element of the versioned record tagged with
l1; likewise, version 2 is tagged with l2.

Instead of translating into a versioned record, the main function abstracts the
return value with a promotion. The resulting main function is as follows.

main : 2sInt
main = [id [n]]

Here we use the version resource variable s that will be inferred later by type
inference.

This main function results in a series of concatenated by contextual let-binding,
just as a normal program is a series of let-binding with values provided by an exter-
nal module.

main : 2{l1,l2}Int

main = let [id′] = id in let [n′] = n in [id [n]]
≡ let [id′] = {l1 = λn′.let [n] = n′ in n,

l2 = λn′.let [n] = n′ in n} in
let [n′] = {l1 = 1, l2 = 2} in [id′ [n′]]

The type system infers the version resources of the main function by using those
of id and n. The type of the main function indicates that it is available for labels l1
and l2.

The extraction of the main function with each label evaluates to 1 and 2, respec-
tively.

main.l1 →∗ 1
main.l1 →∗ 2
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These results are equivalent to those obtained by selecting versions 1 and 2 of
module M in Figure 5.2 and evaluating main.

Although the developer will need to assign some priority between l1 and l2, now
it is possible to evaluate a program by choosing from multiple versions, using only
normal functional programs as input.

5.4.2 Constraint-based Bundling

We propose a constraint-based method for achieving the abovementioned opera-
tions in VLMini with no label-dependent terms. The idea is to record the collected
label as a label dependency ⟨⟨Mi → Vi⟩⟩ and generate a constraint between the newly
generated type variable and its label dependency.

For example, the types id and n in Figure 5.2 can be represented by the following
types with constraints.

Example 5.4.1 (id and n bundled with constraints).

id : 2r(2r′ Int → Int) | r ⪯ ⟨⟨M 7→ 1.0.0⟩⟩ ∨ r ⪯ ⟨⟨M 7→ 2.0.0⟩⟩
n : 2sInt | s ⪯ ⟨⟨M 7→ 1.0.0⟩⟩ ∨ s ⪯ ⟨⟨M 7→ 2.0.0⟩⟩

where r and s are newly added by this conversion, and the constraints marked to
the right side of the type annotation indicate the constraints that r and s will satisfy.

A label dependency indicates the version of the external module that the type
variable must satisfy as if it were a kind in a record calculus. [Oho95] For exam-
ple, the type declarations indicate that both id and n are versioned values that are
expected to be available only in either version 1 or version 2 of the module M.

Label dependencies are generated only from bundling, while variable depen-
dencies are generated only from type inference. The constraint from the bundling is
used for constraint resolution, along with constraints from type inference.

5.5 Algorithmic Type Inference

The previous chapter gave the declarative type system of λVL, but we need algo-
rithmic type inference rules for implementation. Therefore, this section defines the
type inference system for λVL as an extension of the traditional Hindley-Milner type
inference.

The type inference aims to infer a type and version label of every occurrence of
variables in a λVL program with no type annotations. What makes it different from
normal Hindley-Milner type inference is that the constraints contain not only type
information but also constraints on version labels. This is because resource variables
are expected to eventually become a set of versions of each module. The type infer-
ence does infer and collect constraints on these version resource variables from the
program’s structure.

The type inference rules of VLMini consist of three judgments: type inference,
pattern type synthesis, and type unification. These three judgments are almost com-
mon to the Gr [OLE19] language, which is similarly based on coeffect calculus. The
difference between Gr and VLMini is that Gr provides type-checking rules in a bidi-
rectional approach [DK13; DK19] to describe complex resource constraint annota-
tions described in the Gr program. In contrast, VLMini provides algorithmic type in-
ference rules that assume support for automatic constraint generation by bundling.



5.5. Algorithmic Type Inference 39

In addition, Gr supports multiple version resources, while VLMini is specialized for
version resources.

The type inference is defined by the function synthesis, which has the form of:

Definition 5.5.1 (VLMini type inference).

Σ; Γ ⊢ t ⇒ A; Σ′; θ; C (synthesis)

where the inputs to synthesis are the type variable kinds Σ, the environment Γ
of term variables, and the term t. As an output, the synthesis produces a type A,
output type variable kinds Σ′, output substitution θ, and a constraint C for the next
phase of type inference. The input and output type variable kinds Σ and Σ′ always
satisfy Σ ⊆ Σ′ due to the additional type variables added in this phase.

Here, the environments for types (Γ) and type variable kinds (Σ) are defined
below. The typing context is the same as λVL, and a type variable kinds are added to
reflect the introduction of the unification variable.

Definition 5.5.2 (VLMini typing contexts).

Γ ::= ∅ | Γ, x : A | Γ, x : [A]r (typing contexts)

Definition 5.5.3 (VLMini type variable kinds).

Σ ::= ∅ | Σ, α : κ (type variable kinds)

The pattern type synthesis is defined as follows.

Definition 5.5.4 (VLMini pattern type synthesis).

Σ, R ⊢ p : A � Γ; Σ′; θ (pattern type synthesis)

Pattern type synthesis takes a pattern p, type variables Σ, and resource environ-
ment R as input and synthesizes an output typing context Γ, output type variables
Σ′, and substitutions θ. Pattern type synthesis appears in the inference rules for
λ-abstractions and case expressions. It generates a typing context from the input
pattern p for typing λ-bodies and branch expressions in case statements.

Here, the resource context R is defined as follows.

Definition 5.5.5 (Resource contexts).

R ::= − | r (resource contexts)

When we check a nested promoted pattern, the resource context captures version
resources inside a pattern.

The following judgment defines type unification.

Definition 5.5.6 (VLMini type unification).

Σ ⊢ A ∼ B � θ (type unification)

Type unification produces a substitution θ under structural type congruence un-
der typing context Σ. It is triggered to unify the unification type variable during
type inference or pattern type synthesis.



40 Chapter 5. Programming with Versions on Ordinary Functional Languages

VLMini type unification Σ ⊢ A ∼ B � θ

Σ ⊢ A′ ∼ A � θ1 Σ ⊢ θ1B ∼ θ1B′ � θ2

Σ ⊢ A → B ∼ A′ → B′ � θ1 ⊎ θ2
(U→)

Σ ⊢ A ∼ A′ � θ1 Σ ⊢ θ1r ∼ θ1r′ � θ2

Σ ⊢ 2r A ∼ 2r′ A′ � θ1 ⊎ θ2
(U2)

(α : κ) ∈ Σ Σ ⊢ A : κ

Σ ⊢ α ∼ A � α 7→ A
(UVAR∃)

(α : κ) ∈ Σ
Σ ⊢ α ∼ α � ∅

(UVAR=)
Σ ⊢ A : κ

Σ ⊢ A ∼ A � ∅
(U=)

FIGURE 5.3: VLMini type unification

5.5.1 Type Unification and Substitutions

Throughout type inference, we use type substitutions θ, a map from a type variable α
to type A. The type substitutions defined here are standard, similar to those in many
polymorphic systems, but the rule includes substitutions for version resources.

Definition 5.5.7 (Type substitutions θ). Let a θ be a type substitution of the form
θ = α 7→ A. The application of type substitution has the form θB and is defined as
follows.

θK = K
θα = A (θ(α) = A)
θα = α (otherwise)

θ(A → B) = θA → θB
θ(2r A) = 2(θr)(θA)

θ0 = 0
θ1 = 1
θα = A (θ(α) = A)
θα = α (otherwise)

θ(r1 ⊗ r2) = (θr1)⊗ (θr2)
θ(r1 ⊕ r2) = (θr1)⊕ (θr2)

Type substitution can be applied to any type and version resource in which the
type variable can appear to traverse an argument type B structurally recursively and
substitute the matching α for the type A.

Such substitutions are produced by type unification during type inference. Type
unification rules are listed in Figure 5.3. In a rule with multiple premises, the substi-
tution output from the first premise is applied to the type of the next premise.

Substitutions can also be composed, written as θ ⊎ θ2. We define substitution
compositions as follows.

Definition 5.5.8 (Substitution compositions). Let type substitutions θ1 and θ2 . We
define substitution compositions by induction on θ1.

∅ ⊎ θ2 = θ2

(θ1, α 7→ A) ⊎ θ2 =

{
(θ1 ⊎ (θ2\α) ⊎ θ), α 7→ θA θ2(α) = B ∧ Σ ⊢ A ∼ B � θ

(θ1 ⊎ θ2), α 7→ A α /∈ dom(θ2)

Type assignment may fail because it is a partial operation that depends on unifi-
cation judgment. Hence after we will abbreviate (θ1 ⊎ ... ⊎ θn) as

⊎n
i=1 θi.
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VLMini pattern type inference Σ, R ⊢ p : A � Γ; Σ′; θ

Σ;− ⊢ n : Int� ∅; Σ; ∅
(PINT)

Σ ⊢ r : Labels
Σ; r ⊢ n : Int� ∅; Σ; ∅

([PINT])

Σ ⊢ A : Type
Σ;− ⊢ x : A � x : A; Σ; ∅

(PVAR)
Σ ⊢ A : Type Σ ⊢ r : Labels

Σ; r ⊢ x : A � x : [A]r; Σ; ∅
([PVAR])

Σ′ = Σ, α :∃ Labels, β :∃ Type Σ′ ⊢ α : Labels
Σ′; α ⊢ p : β � ∆; Σ′′; θ Σ′ ⊢ A ∼ 2αβ � θ′

Σ;− ⊢ [p] : A � ∆; Σ′′; θ ⊎ θ′
(P□)

Σ′ = Σ, α :∃ Labels, β :∃ Type Σ′ ⊢ α : Labels
Σ′; r ⊗ α ⊢ p : β � ∆; Σ′′; θ Σ′ ⊢ A ∼ 2αβ � θ′

Σ; r ⊢ [p] : A � ∆; Σ′′; θ ⊎ θ′
([P□])

FIGURE 5.4: VLMini pattern type synthesis

Example 5.5.9 (Successful composition).

(α0 7→ (Int, α1)) ⊎ (α0 7→ (α2, Int)) = (α0 7→ (Int, Int), α1 7→ Int, α2 7→ Int)

Here (Int, α1) and (α2, Int) are structurally unifiable, so the composition succeeds
and produces a composed substitution α0 7→ (Int, Int), α1 7→ Int, α2 7→ Int.

5.5.2 Pattern Type Synthesis

Pattern type synthesis rules are classified into two categories whether or not it has
resources in the input resource context R. The base rules are PINT, PVAR, P2, and
PCON, while the other rules are resource-aware versions of the corresponding rules.
The resource-aware rules assume that they are triggered within the promoted pat-
tern and collect version resource r in the resource context. The purpose of pattern
type synthesis is to properly convey the version resources captured by promoted
patterns to the output typing context.

We provide the following two rules for variables, whether the variable pattern
occurs within a promoted pattern or not.

Σ ⊢ A : Type
Σ;− ⊢ x : A � x : A; Σ; ∅

(PVAR)
Σ ⊢ A : Type Σ ⊢ r : Labels

Σ; r ⊢ x : A � x : [A]r; Σ; ∅
([PVAR])

The rule on the left has no resources in the resource context because the variable
pattern is not inside a promoted pattern. Therefore, this pattern produces typing
context x : A just like a normal linear lambda calculus. The right rule is for a variable
pattern within the promoted pattern, and a resource r is lifted in the resource context.
The rule assigns the collected resource r to the type A and outputs it as a versioned
assumption x : [A]r.

The rules for the promoted pattern propagate the information of version re-
sources to the pattern type synthesis of a subpattern.
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VLMini algorithmic type synthesis Σ; Γ ⊢ t ⇒ A; Σ′; θ; C

Σ; Γ ⊢ n ⇒ Int; Σ; ∅;⊤
(⇒INT)

(x : A) ∈ Γ
Σ; Γ ⊢ x ⇒ A; Σ; ∅;⊤

(⇒LIN)
(x : [A]r) ∈ Γ Σ ⊢ r : Labels

Σ; Γ ⊢ x ⇒ A; Σ; ∅;⊤
(⇒GR)

Σ1, α :∃ Type;− ⊢ p : α � Γ′; Σ2; θ
Σ2; Γ, Γ′ ⊢ t ⇒ B; Σ3; θ′; C

Σ1; Γ ⊢ λp.t ⇒ θ(α → B); Σ3; θ ⊎ θ′; C
(⇒ABS)

Σ1; Γ ⊢ t1 ⇒ A; Σ2; θ1; C1 Σ2; Γ ⊢ t2 ⇒ A′; Σ3; θ2; C2
Σ4 = Σ3, β :∃ Type Σ4 ⊢ A ∼ A′ → β � θ3

θ4 = θ1 ⊎ θ2 ⊎ θ3

Σ1; Γ ⊢ t1 t2 ⇒ θ4β; Σ4; θ4; C1 ∧ C2
(⇒APP)

Σ1 ⊢ [Γ ∩ FV(t)]Labels � Γ′

Σ1; Γ′ ⊢ t ⇒ A; Σ2; θ; C1
Σ3 = Σ2, α :∃ Labels Σ3 ⊢ α ⊑c Γ′ � C2

Σ1; Γ ⊢ [t] ⇒ 2α A; Σ3; θ; C1 ∧ C2
(⇒PR)

FIGURE 5.5: VLMini algorithmic typing

Σ′ = Σ, α :∃ Labels, β :∃ Type Σ′ ⊢ α : Labels
Σ′; α ⊢ p : β � ∆; Σ′′; θ Σ′ ⊢ A ∼ 2αβ � θ′

Σ;− ⊢ [p] : A � ∆; Σ′′; θ ⊎ θ′
(P□)

The input type A is expected to be versioned type, so the rule generates type vari-
ables α and β and then performs pattern type synthesis of the subpattern consid-
ering A as 2αβ. Here, the resource α captured by the promoted pattern is lifted to
the resource context in the subpattern synthesis. Finally, the rule unifies A and 2αβ
and produces a substitution for type refinement after pattern type synthesis. The
only change for the nested promoted pattern is that α interacts with the resource r
captured by the outer promoted pattern.

5.5.3 Type Inference

We describe each type inference rule in turn. The algorithmic type rules for VLMini
are listed in Figure 5.5, and they are algorithmic variants of λVL’s declarative typing
rules.

The inference rules synthesize their types by looking at the input typing context.

(x : A) ∈ Γ
Σ; Γ ⊢ x ⇒ A; Σ; ∅;⊤

(⇒LIN)
(x : [A]r) ∈ Γ Σ ⊢ r : Labels

Σ; Γ ⊢ x ⇒ A; Σ; ∅;⊤
(⇒GR)

In ⇒GR, the variable in the input typing contexts has a versioned type, so the
r is checked for having kind Labels. Since both ⇒LIN and ⇒GR do not create new
type variables, the output type variable kinds are the same as that of the input, and
hereafter the same will be assumed unless otherwise described.
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VLMini context grading Σ ⊢ [Γ]Labels � Γ′

Σ ⊢ [∅]Labels � ∅
(∅)

Σ ⊢ [Γ]Labels � Γ′

Σ ⊢ [Γ, x : A]Labels � Γ′, x : [A]∅
([LIN])

Σ ⊢ [Γ]Labels � Γ′

Σ ⊢ [Γ, x : [A]r]Labels � Γ′, x : [A]r
([GR])

FIGURE 5.6: VLMini context grading

With the introduction of syntax sugar, the type rules of the contextual-let are
integrated into the type inference rules of the abstract. Instead, abstract does not
just bind a single variable but is generalized to pattern matching, which leverages
pattern typing, as extended by promoted patterns and data constructors.

Σ1, α :∃ Type;− ⊢ p : α � Γ′; Σ2; θ
Σ2; Γ, Γ′ ⊢ t ⇒ B; Σ3; θ′; C

Σ1; Γ ⊢ λp.t ⇒ θ(α → B); Σ3, α :∃ Type; θ ⊎ θ′; C
(⇒ABS)

The rule ⇒ABS tentatively generates a unification type variable α, along with the
binding pattern p of the lambda abstraction generates the typing context Γ′. Then
the rule synthesizes a type B for the lambda body under Γ′, and the resulting type
of the lambda abstraction is θ(α → B), where the tentatively generated α is further
refined by the substitution θ produced by the pattern type synthesis.

The rule ⇒APP has multiple inferences as premises, unlike the other rules.

Σ1; Γ ⊢ t1 ⇒ A; Σ2; θ1; C1 Σ2; Γ ⊢ t2 ⇒ A′; Σ3; θ2; C2
Σ4 = Σ3, β :∃ Type Σ4 ⊢ A ∼ A′ → β � θ3

θ4 = θ1 ⊎ θ2 ⊎ θ3

Σ1; Γ ⊢ t1 t2 ⇒ θ4β; Σ4; θ4; C1 ∧ C2
(⇒APP)

The rule ⇒APP synthesizes types A and A′ for t1 and t2, respectively. It then
generates a unification type variable β tentatively, and applies unification to A′ → β
and A (expected to have a function type), then generates a substitution θ3 under
the congruence between the synthesized types. The resulting type is θ4β, where the
tentatively generated type variable β is refined by the substitution generated from
the unification. The output constraint is generated by concatenating the constraints
from the premise with ∧.

The last rule ⇒PR is the only rule that introduces constraints in the entire type
inference algorithm.

Σ1 ⊢ [Γ ∩ FV(t)]Labels � Γ′

Σ1; Γ′ ⊢ t ⇒ A; Σ2; θ; C1
Σ3 = Σ2, α :∃ Labels Σ3 ⊢ α ⊑c Γ′ � C2

Σ1; Γ ⊢ [t] ⇒ 2α A; Σ3; θ; C1 ∧ C2
(⇒PR)
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VLMini constraints generation Σ ⊢ α ⊑c [Γ]� C

Σ ⊢ α ⊑c ∅ �⊤
(∅)

Σ ⊢ α ⊑c [Γ]� C
Σ ⊢ α ⊑c (x : [A]r, [Γ])� (α ⊑ r ∧ C)

(α)

FIGURE 5.7: VLMini constraints generation

This rule intuitively infers a consistent version resources in the environment. Since
we implicitly allow for weakening here, we generate a constraint from an environ-
ment Γ′ that contains only the free variables in t, produced by context grading defined
as follows.

Definition 5.5.10 (Context grading).

Σ ⊢ [Γ]Labels (context grading)

The rules for context grading are listed in Figure 5.6. Context grading converts
all assumptions in the input environment into versioned assumptions by assigning
the empty set (= 1 of version resource semiring) for the linear variable assumption.

Finally, the rule generates a type variable alpha to capture the resource propa-
gated to [t] and generates constraints from Γ′ and α as defined below.

Definition 5.5.11 (Constraint generation).

Σ ⊢ α ⊑c [Γ]� C (constraint generation)

The rules for constraint generation are listed in Figure 5.7. This rule asserts that
the input type variable α is a subset of all the resources of the versioned assumptions
in the input environment [Γ].

The simplest example is below, which is triggered by the type inference of [ f x].

Example 5.5.12 (Constraint Generation for a function application).

r : Labels, s : Labels ⊢ α ⊑c f : [Int → Int]r, x : [Int]s � α ⪯ r ∧ α ⪯ s

The type variable of the input is α, and the type environment of the input con-
tains the versioned assumptions f : [Int → Int]r and x : [Int]s. In this case, the rules
generate constraints for each resource r and s and return a combined constraint with
∧.

5.6 Extend with Data Structures

Finally, we extend the rules so far to support data structures. Unfortunately, sup-
porting data structures is not straightforward. This problem is motivated by the
following program.

p :: (2rInt,2sInt)
p = ([1], [2])

f st :: 2r′(Int, Int) → Int
f st = λp. case p of [(x, y)] → x
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VLMini algorithmic type inference Σ; Γ ⊢ t ⇒ A; Σ′; θ; C

Σi−1; Γ ⊢ ti ⇒ Ai; Σi; θi; Ci

Σ0; Γ ⊢ (t1, .. , tn) ⇒ (A1, .. , An); Σn;
⊎n

i=1 θi;
∧n

i=1 Ci
(⇒(,))

Σi−1; Γ ⊢ ti ⇒ A; Σi; θi; Ci

Σ0; Γ ⊢ [t1, .. , tn] ⇒ [A]; Σn;
⊎n

i=1 θi;
∧n

i=1 Ci
(⇒[,])

Σ0; Γ ⊢ t ⇒ A; Σ1; θ0; C0
Σi−1;− ⊢ pi : A � ∆i; Σ′

i; θ′i Σ′
i; Γ, ∆i ⊢ ti ⇒ B; Σi; θi; Ci

Σ0; Γ ⊢ case t of pi 7→ ti ⇒ (
⊎n

i=0 θi)B; Σn;
⊎n

i=0 θi;
∧n

i=0 Ci
(⇒CASE)

VLMini pattern type synthesis Σ, R ⊢ p : A � Γ; Σ′; θ

Σ′
i−1 = Σi−1, αi : Type Σ′

i−1;− ⊢ pi : αi � Γi; Σi; θi
Σn ⊢ K α1, .. αn ∼ A � θ′

Σ0;− ⊢ C p1 .. pn : A � Γi, .., Γn; Σn; θ′ ⊎⊎n
i=1 θi

(PCON)

Σ′
i−1 = Σi−1, αi : Type Σ′

i−1; r ⊢ pi : αi � Γi; Σi; θi
Σn ⊢ K α1, .. αn ∼ A � θ′ Σ′

i ⊢ r : Labels
Σ0; r ⊢ C p1 .. pn : A � Γi, .., Γn; Σn; θ′ ⊎⊎n

i=1 θi
([PCON])

VLMini type unification Σ ⊢ A ∼ B � θ

Σ ⊢ A1 ∼ B1 � θ1 Σ ⊢ θi−1Ai ∼ θi−1Bi � θi

Σ ⊢ K A1 .. An ∼ K B1 .. Bn �
⊎n

i=1 θi
(UCon)

FIGURE 5.8: Extension for algorithmic typing inference, pattern type
synthesis, and type unification for data strutcures.

The example program is written in a hypothetical language, almost the same
as VLMini but with type annotations and top-level bindings. The variable p binds
a pair whose elements are versioned values that promote the value of Int, and the
function f st is a function that takes a versioned value of a pair and returns its left
element.

All values in VLMini are expected to be versioned values, so if we naively try
to construct a tuple value, we get a value of a type like p. On the other hand, f st
expects to receive a versioned value of a tuple as an argument. Therefore, a function
application f st p will be rejected by type inference.

Huges et al. [HVO21] discuss this problem in general coeffect systems and dis-
tributive laws for coeffectful data types. They show that it is possible to automat-
ically derive push and pull for any type constructor K. For example, the push and
pull functions for tuples are defined in the Granule language as follows.

Example 5.6.1 (push and pull for (, ) from [HVO21]).

1 push : ∀{a b: Type, r: Labels}. (a,b)[r] -> (a[r],b[r])
2 push [(x, y)] = ([x], [y])
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3 pull : ∀{a b: Type, m n: Labels}. (a[n],b[m]) -> (a,b)[n⊓m]
4 pull ([x], [y]) = [(x, y)]

Resources are annotated with brackets in Granule programs. The push function
"pushes" the external resource r into the pair and distributes it to each subcompo-
nent. The pull function "pulls" the inner resources of each subcomponent outside
a data constructor. The inner elements resources n and m are pulled out as n⊓m. In
VLMini, s is the version resource semiring, so n⊓m represents the common part of
label sets n and m.

Following their approach, we extend the rules with pairs and lists. When a
data structure value p is applied to a function f , f p is implicitly interpreted to be
f (pull p). As a dual, a pattern match of a data structure value case p of pi 7→ ti is
interpreted to be case (push p) of pi 7→ ti.

Girard’s translation is extended to data constructors and case expressions as fol-
lows.

Definition 5.6.2 (Girard’s translation for case expressions and data constructors).

Jcase t of pi 7→ tiK ≡ case [t] of [pi] 7→ JtiK
JC t1 .. tnK ≡ C Jt1K .. JtnK

Similarly to lambda abstraction, the matching term t in the case expression is
promoted as a versioned value, and the pattern pi is translated into a promoted
pattern. For data constructors, all subcomponents are translated recursively.

The extended rules are listed in Figure 5.8. Type inference rules for tuples and
lists are straightforward. The rule infers types for each subcomponent, and the in-
ferred types are used to synthesize the types of the data constructor. Like the other
rules, the unification rule UCON recursively compares the types of two data construc-
tors to produce a substitution.

Σ0; Γ ⊢ t ⇒ A; Σ1; θ0; C0
Σi−1;− ⊢ pi : A � ∆i; Σ′

i; θ′i Σ′
i; Γ, ∆i ⊢ ti ⇒ B; Σi; θi; Ci

Σ0; Γ ⊢ case t of pi 7→ ti ⇒ (
⊎n

i=0 θi)B; Σn;
⊎n

i=0 θi;
∧n

i=0 Ci
(⇒CASE)

The inference rule for the case expression first infers the type of t, then use the
resulting type A to generate the environment ∆i under which each pattern pi has the
type A, and then infers a type of each body ti under the context concatenated with
∆i.

Σ′
i−1 = Σi−1, αi : Type Σ′

i−1;− ⊢ pi : αi � Γi; Σi; θi
Σn ⊢ K α1, .. αn ∼ A � θ′

Σ0;− ⊢ C p1 .. pn : A � Γi, .., Γn; Σn; θ′ ⊎⊎n
i=1 θi

(PCON)

The pattern type synthesis rule pCon is also similar to other pattern type syn-
thesis rules. First, the rule chooses a type constructor K according to the input data
constructor C and generates as many type variables αi as the number of subpatterns.
Next, it generates the environment Γi under the assumption that each subpattern pi
has type αi. The resulting environment is the summation of Γi.
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6.1 Implementation

6.1.1 Overview

We implement a VL language system with all the concepts introduced so far. The
VL language system is implemented on the latest stable version (9.2.4) of GHC1 as
of October 2022, and the readers can find all its source code on Github2. The imple-
mentation use haskell-src-exts3, a Haskell parser library with some extension (de-
scribed below), and z3 [MB08]4 as a constraint solver. The implementation of the VL
language system has the structure as shown in Figure 6.1. For clarity, the program
elements are shown with thick borders for multi-module programs and thin borders
for single-module programs of single-module programs.

6.1.2 Frontend

The surface language VL is mostly Haskell except for some syntax extension, which
supports only minimal terms and literals, no type classes, and is monomorphic. We
translate it into Lang.Absyn, the abstract syntax tree of the VL language. This phase
implicitly includes name resolution and desugaring, although they are not shown in

1https://gitlab.haskell.org/ghc/ghc
2https://github.com/yudaitnb/vl
3https://github.com/yudaitnb/vl-haskell-src-exts
4https://github.com/Z3Prover/z3

https://gitlab.haskell.org/ghc/ghc
https://github.com/yudaitnb/vl
https://github.com/yudaitnb/vl-haskell-src-exts
https://github.com/Z3Prover/z3
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VL Source Lang.Absyn

Lang.LambdaVL

Lang.LambdaVL

Lang.LambdaVL

Lang.LambdaVL

Lang.LambdaVL

Lang.Absyn

Syntax.Type

Syntax.Env
(Interface)

Constraints

Vectors

Labels

GHC.HsSyn

Single
module

Multiple
modules

parser
and

dependency
analyser

girardFwd

Duplication

Type Inference

Bundling Bundling

Vectorize

z3

girardBck

import

Version
specialization

FIGURE 6.1: The pipeline of VL Language System

Figure 6.1. Lang.Absyn is an abstract syntax tree of the VL language whose def-
initions are provided from haskell-src-exts. The Haskell AST provided by haskell-
src-exts follows Haskell2010 except for a few language extensions and is used in
developing many programming tools of Haskell.

The surface language is extended from Haskell AST with a syntax extension
version L of t and unversion t to convey user-defined version constraints to
the type inference system. version L of t is useful when a programmer wants
to impose version constraints on a particular term. This term takes a version con-
straint L and a term t and requires that all the subterms of t depend on that version.
L is a list of module and version pairs that are expected to be compiled into the
dependent versions L defined in chapter 5.

In contrast, unversion t is useful when a programmer wants to remove ver-
sion constraints on a particular term. This term takes a term t and does not propagate
any version constraints to the super terms of t. In the type checking of programs
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1 -- version 1.0.0
2 module A where
3 import B
4 a = f x

1 -- version 2.0.0
2 module A where
3 import B
4 a = f (f x)

1 -- version 1.0.0
2 module B where
3 x = 1
4 f x = x * 1
5 g x = x + 1

1 -- version 2.0.0
2 module B where
3 x = 2
4 f x = x * 2
5 h x = x + 2

FIGURE 6.2: Module configuration with two mixed versions for the
both module A and B.

that include t as a subterm, the type of unversion t is considered a versioned
type with unconstrained resource variables; the programmer can use the value of
unversion t at any program location.

unversion plays an important role in simultaneously using multiple versions.
Since the type inference system requires version consistency for all data flows in the
program by default, the programmer tells the type inference system by unversion
that mixing multiple versions of the program is to the programmer’s responsibility.

For example, suppose we have the programs in Figure 6.2. There are two mod-
ules A and B, and g is available only in version 1.0.0 of module B, and h is available
only in version 2.0.0 of B. Under this module configuration, will the following pro-
gram be well-typed?

Example 6.1.1 (A main function that depends on multiple versions (ill-typed)).

1 -- version 1.0.0
2 module Main where
3 import B
4 main = g 1 + h 1 -- type error

The main function sums the int values of the result of the program using g and
h. It seems that main, which is an addition between int values, would be well-typed,
but the current VL type inference takes the most conservative stand, and this pro-
gram produces a version-incosistent error. This situation arises when a programmer
adopts a new version of a dependent package for only part of a program, and the
calculations of the existing and new programs are mixed.

To allow this program, insert unversion as follows.

Example 6.1.2 (A main function that depends on multiple versions (well-typed)).

1 -- version 1.0.0
2 module Main where
3 import B
4 main = g 1 + unversion (h 1)

Here, the function application h 1, which depends on the new version (2.0.0) of
B, is annotated unversion by the programmer. The inferred type of unversion
(h 1) is 2rInt, and its resource variable r has no constraints. As a result, the old and



50 Chapter 6. Implementation and Case Study

new versions can be used simultaneously without giving up version consistency or
type soundness of both the new and old programs.

6.1.3 Ad-hoc Version Polymorphism via Duplication

The VL language system duplicates external variables to assign individual versions
to a single external variable. Duplication is necessary because the core language
VLMini is monomorphic. Duplication is performed before type checking of individ-
ual versions and renames every external variable along with the type and constraint
environments generated from the import declarations.

Such ad hoc conversions are necessary because the VLMini type inference gen-
erates constraints by referring only to identifier names in the type environment. The
goal is to assign a different version to each of identifier. This requires assigning
a unique resource variable to each identifier in the preliminary step of constraint
generation. Unfortunately, We cannot accomplish this without duplication because
simple constraint generation results in the identical resource variable being assigned
to all homonymous variables.

For example, given the version 2.0.0 of module A of Figure 6.2, duplication is
performed as follows.

1 -- version 1.0.0
2 module Main where
3 import B
4 main = f_0 (f_1 x_0)

In this program, the symbols provided to the external module (B) are f and x.
The duplication translation assigns unique symbols by 0-based indexing for f and
x. Constraints containing resource variables of type f and the type of f that exist in
the constraint and type environments are duplicated simulteneously with the same
indexed name. This conversion is performed globally, and the unique symbol name
will not be shared with any same-name symbols in other modules.

6.1.4 Constraints Solving with z3

Constraints collected by the type inference algorithm and bundling are resolved us-
ing z3-solver [MB08]. The VL language system uses the sbv 5 library as the binding
of z3-solver.

The sbv library is a library for constructing first-order formulas in Haskell and
providing an interactive interface to support multiple SMT solvers including ABC 6

CVC4, CVC5 7 Boolector 8, MathSAT 9, Yices 10, DReal 11, and z3 12. The sbv library
internally converts constraints into SMT-LIB scripts [BST+10] and supplies the re-
sulting scripts to z3-solver. SMT-Lib script is a Lisp-like language developed as a
common input/output language for SMT solvers. SMT-Lib scripts consist of com-
mands for instructing a solver such as (assert ...) and (check-sat), and
symbolic values including numericals and string literals.

5https://hackage.haskell.org/package/sbv-9.0
6http://www.eecs.berkeley.edu/~alanmi/abc/
7https://cvc4.github.io/andhttps://cvc5.github.io
8http://fmv.jku.at/boolector/
9http://mathsat.fbk.eu/

10http://yices.csl.sri.com/
11http://dreal.github.io/
12http://github.com/Z3Prover/z3/wiki

https://hackage.haskell.org/package/sbv-9.0
http://www.eecs.berkeley.edu/~alanmi/abc/
https://cvc4.github.io/ and https://cvc5.github.io
http://fmv.jku.at/boolector/
http://mathsat.fbk.eu/
http://yices.csl.sri.com/
http://dreal.github.io/
http://github.com/Z3Prover/z3/wiki
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We represent a dependency constraint as a vector of symbolic int values. The vec-
tor length is equal to the number of external modules, and the elements are unique
int values corresponding to the version number of each module. Constraint reso-
lution identifies the expected vectors for symbolic variables. This solution vector
corresponds to the label on which some identifier in the VL should depend. If more
than one labels satisfy the given constraints, select a newer one by default.

The VL language system transforms constraints into symbolic vectors by a trans-
formation called vectorization as a pre-/postprocess for constraint resolution. We
define vectorization of version labels as follows.

Definition 6.1.3 (Vectorize version labels). Given a conversion var from a type vari-
able to a symbolic variable, a conversion idmod from a module to a vector index, and
a conversion idver from a version number to the corresponding symbolic int value,
the function vectorize is defined recursively as follows.

vectorize(⊤) = sTrue

vectorize(α ⪯ ⟨⟨Mi 7→ Vi⟩⟩) =
n∧

i=1

var(α).idmod(Mi) .== idver(Vi)

vectorize(α ⪯ α′) =
n∧

i=1

var(α).i .== var(α′).i

vectorize(C1 ∧ C2) = vectorize(C1) .&& vectorize(C2)

vectorize(C1 ∧ C2) = vectorize(C1) .|| vectorize(C2)

where sTrue, .&&, .||, and .== given by sbv library are the symbolic versions of
True, &&, ||, and == of a standard Haskell value/function.

6.1.5 Code Generation

The VL language system compiles VLMini programs back to Haskell ASTs during
the code generation phase, using the labels from constraint resolution. The code
generation consists of version specializations and Girard’s translation. Since the VL
type system keeps track of which symbols type variables were generated, the label
can be used to determine which version of implementation the program refers to.

Example 6.1.4 (Code generation).

1 -- Input VL program
2 module Main where
3 import B
4 main = g a + unversion (h 1)

1 -- Generated Haskell AST (prettyprint)
2 module Main where
3 main = (+)
4 ((let g = \x -> (*) x 1 in g)
5 (let a = (let f = x -> (+) x 1 in f)
6 ((let f = \x -> (+) x 1 in f)
7 (let y = 1 in y))
8 in a))
9 ((let h = \x -> (*) x 2 in h) 1)
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version join vjoin udot, sortVector, roundVector
< 0.15 available inavailable inavailable
≥ 0.16 deleted available available

TABLE 6.1: Availability of functions in hmatrix before and afte tha
update in version 0.16.

10 -- g@[A=2.0.0,B=1.0.0] -->* \x -> (*) x 1
11 -- a@[A=2.0.0,B=1.0.0] -->* (f f x)@[A=2.0.0,B=1.0.0]
12 -- -->* (x -> (+) x 1) (x -> (+) x 1)

(1)
13 -- h@[B=2.0.0] -->* \x -> (*) x 2

The code generation takes the top VL program and generates the bottom pro-
gram. Here, since unversion is inserted, it is possible to choose different labels for
g a and h 1. The code generation expands the program with A version 2.0.0 and
B version 1.0.0 for g a and B version 2.0.0 for h a.

6.2 Case Study

In this section, we will confirm that the two main benefits of programming with
versions are achieved in VL programming. For this purpose, we implemented two
packages in VL: the package List, a partial port of Data.List in the Haskell stan-
dard library, 13 and Matrix, a simple linear algebra library that emulates hmatrix, 14

one of the major Haskell library for numeric linear algebra and matrix computations.
Due to a limitation of the VL language, Matrix differs from hmatrix in several

ways. hmaterix represents a vector or matrix of element a as type Vector a or
Matrix a. In contrast, the VL language does not provide user-defined data struc-
tures, so vectors are represented as List Int, and matrices are rewritten as List
(List Int). Also, since the VL language does not provide error processing, we
ignore cases that do not satisfy pre-conditions, such as head [], and implicitly as-
sume that all arguments satisfy the appropriate pre-conditions. Furthermore, since
our goal is to observe hmatrix incompatibilities in the VL language, we have yet to
implement all functions.

6.2.1 Settings

Table 6.1 shows the changes in version 0.16 of hmatrix. 15 Before version 0.15, the
hmatrix library provided a function named join to combine multiple vectors. How-
ever, in the update from version 0.15 to 0.16, join was removed and reimplemented
as vjoin. Also, several new functions were added, such as udot, sortVector, and
roundVector.

We first implement Matrix in VL that simulates the backward incompatible
changes of hmatrix in the version 0.16 update and a program that works with two
contradictory versions of Matrix at the same time.

Matrix Package Update

13https://hackage.haskell.org/package/base (January 11, 2023)
14http://dis.um.es/~alberto/hmatrix/hmatrix.html (January 11, 2023)
15https://github.com/haskell-numerics/hmatrix/blob/master/packages/base/CHANGELOG

https://hackage.haskell.org/package/base
http://dis.um.es/~alberto/hmatrix/hmatrix.html
https://github.com/haskell-numerics/hmatrix/blob/master/packages/base/CHANGELOG
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1 -- Matrix version 1.0.0
2 module Matrix where
3 import List
4

5 join xs ys = case xs of
6 [] -> ys
7 x:xs -> x : (join xs ys)
8

9 determinant mx = sum
10 (map
11 (\xs -> (product (pick 1 xs mx)) * (sign xs))
12 (mkPerm (length mx)))
13

14 pick c xs mx = case xs of
15 [] -> []
16 _ -> (index (head xs) (index c mx))
17 : (pick (c+1) (tail xs) mx)
18

19 sign xs = if (mod2 (inversion xs)) > 0 then -1 else 1
20

21 inversion xs = case xs of
22 x:[] -> 0
23 x:xs -> sum (map (\y -> if x > y then 1 else 0) xs)
24 + inversion xs
25

26 index c xs = last (take c xs)
27

28 mkPerm n = permutations (mkLst n)
29

30 mkLst n = reverse (mkLst’ n)
31 mkLst’ n = case n of
32 0 -> []
33 _ -> n : mkLst’ (n-1)

FIGURE 6.3: The snipet of module Matrix version 1.0.0.

Figure 6.3 shows a snippet of version 1.0.0 of the Matrix package. Version
1.0.0 provides a function join; since vectors are values of a type List Int, join
is equivalent to (++) for [Int] in Haskell standard library. It also provides an-
other function, called determinant, which computes determinants. The function
determinant is implemented using several auxiliary functions and the list opera-
tions provided by List and an algorithm based on the common definition of deter-
minants.

Figure 6.4 shows a snippet of version 2.0.0 of the Matrix package. In the update
of version 2.0.0, the join function is removed and replaced by vjoin, which has
the same definition of join. Other changes include a new function, sortVector,
which computes the sorted vector of an argument and is implemented using some
functions defined in List. Also, the function determinant is still available in this
version.
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1 -- Matrix version 2.0.0
2 module Matrix where
3 import List
4

5 determinant = -- (same as version 1)
6

7 -- join is replaced by vjoin.
8 vjoin = case xs of
9 [] -> ys

10 x:xs -> x : (vjoin xs ys)
11

12 -- newly added function.
13 sortVector xs = case xs of
14 [] -> []
15 [x] -> [x]
16 xs -> let r = bubble xs
17 in vjoin (sortVector (init r)) [last r]
18

19 bubble xs = case xs of
20 [] -> []
21 [x] -> [x]
22 (x:y:xs) -> if x < y
23 then x : bubble (y:xs)
24 else y : bubble (x:xs)

FIGURE 6.4: The snipet of module Matrix version 2.0.0.

Main Program with Two Versions

Figure 6.5 shows a snippet of the Main module. The Main module simulates a
work-in-progress situation where the developer is updating Matrix from version
1.0.0 to version 2.0.0, and the function main uses functions from both versions of
Matrix together. The main function uses the join function, available only in ver-
sion 1.0.0, and the sortVector function, available only in version 2.0.0. Such a
program has direct dependencies on both versions of Matrix at the same time, no
matter what existing package manager the developer uses. Therefore, it will be im-
possible to build this program in an existing language unless the developer gives up
using either join or sortVector.

6.2.2 Main Program in VL Programming

On the other hand, the VL language can provide a way to control and accept this
program in two stages, described below.

Detecting Inconsistent Version

First, we are notified of a version consistency error if we compile the Mainmodule in
the VL system without any changes. This is because even though all programs with
join as a subterm need to be consistent with version 1.0.0, they also require con-
sistency to version 2.0.0 from tranpose, so it is impossible to determine on which
version of Matrix the main function should depend on. As explained in section
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1 module Main where
2

3 import Matrix
4 import List
5

6 main = let vec = [2, 1]
7 sorted = sortVector vec
8 m22 = join -- [[1,2],[2,1]]
9 (singleton sorted)

10 (singleton vec)
11 in determinant m22 -- error: version inconsistent

FIGURE 6.5: Main module before rewriting.

1 module Main where
2

3 import Matrix
4 import List
5

6 main = let vec = [2, 1]
7 sorted = unversion (sortVector vec)
8 m22 = join -- [[1,2],[2,1]]
9 (singleton sorted)

10 (singleton vec)
11 in determinant m22 -- -->* -3 (= 1 * 1 - 2 * 2)

FIGURE 6.6: Main module after rewriting.

2.1.2, combining different versions of dependent packages can cause unexpected
bugs and is generally incorrect. The version consistency error output by the VL lan-
guage system prevents the use of such incorrect version combinations of programs.

Simultaneous Use of Multiple Versions

In this case, the return values of both join and sortVector are vectors and matrices.
We know that it is acceptable to use each version of join and sortVector simultane-
ously. Therefore, we used unversion t for the Main program to accept the simul-
taneous use of the two versions.

Figure 6.6 shows a snippet of the Main module after rewriting: sortVector
xs, the newer function, is replaced by unversion (sortVector xs). Assuming
that we do not use a program that depends on a specific version in other parts of the
program, we successfully compile this program.

Figure 6.7 is a prettyprint of the Haskell code output by the VL system. Here,
some of the code in the output has been omitted because of the very large code
size. In lines n and m, join and sortVector are each dispatched to a specific
version of the implementation, so we have successfully used the functions provided
by multiple versions of Matrix simultaneously in the Main module.
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1 module Main where
2

3 main = ...
4 -- sortVector
5 (let sortVector = \xs ->
6 case xs of
7 [] -> []
8 [x] -> [x]
9 xs -> (\r -> (let vjoin = ... in vjoin)

10 (sortVector
11 ((let init = ... in init) r))
12 [(let last = ... in last) r])
13 ((let bubble = ... in bubble) xs)
14 in sortVector)
15 ...
16 -- join
17 (let join = \xs -> \ys ->
18 case xs of
19 [] -> ys
20 x : xs -> (:) x (join xs ys)
21 in join)
22 ...

FIGURE 6.7: The main function with all definitions dispatched (join
and sortVector excerpted)

version gdk_screen_get_n_monitors gdk_display_get_n_monitors
< 3.22 available inavailable
≥ 3.22 deprecated available

TABLE 6.2: Structural change: availability of functions in GDK 3

6.3 Limitations of the Current VL

This section discusses the limitations of the current VL language and possible solu-
tions.

6.3.1 Lack of Support for Structural Incompatibility

One of the apparent problems with the current VL system is that it does not support
type incompatibilities, a key element of structural incompatibilities. We will first an-
alyze the types of incompatibilities and then discuss ways to extend the current VL
system.

Types of Incompatibilities

Incompatibilities between old and new versions of a package caused by updates
can be broadly classified into two categories structural incompatibilities and behavioral
incompatibilities.
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version set setExact
< 19 exact inavailable
≥ 19 inexact exact

TABLE 6.3: Behavioral change: reliability of an alarm time in Android
API

Structural Incompatibilities A structural incompatibility occurs when multiple
versions of a package provide different set of definitions including function names
and data structures. Structural incompatibilities are caused by adding and remov-
ing definitions, internal changes to data structures, and renaming. Table 6.2 shows
an example of structural incompatibility in GIMP Drawing Kit (GDK). GDK is a C
library for creating graphical user interfaces and is used by many projects, including
GNOME.

If the deprecated functions are not available, version 3.22 is structurally incom-
patible with version 3.20 because the former lacks gdk_screen_get_n_monitors
that is available in the latter. GDK versions before 3.22 provide gdk_screen_
get_n_monitors that tells the number of connected physical monitors. However,
versions 3.22 later provide the same functionality function gdk_display_get_
n_monitors and deprecate gdk_screen_get_n_monitors. When we upgrade
GDK to version 3.22 and build software that uses this function without modifying
anything, the build system will give us an undefined reference error. With a static
type check, the programmer will be informed of the incompatibility problem as a
compilation error.

Behavioral Incompatibilities A behavioral incompatibility is a situation where
multiple versions of a package provide the same definition but differ in their be-
havior. Code changes may also cause behavioral incompatibilities that include ad-
ditions, removals, and changes in side effects, even if there is no change in name
or type. Table 6.3 shows an example of behavioral incompatibility in the Android
Platform API (henceforth Android API). The Android API is the standard library
written mostly in Java, and its version synchronizes with Android OS.

Before version 1916, the Android API provided the setmethod in the AlarmManager
class that schedules an alarm at a specified time. However, since version 19, the An-
droid API has changed its behavior for power management. Despite having the
same name and type definitions, set no longer guarantees accurate alarm delivery.
For developers who require accurate delivery, the method setExact is provided
instead.

Extending VL to Support Structural Incompatibility

The current VL language system forces terms of different versions to have the same
type, both on the theoretical (typing rules in λVL) and implementation (bundling in
VLMini) aspects. In λVL, definitions of the same type can be combined as a versioned
record (even if the programmer has given them different names), while terms with
different types cannot be in a versioned record. Also, the VL language system will
stop compilation if it finds a definition with the same name but a different type in
more than one version of the same module.

16The Android API uses levels instead of versions as identifiers for API revisions, but we will call
them versions for consistency.
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1 module Main where
2

3 import A
4 import B
5

6 main =
7 let x = unversion (g a)
8 y = unversion (h a)
9 in x + y

10 -- well-typed

1 module Main where
2

3 import A
4 import B
5

6 main =
7 let a’ = a
8 x = unversion (g a’)
9 y = unversion (h a’)

10 in x + y -- ill-typed

FIGURE 6.8: The well-typed (left) and ill-typed (right) programs illus-
trate the difference between the treatment of local and external vari-

ables.

However, more feature is needed to deal with broader incompatibilities. Rae-
maekers et al. conducted a comprehensive analysis of the seven-year history of
library releases in Maven Central. They found that about one-third of all releases
introduced at least one structural incompatibility change. The top three causes of
structural incompatibilities were class, method, or field deletions, and the remaining
seven were type changes. [RvV17] It seems an important step to extend the language
system to support a wider variety of type incompatibilities and to help programmers
improve dependencies.

The current λVL design is motivated by the basic design that "the type of a ver-
sioned record is similar to the type 2r A, a type with a resource in coeffect calculli."
In the current λVL, the type of versioned record {l = t | lk} is 2r A(r = {l}), and no
difference exists between a type of versioned records and promotions of a term of
type A. This design has the advantage that versioned records and promotions could
be treated in a unified manner, making it easier to formalize dynamic and static se-
mantics.

One useful idea to address this problem is to decouple version inference from
the type inference of coeffect calculus and implement a type system that guarantees
version consistency on top of the polymorphic record calculus. [Oho95] The idea
stems from the fact that the type 2{l1,l2}A is structurally similar to the variant type
⟨l1 : A, l2 : A⟩ of Λ∀,•. It is no longer required with variants that types be the same,
so terms with different types can be stored as a single value, such as ⟨l1 = true, l2 :
100⟩ : ⟨l1 : Bool, l2 : Int⟩. Although the current version inference is uniformly
defined with type inference, we believe it is possible to separate its algorithm and
implement it in another calculus because the type and version inference in the type
system of VLMini is orthogonal to each other. In the current VL system, constraints
generated from type inference and constraints generated from version inference are
completely independent, and all constraints passed to z3 are version constraints.

6.3.2 Inadequate Version Polymorphism

As we attempt to scale VL programming to a realistically sized development, in-
complete version polymorphism via duplication described in section 6.1.3 becomes
an obstacle. The following examples are VL programs that depend on modules A
and B in Figure 6.2. Both use functions g and h provided by module B and the
variable a provided by module A.
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1 module Main where
2

3 import A
4 import B
5

6 main =
7 let xx = (unversion (g (version {A=2.0.0} of a)))
8 yy = (unversion (h (version {A=1.0.0} of a)))
9 in xx + yy -- well-typed

1 module Main where
2

3 import A
4 import B
5

6 main =
7 let xx = (unversion (g (version {A=2.0.0} of a)))
8 yy = (unversion (h (version {A=2.0.0} of a)))
9 in xx + yy -- ill-typed

FIGURE 6.9: The well-typed (top) and ill-typed (bottom) programs
indicate that only one version of each module’s top-level symbol is

allowed.

The first problem is the difference between the treatment of local and external
variables. The two programs in Figure 6.8 illustrate this problem. The only differ-
ence between the two programs is that the program on the left is written to apply
functions without local variables, whereas the program on the right binds a to a’.
However, the left one succeeds, while the right fails in version inference.

The reason for this problem is the type inference system assigns the only resource
variable to the local variable a’. The applications g a’ and h a’ generate con-
straints that require a’ to depend on versions 1 and 2 of module B, respectively, but
there is no version label that satisfies both. All external variables are given unique
names by duplication, but local variables are not. Therefore, the type inference re-
sults differ in the two programs in Figure 6.8.

The second problem is that there is only one version on which each version of
the top-level symbol can depend. The programs in Figure 6.9 illustrate this problem.

The top program requires a of A versions 2.0.0 and 1.0.0 as arguments of g and
h, respectively, whereas the bottom program requires A version 2.0.0 for both argu-
ments. The result of type inference is that the top program has a label that satisfies
this requirement, while the bottom program does not.

The cause of this problem is that the inference system produces a variable depen-
dency on one of the versions of the original top-level symbol. The current VL type
inference creates a variable dependency on either version of the source when creat-
ing a resource variable with the same constraints as the source of the duplication.
In this example, the two copies of a, a_0 (for g (version A=2.0.0 of a)) and
a_1 (for h (version A=2.0.0 of a)), are expected to select either version of
a. Furthermore, the generated constraints constrain the selected version of a. In line
7, g requires a_0 to have a dependency on version 1.0.0 of B, and version A=2.0.0
of a_0 requires that a_0 is equal to the label selected for version 2.0.0 of a, resulting
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in version 2.0.0 of a. Similarly, line 8 generates a constraint that requires that the
label for version 2.0.0 of a must contain version 1.0.0 of B, so no label satisfies both
simultaneously.

It is necessary to introduce full-resource polymorphism in the core calculus in-
stead of duplication to solve this irrational problem,. The idea is to store external
variables and constraints that behave in a version polymorphic manner in a top-level
definition environment and instantiate them with a new resource variable for each
symbol occurrence. This kind of resource polymorphism is similar to that already
implemented in the Gr language [OLE19]. However, unlike Gr, VLMini provides a
type inference algorithm that collects constraints on a per-module basis, so we need
the well-defined form of the principal type. This extension is future work.
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7.1 Software Product Lines

Software Product Lines (SPLs) [Par76; PBL05] are methods for creating a collection of
similar software from a shared set of programs. Since program updates can be con-
sidered a kind of program extension, some programming techniques in SPLs [Bos01;
Pre97; Sch+10] are closely related to this work.

7.1.1 Delta-Oriented Programming

Delta-oriented programming (DOP) [SD10; Sch+10; SBD11] provides a mechanism
called delta-modules for modularizing program modifications. The delta-module lan-
guage allows the addition and overriding of classes and methods and their removal.
Each delta module contains the application conditions for modifications, and delta
modules can be combined to form complex constraints on the features of a product.

The DOP approach is complementary to our research. For the implementation
of version analysis by type checking in the future, it is essential to have a packaging
system with expression-level dependency information. Given that the evolution of
packages today is basically linear over versions, it is possible to develop a package
system modularized by program diffs. Patrick Lam et al. [LDP20] point out that the
lack of tool support for package changes requires developers to pay a great deal of
attention to compatibility and discuss the implications of calculating compatibility
information in the context of program analysis. For the implementation of version
analysis by type checking in the future, it is essential to have a packaging system
with expression-level dependency information. Such tools will lead to the develop-
ment of a novel package system with more detailed compatibility information.
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7.1.2 Variational Programming

Variational Programming [Wal13; EW11; Wal+14] is a language paradigm with syn-
tactic support for data variation. For example, the Variational Programming Calcu-
lus [CEW16] (VPC) represents differences as binary choices called dimensions, such
as A<1,true>, which can be passed as function arguments. In addition, we can
extract and manipulate choices. For example, a program that applies the identity
function to either 1 or true and extracts left one can be written as sel A.L (λx.x
A<1, true>).

At first glance, the main part of the λVL can be encoded by VPC, but this is impos-
sible. The key difference is semantics: VPC doesn’t have a mechanism to deal with
computations that lack definitions like versioned records in λVL. In λVL, functions
and arguments with different dimensions are applied according to a smaller dimen-
sion: the calculation is allowed by the type system only if they have common ver-
sions, i.e., let [x] = {v1 = 1, v2 = 2} in let [y] = {v1 = 1, v2 = 2, v3 = 3} in [x + y]
is well-typed and interpreted as {v1 = 1 + 1, v2 = 2 + 2} defined only in versions
v1 and v2. In contrast, in VPC, such computations are interpreted according to a
larger dimension: functions/values with smaller dimensions are interpreted in a
distributed manner, i.e. A1<1, 2> + A1<1, A2<2, 3> > is interpreted as A1<1
+ 1, A2<2 + 2, 3 + 2> > that have three variations. Since our primary inter-
est is in disallowing programs to run in versions for which no definition exists, the
semantics of VPC don’t meet our motivations.

7.2 Adaptation Techniques

Adaptation techniques help client code connect to a version of a library incompati-
ble with the older one. The simplest approach is to compare the old and new ver-
sions of a source code and find substitution patterns. Other approaches generate
replacement rules based on structural similarities [CWC14; Wu11] and extract API
replacement patterns from a code base with been migrated. [SJM08]

Another approach lets the library maintainer generate replacement rules. Some
techniques [DJ06; HD05] require the library maintainer to record refactorings made
to the source code and generate refactoring scripts for providing it to library users.
Another technique [CN96] requires the library maintainer provides annotations that
describe how to update client code. These techniques are reported to provide correct
code recommendations on average in only less than 20% of cases. [CW12]

7.3 Container

Docker [Mer14] makes it clear that it is used as a solution to dependency hell. Docker
project aims to package an application per environment with all its dependencies
and to run smoothly in further development, testing, and working environments.
Modern applications are often a combination of existing applications. However, it
has been difficult to develop all related applications in a single environment because
each application has separate dependencies that may have conflicting dependency
paths. Docker is a powerful tool in that case. Docker makes it possible to isolate
the environment as a container for each application, making it possible for different
versions of libraries to coexist on a single physical machine. In addition, since all de-
pendencies are bundled within the Docker container, no dependency libraries will
be missing, even if the Docker container is ported to a different physical machine.
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This feature makes it extremely easy to migrate the development environment. On
the other hand, however, the Docker project is not interested in the dependencies
inside the container. That is, if there are conflicting dependency paths in the depen-
dency graph of an application, dependency hell will still occur.

7.4 Monorepository

Monorepository is a method of versioning two or more logical libraries that nor-
mally reside in different repositories in a version control system but are versioned
in a single repository. By managing in a single repository, it is possible to have a
single version control for all the libraries that it encompasses. The monorepository
approach has the advantage that updates across multiple libraries can be managed
with a single commit, and the dependencies between libraries can be centrally un-
derstood, making it easier to test and find bugs across libraries.

On the other hand, it is pointed out that the system’s modularity is reduced,
resulting in a huge number of commits that are essentially irrelevant to some func-
tions. Furthermore, the performance of the version control system is reduced due to
the explosive number of managed files.

The monorepository method is particularly useful for the large-scale develop-
ment, and Google [PL16] and Facebook [Dur14] have publicly announced that they
manage their libraries in a monorepository.

However, the monorepository method is only a technique to help understand
dependencies, not a technology to solve the dependency hell. The legitimacy of
dependencies among many libraries in a monorepository must be verified by other
methods, and dependency hell still exists for libraries outside the monorepository’s
control.

7.5 Coeffect Calculus

Coeffect calculus simultaneously emerged from several contexts in the literature [Bru+14;
GS14; POM14] since the 2010s. The common denominator of these formalizations is
that they annotate the assumptions in the typing context with usage information
derived from a semiring. Recent studies use coeffect calculus to track bounded
reuse [Bru+14; POM14], deconstructor use [POM13], security levels [OLE19], and
scheduling constraints in hardware synthesis [GS14].

Granule [OLE19] is a fully-fledged functional language focused on coeffect calcu-
lus. Its core Gr demonstrates a good combination of coeffect calculus and standard
language features, i.e., data types, pattern matching, and recursion. Since the core
subset of Granule, GrMini, has almost the same structure as λVL, we expect that most
of the language extensions from GrMini to Gr can be applied to λVL. On the other
hand, the difference is that the only thing that affects resources in these languages
is the availability of each function, whereas λVL provides a means to manipulate
resources such as version records and extractions.
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8.1 Towards a Per-expression Dependency Analysis

The current λVL type system cannot express the range of compatibility that cargo and
npm do in packages. For example, even if the versions 1.0.0 and 1.0.1 of package P
are compatible and we apply the value of type 21.0.1P.T to the function that expects
an argument of type 21.0.0P.T, this function application is rejected. This is because
there is no relationship between types annotated with version resource 1.0.0 and
1.0.1 as the current type system focuses on preventing computation on versions for
which a definition does not exist. Considering that many updates change only a
small part of the package code and remain backward compatible for the most part,
the current type system is too strict.

The next step of our research is to track the range of compatibility in the type
system. Incorporating semantic versioning into types is a promising idea. Semantic
versioning can also be seen as a compatibility contract from the package provider to
the package users. For example, a 1.0.1 package is guaranteed backward compatible
with 1.0.0. From the point of view of Liskov’s substitution principle [LW94], emulat-
ing the semantic versioning strategy at the expression level, it is possible to regard
21.0.1A as a subtype of 21.0.0A. Such a type system paves the way for type-safe casts
between objects derived from different-version packages.

8.2 Conclusion

Even though dependency hell has been considered a problem for many years, it
is still difficult for most programmers to solve. Most recent build tools use com-
patibility maintenance strategies like semantic versioning, but name mangling may
burden the development community in programming languages with sophisticated
type systems.

Our research aims to enable programmers to freely combine and control pro-
grams of different versions in a single code. This research brings versions, which
used to be simply identifiers of packages, into a programming language, and pro-
vides a new perspective on handling multiple versions of programs. As a first step
toward our goal, we discussed type safety, a compilation method, the implementa-
tion, and a case study with programs with multiple versions in VL. We hope this
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research will stimulate a discussion in the research community on compatibility in
the context of program analysis.
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Appendix A

Definitions and Proofs

Contents

λVL syntax

t ::= x | t1 t2 | λx.t | n | [t] | let [x] = t1 in t2

| {l = t | li} | t.l | ⟨l = t | li⟩ (terms)

v ::= λx.t | n | [t] | {l = t | li} (values)
A, B ::= Int | A → B | 2r A (types)
Γ, ∆ ::= ∅ | Γ, x : A | Γ, x : [A]r (contexts)

r ::= ⊥ | {li} (version resources)

l ::= [Mi 7→ Vi] (version labels)
E ::= [·] | E t | E.l | let [x] = E in t (evaluation contexts)

A.1 Resource Properties

Definition 4.4.2. [Version resource semiring] The version resource semiring is given
by the structural semiring (semiring with preorder) (R,⊕, 0,⊗, 1,⊑), defined as fol-
lows.

0 = ⊥ 1 = ∅ ⊥ ⊑ r
r1 ⊆ r2

r1 ⊑ r2

r1 ⊕ r2 =


r1 r2 = ⊥
r2 r1 = ⊥
r1 ∪ r2 otherwise

r1 ⊗ r2 =


⊥ r1 = ⊥
⊥ r2 = ⊥
r1 ∪ r2 otherwise

where ⊥ is the smallest element of R, and r1 ⊆ r2 is the standard subset relation
over sets defined only when both r1 and r2 are not ⊥.

Lemma A.1.1 (Version resource semiring is a structural semiring).

Proof. Version resource semiring (R,⊕,⊥,⊗, ∅,⊑) induces a semilattice with ⊕ (join).

• (R,⊕,⊥,⊗, ∅) is a semiring, that is:

– (R,⊕,⊥) is a commutative monoid, i.e., for all p, q, r ∈ R
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* (Associativity) (p ⊕ q)⊕ r = p ⊕ (q ⊕ r) holds since ⊕ is defined in
associative manner with ⊥.

* (Commutativity) p ⊕ q = q ⊕ p holds since ⊕ is defined in commuta-
tive manner with ⊥.

* (Identity element) ⊥⊕ p = p ⊕⊥ = p

– (R,⊗, ∅) is a monoid, i.e., for all p, q, r ∈ R

* (Associativity) (p ⊗ q)⊗ r = p ⊗ (q ⊗ r) holds since ⊕ is defined in
associative manner with ⊥.

* (Identity element) ∅ ⊗ p = p ⊗ ∅ = p
· if p = ⊥ then ∅ ⊗⊥ = ⊥⊗ ∅ = ⊥
· otherwise if p ̸= ⊥ then ∅ ⊗ p = ∅ ∪ p = p and p ⊗ ∅ = p ∪ ∅ =

p

– multiplication ⊗ distributes over addition ⊕, i.e., for all p, q, r ∈ R, r ⊗
(p ⊕ q) = (r ⊗ p)⊕ (r ⊗ q) and (p ⊕ q)⊗ r = (p ⊗ r)⊕ (q ⊗ r)

* if r = ⊥ then r ⊗ (p ⊕ q) = ⊥ and (r ⊗ p)⊕ (r ⊗ q) = ⊥⊕⊥ = ⊥.

* otherwise if r ̸= ⊥ and p = ⊥ and q ̸= ⊥ then r ⊗ (p ⊕ q) = r ⊗ q =
r ∪ q = (r ∪ r)∪ q = r ∪ (r ∪ q) = (r ⊕ p)∪ (r ∪ q) = (r ⊗ p)⊕ (r ⊗ q)

* otherwise if r ̸= ⊥ and p = ⊥ and q = ⊥ then r ⊗ (p ⊕ q) = r ⊗⊥ =
⊥ and (r ⊗ p)⊕ (r ⊗ q) = ⊥⊕⊥ = ⊥.

* otherwise if r ̸= ⊥ and p ̸= ⊥ and q ̸= ⊥ then r ⊗ (p ⊕ q) = r ∪ (p ∪
q) = (r ∪ p) ∪ (r ∪ q) = (r ⊗ p)⊕ (r ⊗ q)

The other cases are symmetrical cases.

– ⊥ is absorbing for multiplication: p ⊗⊥ = ⊥⊗ p = ⊥ for all p ∈ R

• (R,⊑) is a bounded semilattice, that is

– ⊑ is a partial order on R such that the least upper bound of every two
elements p, q ∈ R exists and is denoted by p ⊕ q.

– there is a least element; for all r ∈ R, ⊥ ⊑ r.

• (Motonicity of ⊕) p ⊑ q implies p ⊕ r ⊑ q ⊕ r for all p, q, r ∈ R

– if r = ⊥ then p ⊕ r ⊑ q ⊕ r ⇔ p ⊆ q, so this case is trivial.

– otherwise if r ̸= ⊥, p = q = ⊥ then p ⊕ r ⊑ q ⊕ r ⇔ r ⊆ r, so this case is
trivial.

– otherwise if r ̸= ⊥, p = ⊥, q ̸= ⊥ then p ⊕ r ⊑ q ⊕ r ⇔ r ⊆ q ∪ r, and
r ⊆ q ∪ r holds in standard subset relation.

– otherwise if r ̸= ⊥, p ̸= ⊥, q ̸= ⊥ then p ⊕ r ⊑ q ⊕ r ⇔ p ∪ r ⊆ q ∪ r, and
p ⊆ q implies p ∪ r ⊆ q ∪ r.

• (Motonicity of ⊗) p ⊑ q implies p ⊗ r ⊑ q ⊗ r for all p, q, r ∈ R

– if r = ⊥ then p ⊗ r ⊑ q ⊗ r ⇔ ⊥ ⊆ ⊥, so this case is trivial.

– otherwise if r ̸= ⊥, p = q = ⊥ then p ⊗ r ⊑ q ⊗ r ⇔ ⊥ ⊆ ⊥, so this case
is trivial.

– otherwise if r ̸= ⊥, p = ⊥, q ̸= ⊥ then p ⊗ r ⊑ q ⊗ r ⇔ ⊥ ⊆ q ∪ r, so this
case is trivial.

– otherwise if r ̸= ⊥, p ̸= ⊥, q ̸= ⊥ then p ⊗ r ⊑ q ⊗ r ⇔ p ∪ r ⊆ q ∪ r, and
p ⊆ q implies p ∪ r ⊆ q ∪ r.



A.2. Context Properties 75

Definition A.1.2 (Version resource summation ∑). Using the addition + of version
resource semiring, summation of version resouce is defined as follows:

∑
i

ri = r1 ⊕ · · · ⊕ rn

A.2 Context Properties

Definition 4.5.2. [Context concatenation , & +] Two typing contexts can be con-
catenated by "," if they contain disjoint assumptions. Furthermore, the versioned
assumptions appearing in both typing contexts can be combined using the context
concatenation + defined with the addition ⊕ in the version resource semiring as
follows.

∅ + Γ = Γ
(Γ, x : A) + Γ′ = (Γ + Γ′), x : A iff x /∈ dom(Γ′)

Γ + ∅ = Γ
Γ + (Γ′, x : A) = (Γ + Γ′), x : A iff x /∈ dom(Γ)

(Γ, x : [A]r) + (Γ′, x : [A]s) = (Γ + Γ′), x : [A](r ⊕ s)

Definition 4.5.3. [Context multiplication · by a resource] Assuming that a context
contains only version assumptions, denoted [Γ] in typing rules, then Γ can be mul-
tiplied by a version resource r ∈ R by using the product ⊗ in the version resource
semiring, as follows.

r · ∅ = ∅ r · (Γ, x : [A]s) = (r · Γ), x : [A](r ⊗ s)

Definition 4.5.4. [Context summation
⋃

] Using the context concatenation +, sum-
mation of typing contexts is defined as follows:

n⋃
i=1

Γi = Γ1 + · · ·+ Γn

Definition A.2.1 (Context partition). For typing contexts Γ1 and Γ2, we define Γ1|Γ2

and Γ1|Γ2
as follows.

Γ1|Γ2
≜ {x : A | x ∈ dom(Γ1) ∧ x ∈ dom(Γ2)}

Γ1|Γ2
≜ {x : A | x ∈ dom(Γ1) ∧ x /∈ dom(Γ2)}

Γ1|Γ2
is a subsequence of Γ1 that contains all the term variables that are included in

Γ2, and Γ1|Γ2
is a subsequence of Γ1 that contains all the term variables that are not

included in Γ2.

Using Γ1|Γ2
and Γ1|Γ2

, we state some corollaries about typing contexts. These
theorems follow straightforwardly from the definitions of A.2.1.

Lemma A.2.2 (Context collapse). For typing contexts Γ1 and Γ2,

Γ1|Γ2
+ Γ1|Γ2

= Γ1
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Lemma A.2.3 (Context shuffle). For typing contexts Γ1, Γ2, Γ3 and Γ4, and variable x
and type A:

(Γ1, x : A, Γ′
1) + Γ2 = (Γ1 + Γ2|Γ1

), x : A, (Γ′
1 + Γ2|Γ1

) (1)

Γ1 + (Γ2, x : A, Γ′
2) = (Γ1|Γ′

2
+ Γ2), x : A, (Γ1|Γ′

2
+ Γ′

2) (2)

(Γ1, Γ2) + (Γ3, Γ4) =
(
(Γ1 + Γ3|Γ1

+ Γ4|Γ1
), (Γ2 + Γ3|Γ1

+ Γ4|Γ1
)
)

(3)

Lemma A.2.4 (Composition of context shuffle). For typing contexts Γi and Γ′
i for

i ∈ N, there exixts typing contexts Γ and Γ′ such that:⋃
i

(Γi, Γ′
i) = Γ, Γ′ ∧

⋃
i

(Γi + Γ′
i) = Γ + Γ′

Lemma A.2.5 (Distribution of version resouce over context addition). For a typing
context Γ and resources ri ∈ R:

(r1 · Γ) + (r2 · Γ) = (r1 ⊕ r2) · Γ⋃
i

(ri · Γ) = (∑
i

ri) · Γ

Lemma A.2.6 (Disjoint context collapse). Given typing contexts Γ1, ∆, and Γ2 such
that Γ1 and Γ2 are disjoint, then we can conclude the following.

(Γ1 + ∆ + Γ2) = (Γ1 + ∆|Γ1
), ∆|(Γ1,Γ2)

, (Γ2 + ∆|Γ2
)

A.3 Substituions Properties

Lemma 4.7.1. [Well-typed linear substitution]

∆ ⊢ t′ : A
Γ, x : A, Γ′ ⊢ t : B

}
=⇒ Γ + ∆ + Γ′ ⊢ [t′/x]t : B

Proof. This proof is given by induction on the structure of Γ, x : A, Γ′ ⊢ t : B (as-
sumption 2). Consider the cases for the last rule used in the typing derivation of
assumption 2.

Case.
y : B ⊢ y : B

(VAR)

In this case we know the following:

• Γ = Γ′ = ∅

• x = t = y

• A = B

Now the conclusion of the lemma is:

∆ ⊢ [t′/y]y : B
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Since [t′/y]y = t′ from the definition of substitution, the conclusion of the lemma is
assumption 1 itself.

Case.
Γ, x : A, Γ′, y : B1 ⊢ t : B2

Γ, x : A, Γ′ ⊢ λy.t : B1 → B2
(ABS)

In this case, by applying the induction hypothesis to the second premise, we know
the following:

Γ + ∆ + (Γ′, y : B1) ⊢ [t′/x]t : B2

where y : B is disjoint with Γ, ∆, and Γ′. Thus, Γ + ∆ + (Γ′, y : B1) = (Γ + ∆ + Γ′), y :
B1 from lemma A.2.3 (2), the typing derivation above is equal to the following:

(Γ + ∆ + Γ′), y : B1 ⊢ [t′/x]t : B2

We then reapply (ABS) to obtain the following:

(Γ + ∆ + Γ′), y : B1 ⊢ [t′/x]t : B2

Γ + ∆ + Γ′ ⊢ λy.[t′/x]t : B1 → B2
(ABS)

By the definition of substitution λy.[t′/x]t = [t′/x](λy.t), and we obtain the conclu-
sion of the lemma.

Case.
Γ1 ⊢ t1 : B1 → B2

Γ2 ⊢ t2 : B1

Γ1 + Γ2 ⊢ t1 t2 : B2
(APP)

In this case we know the following:

• t = t1 t2

• B = B2

• (Γ, x : A, Γ′) = (Γ1 + Γ2)

Now focusing on the third equation, since the definition of the context addition +,
the linear assumption x : A is contained in only one of Γ1 or Γ2.

• Suppose (x : A) ∈ Γ1 and (x : A) /∈ Γ2.
Let Γ′

1 and Γ′′
1 be typing contexts such that they satisfy Γ1 = (Γ′

1, x : A, Γ′′
1 ). The

last typing derivation of (APP) is rewritten as follows.

Γ′
1, x : A, Γ′′

1 ⊢ t1 : B1 → B2
Γ2 ⊢ t2 : B1

(Γ′
1, x : A, Γ′′

1 ) + Γ2 ⊢ t1 t2 : B2
(APP)

Now, we compare the typing contexts between the lemma and the above con-
clusion as follows:

(Γ, x : A, Γ′) = (Γ1 + Γ2)

= (Γ′
1, x : A, Γ′′

1 ) + Γ2 (∵ Γ1 = (Γ′
1, x : A, Γ′′

1 ))
= (Γ′

1 + Γ2|Γ′
1
), x : A, (Γ′′

1 + Γ2|Γ′
1
) (∵ A.2.3 (1))
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By the commutativity of ",", we can take Γ and Γ′ arbitrarily so that they satisfy
the above equation. So here we know Γ = (Γ′

1 + Γ2|Γ′
1
) and Γ′ = (Γ′′

1 + Γ2|Γ′
1
).

We then apply the induction hypothesis to each of the two premises and reap-
ply (APP) as follows:

Γ′
1 + ∆ + Γ′′

1 ⊢ [t′/x]t1 : B1 → B2
Γ2 ⊢ t2 : B1

(Γ′
1 + ∆ + Γ′′

1 ) + Γ2 ⊢ ([t′/x]t1) t2 : B2
(APP)

Since ([t′/x]t1) t2 = [t′/x](t1 t2) if x /∈ FV(t2), the conclusion of the above
derivation is equivalent to the conclusion of the lemma except for the typing
contexts.

Finally, we must show that (Γ + ∆ + Γ′) = ((Γ1 + ∆ + Γ′′
1 ) + Γ2). This holds

from the following reasoning:

(Γ + ∆ + Γ′) = (Γ′
1 + Γ2|Γ′

1
) + ∆ + (Γ′′

1 + Γ2|Γ′
1
)

(∵ Γ = (Γ′
1 + Γ2|Γ′

1
) and Γ′ = (Γ′′

1 + Γ2|Γ′
1
))

= Γ′
1 + Γ2|Γ′

1
+ ∆ + Γ′′

1 + Γ2|Γ′
1

(∵ + associativity)

= Γ′
1 + ∆ + Γ′′

1 + Γ2|Γ′
1
+ Γ2|Γ′

1
(∵ + commutativity)

= (Γ′
1 + ∆ + Γ′′

1 ) + (Γ2|Γ′
1
+ Γ2|Γ′

1
) (∵ + associativity)

= (Γ′
1 + ∆ + Γ′′

1 ) + Γ2 (∵ A.2.2)

Thus, we obtain the conclusion of the lemma.

• Suppose (x : A) /∈ Γ1 and (x : A) ∈ Γ2
Let Γ′

2 and Γ′′
2 be typing contexts such that they satisfy Γ2 = (Γ′

2, x : A, Γ′′
2 ). The

last typing derivation of (APP) is rewritten as follows.

Γ1 ⊢ t1 : B1 → B2
Γ′

2, x : A, Γ′′
2 ⊢ t2 : B1

Γ1 + (Γ′
2, x : A, Γ′′

2 ) ⊢ t1 t2 : B2
(APP)

This case is similar to the case (x : A) ∈ Γ1, but using A.2.3 (2) instead of A.2.3
(1).

Case.
∅ ⊢ n : Int

(INT)

In this case, the above typing context is empty (= ∅), so this case holds trivially.

Case.
Γ1, x : A, Γ2 ⊢ t : B

(Γ1, x : A, Γ2) + [∆′]0 ⊢ t : B
(WEAK)

In this case, the linear assumption x : A is not contained in versioned context [∆′]0.
We then compare the typing contexts between the conclusion of the lemma and that
of (WEAK) as follows:

(Γ, x : A, Γ′) = (Γ1, x : A, Γ2) + [∆′]0

= (Γ1 + ([∆′]0)|Γ1
), x : A, (Γ2 + ([∆′]0)|Γ1

) (∵ A.2.3 (1))
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By the commutativity of ",", we can take Γ and Γ′ arbitrarily so that they satisfy the
above equation. So here we obtain Γ = Γ1 + ([∆′]0)|Γ1

and Γ′ = Γ2 + ([∆′]0)|Γ1
. We

then apply the induction hypothesis to each of the premise and reapply (WEAK) as
follows:

Γ1 + ∆ + Γ2 ⊢ [t′/x]t : B
(Γ1 + ∆ + Γ2) + [∆′]0 ⊢ [t′/x]t : B

(WEAK)

Since ([t′/x]t1) ([t′/x]t2) = [t′/x](t1 t2), the conclusion of the above derivation is
equivalent to the conclusion of the lemma except for typing contexts.

Finally, we must show that (Γ1 + ∆ + Γ2) + [∆′]0 = Γ + ∆ + Γ′. This holds from
the following reasoning:

(Γ + ∆ + Γ′) = (Γ1 + ([∆′]0)|Γ1
) + ∆ + (Γ2 + ([∆′]0)|Γ1

)

(∵ Γ = Γ1 + ([∆′]0)|Γ1
and Γ′ = Γ2 + ([∆′]0)|Γ1

)

= Γ1 + ([∆′]0)|Γ1
+ ∆ + Γ2 + ([∆′]0)|Γ1

(∵ + associativity)

= Γ1 + ∆ + Γ2 + ([∆′]0)|Γ1
+ ([∆′]0)|Γ1

(∵ + commutativity)

= (Γ1 + ∆ + Γ2) + (([∆′]0)|Γ1
+ ([∆′]0)|Γ1

) (∵ + associativity)

= (Γ1 + ∆ + Γ2) + [∆′]0 (∵ A.2.2)

Thus, we obtain the conclusion of the lemma.

Case.
Γ, x : A, Γ′′, y : B1 ⊢ t : B2

Γ, x : A, Γ′′, y : [B1]1 ⊢ t : B2
(DER)

In this case, a linear assumption x : A cannot be a versioned assumption y : [B1]1.
Applying the induction hypothesis to the premise, we obtain the following:

Γ + ∆ + (Γ′′, y : B1) ⊢ [t′/x]t : B2

Note that Γ + ∆ + (Γ′′, y : B1) = (Γ + ∆ + Γ′′), y : B1 holds because y : B1 is a
linear assumption and is disjoint with Γ, ∆, and Γ′′. Thus, the above judgement is
equivalent to the following:

(Γ + ∆ + Γ′′), y : B1 ⊢ [t′/x]t : B2

We then reapply (DER) to obtain the following:

(Γ + ∆ + Γ′′), y : B1 ⊢ [t′/x]t : B2

(Γ + ∆ + Γ′′), y : [B1]1 ⊢ [t′/x]t : B2
(DER)

Finally, since y : [B1]1 is disjoint with Γ + ∆ + Γ′′, ((Γ + ∆ + Γ′′), y : [B1]1) = Γ + ∆ +
(Γ′′, y : [B1]1) holds. Thus, the conclusion of the above derivation is equivalent to
the following:

Γ + ∆ + (Γ′′, y : [B1]1) ⊢ [t′/x]t : B2

Thus, we obtain the conclusion of the lemma.

Case.
[Γ] ⊢ t : B

r · [Γ] ⊢ [t] : 2rB
(PR)
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This case holds trivially, because the typing context [Γ] contains only versioned as-
sumptions and does not contain any linear assumptions.

Case.
[Γi] ⊢ ti : A⋃

i({li} · [Γi]) ⊢ {l = t|li} : 2l A
(VER)

This case holds trivially, because the typing context of the conclusion contains only
versioned assumptions (by [Γi] in the premise) and does not contain any linear as-
sumptions.

Case.
[Γi] ⊢ ti : A⋃

i({li} · [Γi]) ⊢ ⟨l = t | li⟩ : A
(VERI)

This case holds trivially, because the typing context of the conclusion contains only
versioned assumptions (by [Γi] in the premise) and does not contain any linear as-
sumptions.

Case.
Γ ⊢ t : 2r A l ∈ r

Γ ⊢ t.l : A
(EXTR)

In this case, we apply the induction hypothesis to the premise and then reapply
(EXTR), we obtain the conclusion of the lemma.

Case.
Γ, y : [B′]r, Γ′ ⊢ t : B r ⊑ s

Γ, y : [B′]s, Γ′ ⊢ t : B
(SUB)

In this case, a linear assumption x : A cannot be a versioned assumption y : [B1]s,
and only one of (x : A) ∈ Γ or (x : A) ∈ Γ′ holds. In either case, applying the
induction hypothesis to the premise and reappling (SUB), we obtain the conclusion
of the lemma.
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Lemma 4.7.2. [Well-typed versioned substitution]

[∆] ⊢ t′ : A
Γ, x : [A]r, Γ′ ⊢ t : B

}
=⇒ Γ + r · ∆ + Γ′ ⊢ [t′/x]t : B

Proof. This proof is given by induction on structure of Γ, x : [A]r, Γ′ ⊢ t : B (as-
sumption 2). Consider the cases for the last rule used in the typing derivation of
assumption 2.

Case.
y : B ⊢ y : B

(VAR)

In this case, x : [A]r is a versioned assumption and y : B is a linear assumption, so
x ̸= y holds, and yet the typing context besides y : B is empty. Thus, there are no
versioned variables to be substituted, so this case holds trivially.

Case.
Γ, x : [A]r, Γ′, y : B1 ⊢ t : B2

Γ, x : [A]r, Γ′ ⊢ λy.t : B1 → B2
(ABS)

In this case, we know the following by applying induction hypothesis to the partial
derivation of (ABS):

Γ + r · ∆ + (Γ′, y : B1) ⊢ [t′/x]t : B2

where y : B1 is disjoint with Γ, ∆, and Γ′. Thus, Γ + r · ∆ + (Γ′, y : B1) = (Γ +
r · ∆ + Γ′), y : B1 from lemma A.2.3 (2), the typing derivation above is equal to the
following:

(Γ + r · ∆ + Γ′), y : B1 ⊢ [t′/x]t : B2

We then reapply (ABS) to obtain the following:

(Γ + r · ∆ + Γ′), y : B1 ⊢ [t′/x]t : B2

Γ + r · ∆ + Γ′ ⊢ λy.[t′/x]t : B1 → B2
(ABS)

Since λy.[t′/x]t = [t′/x](λy.t) from the definition of substitution, we obtain the con-
clusion of the lemma.

Case.
Γ1 ⊢ t1 : B1 → B2

Γ2 ⊢ t2 : B1

Γ1 + Γ2 ⊢ t1 t2 : B2
(APP)

In this case, we know the following:

• t = t1 t2

• B = B2

• (Γ, x : [A]r, Γ′) = (Γ1 + Γ2)

Now focusing on the third equation, since the definition of the context addition +,
the linear assumption x : A is contained in either or both of the typing context Γ1 or
Γ2.
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• Suppose (x : [A]r) ∈ Γ1 and x /∈ dom(Γ2)
Let Γ′

1 and Γ′′
1 be typing contexts such that they satisfy Γ1 = (Γ′

1, x : [A]r, Γ′′
1 ).

The last derivation of (APP) is rewritten as follows:

Γ′
1, x : [A]r, Γ′′

1 ⊢ t1 : B1 → B2
Γ2 ⊢ t2 : B1

(Γ′
1, x : [A]r, Γ′′

1 ) + Γ2 ⊢ t1 t2 : B2
(APP)

We compare the typing contexts between the conclusion of the lemma and that
of the above derivation to obtain the following:

(Γ, x : [A]r, Γ′) = (Γ′
1, x : [A]r, Γ′′

1 ) + Γ2

= (Γ′
1 + Γ2|Γ′

1
), x : [A]r, (Γ′′

1 + Γ2|Γ′
1
) (∵ A.2.3 (1))

By the commutativity of ",", we can take Γ and Γ′ arbitrarily so that they satisfy
the above equation. So here we know Γ = (Γ′

1 + Γ2|Γ′
1
) and Γ′ = (Γ′′

1 + Γ2|Γ′
1
).

We then apply the induction hypothesis to each of the two premises of the last
derivation and reapply (APP) as follows:

Γ′
1 + r · ∆ + Γ′′

1 ⊢ [t′/x]t1 : B1 → B2
Γ2 ⊢ [t′/x]t2 : B1

(Γ′
1 + r · ∆ + Γ′′

1 ) + Γ2 ⊢ ([t′/x]t1) ([t′/x]t2) : B2
(APP)

Since ([t′/x]t1) ([t′/x]t2) = [t′/x](t1 t2), the conclusion of the above derivation
is equivalent to the conclusion of the lemma except for the typing contexts.
Finally, we must show that (Γ + r · ∆ + Γ′) = ((Γ1 + r · ∆ + Γ′′

1 ) + Γ2). This
holds from the following reasoning:

(Γ + r · ∆ + Γ′) = (Γ′
1 + Γ2|Γ′

1
) + r · ∆ + (Γ′′

1 + Γ2|Γ′
1
)

(∵ Γ = (Γ′
1 + Γ2|Γ′

1
) & Γ′ = (Γ′′

1 + Γ2|Γ′
1
))

= Γ′
1 + Γ2|Γ′

1
+ r · ∆ + Γ′′

1 + Γ2|Γ′
1

(∵ + associativity)

= Γ′
1 + r · ∆ + Γ′′

1 + Γ2|Γ′
1
+ Γ2|Γ′

1
(∵ + commutativity)

= (Γ′
1 + r · ∆ + Γ′′

1 ) + (Γ2|Γ′
1
+ Γ2|Γ′

1
) (∵ + associativity)

= (Γ′
1 + r · ∆ + Γ′′

1 ) + Γ2 (∵ A.2.2)

Thus, we obtain the conclusion of the lemma.

• Suppose x /∈ dom(Γ1) and (x : [A]r) ∈ Γ2
Let Γ′

2 and Γ′′
2 be typing contexts such that they satisfy Γ2 = (Γ′

2, x : [A]r, Γ′′
2 ).

The last typing derivation of (APP) is rewritten as follows:

Γ1 ⊢ t1 : B1 → B2
Γ′

2, x : [A]r, Γ′′
2 ⊢ t2 : B1

Γ1 + (Γ′
2, x : [A]r, Γ′′

2 ) ⊢ t1 t2 : B2
(APP)

This case is similar to the case (x : [A]r) ∈ Γ1 and x /∈ dom(Γ2), but using A.2.3
(2) instead of A.2.3 (1).
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• Suppose (x : [A]r1) ∈ Γ1 and (x : [A]r2) ∈ Γ2 where r = r1 ⊕ r2.
Let Γ′

1, Γ′′
1 , Γ′

2, and Γ′′
2 be typing contexts such that they satisfy Γ1 = (Γ′

1, x :
[A]r1 , Γ′′

1 ) and Γ2 = (Γ′
2, x : [A]r2 , Γ′′

2 ). The last derivation of (APP) is rewritten
as follows:

Γ′
1, x : [A]r1 , Γ′′

1 ⊢ t1 : B1 → B2
Γ′

2, x : [A]r2 , Γ′′
2 ⊢ t2 : B1

(Γ′
1, x : [A]r1 , Γ′′

1 ) + (Γ′
2, x : [A]r2 , Γ′′

2 ) ⊢ t1 t2 : B2
(APP)

Now, we compare the typing contexts between the lemma and the above con-
clusion as follows:

(Γ, x : [A]r, Γ′) = (Γ′
1, x : [A]r1 , Γ′′

1 ) + (Γ′
2, x : [A]r2 , Γ′′

2 )

= (Γ′
1, Γ′′

1 , x : [A]r1) + (Γ′
2, Γ′′

2 , x : [A]r2) (∵ , commutativity)
= ((Γ′

1, Γ′′
1 ) + (Γ′

2, Γ′′
2 )), x : [A]r1⊕r2 (∵ + definiton)

= ((Γ′
1 + Γ′

2|Γ′
1
+ Γ′′

2 |Γ′
1
), (Γ′′

1 + Γ′
2|Γ′

1
+ Γ′′

2 |Γ′
1
)), x : [A]r1⊕r2

(∵ A.2.3 (3))

= (Γ′
1 + Γ′

2|Γ′
1
+ Γ′′

2 |Γ′
1
), (Γ′′

1 + Γ′
2|Γ′

1
+ Γ′′

2 |Γ′
1
), x : [A]r1⊕r2

(∵ , associativity)

= (Γ′
1 + Γ′

2|Γ′
1
+ Γ′′

2 |Γ′
1
), x : [A]r1⊕r2 , (Γ′′

1 + Γ′
2|Γ′

1
+ Γ′′

2 |Γ′
1
)

(∵ , commutativity)

By the commutativity of ",", we can take Γ and Γ′ arbitrarily so that they satisfy
the above equation. So here we know Γ = (Γ′

1 + Γ′
2|Γ′

1
+ Γ′′

2 |Γ′
1
) and Γ′ = (Γ′′

1 +

Γ′
2|Γ′

1
+ Γ′′

2 |Γ′
1
).

We then apply the induction hypothesis to each of the two premises of the last
derivation and reapply (APP) as follows:

Γ′
1 + r1 · ∆ + Γ′′

1 ⊢ [t′/x]t1 : B1 → B2
Γ′

2 + r2 · ∆ + Γ′′
2 ⊢ [t′/x]t2 : B1

(Γ′
1 + r1 · ∆ + Γ′′

1 ) + (Γ′
2 + r2 · ∆ + Γ′′

2 ) ⊢ ([t′/x]t1) ([t′/x]t2) : B2
(APP)

Since ([t′/x]t1) ([t′/x]t2) = [t′/x](t1 t2), the conclusion of the above derivation
is equivalent to the conclusion of the lemma except for the typing contexts.
Finally, we must show that Γ + r · ∆ + Γ′ = (Γ′

1 + r1 · ∆ + Γ′′
1 ) + (Γ′

2 + r2 · ∆ +
Γ′′

2 ).

(Γ + r · ∆ + Γ′) = (Γ′
1 + Γ′

2|Γ′
1
+ Γ′′

2 |Γ′
1
) + (r1 ⊕ r2) · ∆ + (Γ′′

1 + Γ′
2|Γ′

1
+ Γ′′

2 |Γ′
1
)

(∵ r = r1 ⊕ r2 & Γ = (Γ′
1 + Γ′

2|Γ′
1
+ Γ′′

2 |Γ′
1
) & Γ′ = (Γ′′

1 + Γ′
2|Γ′

1
+ Γ′′

2 |Γ′
1
))

= Γ′
1 + (r1 ⊕ r2) · ∆ + Γ′′

1 + (Γ′
2|Γ′

1
+ Γ′

2|Γ′
1
) + (Γ′′

2 |Γ′
1
+ Γ′′

2 |Γ′
1
)

(∵ + associativity & commutativity)

= Γ′
1 + (r1 ⊕ r2) · ∆ + Γ′′

1 + Γ′
2 + Γ′′

2 (∵ A.2.2)
= Γ′

1 + r1 · ∆ + r2 · ∆ + Γ′′
1 + Γ′

2 + Γ′′
2 (∵ A.2.5)

= (Γ′
1 + r1 · ∆ + Γ′′

1 ) + (Γ′
2 + r2 · ∆ + Γ′′

2 )
(∵ + associativity and commutativity)

Thus, we obtain the conclusion of the lemma.
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Case.
∅ ⊢ n : Int

(INT)

This case holds trivially because the typing context of (INT) is empty (= ∅).

Case.
Γ′′ ⊢ t : B

Γ′′ + [∆′]0 ⊢ t : B
(WEAK)

In this case, we know (Γ, x : [A]r, Γ′) = Γ′′ + [∆′]0. There are two cases where the
versioned assumption x : [A]r is contained in [∆′]0 and not included.

• Suppose (x : [A]r) ∈ [∆′]0
We know r = 0. Let ∆1 and ∆2 be typing context such that ∆′ = (∆1, x :
[A]0, ∆2). The last derivation is rewritten as follows:

Γ′′ ⊢ t : B
Γ′′ + [∆1, x : [A]0, ∆2]0 ⊢ t : B

(WEAK)

We compare the typing contexts between the conclusion of the lemma and that
of the above derivation to obtain the following:

(Γ, x : [A]0, Γ′) = Γ′′ + [∆1, x : [A]0, ∆2]0 (∵ ∆′ = (∆1, x : [A]0, ∆2))
= Γ′′ + ([∆1]0, x : [A]0, [∆2]0) (∵ definiton of [Γ]0)
= (Γ′′

|[∆2]0 + [∆1]0), x : [A]0, (Γ′′
|[∆2]0

+ [∆2]0) (∵ A.2.3 (2))

By the commutativity of ",", we can take Γ and Γ′ arbitrarily so that they satisfy
the above equation. So here we know Γ = (Γ′′

|[∆2]0 + [∆1]0) and Γ′ = (Γ′′
|[∆2]0

+

[∆2]0).

We then apply the induction hypothesis to the premise of the last derivation
and reapply (WEAK) as follows:

Γ′′ ⊢ [t′/x]t : B
Γ′′ + [∆1 + ∆ + ∆2]0 ⊢ [t′/x]t : B

(WEAK)

where we choose ∆1 + ∆ + ∆2 as the newly added typing context. Since x is
unused by t, thus note that [t′/x]t = t, the conclusion of the above derivation
is equivalent to the conclusion of the lemma except for typing contexts.

Finally, we must show that (Γ + r · ∆ + Γ′) = Γ′′ + [∆1 + ∆ + ∆2]0.

(Γ + r · ∆ + Γ′) = (Γ′′
|[∆2]0 + [∆1]0) + [∆]0 + (Γ′′

|[∆2]0
+ [∆2]0)

(∵ r = 0 & Γ = (Γ′′
|[∆2]0 + [∆1]0) & Γ′ = (Γ′′

|[∆2]0
+ [∆2]0))

= (Γ′′
|[∆2]0 + Γ′′

|[∆2]0
) + ([∆1]0 + [∆]0 + [∆2]0)

(∵ + associativity and commutativity)

= Γ′′ + ([∆1]0 + [∆]0 + [∆2]0) (∵ A.2.2)
= Γ′′ + [∆1 + ∆ + ∆2]0 (∵ definition of [Γ]0)

Thus, we obtain the conclusion of the lemma.
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• Suppose (x : [A]r) /∈ [∆′]0
Let Γ1 and Γ2 be typing context such that Γ′′ = (Γ1, x : [A]r, Γ2). The last typing
derivation of (WEAK) is rewritten as follows:

(Γ1, x : [A]r, Γ2) ⊢ t : B
(Γ1, x : [A]r, Γ2) + [∆′]0 ⊢ t : B

(WEAK)

We then compare the typing context between the conclusion of the lemma and
that of the that of above derivation as follows:

(Γ, x : [A]r, Γ′) = (Γ1, x : [A]r, Γ2) + [∆′]0

= (Γ1 + ([∆′]0)|Γ1
), x : [A]r, (Γ2 + ([∆′]0)|Γ1

) (∵ A.2.3 (1))

By the commutativity of ",", we can take Γ and Γ′ arbitrarily so that they satisfy
the above equation. So here we know Γ = (Γ1 + ([∆′]0)|Γ1

) and Γ′ = (Γ2 +
([∆′]0)|Γ1

). We then apply the induction hypothesis to the premise of the last
derivation and reapply (WEAK) as follows:

Γ1 + r · ∆ + Γ2 ⊢ [t′/x]t : B
(Γ1 + r · ∆ + Γ2) + [∆′]0 ⊢ [t′/x]t : B

(WEAK)

The conclusion of the above derivation is equivalent to the conclusion of the
lemma except for the typing contexts. Finally, we must show that (Γ + r · ∆ +
Γ′) = (Γ1 + r · ∆ + Γ2) + [∆′]0.

(Γ + r · ∆ + Γ′) = (Γ1 + ([∆′]0)|Γ1
) + r · ∆ + (Γ2 + ([∆′]0)|Γ1

)

(∵ Γ = (Γ1 + ([∆′]0)|Γ1
) & Γ′ = (Γ2 + ([∆′]0)|Γ1

))

= (Γ1 + r · ∆ + Γ2) + ([∆′]0|Γ1
+ [∆′]0|Γ1

)

(∵ + associativity and commutativity)

= (Γ1 + r · ∆ + Γ2) + [∆′]0 (∵ A.2.2)

Thus, we obtain the conclusion of the lemma.

Case.
Γ′′, y : B1 ⊢ t : B2

Γ′′, y : [B1]1 ⊢ t : B2
(DER)

In this case, we know (Γ′′, y : [B1]1) = (Γ, x : [A]r, Γ′). There are two cases in which
the versioned assumption x : [A]r is equivalent to y : [B1]1 and not equivalent to.

• Suppose x : [A]r = y : [B1]1
We know x = y, A = B1, r = 1, Γ = Γ′′, and Γ′ = ∅. The last derivation is
rewritten as follows:

Γ′′, x : A ⊢ t : B2

Γ′′, x : [A]1 ⊢ t : B2
(DER)

We then apply Lemma 4.7.1 to the premise to obtain the following:

Γ′′ + ∆ ⊢ [t′/x]t : B2

Note that ∆ is a versioned assumption by the assumption 1 and thus Γ′′ + ∆ =
Γ′′ + r · ∆ where r = 1, we obtain the conclusion of the lemma.
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• Suppose x : [A]r ̸= y : [B1]1
Let Γ1 and Γ2 be typing contexts such that Γ′′ = (Γ1, x : [A]r, Γ′

1). The last
derivation is rewritten as follows:

(Γ1, x : [A]r, Γ′
1), y : B1 ⊢ t : B2

(Γ1, x : [A]r, Γ′
1), y : [B1]1 ⊢ t : B2

(DER)

We then apply the induction hypothesis to the premise of the last derivation
and reapply (DER) to obtain the following:

(Γ + r · ∆ + Γ′′), y : B1 ⊢ [t′/x]t : B2

(Γ + r · ∆ + Γ′′), y : [B1]1 ⊢ [t′/x]t : B2
(DER)

Since y : [B1]1 is desjoint with Γ + r · ∆ + Γ′′ and thus ((Γ + r · ∆ + Γ′′), y :
[B1]1) = Γ + r · ∆ + (Γ′′, y : [B1]1), we obtain the conclusion of the lemma.

Case.
[Γ1] ⊢ t : B

r′ · [Γ1] ⊢ [t] : 2r′B
(PR)

Let r′′ be a version resouce and Γ′
1 and Γ′′

1 be typing contexts such that r′′ ⊑ r′ and
[Γ1] = [Γ′

1, x : [A]r′′ , Γ′′
1 ]. The last derivation is rewritten as follows:

[Γ′
1, x : [A]r′′ , Γ′′

1 ] ⊢ t : B
r′ · [Γ′

1, x : [A]r′′ , Γ′′
1 ] ⊢ [t] : 2r′B

(PR)

We then compare the conclusion of the lemma and the above conclusion.

(Γ, x : [A]r, Γ′) = r′ · [Γ1]

= r′ · [Γ′
1, x : [A]r′′ , Γ′′

1 ] (∵ [Γ1] = [Γ′
1, x : [A]r′′ , Γ′′

1 ])
= r′ · [Γ′

1], x : [A]r′′⊗r′ , r′ · [Γ′′
1 ] (∵ · definition)

= r′ · [Γ′
1], x : [A]r′ , r′ · [Γ′′

1 ] (∵ r′′ ⊑ r′)

By the commutativity of ",", we can take Γ and Γ′ arbitrarily so that they satisfy the
above equation. So here we know Γ = (r′ · [Γ′

1]) and Γ′ = (r′ · [Γ′′
1 ]).

We then apply the induction hypothesis to the premise of the last derivation and
reapply (PR) to obtain the following:

[Γ′
1 + r′′ · ∆ + Γ′′

1 ] ⊢ [t′/x]t : B
r′ · [Γ′

1 + r′′ · ∆ + Γ′′
1 ] ⊢ [[t′/x]t] : 2r′B

(PR)

where we use [Γ′
1, x : [A]r′′ , Γ′′

1 ] = [Γ′
1], x : [A]r′′ , [Γ′′

1 ] and [Γ′
1 + r′′ · ∆ + Γ′′

1 ] = [Γ′
1] +

r′′ · ∆ + [Γ′′
1 ] before applying (PR).

Since [[t′/x]t] = [t′/x][t] by the definiton of substitution, the above conclusion is
equivalent to the conclusion of the lemma except for the typing contexts. Finally, we
must show that (Γ + r′ · ∆ + Γ′) = r′ · [Γ′

1 + r′′ · ∆ + Γ′′
1 ] by the following reasoning:

(Γ + r′ · ∆ + Γ′) = r′ · [Γ′
1] + r′ · ∆ + r′ · [Γ′

1] (∵ Γ = (r′ · [Γ′
1]) & Γ′ = (r′ · [Γ′′

1 ]))
= r′ · [Γ′

1] + (r′ ⊗ r′′) · ∆ + r′ · [Γ′
1] (∵ r′′ ⊑ r′)

= r′ · [Γ′
1] + r′ · (r′′ · ∆) + r′ · [Γ′

1] (∵ ⊗ associativity)
= r′ · [Γ′

1 + r′′ · ∆ + Γ′
1] (∵ · distributive law over +)

Thus, we obtain the conclusion of the lemma.
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Case.
[Γi] ⊢ ti : B⋃

i({li} · [Γi]) ⊢ {l = t | li} : 2{l}B
(VER)

We compare the typing contexts between the lemma and the above conclusion as
follows:

(Γ, x : [A]r, Γ′) =
⋃

i

({li} · [Γi])

=
⋃

i∈Ix

(
{li} · [Γ′

i, x : [A]ri , Γ′′
i ]
)
+
⋃

i∈Jx

(
{li} · [Γ′

i, Γ′′
i ]
)

(∵ Ix = {i | x ∈ dom(Γi)} and Jx = {i | x /∈ dom(Γi)})

We then reorganise the typing context
⋃

i∈Ix ({li} · [Γ′
i, x : [A]ri , Γ′′

i ]) as follows:⋃
i∈Ix

(
{li} · [Γ′

i, x : [A]ri , Γ′′
i ]
)

=
⋃

i∈Ix

(
{li} · [x : [A]ri , Γ′

i, Γ′′
i ]
)

(∵ , associativity)

=
⋃

i∈Ix

(
{li} · (x : [A]ri), {li} · [Γ′

i], {li} · [Γ′′
i ]
)

(∵ · distributive law)

=
⋃

i∈Ix

({li} · (x : [A]ri)) ,
⋃

i∈Ix

(
{li} · [Γ′

i], {li} · [Γ′′
i ]
)

(∵ Sum of each disjoint sub context)

=
⋃

i∈Ix

(
x : [A]{li}⊗ri

)
,
⋃

i∈Ix

(
{li} · [Γ′

i], {li} · [Γ′′
i ]
)

(∵ · definition)

= x : [A]∑i∈Ix{li}⊗ri
,
⋃

i∈Ix

(
{li} · [Γ′

i], {li} · [Γ′′
i ]
)

(∵
⋃

and + definition)

Thus, we obtain the following:

(Γ, x : [A]r, Γ′)

=

(
x : [A]∑i∈Ix{li}⊗ri

,
⋃

i∈Ix

(
{li} · [Γ′

i], {li} · [Γ′′
i ]
))

+
⋃

i∈Jx

(
{li} · [Γ′

i, Γ′′
i ]
)

= x : [A]∑i∈Ix{li}⊗ri
,
⋃

i

(
{li} · [Γ′

i], {li} · [Γ′′
i ]
)

(∵
⋃

i∈Jx ({li} · [Γ′
i, Γ′′

i ]) are disjoint with x : [A]∑i∈Ix{li}⊗ri
)

Therefore, by A.2.4, there exists typing contexts Γ′
i

and Γ′′
i

such that:

Γ′
i, Γ′′

i =
⋃

i

(
{li} · [Γ′

i], {li} · [Γ′′
i ]
)

Γ′
i + Γ′′

i =
⋃

i

(
{li} · [Γ′

i] + {li} · [Γ′′
i ]
)

Thus, we obtain the following:

(Γ, x : [A]r, Γ′) = x : [A]∑i∈Ix{li}⊗ri
, Γ′

i, Γ′′
i

= Γ′
i, x : [A]∑i∈Ix{li}⊗ri

, Γ′′
i (∵ , commutativity)
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By the commutativity of ",", we can take Γ and Γ′ arbitrarily so that they satisfy the
above equation. So here we know Γ = Γ′

i
, Γ′ = Γ′′

i
, and r = ∑i∈Ix

({li} ⊗ ri). We
then apply the induction hypothesis to the premise whose typing context contains
x. Here, we define a typing context ∆i as follows:

∆i =

{
∆ (i ∈ Ix)

∅ (i ∈ Jx)

By using ∆i, we reapply (VER) as follows:

[Γ′
i + ri · ∆i + Γ′′

i ] ⊢ [t′/x]ti : B⋃
i({li} · [Γ′

i + ri · ∆i + Γ′′
i ]) ⊢ {l = [t′/x]t | li} : 2{l}B

(VER)

Since {li = [t′/x]ti | lk} = [t′/x]{li = ti | lk} by the definition of substitution, the
above conclusion is equivalent to the conclusion of the lemma except for typing
contexts. Finally, we must show that (Γ + r · ∆ + Γ′) =

⋃
i({li} · [Γ′

i + ri · ∆i + Γ′′
i ]).

(Γ + r · ∆ + Γ′) = Γ′
i + r · ∆ + Γ′′

i (∵ Γ = Γ′
i

& Γ′ = Γ′′
i
)

= r · ∆ + (Γ′
i + Γ′′

i ) (+ associativity & commutativity)

= r · ∆ +
⋃

i

(
{li} · [Γ′

i] + {li} · [Γ′′
i ]
)

(∵ Γ′
i
+ Γ′′

i
=
⋃

i ({li} · [Γ′
i] + {li} · [Γ′′

i ]))

= (∑
i∈Ix

({li} ⊗ ri)) · ∆ +
⋃

i

(
{li} · [Γ′

i] + {li} · [Γ′′
i ]
)

(∵ r = ∑i∈Ix
({li} ⊗ ri))

=
⋃

i∈Ix

({li} · (ri · ∆)) +
⋃

i

(
{li} · [Γ′

i] + {li} · [Γ′′
i ]
)

(∵
⋃

definition)

=
⋃

i

({li} · (ri · ∆i)) +
⋃

i

(
{li} · [Γ′

i] + {li} · [Γ′′
i ]
)

(∵ ∆i definition)

=
⋃

i

(
{li} · (ri · ∆i) + {li} · [Γ′

i] + {li} · [Γ′′
i ]
)

(∵ + commutativity & associativity)

=
⋃

i

(
{li} ·

(
(ri · ∆i) + [Γ′

i] + [Γ′′
i ]
))

(∵ districutive law)

=
⋃

i

(
{li} ·

(
[Γ′

i] + (ri · ∆i) + [Γ′′
i ]
))

(∵ + commutativity)

=
⋃

i

(
{li} · [Γ′

i + ri · ∆i + Γ′′
i ]
)

(∵ [·] definition)

Thus, we obtain the conclusion of the lemma.

Case.
[Γi] ⊢ ti : B⋃

i({li} · [Γi]) ⊢ ⟨l = t|li⟩ : B
(VERI)

This case is similar to the case of (VER).

Case.
Γ ⊢ t : 2r A l ∈ r

Γ ⊢ t.l : A
(EXTR)
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In this case, we apply the induction hypothesis to the premise and then reapply
(EXTR), we obtain the conclusion of the lemma.

Case.
Γ1, y : [B′]r1 , Γ2 ⊢ t : B r1 ⊑ r2

Γ1, y : [B′]r2 , Γ2 ⊢ t : B
(SUB)

In this case, we know (Γ, x : [A]r, Γ′) = (Γ, y : [B′]r2 , Γ′). There are three cases
where the versioned assumption x : [A]r is included in Γ1, included in Γ2, or equal
to y : [B′]r2 .

• Suppose (x : [A]r) ∈ Γ1.
Let Γ′

1 and Γ′′
1 be typing contexts such that Γ1 = (Γ′

1, x : [A]r, Γ′′
1 ). The last

derivation is rewritten as follows:

Γ′
1, x : [A]r, Γ′′

1 , y : [B′]r1 , Γ2 ⊢ t : B r1 ⊑ r2

Γ′
1, x : [A]r, Γ′′

1 , y : [B′]r2 , Γ2 ⊢ t : B
(SUB)

We then apply the induction hypothesis to the premise of the last derivation to
obtain the following:

Γ′
1 + r · ∆ + (Γ′′

1 , y : [B′]r1 , Γ2) ⊢ [t′/x]t : B (A.1)

The typing context of the above conclusion can be transformed as follows:

Γ′
1 + r · ∆ + (Γ′′

1 , y : [B′]r1 , Γ2)

= (Γ′
1 + (r · ∆)|Γ′

1
), (r · ∆)|(Γ′

1,(Γ′′
1 ,y:[B′]r1 ,Γ2))

,(
(Γ′′

1 , y : [B′]r1 , Γ2) + (r · ∆)|(Γ′′
1 ,y:[B′]r1 ,Γ2)

)
(∵ A.2.6)

= (Γ′
1 + (r · ∆)|Γ′

1
), (r · ∆)|(Γ′

1,(Γ′′
1 ,y:[B′]r1 ,Γ2))

,(
(Γ′′

1 , y : [B′]r1 , Γ2) +
(
(r · ∆)|Γ′′

1
, (r · ∆)|(y:[B′]r1 )

, (r · ∆)|Γ2
)
))

(∵ A.2.1)

= (Γ′
1 + (r · ∆)|Γ′

1
), (r · ∆)|(Γ′

1,(Γ′′
1 ,y:[B′]r1 ,Γ2))

,(
Γ′′

1 + (r · ∆)|Γ′′
1

)
,
(

y : [B′]r1 + (r · ∆)|(y:[B′]r1 )

)
,
(
Γ2 + (r · ∆)|Γ2

)
(∵ A.2.3)

= Γ3, y : [B′]r1⊕r3 , Γ′
3

The last equational transformation holds by the following equation A.2.

Let Γ3 and Γ′
3 be typing contexts that satisfy the following:

Γ3 = (Γ′
1 + (r · ∆)|Γ′

1
), (r · ∆)|(Γ′

1,(Γ′′
1 ,y:[B′]r1 ,Γ2))

,
(

Γ′′
1 + (r · ∆)|Γ′′

1

)
Γ′

3 =
(
Γ2 + (r · ∆)|Γ2

)
For (r · ∆)|(y:[B′]r1 )

, Let r3 and r′3 be typing contexts such that r3 = r ⊗ r′3 and
stisfy the following:

(r · ∆)|(y:[B′]r1 )
=

{
r · (y : [B′]r′3) = y : [B′]r⊗r′3

= y : [B′]r3 (y ∈ dom(∆))

∅ (y /∈ dom(∆))
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Thus, we obtain the following equation.

y : [B′]r1 + (r · ∆)|(y:[B′]r1 )
=

{
y : [B′]r1⊕r3 (y ∈ dom(∆))
y : [B′]r1⊕r3 = y : [B′]r1 (y /∈ dom(∆))

(A.2)

Applying all of the above transformations and reapplying (SUB) to the expres-
sion A.1, we obtain the following:

Γ3, y : [B′]r1⊕r3 , Γ′
3 ⊢ [t′/x]t : B (r1 ⊕ r3) ⊑ (r2 ⊕ r3)

Γ3, y : [B′]r2⊕r3 , Γ′
3 ⊢ [t′/x]t : B

(SUB)

The conclusion of the above derivation is equivalent to the conclusion of the
lemma except for the typing contexts.

Finally, we must show that Γ′
1 + r ·∆+(Γ′′

1 , y : [B′]r2 , Γ2) = (Γ3, y : [B′]r2⊕r3 , Γ′
3).

Γ′
1 + r · ∆ + (Γ′′

1 , y : [B′]r2 , Γ2)

= (Γ′
1 + (r · ∆)|Γ′

1
), (r · ∆)|(Γ′

1,(Γ′′
1 ,y:[B′]r2 ,Γ2))

,(
(Γ′′

1 , y : [B′]r2 , Γ2) + (r · ∆)|(Γ′′
1 ,y:[B′]r2 ,Γ2)

)
(∵ A.2.6)

= (Γ′
1 + (r · ∆)|Γ′

1
), (r · ∆)|(Γ′

1,(Γ′′
1 ,y:[B′]r2 ,Γ2))

,(
(Γ′′

1 , y : [B′]r2 , Γ2) +
(
(r · ∆)|Γ′′

1
, (r · ∆)|(y:[B′]r2 )

, (r · ∆)|Γ2
)
))

(∵ A.2.1)

= (Γ′
1 + (r · ∆)|Γ′

1
), (r · ∆)|(Γ′

1,(Γ′′
1 ,y:[B′]r2 ,Γ2))

,(
Γ′′

1 + (r · ∆)|Γ′′
1

)
,
(

y : [B′]r2 + (r · ∆)|(y:[B′]r2 )

)
,
(
Γ2 + (r · ∆)|Γ2

)
(∵ A.2.3)

= Γ3, y : [B′]r2⊕r3 , Γ′
3

The last transformation is based on the following equation that can be derived
from the definition A.2.1.

(r · ∆)|(Γ′
1,(Γ′′

1 ,y:[B′]r1 ,Γ2))
= (r · ∆)|(Γ′

1,(Γ′′
1 ,y:[B′]r2 ,Γ2))

(r · ∆)|(y:[B′]r1 )
= (r · ∆)|(y:[B′]r2 )

Thus, we obtain the conclusion of the lemma.

• Suppose (x : [A]r) ∈ Γ2.
This case is similar to the case of (x : [A]r) ∈ Γ1.

• Suppose (x : [A]r) = y : [B′]r2 .
The last derivation is rewritten as follows:

Γ1, x : [A]r′ , Γ2 ⊢ t : B r′ ⊑ r
Γ1, x : [A]r, Γ2 ⊢ t : B

(SUB)

We apply the induction hypothesis to the premise and then reapply (SUB), we
obtain the conclusion of the lemma.
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A.4 Type Safety

Lemma A.4.1 (Inversion lemma). Let v be a value such that Γ ⊢ v : A. The followings
hold for a type A.

• A = Int =⇒ v = n for some Int constant n.

• A = 2rB =⇒ v = [t′] for some term t′, or v = {li = ti | lk} for some terms ti
and some labels li, lk ∈ r.

• A = B → B′ =⇒ v = λp.t for some pattern p and term t.

Lemma 4.7.3. [Type safety for default version overwriting @]
For any version label l:

Γ ⊢ t : A =⇒ Γ ⊢ t@l : A

Proof. The proof is given by induction on the typing derivation of Γ ⊢ t : A. Con-
sider the cases for the last rule used in the typing derivation of assumption.

Case.
∅ ⊢ n : Int

(INT)

This case holds trivially because n@l ≡ n for any labels l.

Case.
x : A ⊢ x : A

(VAR)

This case holds trivially because x@l = x for any labels l.

Case.
Γ, x : A1 ⊢ t1 : A2

Γ ⊢ λx.t1 : A1 → A2
(ABS)

By induction hypothesis, there exists a term t1@l such that:

Γ, x : A1 ⊢ t1@l : A2

We then reapply (ABS) to obtain the following:

Γ, x : A1 ⊢ t1@l : A2

Γ ⊢ λx.(t1@l) : A1 → A2
(ABS)

Thus, note that (λx.t1)@l ≡ λx.(t1@l), we obtain the conclusion of the lemma.

Case.
Γ1 ⊢ t1 : B → A

Γ2 ⊢ t2 : B
Γ1 + Γ2 ⊢ t1 t2 : A

(APP)

By induction hypothesis, there exists terms t1@l and t2@l such that:

Γ1 ⊢ t1@l : B → A
Γ2 ⊢ t2@l : B

We then reapply (APP) to obtain the following:
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Γ1 ⊢ t1@l : B → A
Γ2 ⊢ t2@l : B

Γ1 + Γ2 ⊢ (t1@l) (t2@l) : A
(APP)

Thus, note that (t1 t2)@l ≡ (t1@l) (t2@l), we obtain the conclusion of the lemma.

Case.
Γ1 ⊢ t1 : 2r A Γ2, x : [A]r ⊢ t2 : B

Γ1 + Γ2 ⊢ let [x] = t1 in t2 : B
(LET)

By induction hypothesis, there exists terms t1@l and 2@l such that:

Γ1 ⊢ t1@l : 2r A
Γ2, x : [A]r ⊢ t2@l : B

We then reapply (LET) to obtain the following:

Γ1 ⊢ t1@l : 2r A Γ2, x : [A]r ⊢ t2@l : B
Γ1 + Γ2 ⊢ let [x] = (t1@l) in (t2@l) : B

(LET)

Thus, note that (let [x] = t1 in t2)@l ≡ let [x] = (t1@l) in (t2@l), we obtain the con-
clusion of the lemma.

Case.
Γ1 ⊢ t : A

Γ1 + [∆′]0 ⊢ t : A
(WEAK)

By induction hypothesis, we know the following:

Γ1 ⊢ t@l : A

We then reapply (WEAK) to obtain the following:

Γ1 ⊢ t@l : A
Γ1 + [∆′]0 ⊢ t@l : A

(WEAK)

Thus, we obtain the conclusion of the lemma.

Case.
Γ1, x : B ⊢ t : A

Γ1, x : [B]1 ⊢ t : A
(DER)

By induction hypothesis, there exists terms t@l such that:

Γ1, x : B ⊢ t@l : A

We then reapply (WEAK) to obtain the following:

Γ1, x : B ⊢ t@l : A
Γ1, x : [B]1 ⊢ t@l : A

(DER)

Thus, we obtain the conclusion of the lemma.

Case.
[Γ] ⊢ t : B

r · [Γ] ⊢ [t] : 2rB
(PR)
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This case holds trivially because [t]@l ≡ [t] for any labels l.

Case.
[Γi] ⊢ ti : A⋃

i({li} · [Γi]) ⊢ {l = t | l′} : 2{l}A
(VER)

This case holds trivially because {l = t | l′}@l ≡ {l = t | l′} for any labels l.

Case.
[Γi] ⊢ ti : A⋃

i({li} · [Γi]) ⊢ ⟨l = t | lk⟩ : A
(VERI)

In this case, there are two possibilities for the one step evaluation of t.

• Suppose l ∈ {l}.
We can apply the default version overwriting as follows:

l ∈ {l}
⟨l = t | lk⟩@l ≡ ⟨l = t | l⟩

In this case, we can derive the type of ⟨l = t | l⟩ as follows:

[Γi] ⊢ ti : A⋃
i({li} · [Γi]) ⊢ ⟨l = t | l⟩ : A

(VERI)

Thus, we obtain the conclusion of the lemma.

• Suppose l /∈ {l}.
We can apply the default version overwriting as follows:

l /∈ {l}
⟨l = t | lk⟩@l ≡ ⟨l = t | lk⟩

This case holds trivially because ⟨l = t | lk⟩@l = ⟨l = t | lk⟩.

Case.
Γ ⊢ t1 : 2r A lk ∈ r

Γ ⊢ t1.lk : A
(EXTR)

By induction hypothesis, there exists a term t1@l such that:

Γ ⊢ t1@l : 2r A

We then reapply (EXTR) to obtain the following:

Γ ⊢ t1@l : 2r A lk ∈ r
Γ ⊢ (t1@l).lk : A

(EXTR)

Thus, note that (t1.lk)@l ≡ (t1@l).lk, we obtain the conclusion of the lemma.

Case.
Γ1, x : [B]r, Γ2 ⊢ t : A r ⊑ s

Γ1, x : [B]s, Γ2 ⊢ t : A
(SUB)
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By induction hypothesis, there exists a term t@l such that:

Γ1, x : [B]r, Γ2 ⊢ t@l : A

We then reapply (SUB) to obtain the following:

Γ1, x : [B]r, Γ2 ⊢ t@l : A r ⊑ s
Γ1, x : [B]s, Γ2 ⊢ t@l : A

(SUB)

Thus, we obtain the conclusion of the lemma.
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Lemma 4.7.4. [Type-safe extraction for versioned values]

[Γ] ⊢ v : 2r A =⇒ ∀lk ∈ r. ∃t′.

{
v.lk −→ t′ (progress)
[Γ] ⊢ t′ : A (preservation)

Proof. By inversion lemma (A.4.1), v has either a form [t′′] or {l = t | l′}.

• Suppose v = [t′′].
We can apply (E-EX1) as follows:

[t′′].lk ; t′′@lk
(E-EX1)

Also, we get the following derivation for v.

[Γ′] ⊢ t′′ : A
(PR)

r · [Γ′] ⊢ [t′′] : 2r A
(WEAK) or (SUB)... (WEAK) or (SUB)

[Γ] ⊢ [t′′] : 2r A

By 4.7.3, we know the following:

[Γ′] ⊢ t′′@lk : A

Finally, we can rearrange the typing context as follows:

[Γ′] ⊢ t′′@lk : A
(WEAK) or (SUB)... (WEAK) or (SUB)

[Γ] ⊢ t′′@lk : A

Here, we follow the same manner as for the derivation of [t′′] (which may use
(WEAK) and (SUB)) to get [Γ] from r · [Γ′].

Thus, we obtain the conclusion of the lemma.

• Suppose v = {l = t | l′}.
We can apply (E-EX2) as follows:

{l = t | l′}.lk ; tk@lk
(E-EX2)

Also, we get the following derivation for v.

[Γ′
i] ⊢ ti : A

(VER)⋃
i({li} · [Γ′

i]) ⊢ {l = t | l′} : 2{l}A
(WEAK) or (SUB)... (WEAK) or (SUB)

[Γ] ⊢ {l = t | l′} : 2{l}A
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By 4.7.3, we know the following:

[Γ′
k] ⊢ tk@lk : A

Finally, we can rearrange the typing context as follows:

[Γ′
k] ⊢ tk@lk : A rkj ⊑ rkj ⊗ {lk}

(SUB) ∗ |Γ′
k|{lk} · [Γ′

k] ⊢ tk@lk : A︸ ︷︷ ︸
P

P rkj ⊗ {lk} ⊑ ∑i(rij ⊗ {li})
(SUB) ∗ |Γ′

k|⋃
i({li} · [Γ′

i]) ⊢ tk@lk : A
(WEAK) or (SUB)... (WEAK) or (SUB)

[Γ] ⊢ tk@lk : A

Here in the multiple application of (SUB), the second premise compares the re-
sources of j-th versioned assumption between the first premise and conclusion.
Also, we follow the same manner as for the derivation of {l = t | l′} (which
may use (WEAK) and (SUB)) to get [Γ] from

⋃
i({li} · [Γ′

i]).

Thus, we obtain the conclusion of the lemma.
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Theorem 4.7.5. [Type preservation for reductions]

Γ ⊢ t : A
t ; t′

}
=⇒ Γ ⊢ t′ : A

Proof. The proof is given by induction on the typing derivation of t. Consider the
cases for the last rule used in the typing derivation of the first assumption.

Case.
∅ ⊢ n : Int

(INT)

This case holds trivially because there are no reduction rules that can be applied to n.

Case.
x : A ⊢ x : A

(VAR)

This case holds trivially because there are no reduction rules that can be applied to x.

Case.
Γ, x : A1 ⊢ t1 : A2

Γ ⊢ λx.t1 : A1 → A2
(ABS)

This case holds trivially because there are no reduction rules that can be applied to
λx.t1.

Case.
Γ1 ⊢ t1 : B → A

Γ2 ⊢ t2 : B
Γ1 + Γ2 ⊢ t1 t2 : A

(APP)

The only reduction rule we can apply to t is (E-ABS).

(λx.t′1) t2︸ ︷︷ ︸
t

; (t2 � x) t′1
(E-ABS)

where t1 = λx.t′1 for a term t′1. Then we can apply (�var) to obtain the following:

(t2 � x) t′1 = [t2/x]t′1
(�VAR)

In this case, we know the typing derivation of t has the following form:

Γ′
1, x : B ⊢ t′1 : A

(ABS)
Γ′

1 ⊢ λx.t′1 : B → A
(WEAK), (DER), or (SUB)... (WEAK), (DER), or (SUB)

Γ1 ⊢ λx.t′1 : B → A Γ2 ⊢ t2 : B
(APP)

Γ1 + Γ2 ⊢ (λx.t′1) t2 : A
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By 4.7.1, we know the following:

Γ2 ⊢ t2 : B
Γ′

1, x : B ⊢ t′1 : A

}
=⇒ Γ′

1 + Γ2 ⊢ [t2/x]t′1 : A

Finally, we can rearrange the typing context as follows:

Γ′
1 + Γ2 ⊢ [t2/x]t′1 : A

(WEAK), (DER), or (SUB)... (WEAK), (DER), or (SUB)
Γ1 + Γ2 ⊢ [t2/x]t′1 : A

Here, there exists a derive tree to get Γ1 + Γ2 from Γ′
1 + Γ2 as for the derivation of

λx.t′1 which may use (WEAK), (DER) and (SUB).
By choosing t′ = [t2/x]t′1, we obtain the conclusion of the theorem.

Case.
Γ1 ⊢ t1 : 2r A Γ2, x : [A]r ⊢ t2 : B

Γ1 + Γ2 ⊢ let [x] = t1 in t2 : B
(LET)

The only reduction rule we can apply is (E-CLET) with two substitution rules, de-
pending on whether t1 has the form [t′1] or {l = t′′ | lk}.

• Suppose t1 = [t′1].
We can apply (E-CLET) to obtain the following.

let [x] = [t′1] in t2︸ ︷︷ ︸
t

; ([t′1]� [x])t2
(E-CLET)

Thus, we can apply (�□) and (�var) to obtain the following.

(�var)
(t′1 � x)t2 = [t′1/x]t2

(�□)
([t′1]� [x])t2 = [t′1/x]t2

In this case, we know the typing derivation of t has the following form:

[Γ′
1] ⊢ t′1 : A

(PR)
r · [Γ′

1] ⊢ [t′1] : 2r A
(WEAK) or (SUB)... (WEAK) or (SUB)

Γ1 ⊢ [t′1] : 2r A Γ2, x : [A]r ⊢ t2 : B
(LET)

Γ1 + Γ2 ⊢ let [x] = [t′1] in t2 : B

By 4.7.2, we know the following:

[Γ′
1] ⊢ t′1 : A

Γ2, x : [A]r ⊢ t2 : B

}
=⇒ Γ2 + r · [Γ′

1] ⊢ [t′1/x]t2 : B

Finally, we can rearrange the typing context as follows:
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Γ2 + r · [Γ′
1] ⊢ [t′1/x]t2 : B

(WEAK) or (SUB)... (WEAK) or (SUB)
Γ2 + Γ1 ⊢ [t′1/x]t2 : B

Here, there exists a derive tree to get Γ2 + Γ1 from Γ2 + r · [Γ′
1] as for the deriva-

tion of [t′1] which may use (WEAK) and (SUB).

Thus, by choosing t′ = [t′1/x]t2, we obtain the conclusion of the theorem.

• Suppose t1 = {l = t′′ | lk}.
We can apply (E-CLET) to obtain the following:

let [x] = [{l = t′′ | lk} in t2︸ ︷︷ ︸
t

; ({l = t′′ | lk}� [x])t2
(E-CLET)

Thus, we can apply (�ver) and (�var) to obtain the following.

(�var)
(⟨l = t′′ | lk⟩� x)t2 = [⟨l = t′′ | lk⟩/x]t2 (�ver)
({l = t′′ | lk}� [x])t2 = [⟨l = t′′ | lk⟩/x]t2

In this case, we know the typing derivation of t has the following form:

[Γ′
i] ⊢ t′′i : A

(VER)⋃
i({li} · [Γ′

i]) ⊢ {l = t′′ | lk} : 2{l}A
(WEAK) or (SUB)... (WEAK) or (SUB)

Γ1 ⊢ {l = t′′ | lk} : 2{l}A︸ ︷︷ ︸
P

P

Γ2, x : A ⊢ t2 : B
(DER)

Γ2, x : [A]1 ⊢ t2 : B
(SUB)∗|{l}|

Γ2, x : [A]{l} ⊢ t2 : B
(LET)

Γ1 + Γ2 ⊢ let [x] = {l = t′′ | lk} in t2 : B

Then we can derive the type of ⟨l = t′′ | lk⟩ as follows:

[Γ′
i] ⊢ t′′i : A⋃

i({li} · [Γ′
i]) ⊢ ⟨l = t′′ | lk⟩ : A

(VERI)

By 4.7.1, we know the following:

⋃
i({li} · [Γ′

i]) ⊢ ⟨l = t′′ | lk⟩ : A
Γ2, x : A ⊢ t2 : B

}
=⇒

Γ2+
⋃

i({li} · [Γ′
i])

⊢ [⟨l = t′′ | lk⟩/x]t2 : B

Finally, we can rearrange the typing context as follows:
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Γ2 +
⋃

i({li} · [Γ′
i]) ⊢ [⟨l = t′′ | lk⟩/x]t2 : B

(WEAK) or (SUB)... (WEAK) or (SUB)
Γ2 + Γ1 ⊢ [⟨l = t′′ | lk⟩/x]t2 : B

Here, there exists a derive tree to get Γ2 + Γ1 from Γ2 +
⋃

i({li} · [Γ′
i]) as for the

derivation of {l = t′′ | lk} which may use (WEAK) and (SUB).

Thus, by choosing t′ = [⟨l = t′′ | lk⟩/x]t2, we obtain the conclusion of the theo-
rem.

Case.
Γ1 ⊢ t : A

Γ1 + [∆′]0 ⊢ t : A
(WEAK)

In this case, t does not change between before and after the last derivation. The
induction hypothesis implies that there exists a term t′′ such that:

t ; t′′ ∧ Γ1 ⊢ t′′ : A (ih)

We then reapply (WEAK) to obtain the following:

Γ1 ⊢ t′′ : A
Γ1 + [∆′]0 ⊢ t′′ : A

(WEAK)

Thus, by choosing t′ = t′′, we obtain the conclusion of the theorem.

Case.
Γ1, x : B ⊢ t : A

Γ1, x : [B]1 ⊢ t : A
(DER)

In this case, t does not change between before and after the last derivation. The
induction hypothesis implies that there exists a term t′′ such that:

t ; t′′ ∧ Γ1, x : B ⊢ t′′ : A (ih)

We then reapply (DER) to obtain the following:

Γ1, x : B ⊢ t′′ : A
Γ1, x : [B]1 ⊢ t′′ : A

(DER)

Thus, by choosing t′ = t′′, we obtain the conclusion of the theorem.

Case.
[Γ] ⊢ t′′ : B

r · [Γ] ⊢ [t′′] : 2rB
(PR)

This case holds trivially because there are no reduction rules that can be applied to
[t′′].

Case.
[Γi] ⊢ ti : A⋃

i({li} · [Γi]) ⊢ {l = t | l′} : 2{l}A
(VER)

This case holds trivially because there are no reduction rules that can be applied to
{l = t | l′}.
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Case.
[Γi] ⊢ ti : A⋃

i({li} · [Γi]) ⊢ ⟨l = t | lk⟩ : A
(VERI)

In this case, the only reduction rule we can apply is (E-VERI).

⟨l = t | lk⟩︸ ︷︷ ︸
t

; tk@lk
(E-VERI)

By 4.7.3, we obtain the following:

[Γk] ⊢ tk : A =⇒ [Γk] ⊢ tk@lk : A

Finally, we can rearrange the typing context as follows:

[Γk] ⊢ tk@lk : A
(WEAK), (DER) or (SUB)... (WEAK), (DER) or (SUB)⋃

i({li} · [Γi]) ⊢ tk@lk : A

Thus, by choosing t′ = tk@lk, we obtain the conclusion of the theorem.

Case.
Γ ⊢ t1 : 2r A lk ∈ r

Γ ⊢ t1.lk : A
(EXTR)

In this case, there are two reduction rules that we can apply to t, dependenig on
whether t1 has the form [t′1] or {l = t′′ | lk}.

• Suppose t1 = [t′1].
We know the typing derivation of t has the following form:

[Γ′] ⊢ t′1 : A
(PR)

r · [Γ′] ⊢ [t′1] : 2r A
(WEAK) or (SUB)... (WEAK) or (SUB)

Γ ⊢ [t′1] : 2r A lk ∈ r
(EXTR)

Γ ⊢ [t′1].lk : A

By 4.7.4, we know the following:

r · [Γ′] ⊢ [t′1] : 2r A =⇒ ∃t′.

{
[t′1].lk −→ t′

r · [Γ′] ⊢ t′ : A

Finally, we can rearrange the typing context as follows:

r · [Γ′] ⊢ t′ : A
(WEAK) or (SUB)... (WEAK) or (SUB)

Γ ⊢ t′ : A

Here, we follow the same manner as for the derivation of [t′1] (which may use
(WEAK) and (SUB)) to get Γ from r · [Γ′].

Thus, we obtain the conclusion of the theorem.



102 Appendix A. Definitions and Proofs

• Suppose t1 = {l = t | l′}.
The last derivation is rewritten as follows:

[Γ′
i] ⊢ ti : A

(PR)⋃
i{li} · [Γ′

i] ⊢ {l = t | l′} : 2{l}A
(WEAK) or (SUB)... (WEAK) or (SUB)

Γ ⊢ {l = t | l′} : 2{l}A lk ∈ {l}
(EXTR)

Γ ⊢ {l = t | l′}.lk : A

By 4.7.4, we know the following:

⋃
i{li} · [Γ′

i] ⊢ {l = t | l′} : 2{l}A =⇒ ∃t′.

{
{l = t | l′}.lk −→ t′⋃

i{li} · [Γ′
i] ⊢ t′ : A

Finally, we can rearrange the typing context as follows:

⋃
i{li} · [Γ′

i] ⊢ t′ : A
(WEAK) or (SUB)... (WEAK) or (SUB)

Γ ⊢ t′ : A

Here, we follow the same manner as for the derivation of {l = t | l′} (which
may use (WEAK) and (SUB)) to get Γ from

⋃
i{li} · [Γ′

i].

Thus, we obtain the conclusion of the theorem.

Case.
Γ1, x : [B]r, Γ2 ⊢ t : A r ⊑ s

Γ1, x : [B]s, Γ2 ⊢ t : A
(SUB)

In this case, t does not change between before and after the last derivation. The
induction hypothesis implies that there exists a term t′′ such that:

t ; t′′ ∧ Γ1, x : [B]r, Γ2 ⊢ t′′ : A (ih)

We then reapply (SUB) to obtain the following:

Γ1, x : [B]r, Γ2 ⊢ t′′ : A r ⊑ s
(SUB)

Γ1, x : [B]s, Γ2 ⊢ t′′ : A

Thus, by choosing t′ = t′′, we obtain the conclusion of the theorem.
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Theorem 4.7.6. [Type preservation for evaluations]

Γ ⊢ t : A
t −→ t′

}
=⇒ Γ ⊢ t′ : A

Proof. The proof is given by induction on the typing derivation of t. Consider the
cases for the last rule used in the typing derivation of the first assumption.

Case.
∅ ⊢ n : Int

(INT)

This case holds trivially because there are no evaluation rules that can be applied to
n.

Case.
x : A ⊢ x : A

(VAR)

This case holds trivially because there are no evaluation rules that can be applied to
x.

Case.
Γ, x : A1 ⊢ t1 : A2

Γ ⊢ λx.t1 : A1 → A2
(ABS)

This case holds trivially because there are no evaluation rules that can be applied to
λx.t1.

Case.
Γ1 ⊢ t1 : B → A

Γ2 ⊢ t2 : B
Γ1 + Γ2 ⊢ t1 t2 : A

(APP)

In this case, there are two evaluation rules that can be applied to t.

• Suppose the evaluation rule matches to [·].
We know the evaluation of the assumption has the following form:

E-ABS
(λx.t′1) t2 ; (t2 � x) t′1
(λx.t′1) t2︸ ︷︷ ︸

t

−→ (t2 � x) t′1

By 4.7.5, we know the following:

Γ1 + Γ2 ⊢ (λx.t′1) t2 : A
(λx.t′1) t2 ; (t2 � x) t′1

}
=⇒ Γ1 + Γ2 ⊢ (t2 � x) t′1 : A

Thus, we obtain the conclusion of the theorem.

• Suppose the evaluation rule matches to E t.
We know the evaluation of the assumption has the following form:
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t′1 ; t′′1
E[t′1] t2︸ ︷︷ ︸

t

−→ E[t′′1 ] t2

where t1 = E[t′1].

By induction hypothesis, we know the following:

Γ1 ⊢ E[t′1] : B → A
E[t′1] −→ E[t′′1 ]

}
=⇒ Γ1 ⊢ E[t′′1 ] : B → A (ih)

We then reapply (APP) to obtain the following:

Γ1 ⊢ E[t′′1 ] : B → A Γ2 ⊢ t2 : B
Γ1 + Γ2 ⊢ E[t′′1 ] t2 : A

(APP)

Thus, we obtain the conclusion of the theorem.

Case.
Γ1 ⊢ t1 : 2r A Γ2, x : [A]r ⊢ t2 : B

Γ1 + Γ2 ⊢ let [x] = t1 in t2 : B
(LET)

In this case, there are two evaluation rules that we can apply to t.

• Suppose the evaluation rule matches to [·].
We know the evaluation of the assumption has the following form:

(E-CLET)
let [x] = [t′1] in t2 ; ([t′1]� [x])t2

let [x] = [t′1] in t2︸ ︷︷ ︸
t

−→ ([t′1]� [x])t2

By 4.7.5, we know the following:

Γ1 + Γ2 ⊢ let [x] = [t′1] in t2 : B
let [x] = [t′1] in t2 ; ([t′1]� [x])t2

}
=⇒ Γ1 + Γ2 ⊢ ([t′1]� [x])t2 : B

Thus, we obtain the conclusion of the theorem.

• Suppose the evaluation rule matches to let [x] = E in t.
We know the evaluation of the assumption has the following form:

t′1 ; t′′1
let [x] = E[t′1] in t2︸ ︷︷ ︸

t

−→ let [x] = E[t′′1 ] in t2

where t1 = E[t′1].

By induction hypothesis, we know the following:

Γ1 ⊢ E[t′1] : 2r A
E[t′1] −→ E[t′′1 ]

}
=⇒ Γ1 ⊢ E[t′′1 ] : 2r A (ih)

We then reapply (LET) to obtain the following:
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Γ1 ⊢ E[t′′1 ] : 2r A Γ2, x : [A]r ⊢ t2 : B
Γ1 + Γ2 ⊢ let [x] = E[t′′1 ] in t2 : B

(LET)

Thus, we obtain the conclusion of the theorem.

Case.
Γ1 ⊢ t : A

Γ1 + [∆′]0 ⊢ t : A
(WEAK)

In this case, t does not change between before and after the last derivation. The
induction hypothesis implies that there exists a term t′ such that:

t −→ t′ ∧ Γ1 ⊢ t′ : A (ih)

We then reapply (WEAK) to obtain the following:

Γ1 ⊢ t′ : A
Γ1 + [∆′]0 ⊢ t′ : A

(WEAK)

Thus, we obtain the conclusion of the theorem.

Case.
Γ1, x : B ⊢ t : A

Γ1, x : [B]1 ⊢ t : A
(DER)

In this case, t does not change between before and after the last derivation. The
induction hypothesis implies that there exists a term t′ such that:

t −→ t′ ∧ Γ1, x : B ⊢ t′ : A (ih)

We then reapply (DER) to obtain the following:

Γ1, x : B ⊢ t′ : A
Γ1, x : [B]1 ⊢ t′ : A

(DER)

Thus, we obtain the conclusion of the theorem.

Case.
[Γ] ⊢ t′′ : B

r · [Γ] ⊢ [t′′] : 2rB
(PR)

This case holds trivially because there are no evaluation rules that can be applied to
[t′′].

Case.
[Γi] ⊢ ti : A⋃

i({li} · [Γi]) ⊢ {l = t | l′} : 2{l}A
(VER)

This case holds trivially because there are no evaluation rules that can be applied to
{l = t | l′}.

Case.
[Γi] ⊢ ti : A⋃

i({li} · [Γi]) ⊢ ⟨l = t | lk⟩ : A
(VERI)

In this case, the only evaluation rule we can apply is evaluation for [·]. We know the
evaluation of the assumption has the following form:
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E-VERI
⟨l = t | lk⟩ ; tk@lk

⟨l = t | lk⟩︸ ︷︷ ︸
t

−→ tk@lk

By 4.7.5, we know the following:⋃
i({li} · [Γi]) ⊢ ⟨l = t | lk⟩ : A

⟨l = t | lk⟩ ; tk@lk

}
=⇒ ⋃

i({li} · [Γi]) ⊢ tk@lk : A

Thus, we obtain the conclusion of the theorem.

Case.
Γ ⊢ t1 : 2r A lk ∈ r

Γ ⊢ t1.lk : A
(EXTR)

In this case, there are two evaluation rules that we can apply to t.

• Suppose the evaluation rule matches to [·].
We know the evaluation of the assumption has the following form:

E-EX1 or E-EX2
t1.lk ; t′1

t1.lk︸︷︷︸
t

−→ t′1

By 4.7.5, we know the following:

Γ ⊢ t1.lk : A
t1.lk ; t′1

}
=⇒ Γ ⊢ t′1 : A

Thus, we obtain the conclusion of the theorem.

• Suppose the evaluation rule matches to E.l.
We know the evaluation of the assumption has the following form:

t′1 ; t′′1
E[t′1].lk︸ ︷︷ ︸

t

−→ E[t′′1 ].lk

where t1 = E[t′1].

By induction hypothesis, we know the following:

Γ ⊢ E[t′1] : 2r A
E[t′1] −→ E[t′′1 ]

}
=⇒ Γ ⊢ E[t′′1 ] : 2r A (ih)

We the reapply (EXTR) to obtain the following:

Γ ⊢ E[t′′1 ] : 2r A lk ∈ r
Γ ⊢ E[t′′1 ].lk : A

(EXTR)

Thus, we obtain the conclusion of the theorem.
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Case.
Γ1, x : [B]r, Γ2 ⊢ t : A r ⊑ s

Γ1, x : [B]s, Γ2 ⊢ t : A
(SUB)

In this case, t does not change between before and after the last derivation. The
induction hypothesis implies that there exists a term t′ such that:

t −→ t′ ∧ Γ1, x : [B]r, Γ2 ⊢ t′ : A (ih)

We then reapply (SUB) to obtain the following:

Γ1, x : [B]r, Γ2 ⊢ t′ : A r ⊑ s
(SUB)

Γ1, x : [B]s, Γ2 ⊢ t′ : A

Thus, we obtain the conclusion of the theorem.
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Theorem 4.7.7. [λVL progress]

∅ ⊢ t : A =⇒ (value t) ∨ (∃t′.t −→ t′)

Proof. The proof is given by induction on the typing derivation of t. Consider the
cases for the last rule used in the typing derivation of the assumption.

Case.
∅ ⊢ n : Int

(INT)

This case holds trivially because value n.

Case. (VAR)

This case holds trivially because x : A cannot be ∅.

Case.
x : A1 ⊢ t : A2

∅ ⊢ λx.t : A1 → A2
(ABS)

This case holds trivially because value λx.t.

Case.
∅ ⊢ t1 : B → A

∅ ⊢ t2 : B
∅ ⊢ t1 t2 : A

(APP)

There are two cases whether t1 is a value or not.

• Suppose t1 is a value.
By the inversion lemma (A.4.1), we know that there exists a term t′1 and t1 =
λx.t′1. Thus, we can apply (E-ABS) to t.

(E-ABS)
(λx.t′1) t2 ; (t2 � x) t′1
(λx.t′1) t2︸ ︷︷ ︸

t

−→ (t2 � x) t′1

Furthermore, we know the following:

(t2 � x) t′1 = [t2/x]t′1
(�var)

By choosing t = [t2/x]t′1, we obtain the conclusion of the theorem.

• Suppose t1 is not a value.
There exists a term t′1 such that:

t1 ; t′1
t1 −→ t′1

Also, we can apply evaluation for application to t.
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t1 ; t′1
t1 t2︸︷︷︸

t

−→ t′1 t2

Thus, by choosing t′ = t′1 t2, we obtain the conclusion of the theorem.

Case.
∅ ⊢ t1 : 2r A x : [A]r ⊢ t2 : B

∅ ⊢ let [x] = t1 in t2 : B
(LET)

There are two cases whether t1 is a value or not.

• Suppose t1 is a value.
By the inversion lemma (A.4.1), we know that t1 has either a form of [t′1] or and
{l = t′′ | lk}.

– Case t1 = [t′1].
In this case, we can apply (E-CLET) to obtain the following.

let [x] = [t′1] in t2 ; ([t′1]� [x])t2
(E-CLET)

Thus, we can apply (�□) and (�var) to obtain the following.

(�var)
(t′1 � x)t2 = [t′1/x]t2

(�□)
([t′1]� [x])t2 = [t′1/x]t2

Thus, by choosing t′ = [t′1/x]t2, we obtain the conclusion of the theorem.

– Case t1 = {l = t′′ | lk}.
In this case, we can apply (E-CLET) to obtain the following:

(E-CLET)
let [x] = {l = t′′ | lk} in t2 ; (⟨l = t′′ | lk⟩� [x])t2

let [x] = {l = t′′ | lk} in t2︸ ︷︷ ︸
t

−→ (⟨l = t′′ | lk⟩� [x])t2

Also, we can apply (�ver) and (�var) to obtain the following.

(�var)
(⟨l = t′′ | lk⟩� x)t2 = [⟨l = t′′ | lk⟩/x]t2 (�ver)
({l = t′′ | lk}� [x])t2 = [⟨l = t′′ | lk⟩/x]t2

Thus, by choosing t′ = [⟨l = t′′ | lk⟩/x]t2, we obtain the conclusion of the
theorem.

• Suppose t1 is not a value.
There exists terms t′1 such that:

t1 ; t′1
t1 −→ t′1

Also, we can apply evaluation for contextual let bindings to t.

t1 ; t′1
let [x] = t1 in t2︸ ︷︷ ︸

t

−→ let [x] = t′1 in t2
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Thus, by choosing t′ = (let [x] = t′1 in t2), we obtain the conclusion of the the-
orem.

Case.
∅ ⊢ t : A
∅ ⊢ t : A

(WEAK)

In this case, t does not change between before and after the last derivation. Thus, we
can obtain the conclusion of the theorem by induction hypothesis.

Case. (DER)

This case hold trivially because Γ1, x : [B]1 cannot be ∅.

Case.
∅ ⊢ t : B

∅ ⊢ [t] : 2rB
(PR)

This case holds trivially because [t] is a value.

Case.
∅ ⊢ ti : A

∅ ⊢ {l = t | l′} : 2{l}A
(VER)

This case holds trivially because {l = t | l′} is a value.

Case.
∅ ⊢ ti : A

∅ ⊢ ⟨l = t | lk⟩ : A
(VERI)

In this case, we can apply (E-VERI).

(E-VERI)
⟨l = t | lk⟩ ; tk@lk

⟨l = t | lk⟩ −→ tk@lk

Thus, by choosing t′ = tk@lk, we obtain the conclusion of the theorem.

Case.
∅ ⊢ t1 : 2r A lk ∈ r

∅ ⊢ t1.lk : A
(EXTR)

In this case, we have two cases whether t1 is a value or not.

• Suppose t1 is a value. (t1 = v1)
By 4.7.4, we know the following:

∅ ⊢ v1 : 2r A =⇒ ∃t′.

{
v1.lk −→ t′

∅ ⊢ t′ : A

Thus, we obtain the conclusion of the theorem.
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• Suppose t1 is not a value.
There exists a term t1 such that:

t1 ; t′1
t1 −→ t′1

Also, we can apply an exaluation rule for extraction to t.

t1 ; t′1
t1.lk︸︷︷︸

t

−→ t′1.lk

Thus, by choosing t′ = t′1.lk, we obtain the conclusion of the theorem.

Case.
Γ1, x : [B]r, Γ2 ⊢ t : A r ⊑ s

Γ1, x : [B]s, Γ2 ⊢ t : A
(SUB)

In this case, t does not change between before and after the last derivation. Thus, by
induction hypothesis, we obtain the conclusion of the theorem.
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