
TOKYO INSTITUTE OF TECHNOLOGY

DOCTORAL THESIS

Supporting multi-scope and
multi-level compilation in a

meta-tracing just-in-time compiler

Author:
Yusuke IZAWA

Student Number:
∗ ∗ ∗ ∗ ∗∗

Supervisor:
Prof. Hidehiko

MASUHARA

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Science

in the

Programming Research Group
Department of Mathematical and Computing Science

March 1, 2023

http://www.university.com
http://www.johnsmith.com
http://www.jamessmith.com
http://www.jamessmith.com
https://prg.is.titech.ac.jp
http://department.university.com

iii

TOKYO INSTITUTE OF TECHNOLOGY

Abstract
School of Computing

Department of Mathematical and Computing Science

Doctor of Science

Supporting multi-scope and multi-level compilation in a meta-tracing
just-in-time compiler

by Yusuke IZAWA

Just-in-Time (JIT) compilation technologies are widely used in today’s vir-
tual machines (VMs) to achieve high performance. There are several ways
to compile in terms of compilation scopes. The most common is to compile
on a per-method basis, while others compile on an execution-history basis
or on an arbitrary program region. In addition, today’s virtual machines use
multiple levels of compilation for different parts of the code: for example,
optimizing heavyweight compilation is used for frequently executed parts of
the code, and lightweight compilation is used for code parts executed mod-
erately often.

Many of today’s programming languages are realized using virtual ma-
chines, and among them, the meta-JIT compiler framework, which generates
a virtual machine for a language from an interpreter that defines the lan-
guage specification, is attracting attention. Meta-JIT compiler frameworks,
such as RPython and Truffle/Graal, are used in the field of a programming
language implementation, and the usefulness of the system was demon-
strated by actually realizing VMs of Python, Ruby, R, JavaScript, and so forth.

However, the current JIT compilers provided by meta-JIT compiler frame-
works have only a fixed compilation policy and cannot compete with vari-
ous compilation policies developed by JIT compilers in VMs for specific lan-
guages.

To further improve the performance of the JIT compiler generated by a meta-
JIT compiler framework, a new compilation technology that can support
multiple compilation scopes and levels would be beneficial. The present dis-
sertation shows that an interpreter, which is a language specification given
to the meta-JIT compiler framework, is not only the semantic definition of
the language but also the compilation policy and that multiple compilation
policies can actually be realized on the meta-tracing JIT compiler framework.

HTTP://WWW.UNIVERSITY.COM
http://faculty.university.com
http://department.university.com

iv

The present dissertation proposes multi-role meta-tracing JIT compilation,
that mixes different compilation scopes and levels in a meta-tracing JIT com-
piler framework. This technique is achieved by using a hint instruction,
which is a pseudo-function inserted into an interpreter.

An implementation of a prototype framework called BacCaml and evalua-
tion with it show that there exists a program that runs faster with multi-
scope compilation combining method and trace-based compilations than
with a single compilation scope. In addition, the implementation and eval-
uation using RPython validate that supporting multi-scope compilation in
RPython, where method-based lightweight compilation is added to RPython,
which originally had only a heavyweight trace-based compiler, improves the
overall performance of RPython in a real-world workload-simulated appli-
cation. The results of the experiment conducted in a real-world workload-
simulated show that the two-level compilation mixing the method-based
lightweight and trace-based heavyweight compilation can improve the per-
formance against the single-level tracing compilation in about 14%.

v

Acknowledgements
Words cannot express my gratitude to my supervisor Prof. Hidehiko Ma-
suhara and my advisor Dr. Carl Friedrich Bolz-Tereick for their invaluable
patience and feedback. I also would like to thank Prof. Youyou Cong for
her kind support on my study. I also could not have undertaken this journey
without my defense committee, who generously provided knowledge and
expertise. Additionally, this endeavor would not have been possible without
the generous support from the Japan Society for the Promotion of Science
and Japan Society and Technology Agency, who financed my research.

I am grateful to my lab mates for their editing help, late-night feedback ses-
sions, and moral support. My appreciation also goes out to my family and
friends for their encouragement and support all through my studies.

vii

Contents

1 Introduction 1
1.1 Research Context . 2
1.2 Problem Statement . 3
1.3 Research Goals and Outlines 5

2 Background 9
2.1 JIT Compilation . 9

2.1.1 JIT Compilation Strategies 10
2.1.2 Method-Based JIT Compilation 11
2.1.3 Trace-Based JIT Compilation 12

2.2 Meta-JIT Compiler Framework 13
2.2.1 Self-Optimizing Interpreter 14

Interpreter Definition in a Self-Optimizing Interpreter . 14
Meta-Compilation in Self-Optimizing Interpreter . . . 15
Hint Instructions in Truffle 18
Truffle Host Inlining . 19

2.2.2 Meta-Tracing JIT Compiler 20
Interpreter Definition in a Meta-Tracing JIT Compiler . 21
Meta-Compilation in Meta-Tracing JIT Compiler 22
Hint Instructions in RPython 22

3 Motivation and Proposal 25
3.1 Scope of Compiling a Source Program 25
3.2 Level of Compiling a Source Program 27
3.3 Dilemma: Hard to Extend Generated VMs from a Meta-JIT

Compiler Framework . 29
3.4 Proposal: Multi-Role Meta-Tracing JIT Compilation 30

3.4.1 System Overview: Multi-Role Meta-Tracing JIT Com-
piler Framework . 32

3.4.2 Underlying Techniques for Multi-Scope Compilation . 33
Hint Instructions and Compilation Overview 34

3.4.3 Underlying Techniques for Multilevel Compilation . . 35

4 BacCaml – a Proof-of-Concept Multi-Scope Meta-Tracing JIT Com-
piler 39
4.1 Introduction . 39
4.2 Mixing The Two Compilation Strategies in Meta-Level 41

4.2.1 Method-Based Compilation by Tracing 41
4.3 Stack Hybridization . 46

viii

4.3.1 Combination Problem 46
4.3.2 Bridging Native Code with Different Calling Conven-

tions . 48
4.4 Evaluation . 49

4.4.1 Setup . 50
Methodology . 50
Threats to Validity . 51

4.4.2 Standalone JIT Microbenchmark 51
4.4.3 Multi-Scope JIT Experiment 53

Methodology . 53
Results of Multi-Scope JIT Experiment 54

4.5 Related Work . 55
4.6 Conclusion . 57

5 Threaded Code Gen. with a Real-World Meta-Tracing .. 59
5.1 Introduction . 60
5.2 Threaded Code Generation . 60

5.2.1 Threaded Code . 61
5.2.2 The Compilation Principle 61
5.2.3 Method-traversal Interpreter 64

Conditional branch . 65
Back-edge instruction 66
Function call . 66
Function return . 67

5.2.4 Trace Stitching . 67
Guard Patching in Trace Stitching 68

5.2.5 Shallow Tracing . 69
5.3 Runtime Techniques for Multilevel Compilation 70

5.3.1 Implementaiton Details 71
5.4 Optimization for Threaded Code Generation with Interpreter

in the Meta-Tracing JIT Compiler 72
5.4.1 Inline Caching in Method-Traversal Interpreter 72

5.5 Preliminary Evaluation Using Simulated Threaded Code Gen-
eration . 74
5.5.1 Simulated Threaded Code Generation (STCG) in PyPy 75
5.5.2 Setup . 76

System . 76
Implementation . 76
Programs for Experiments 76
Methodology . 76

5.5.3 Results of Experiment 1: The Overhead of Our STCG . 77
5.5.4 Results of Experiment 2: The Stable Speed 78
5.5.5 Discussion . 78

5.6 Evaluation and Experiments in PySOM and Multilevel RPython 79
5.6.1 Microbenchmark Evaluation 79

Setup . 80
Methodology . 80

ix

Code Sizes and Compilation Times 81
Peak Performance at Steady State 82

5.6.2 Multilevel JIT Experiment 83
Setup . 83
Methodology . 83
Results of the Experiment and Discussion 84

5.7 Related work . 85
5.7.1 Improving an Interpreter’s Performance 85
5.7.2 Template JIT Compilation 85
5.7.3 Ahead-of-Time Compilation 86
5.7.4 Introducing a New Behavior into a Meta-JIT Compiler 86

5.8 Conclusion . 86

6 Conclusion 99

Bibliography 101

xi

List of Figures

2.1 An overview of how a JIT compiler works in a VM. 10
2.2 The difference between method- and trace-based JIT compila-

tion strategies. The linked control flow and blocks represent a
method. Areas painted or lines drawn represent a compilation
target. 12

2.3 A simple Python program and its’ recorded trace. 13
2.4 System structure of a meta-JIT compiler framework. 13
2.5 Definition of an AST node base class, which is retrieved

from [Würthinger et al., 2012] 15
2.6 Implementation of a while block, which is retrieved

from [Würthinger et al., 2012]. 16
2.7 A transition between different types in an AST tree writing,

which is retrieved from [Würthinger et al., 2012]. 16
2.8 An example of function add in a dynamic language. 16
2.9 Type-specialized execute methods, which are cited from [Würthinger

et al., 2012]. 17
2.10 Integer add node using return type specialization as cited

in [Würthinger et al., 2012]. 17
2.11 Implementation of a while block using the Truffle DSL 18
2.12 A binary node that is annotated by NodeChild. 18
2.13 A node representing add. 18
2.14 Example of a bytecode interpreter written in Truffle. 20
2.15 VM generation and JIT compilation flow in RPython. Solid

and dashed lines represent data and control flow, respectively. 21
2.16 An example interpreter definition written in RPython. 22

3.1 Simplified overview of a managed VM. 28
3.2 Simplified overview of a generated VM from a meta-JIT

compiler framework. 29
3.3 Overview of a multi-role meta-tracing JIT compiler framework. 31
3.4 Two approaches to a specify JIT compilation policy in

BacCaml and Multilevel RPython. 33
3.5 Compilation Overview of Method JIT by Tracing. 36
3.6 Compilation overview of lightweight compilation in Multi-

level RPython. 36

4.1 The overviews of a multi-scope meta-tracing JIT compiler
framework. 40

xii

4.2 Examples how our method-based compilation works. Each
left-hand side is the control-flow of a target source program
that represents one method, and each right-hand side is a
result. “entry” and “return” means the entry point and exit
poitn of a target method, respectively. 44

4.3 Interpreter definition styles. For managing a return ad-
dress/value, left-hand side style uses a host-language’s
(system provided) stack, but right-hand side uses a developer-
prepared stack data structurpe. 46

4.4 Example of Combination Problem. Gray background code is
compiled by method JIT, and blue lined code is compiled by
tracing JIT. 47

4.5 A sketch of a interpreter definition with Stack Hybridiza-
tion. Some hint functions (e.g., can_enter_jit and
jit_merge_point), and other definitions are omitted for
simplicity. US and HS represents user-stack and host-stack,
respectively. 49

4.6 Results of standalone JIT microbenchmarking. The five
programs on the left have a complex control flow, and the
remaining programs have a straight control flow. The error
bars represent the standard deviations. 52

4.7 Target programs written in MinCaml−− used for the multi-
scope JIT experiment. 54

4.8 Results of multi-scope JIT microbenchmarking. X-axis
represents the name of a target program, and Y-axis represents
speedup ratio relative to the interpreter-only execution.
Higher is better. The error bars represent the standard
deviations. 55

5.1 Overview of Multilevel RPython: there exists two different
interpreters in the generated VM. At VM generation time,
Multilevel RPython generates a VM from an interpreter
instrumented with hint instructions used for multilevel
compilation. At runtime, the different two interpreters are
used for lightweight and heavyweight compilations. First,
a source program is run on the interpreter for lightweight
compilation. When hot spots are detected, the execution is
switched to the interpreter for heavyweight compilation from
one for lightweight compilation. This transition is performed
by the interpreter shifting technique described in Section 5.3. . 87

5.2 An overview of how threaded code works. 88
5.3 A sketch of how RPython method-based lightweight JIT

compiler works. From the target function in the left-hand
side, it generates the trace tree shown in the right-hand side. . 88

5.4 Tracing the entire of a function with method-traversal
interpreter. 88

5.5 The working flow of trace stitching. 89

xiii

5.6 Overview of trace-stitching. This shows how we resolve the
relations between guard failures and bridges. 89

5.7 Overview of the runtime techniques for multilevel com-
pilation. The interpreter shifting defines the strategy for
transitioning between compilation levels. Note that each
interpreter shown on the right-hand side corresponds to each
compilation level. For each interpreter, the drivers profile the
execution and starts JIT compilation when the threshold is
exceeded. 90

5.8 Calling a compiled method w/o inline caching. 90
5.9 Overview of inline caching in threaded code generation. . . . 91
5.10 The results of the size of traces to compile and compilation

time including tracing. In all results the Y-axis means PyPy
3.7 with our simulated threaded code generation (STCG)’s
relative value to PyPy 3.7–7.3.5’s tracing JIT compiler. The
X-axis stands for the name of every program. The left-hand
side shows the relative trace size, and the right-hand size is
the relative compilation time. Lower is better. 92

5.11 The results of a preliminary benchmark experiment. In all
results the Y-axis means speed up ratio of the threaded code
generation compared with the interpreter-only execution, and
the X-axis stands for the name of every program. The error
bars mean standard deviations. Higher is better. 93

5.12 Speed-up ratio of STCG (left-hand side) and PyPy’s tracing
JIT compiler (right-hand side) related to the interpreter. They
are executed on PyPy’s original micro benchmark suite plus
our original ones. X-axis and Y-axis mean every iteration
and speed-up ratio standardized to interpreter execution,
respectively. Dots are plotted every five iterations. 94

5.13 Compilation times and code sizes on micro-benchmark
programs. The x-axis and y-axis mean a bytecode size (byte)
and consumed compilation time (ms), respectively. 95

5.14 Peak performance of threaded code generation, tracing JIT
and interpreter execution. Relative elapsed times normalized
to interpreter execution. The blue and red lines mean threaded
code generation and tracing JIT, respectively. Lower is better. . 95

5.15 Number of method invocations in the simulated real-world
workload application. 96

5.16 Visualization of which methods compile at which level by
defined thresholds using Figure 5.15. 96

5.17 Results of the experiment in the simulated real-world
workload application. 97

xv

List of Tables

2.1 A survery on JIT compilation strategies and their compilation
units and implementations. 11

5.1 Benchmark descriptions. 81
5.2 Micro benchmark programs and their bytecode sizes.

Standard libraries of the PySOM system is excluded. 82
5.3 The threshold for the multilevel JIT experiment. 84

xvii

List of Listings

1 Brief example of an interpreter instrumented with the hint
instructions for Method JIT by Tracing. 35

2 Brief example of interpreter definition for lightweight
compilation. 37

3 Skeleton of method-traversal interpreter and subroutines
decorated with dont_look_inside. 63

4 An example bytecode with the control flow shown in Figure 5.4. 64
5 An example program corresponding to Listing 4 64
6 Definition of JUMP_IF. 65
7 Definition of JUMP. 65
8 Definition of RET. 66
9 The trace generated temporarily from a method-transverse

interpreter. 67
10 Stitched traces. One linear trace is converted into one trace

and one bridge, and are connected to a guard failure. 68
11 Overview of how the decorator enable_shallow_tracing

works. The left-hand side is an interpreter that a language
developer writes. The right-hand side is the actual executable
interpreter after expanding enable_shallow_tracing. 70

12 Before and after applying shallow tracing to the function f
are shown on the right-hand side of the Listing 11. During
shallow tracing, all flags are activated (left side), but they are
finally deactivated in the resulting trace (right side). 71

13 Overview of interpreters for lightweight and heavyweight
compilation. 72

14 Overview of the interpreter shifting mechanism. The left-
hand and right-hand sides show the definitions of JIT
policy-shifting exceptions and the interpreter shifting loop,
respectively. 73

15 Interpreter definition of a dispatch loop and a handler for CALL. 74
16 Produced trace at tracing CALL instruction with the inter-

preter shown in Listing 15. 74
17 Interpreter definition, which is based on Listing 15, instru-

mented to enable inline caching. 75
18 Produced traces at tracing CALL instruction with virtual

instructions to enable inline caching. 75

1

Chapter 1

Introduction

Contents
1.1 Research Context . 2

1.2 Problem Statement . 3

1.3 Research Goals and Outlines 5

With our lives becoming diversified, various devices have appeared: not
only traditional on-premise servers and workstations, but also personal com-
puters, smartphones, and laptops. Additionally, software applications such
as social networks, video streaming services, and teleconference tools have
emerged and have been enriching our lives. In response to these new tech-
nologies, a variety of programming languages have been developed to ac-
commodate a variety of use cases and software productions. In particular,
virtual machines (VMs) such as Java, C], Ruby, Python, and PHP have se-
cured their position in today’s software development environment.

Given the diversity of devices and applications, there exists an urgent need
to process a program efficiently in a managed language runtime. Regarding
this request, most VMs employ just-in-time (JIT) compilation. This technique
has had a huge impact on improving runtime performance, and many VMs
such as Java virtual machine (JVM), Common Language Runtime (CLR), and
JavaScript engines equipped with a JIT compiler.

There are many techniques for JIT compilers, which can be classified by sev-
eral criteria. A compilation scope is one of such criterion. The most com-
mon is method-based compilation, which is used in several JVMs, including
HotSpotTM and J9, and Android Runtime (ART). For dynamic languages,
trace-based compilation, which is based on the actual executed path of a pro-
gram, is used to achieve their high performance. In addition, region- or basic
block-based compilation policies are also used in today’s VMs such as Ruby
and PHP.

Alongside a JIT compilation, many optimization techniques in a VM, includ-
ing method/function inlining, data flow analysis, loop unrolling and peel-
ing, escape analysis, memory allocation optimization, and so forth have also
been studied [Arnold et al., 2000; Budimlic and Kennedy, 1997; Choi et al.,
1999a; Ishizaki et al., 1999]. Since today’s VMs must run a huge variety of

2 Chapter 1. Introduction

programs such as batch processing applications, data handling scripts, and
server-side applications, VMs need to balance code quality with compilation
time.

A compilation level is another one of the criterion for the classification. VM
developers have designed the compilation levels and classified them into
various execution stages. Short-lived applications, like batch processing or
data handling scripts, are applied only to lightweight compilation, which
generates machine code quickly. On the other hand, for a long-lived appli-
cation like a server-side application, these applications are applied to heavy-
weight compilation, generating fully optimized code to achieve better peak
performance at a steady state.

At the same time, language developers have struggled to build high-
performance VMs efficiently because developing an elaborate and sophis-
ticated VM comes with the trade-offs of the simplicity, clarity, and compre-
hensiveness of its implementation. A meta-JIT compiler framework reduces
these trade-offs. Not only their ability to reduce the engineering effort for
VM development, but also their ability to generate a high-performance VM
powered by a dedicated JIT compiler. A wide range of VMs have been imple-
mented with the framework, such as for Ruby, Python, PHP, Smalltalk, and
so forth, exhibiting the same or higher performance as their already existing
VMs.

1.1 Research Context

Just-In-Time Compilation For software users, one of the most important
things is that applications run fast. Basically, the common execution was per-
formed by interpreting a bytecode program, which is a form of an intermedi-
ate representation where on instruction corresponds to one byte, in VMs. A
bytecode program is obtained as a result of parsing the source program. Be-
cause this interpretation was slower than ahead-of-time (AOT) compilation,
many researchers and developers have studied another approach to run a
bytecode program faster than interpretation. One of the successful studies is
just-in-time (JIT) compilation [Aycock, 2003]. JIT compilation is a technique
that is used to translate a program into machine code at runtime. This tech-
nique was initially developed on the Smalltalk-80 [Deutsch and Schiffman,
1984] system, and successors such as the initial version of the Java VM [Ven-
ners, 1998]. In particular, a hot pot JIT compiler converts frequently executed
program area, known as a hot spot, into machine code at runtime. This tech-
nique is widely used in current Java VMs [Paleczny, Vick, and Click, 2001]
and JavaScript [Gal et al., 2009] VMs because of its good performance impact
at runtime.

Meta-JIT Compiler Framework Traditionally, the developers of VMs basi-
cally write an interpreter, JIT compiler, garbage collector (GC), and so forth

1.2. Problem Statement 3

from scratch. In contrast, developers of VMs with a meta-JIT compiler frame-
work only write an interpreter because a meta-JIT compiler framework can
generate a high-performance VM from the given interpreter definition. Cur-
rently, there are RPython [Bolz et al., 2009] and Truffle/Graal [Würthinger
et al., 2012] frameworks. RPython was originally developed for PyPy [Rigo
and Pedroni, 2006], which is an alternative fast Python implementation. Truf-
fle/Graal is a part of the GraalVM [Würthinger et al., 2017] project, which
was developed by Oracle Labs. Because of their usefulness in language im-
plementation, many languages such as Python, Ruby, R, and JavaScript have
been implemented with the framework and have proved their high perfor-
mance and effectiveness.

1.2 Problem Statement

There is a wide range of JIT compilation policies in existing VMs. These
can be divided into four policies according to the scope of the compilation.
The most standard compilation scope is the method-based one [Deutsch and
Schiffman, 1984; Paleczny, Vick, and Click, 2001; Ungar and Smith, 1987],
where the compilation scope is a method (or function). Furthermore, trace-
based compilation [Bala, Duesterwald, and Banerjia, 2000; Gal et al., 2009;
Rigo and Pedroni, 2006], which compiles the execution path of a program,
is also being actively studied. In addition to these two compilation poli-
cies, there exist a variety of policies such as region-based compilation [Hank,
Hwu, and Rau, 1995; Ottoni, 2018; Suganuma, Yasue, and Nakatani, 2006],
which is based on an arbitrary region in a program, or basic block compila-
tion [Bellard, 2005; Chevalier-Boisvert and Feeley, 2015, 2016], which is based
on the basic blocks in a program.

First, each policy has its own advantages and disadvantages. Method-based
compilation is a standard policy used in many of today’s VMs and has ma-
tured, but it is needed to manage compilation code size because method-
based compilation sometimes covers infrequently-executed ares of code.
Trace-based compilation can generate aggressively optimized code and can
avoid compiling less executed code, which is called dead code. However,
when trace-based compilation traces a program with a complex control flow,
it can fail into the path-divergence problem [Huang, Masuhara, and Aotani,
2016; Inoue et al., 2011; Izawa and Masuhara, 2020], where there is a costly
fallback to an interpreted execution. In region-based compilation, which is
built in HHVM, a VM for PHP and Hack languages1, can flexibly select the
scope of compilation and is potentially a compromise between method- and
trace-based compilations. This type of compilation is promising, because it
can take advantage of method- and trace-based compilations. However, the
current region-based compiler is only targeted for PHP and Hack languages,
so compilers need to be rebuilt from scratch when applying to other lan-
guages.

1https://hhvm.com/

https://hhvm.com/

4 Chapter 1. Introduction

Second, today’s VMs must run numerous kinds of applications. VMs
not only run short-lived batch processing applications and data processing
scripts but also long-lived sever-side applications. To cope with this situation
and achieve optimal performance anytime, today’s VMs support multiple
levels of optimization in their VMs. They use different interpreters or compil-
ers, depending on their runtime situations. For example, short-lived scripts
are executed on an interpreter or compiled by a lightweight JIT compiler,
and long-lived applications are compiled using a heavyweight JIT compiler.
In today’s VMs, HotSpot uses the C1/C2 compilers [Kotzmann et al., 2008;
Paleczny, Vick, and Click, 2001]. The C1 compiler [Kotzmann et al., 2008]
compiles a method and emits machine code quickly instead of applying op-
timizations aggressively. On the other hand, the C2 compiler [Paleczny, Vick,
and Click, 2001] generates highly optimized machine code, but requires more
compilation time. In addition, V8 has Sparkplug/Turbofan compilers2 and
JavaScriptCore has Baseline/DFG/FTL compilers3.

Unlike language-dependent managed language runtimes, the features de-
scribed above are not easily realized in the generated VMs from a meta-JIT
compiler framework because generated VMs basically use the fixed compo-
nents provided by meta-JIT compiler frameworks, so VM components that
include a JIT compiler and a GC are limited regarding how they can be ex-
tended. For example, a generated JIT compiler from RPython basically uses
trace-based compilation, and a generated JIT compiler from Truffle/Graal
uses method-based compilation. In addition, in terms of an optimization
level, generated JIT compilers only support heavyweight compilation, which
is a way to generate fast machine code by applying many optimization tech-
niques. In addition, there are limited ways to change their compilation levels.
Currently, it is difficult to add a new compilation level without modifying the
meta-JIT compilers themselves.

Several works in RPython [Bauman et al., 2015; Bolz et al., 2011b; Huang, Ma-
suhara, and Aotani, 2016] have found that taming an interpreter definition
that are needed to perform meta-tracing JIT compilation can influence how
RPython’s meta-tracing JIT compiler works. To be more specific, the place-
ment of a hint instruction called can_enter_jit in the interpreter written in
RPython changed the behavior of tracing and improved the performance of
the meta-tracing JIT compiler. In other words, an interpreter can be seen as
a specification of a compiler in the context of meta-tracing JIT compilation.
The present dissertation shows how those approaches can be extended to
achieve a multi-scope and multilevel compilation system without drastically
modifying the existing RPython meta-JIT compiler.

To conclude, among today’s VMs, there exist many JIT compilation scopes,
each with their own advantages. Therefore, a compilation scope based on
a program region that can compile the scope based on a trace, method, and
a mixture of both is promising. In addition, today’s VMs support multiple

2https://v8.dev/blog/sparkplug
3https://webkit.org/blog/10308/speculation-in-javascriptcore/

https://v8.dev/blog/sparkplug
https://webkit.org/blog/10308/speculation-in-javascriptcore/

1.3. Research Goals and Outlines 5

optimization levels by creating and managing several compilers to balance
the code quality and compilation time. However, existing meta-JIT compil-
ers support only a single JIT compilation scope and a few levels (only an
interpreter and a heavyweight JIT compiler) of execution because generated
VMs are not able to be modified to support multiple compilation scopes or
multiple optimization levels. However, several previous works found that
there was a way to influence the behavior of a meta-tracing JIT compiler by
taming an interpreter definition with hint instructions. The ability of virtual
instructions can be useful in adding new compilation scopes and optimiza-
tion levels in a meta-tracing JIT compiler framework. In summary, the two
problems to address are the following:

Meta-JIT compiler frameworks do not support multi-scope compilation.
Today’s VMs have a variety of JIT compilation policies, and they
have their own advantages and disadvantages. To take advantage of
each compilation policy, a region-based compilation that can compile
the scope of a trace, method, and mixture of the two is considered
promising. However, meta-JIT compilers currently support only a
single compilation scope. To achieve high performance, achieving
multi-scope compilation in a meta-JIT compiler framework is needed.

Few studies on a multilevel compilation in meta-JIT compiler frameworks.
The current meta-JIT compilers always perform heavyweight compila-
tions. This policy is not always useful for realistic usage in a VM; some
programs run longer, but others run shorter. Full optimization is not
always useful, so the ability to shift or balance the level of optimization
in a meta-JIT compiler framework is needed.

1.3 Research Goals and Outlines

The main research aim of the present dissertation is as follows:

A new compilation scope and optimization level in a meta-tracing JIT
compiler framework using hint instructions in an interpreter.

In the current dissertation, the author presents an abstraction and imple-
mentation of a multi-role compilation in a meta-tracing JIT compiler framework
that can change its compilation scopes and levels. The author shows that
a multi-scope meta-tracing JIT compilation is possible by implementing a
proof-of-concept framework called BacCaml. After implementing BacCaml,
the author presents an approach to enable multilevel JIT compilation and
optimization in a real-world meta-tracing JIT compiler framework: RPython.

The present dissertation is structured as follows:

Chapter 2 outlines the existing JIT compilation and meta-JIT compilation
techniques used in today’s VM. Although there are many strategies for JIT

6 Chapter 1. Introduction

and meta-JIT compilations, the fundamental concept is simple and clear. Fur-
thermore, it presents a meta-JIT compiler framework, which is a fundamental
technique for multi-role meta-tracing JIT compilation.

Chapter 3 states the motivation for the multi-role meta-tracing JIT compiler
framework. The technique has two foundations: the scope of the compiled
code and optimization level of the code. First, this chapter states the moti-
vation behind the mixing of different compilation scopes and why a mixture
of different compilation level is needed. Then, the chapter gives the abstrac-
tions for the two foundations.

Chapter 4 shows a proof-of-concept multi-scope meta-tracing JIT compiler
framework: BacCaml. Based on the examinations denoted in the previ-
ous chapter, first, this chapter demonstrates how multi-scope meta-tracing
JIT compilation is achieved by using the two main JIT compilation poli-
cies: trace- and method-based compilation strategies. Second, the chap-
ter introduces BacCaml, a multi-scope meta-tracing JIT compiler frame-
work that amalgamates trace- and method-based compilations into a meta-
compilation. Third, the chapter validates a new multi-scope compilation
approach, showing that it can actually work. It evaluates the performance
of BacCaml implementation and observes the behavior and performance of
each compilation policy in the multi-scope meta-tracing JIT compiler frame-
work in running microbenchmark programs. Furthermore, it performs an
experiment investigating whether there exists a program that can speed up
by the multi-scope JIT compilation.

Chapter 5 illustrates the application to the real-world meta-tracing JIT com-
piler framework: RPython. Based on the abstractions denoted in Chap-
ter 3, this chapter first introduces the concept and approach to threaded code
generation with RPython. In threaded code generation, two compilations
that are different regarding the scope of the compilation and optimization
level coexist in a meta-JIT compiler framework. Second, the chapter intro-
duces an implementation of threaded code generation with RPython. For a
demonstration of how threaded code generation works in a real-world lan-
guage, it uses PySOM, which is a subset of Smalltalk implementation on top
of RPython. This chapter explains several implementation techniques for
threaded code generation in RPython. It also discusses the potential perfor-
mance in Python by simulating the behavior of threaded code generation us-
ing the PyPy interpreter. In addition, the chapter shows a preliminary eval-
uation result to evaluate the performance of threaded code generation in a
small language written in RPython before the evaluating the performance of
PySOM with threaded code generation and discussing the performance char-
acteristics of threaded code generation compared with interpreter and trac-
ing JIT executions. Finally, the performance of multilevel compilation that
mixes threaded code generation and tracing JIT compilation is evaluated in
an application with a real-world workload. A simulated application synthet-
ically combining benchmark programs is prepared for this experiment. In

1.3. Research Goals and Outlines 7

the simulated application, the performance of multilevel compilation is eval-
uated against tracing JIT and interpreter executions.

Chapter 6 concludes the dissertation.

9

Chapter 2

Background

Contents
2.1 JIT Compilation . 9

2.1.1 JIT Compilation Strategies 10

2.1.2 Method-Based JIT Compilation 11

2.1.3 Trace-Based JIT Compilation 12

2.2 Meta-JIT Compiler Framework 13

2.2.1 Self-Optimizing Interpreter 14

2.2.2 Meta-Tracing JIT Compiler 20

This chapter first gives the background of the present dissertation. First, the
chapter summarizes just-in-time (JIT) compilation, which is a fundamental
technology throughout the present dissertation, and it summarizes the two
major JIT compilation strategies in JIT compilation while providing an ex-
planation of the advantages and disadvantages of the two JIT compilation
strategies (Section 2.1). Then, it explains meta-JIT compilation and a meta-
JIT compiler framework (Section 2.2).

2.1 JIT Compilation

A JIT compiler [Aycock, 2003] is a dynamic translator that converts fre-
quently executed code parts, known as the “hot spot,” into another language.
Typically, the target language is a lower-level one like native code, where the
compiler aims to improve the performance. Some general-purpose JIT com-
pilers translate code parts in a source language into native code. Of course,
a target language is not limited to native code; the target language can be
WebAssembly, LLVM IR, C, or the same language. Figure 2.1 illustrates an
overview of how a JIT compiler works on a VM. Basically, a JIT compiler
works together with an interpreter and a profiler. First, a source program
is executed on an interpreter. While executing the source program, a profiler
monitors which code parts are hot. A JIT compiler translates the hot spot into
native code. When the control executes the compiled parts again, it returns
to native code after the compilation finishes.

10 Chapter 2. Background

Source Interpreter JIT compiler

Native code

executing/monitoring

ru
ntim

e gen
.

FIGURE 2.1: An overview of how a JIT compiler works in a VM.

With respect to a static (or ahead-of-time, AOT) compiler, it needs to compile
all pass paths. This approach can produce fast and executable code, but it
includes infrequently-executed code parts. On the contrary, a JIT compiler
can selectively translate only hot sections into native code (the other sections
are interpreted). This helps reduce the code size and improve space effi-
ciency. Also, a JIT compiler can use runtime information to optimize code, so
it is capable of aggressively applying many optimizations to code for further
speedup.

A JIT compilation system performs three steps [Aycock, 2003]:

Invocation. A JIT compiler is explicitly invoked when needed. This invoca-
tion occurs at the time when a hot spot is found or when a user explic-
itly requests to use a JIT compiler.

Executability. A JIT compiler typically runs two types of languages: a user
language that is translated and a target language that the code is trans-
lated into. A JIT compiler should output an executable code; the behav-
ior before and after translation is the same.

Concurrency. A JIT compiler performs code translation concurrently with
normal program execution. This concurrency is achieved to invoke JIT
compilation via subroutine call, message transmission, or transfer of
control to a loop. Also, it can be done in a separate thread or process.

The present dissertation mainly focuses on the invocation and executability,
so the concurrency is out of the scope.

2.1.1 JIT Compilation Strategies

A JIT compilation policy can be classified based on the granularity of its com-
pilation unit. This classification is shown in Table 2.1. The strategies range
from method-based (Smalltalk-80 [Deutsch and Schiffman, 1984], SELF [Un-
gar and Smith, 1987], HotSpot [Paleczny, Vick, and Click, 2001]), trace-based
(Dynamo [Bala, Duesterwald, and Banerjia, 2000], TraceMonkey [Gal et al.,
2009], PyPy [Rigo and Pedroni, 2006]), region-based (HHVM [Ottoni, 2018],
IBM’s Java JIT [Suganuma, Yasue, and Nakatani, 2006], IMPACT [Hank,

2.1. JIT Compilation 11

policy Compilation unit Implementation
Method-based Method or function Smalltalk-80 [Deutsch and Schiffman,

1984], SELF [Ungar and Smith, 1987],
HotSpot [Paleczny, Vick, and Click,
2001], GraalVM [Würthinger et al.,
2012]

Region-based Arbitrary region HHVM [Ottoni, 2018], IBM’s Java
JIT [Suganuma, Yasue, and Nakatani,
2006], IMPACT [Hank, Hwu, and Rau,
1995]

Basic block-based Basic block Higgs [Chevalier-Boisvert and Feeley,
2015, 2016], YJIT [Chevalier-Boisvert
et al., 2021], QEMU [Bellard, 2005]

Trace-based Execution path Dynamo [Bala, Duesterwald, and
Banerjia, 2000], TraceMonkey [Gal et
al., 2009], PyPy [Rigo and Pedroni,
2006]

TABLE 2.1: A survery on JIT compilation strategies and their
compilation units and implementations.

Hwu, and Rau, 1995]), and basic block (YJIT [Chevalier-Boisvert et al., 2021],
QEMU [Bellard, 2005]).

In particular, method-based and trace-based compilation strategies are the
most popular. The method-based policy is widely used in VM such as Java
virtual machine (JVM), for example, OpenJDK, and OpenJ9, JavaScript vir-
tual machines, for example, V8, SpiderMonkey, and JavaScriptCore. Addi-
tionally, the trace-based policy became popular about 10 years ago. Recently,
deep learning frameworks, the usefulness of a trace-based policy has been
seen: for example, PyTorch provides a trace-based JIT compiler called Py-
torch trace JIT 1 to optimize Python code that uses the Pytorch framework.

The difference between the two strategies is the compilation unit. We de-
scribe this difference in the following sections.

2.1.2 Method-Based JIT Compilation

Traditional JIT compilers, such as Smalltalk-80 [Deutsch and Schiff-
man, 1984], SELF [Ungar and Smith, 1987], and Java Virtual Machine
(JVM) [Paleczny, Vick, and Click, 2001], employ method-based compilation;
they compile a method into native code. A method-based JIT compiler iden-
tifies frequently-executed methods from profiled data, compiling that area
into native code. Several efficient optimizations, such as inlining, loop un-
rolling and peeling, and escape analysis, are applied to the native code so
that the JIT compiler can produce the code running faster than an interpreter
execution.

1https://pytorch.org/docs/stable/jit.html

https://pytorch.org/docs/stable/jit.html

12 Chapter 2. Background

A

method A

B C

D

E

F

G

method B

H

method-based JIT

A

method A

B C

D

E

F

G

method B

H

trace-based JIT

FIGURE 2.2: The difference between method- and trace-based
JIT compilation strategies. The linked control flow and blocks
represent a method. Areas painted or lines drawn represent a

compilation target.

A method-based JIT compilation performs dynamic translation based on a
method invocation. The left-hand side of Figure 2.2 shows how a method-
based compilation performs. When the number of invoking Method A (A –
B – C – D – E – F) exceeds a certain threshold, a method-based JIT is used for
compiling. Then, when the number for invoking Method B (G – H) exceeds a
certain threshold, it also compiles Method B. Whether inlining is performed
depends on the compiler’s preference.

2.1.3 Trace-Based JIT Compilation

Trace-based optimization was initially researched by the Dynamo
project [Bala, Duesterwald, and Banerjia, 2000], and its technique was
adopted to implement compilers for numerous languages such as Lua [Pall,
2005], JavaScript [Gal et al., 2009], Java trace-JIT [Gal, Probst, and Franz,
2006; Inoue et al., 2011], and the SPUR project [Bebenita et al., 2010].

A trace-based JIT compiler basically compiles a loop in a program. “Trace” is
a straight line of a program, so a path actually executed is selected and trans-
lated into native code. Furthermore, an invocation of a method (or a function
call) is automatically inlined. The right-hand side of Figure 2.2 shows how
trace-based JIT compilation works. If a hot path is A – B – D – E – (method
invokation) – G – H – (return) –E – A, a trace-based JIT compiles that path.

To ensure that the condition in tracing and execution is the same, a guard
code is placed at every possible point (e.g., if statements) leading in another
direction. The guard checks to determine whether the original condition is
still valid. If the condition is false, the execution in the native code is stopped

2.2. Meta-JIT Compiler Framework 13

def strange_num(a):
if a % 41 == 0:

return a * 41
else:

return a

def f(n):
i = 0
for j in range(n):

i += strange_num(j)
return i

f(100000)

corresponding trace:
loop_header(i0, j0)
j1 = int_mod(j0, Const(41))
j2 = int_eq(j1, Const(0))
guard_false(j2)
j3 = int_add(j0, Const(1))
i1 = int_add(i0, j3)
jump(i1, j3)

FIGURE 2.3: A simple Python program and its’ recorded trace.

Source program Python, Ruby, R, JavaScript, etc.

Interpreter RPython, Truffle

Meta-JIT compiler Meta-tracing, Self-optimizing

FIGURE 2.4: System structure of a meta-JIT compiler frame-
work.

and continues to execute, falling back to the interpreter. This behavior is
called a guard failure.

As shown in the simple example in Figure 2.3, the hot spot is the for loop
in the function f, so this part becomes a trace. Then, this trace is converted
into native code and executed. Note that the function call to strange_num
is inlined, and the if statement is converted into a guard_false instruction.
The guard_false instruction checks whether the variable j2 is false. If j2 is
false, execution continues. However, if j2 is true, the execution is stopped,
and other programs are interpreted.

2.2 Meta-JIT Compiler Framework

JIT compilation impacts the performance improvement of a VM, but imple-
mentation requires time-consuming and error-prone engineering tasks for
language developers. Recently, some researchers proposed a meta-JIT com-
piler framework to overcome this problem. A meta-JIT compiler framework
provides a convenient and effective way to implement a high-performance
VM empowered by a JIT compiler.

The structure of a meta-JIT compiler framework is shown in Figure 2.4. A
meta-JIT compiler framework provides a meta-language ((RPython [Bolz et

14 Chapter 2. Background

al., 2009] and Truffle/Graal [Würthinger et al., 2012])) to implement an inter-
preter (Python, Ruby, R, JavaScript, etc.). A source program is implemented
with the meta-language. A meta-JIT compiler compiles a source program
code by specializing in an interpreter.

The advantage of using a meta-JIT compiler framework is that it makes it eas-
ier to build a language without having to construct a compiler for every lan-
guage from scratch. In general, today’s VMs are written in C to achieve their
high performance, but a language implementer should be aware of memory
management, the threading model, or object layout. Furthermore, to im-
prove the runtime performance, developers usually write a JIT compiler for
their VMs by hand. This approach requires the complicated, error-prone, and
difficult tasks of language developers. On the contrary, using a meta-JIT com-
piler can make this task easier. By using a meta-JIT compiler framework, the
interpreter can be written in a high-level language such as Python or Java. As
proof of this feature, many languages have been implemented with a meta-
JIT compiler framework, such as Python, Ruby, R, JavaScript, Smalltalk, PHP,
and so on.

There are two approaches in meta-JIT compiler frameworks: partial
evaluation-based and meta-tracing-based. The following sections will pro-
vide an overview of the two frameworks.

2.2.1 Self-Optimizing Interpreter

A practical method-based (or partial evaluation-based) meta-compilation
was recently proposed by [Würthinger et al., 2012, 2017] called as a self-
optimizing interpreter. This approach is used for implementing numerous
source languages such as Ruby [Oracle Lab., 2013], R [Oracle Lab., 2015],
JavaScript [Ocacle Lab., 2019], and Smalltalk [Niephaus, Felgentreff, and
Hirschfeld, 2019].

Interpreter Definition in a Self-Optimizing Interpreter

Truffle/Graal requires an interpreter based on an abstract syntax tree (AST)
to perform its meta-compilation. A defined AST node is responsible for the
semantics of a source language (while, if, etc). There is a common abstract
node in Truffle/Graal, and every node inherits this. This execution of a
method is carried out by evaluating its root AST node. An AST node has
information about local variables and contextual information needed for ex-
ecution. It has a pointer to the parent node for easy replacement of that node.

A simple definition of the AST node as modeled by Truffle/Graal is shown
in Figure 2.5. A node has the execute method that takes an argument f. The
return types of execute and f are Java’s Object and Object[], respectively.

The control structure is implemented by using Java’s control structure. Basi-
cally, non-local returns, that is a transition from a deeply nested node to an

2.2. Meta-JIT Compiler Framework 15

abstract class Node {
// Executed the operation encoded by this node
// and returns the result.
// A frame has information associated with local
// variables and other contextual information, e.g.,
// the callee frame.
public abstract class Object execute(Frame f);

// Link to the parent node and utility to replace
// a node in AST.
private Node parent;
protected void replace(Node newNode);

}

FIGURE 2.5: Definition of an AST node base class, which is re-
trieved from [Würthinger et al., 2012]

outer node, are implemented with Java’s exception. The upper half of Fig-
ure 2.6 shows a simplified definition of the while block of a source language.
The while loop in a source language is correlated to Java’s while, and the
non-local return is represented by Java’s exception and try-catch.

Meta-Compilation in Self-Optimizing Interpreter

The meta-JIT compiler translates abstract-syntax-tree (AST) nodes selected
by a partial evaluator into native code. Basically, Truffle/Graal rewrites a
generic AST node to a specific node as its meta-compilation. The rewritten
node is specialized so that Truffle/Graal can speed up the source program.

Truffle/Graal basically specializes in an AST node by using type informa-
tion gained from runtime feedback. To perform AST rewriting, Truffle/Graal
transforms an AST node that contains a single execute method handling all
cases into several type-specialized nodes. Each transformed nodes handles
a subset of type-specific cases that include the checks for input types. If the
input type is different from the expected one, Truffle/Graal replaces the node
with a new one that can handle the new case. The AST rewriting transition
between different nodes is uniderectional.

Figure 2.7 shows how an AST node is replaced for the plus operator that
is used in the add function, which is shown in Figure 2.8, here based on the
input types. At the first execution, Truffle/Graal rewrites the AST node based
on runtime information. The add function is written in a dynamically typed
language, and the transition starts from an uninitialized state. As long as both
arguments turn out to be integer and there is no overflow in the addition,
Truffle/Graal transforms the node into an integer-specific one. Otherwise,
Truffle/Graal transforms it into the double-specific node. If both arguments
are string, the node is transformed into a string-specific one optimized for
the case of string concatenation. If both arguments have different types, the
node is transformed to the generic one.

16 Chapter 2. Background

class WhileNode extends Node {
protected Node condition;
protected Node body;

public Object execute(Frame frame) {
try {

while (condition.execute(frame)) {
try {

body.execute(frame);
} catch (ContinueException ex) {

// Continue in the loop
}

}
} catch (BreakException as) {

// Breaking out the loop
}
return null;

}
}

FIGURE 2.6: Implementation of a while block, which is re-
trieved from [Würthinger et al., 2012].

Uninitialized

Integer

String Double

Generic

FIGURE 2.7: A transition between different types in an AST tree
writing, which is retrieved from [Würthinger et al., 2012].

func add(a, b) {
return a + b;

}

FIGURE 2.8: An example of function add in a dynamic lan-
guage.

In addition to an input-type specialization, Truffle/Graal performs a special-
ization based on return types. This approach is also useful to avoid boxing,
which is an approach to wrapping a primitive value (e.g., integer, double,
etc.) with a small boxed object. This technique is needed to handle the ref-
erence and primitive types at the same time. The common approach for this
problem is tagging, which is using a bit-level flag in a stored object to check
whether primitive or reference variables. However, this approach requires an

2.2. Meta-JIT Compiler Framework 17

abstract class Node {
public abstract Object execute(Frame f);
public abstract int executeInt(Frame f)

throws UnexpectedResultException;
public abstract double executeDouble(Frame f)

throws UnexpectedResultException;
/// ..

}

FIGURE 2.9: Type-specialized execute methods, which are cited
from [Würthinger et al., 2012].

class IntegerAddNode extends BinaryNode {
Node left;
Node right;
public int executeInt(Frame frame)

throws UnexpectedResultException {
int a;
try {

a = left.executeInt(frame);
} catch (UnexpectedResultException ex) {

// Rewrite this node and execute the rewritten node
// using already evaluated left and right

}
int b;
try {

b = left.executeInt(frame);
} catch (UnexpectedResultException ex) {

// Rewrite this node and execute the rewritten node
// using already evaluated right

}
return a + b;

}
}

FIGURE 2.10: Integer add node using return type specialization
as cited in [Würthinger et al., 2012].

additional check for the flag/set a flag every time an object is loaded/stored.
Therefore, Truffle/Graal employs a return-type specialization.

The execute method shown in Figure 2.9 is generic. According to the return
type, different methods such as executeInt and executeDouble are provided
by the abstract Node class.

Figure 2.10 illustrates a node that performs integer addition. This node cor-
responds to the plus operator of the function add in Figure 2.8. The method is
expected to take two integer arguments and return an integer value. If this as-
sumption turns out to be correct based on the runtime feedback, this method
is transformed to a type-specific one. In particular, an uninitialized AddNode
is rewritten for IntegerAddNode. Instead of a generic execute method, the
specialized method executeInt performs the addition. Otherwise, the node

18 Chapter 2. Background

// Using Truffle DSL
class WhileNode extends Node {

// LoopNode class is provided by Truffle DSL
TruffleDSL.LoopNode loopNode;

public WhileNode(Node condition, Node body) {
this.loopNode = TruffleDSL.createLoopNode(condition, body);

}

public object execute(Frame f) {
loopNode.execute(Frame);

}
}

FIGURE 2.11: Implementation of a while block using the Truffle
DSL

.

// An abstract class for binary operators.
// Instead of manually declaring fields, `NodeChild` tells the
// preprocessor to generate a `Node` with two fields `leftNode`
// and `rightNode`.
@NodeChild("leftNode")
@NodeChild("rigthNode")
public abstract class BinaryNode extends Node {}

FIGURE 2.12: A binary node that is annotated by NodeChild.

// An integer-specific add node
class AddNode extends BinaryNode {

// Integer-specific add method annotated with `Specialization'.
// Truffle DSL generates several `execute' method from this definition.
@Specialization(rewriteOn = ArithmeticException.class)
public int addInt(int left, int right) {

return left + right;
}

@Specialization
public int add(double left, double right) {

return left + right;
}

}

FIGURE 2.13: A node representing add.

rewrites itself to a generic one and throws an unexpected exception to its
callee. This exception is thrown when the associated node is already evalu-
ated, so executeInt needs to use the boxed result in the following calcula-
tion.

Hint Instructions in Truffle

2.2. Meta-JIT Compiler Framework 19

Truffle DSL The way to implement the AST rewriting, which is explained
in Section 2.2.1, requires an additional implementation burden on the lan-
guage developer. To reduce the effort, Truffle/Graal provides a hint in-
struction called Truffle DSL, which helps implement a language with Truf-
fle/Graal. The significant advantage is that we no longer manually write
many of the boilerplate codes. For example, WhileNode can be easily de-
fined as shown in Figure 2.11 by using the Truffle DSL. At the constructor of
this node, loopNode is created by calling the createLoopNode method defined
in the Truffle DSL. The execute method in WhileNode simply invokes the
execute method defined in LoopNode. Inside the Truffle/Graal, WhileNode is
converted into the one defined in Figure 2.6.

There are two important annotations in the Truffle DSL: NodeChild and
Specialization. NodeChild tells a preprocessor to generate a fields with the
given name. In Figure 2.12, the abstract BinaryNode class is annotated by
@NodeChild("leftNode") and @NodeChild("rightNode"). After preprocess-
ing, the abstract BinaryNode has two field declarations named leftNode and
rightNode that are then generated.

The methods should have the Specialization annotation2 placed on them.
This annotation allows for customizing an AST generated with input param-
eters, as well as telling the preprocessor to generate execute methods. For
example, it is possible to define a customization that allows a fallback when
an exception occurs. Figure 2.13 gives an example of the Specialization
annotation. All methods are annotated by Specialization, and addInt has
only an input value for ArithmeticException in the parameter rewriteOn.
This customization tells Truffle/Graal to fall back to another method like add
when an arithmetic exception happens when evaluating addInt.

Truffle Host Inlining

An AST interpreter written with the Truffle framework is ready for self-
optimization. The boundaries of inlining performed by self-optimization can
be controlled by the following [Oracle Lab., 2022]:

• blocks calling the method CompilerDirectives.transferToInterpreter()

• methods annotated by TruffleBoundary

An example of an AST node using the above two features is shown in Fig-
ure 2.14. This node shown in Figure 2.14 performs addition between the
given two nodes: left and right. When the self-optimizing system compiles
this node, it tries to execute a = left.executeInt(frame). If this execution
throws the exception UnexpectedResultException, this means that the left
node is no longer executed in the fast path. To move back to a slow path,
which means an interpreter, transferToInterpreter() should be called.
The annotation TruffleBoundary works like transferToInterpreter(). If
the method executeTruffleBoundary is executed, this method is not inlined

2https://www.graalvm.org/truffle/javadoc/com/oracle/truffle/api/dsl/
Specialization.html

https://www.graalvm.org/truffle/javadoc/com/oracle/truffle/api/dsl/Specialization.html
https://www.graalvm.org/truffle/javadoc/com/oracle/truffle/api/dsl/Specialization.html

20 Chapter 2. Background

class IntegerAddNode extends BinaryNode {
Node left;
Node right;
public int executeInt(Frame frame)

throws UnexpectedResultException {
int a;
try {

a = left.executeInt(frame);
} catch (UnexpectedResultException ex) {

// executes the following operation in a slow path
CompilerDirectives.transferToInterpreter();
// do stuff

} catch ()
int b;
try {

b = left.executeInt(frame);
} catch (UnexpectedResultException ex) {

// executes the following operation in a slow path
CompilerDirectives.transferToInterpreter();
// do stuff

}
return a + b;

}

@TruffleBoundary
public Object executeTruffleBoundary(Frame frame) {

// do stuff
}

}

FIGURE 2.14: Example of a bytecode interpreter written in Truf-
fle.

because of the annotation TruffleBoundary (the body is executed in an inter-
preter).

2.2.2 Meta-Tracing JIT Compiler

A trace-based meta-compilation, that is, meta-tracing, is the first practical at-
tempt for general interpreters. This technique was established by the PyPy
project [Rigo and Pedroni, 2006], which aimed to provide a framework to
write a dynamic language in a flexible way. It was first used to imple-
ment numerous source languages, such as PyPy [Rigo and Pedroni, 2006],
JavaScript [Team, 2015], Ruby [Gaynor et al., 2013], and Smalltalk [Felgentr-
eff et al., 2016].

Figure 2.15 provides an overview of RPython’s VM generation and JIT com-
pilation flow. The RPython framework compiles an interpreter written in
the RPython language into a VM, which includes a trace-based JIT compiler,
garbage collector, and so forth, written in C. At runtime, the program P is
first interpreted in a generated VM. When a hot loop is detected, the meta-
tracing JIT compiler dynamically compiles it into native code L1. The control

2.2. Meta-JIT Compiler Framework 21

Interpreter
(written in RPython)

VM
(compiled to C,

w/ meta-JIT)
Source program P

Loop 1 of P
L1

Loop 2 of P
L2

Dynamic compilation

VM generation

Runtime

FIGURE 2.15: VM generation and JIT compilation flow in
RPython. Solid and dashed lines represent data and control

flow, respectively.

goes to L1 after finishing compilation and re-executing the compiled loop. It
also jumps to another loop L2 if a destination is already compiled.

Interpreter Definition in a Meta-Tracing JIT Compiler

The RPython framework [Bolz, Diekmann, and Tratt, 2013; Bolz et al., 2009]
is a toolchain for creating high-performance VMs powered by a trace-based
JIT compiler. For meta-tracing JIT compilation, a language developer needs
to write an interpreter definition with the RPython language, which is the
restricted subset of Python. The interpreter definition is based on a bytecode
format, but Bauman et al. reported that the meta-tracing JIT compilation can
effectively be appled to an AST-based interpreter [Bauman et al., 2015].

A RPython-written bytecode interpreter should indicate which part is the
loop in a source program. Figure 2.16 shows an example of an interpreter
defined by a programming language builder. The example uses two anno-
tations — jit_merge_point and can_enter_jit — for the identification of
a loop. A developer should put jit_merge_point at the top of a dispatch
loop to identify which part is the main loop, and can_enter_jit at the point
where a back-edge instruction can occur (where meta-tracing compilation
might start).

22 Chapter 2. Background

def interp(bytecode):
stack = []; sp = 0; pc = 0
while True:

jit_merge_point(
reds=['stack','sp'],
greens=['bytecode','pc'])

inst = bytecode[pc]
if inst == ADD:

v2, sp = pop(stack, sp)
v1, sp = pop(stack, sp)
sp = push(stack, sp, v1 + v2)

elif inst == JUMP_IF:
pc += 1; addr = bytecode[pc]
if addr < pc: # backward jump

can_enter_jit(
reds=['stack','sp'],
greens=['bytecode','pc'])

pc = addr

FIGURE 2.16: An example interpreter definition written in
RPython.

Meta-Compilation in Meta-Tracing JIT Compiler

A meta-tracing JIT compiler traces the execution of an interpreter written in
RPython, which is defined by a language builder. The meta-tracing compi-
lation compiles an executed path of the source program, even if it has con-
ditional branches. If it does, the compiled code will contain guards, each of
which is a conditional branch to the interpreter’s execution from that point.

Algorithms 1 and 2 illustrate the meta-tracing compilation algorithm in pseu-
docode. The procedure JitMetaTracing takes the following arguments: rep—a
representation for the interpreter and states—the state of the interpreter. A
meta-tracing JIT compiler records the execution and checks the operands in
the executed operations. It uses the colors red and green to let the meta-tracing
JIT compiler catch runtime information. The color red means “a variable in a
source language”: therefore, the red variables are used to calculate the result
of a base program. The color green indicates “a variable in an interpreter”:
then, the compiler will optimize this variable by constant-folding or inlining.
If all the operands in one operation are green, the operation is only used for
calculation in an interpreter, so the compiler executes it. If at least one vari-
able is red, the compiler recognizes that the operation is in a base program
and writes to residue.

Hint Instructions in RPython

The RPython framework provides hint instructions to influence the behavior
of a meta-tracing JIT compiler.

2.2. Meta-JIT Compiler Framework 23

Algorithm 1: JitMetaTracing(rep, states)
input : Representations of an interpreter itself
input : States (e.g., virtual registers and memories) of an interpreter

itself
output: The resulting trace of the hot spot in a base program
entry_states← states;
repeat

residue← [] ; // A data to store the result
op← rep.current_operation(states);
if op = conditional branch then

if op has red variables then
guard← op.mk_guard(states);
residue.append(guard);

eval(op, states, residue);
else if op = function call to f then

inline f ;
else

eval(op, states, residue);

until op = jit_merge_point ∧ entry_states = states;
return residue;

Algorithm 2: Eval(op, states, residue)
if op has red variable then

op.const_fold(states);
residue.append(op);

else
op.execute(states);

Promotion Promotion is a technique to turn an arbitrary variable in a trace
into a constant. When a variable is promoted, a guard instruction is in-
serted to validate that the value of the variable is constant. Once promo-
tion is successful, the meta-tracing JIT compiler can apply more aggressive
constant-folding. However, promoting variables too much may occur in the
case of guard failure, generating a large number of bridges from very similar
guard_value opcodes. The followings are the promotion functions provided
by RPython:

• promote: promote a variable to a constant

• promote_string: same to promote, but promote string by value

• promote_unicode: same to promote_string, but promote unicode
string by value

24 Chapter 2. Background

Trace elidable Decorating a function with trace-elidable means that the
function returns a same result with identical arguments, having no side-
effects. The call to a trace-elidable function is replaced with the result of a
trace-elidable call if RPython can completely guess that the result should not
change with the same arguments, same numbers, and same pointers. The
decorator @elidable is used to tell RPython that the decorated function is
trace-elidable. The decorator @elidable_promote is a special trace-elidable
hint function that promotes all arguments to being constant.

Inlining or not inlining function Unrolling a function call or leaving a
function is decided by RPython. RPython tries to inline a function as much
as possible, but gives up inlining when it would produce too much code. Be-
cause unrolling loops can be harmful due to the explosion of trace sizes, the
decision is carefully managed in RPython internally. However, it is obvious
when a function should be unrolled or not in some case, so RPython provides
decorators to tell RPython whether or not to unroll the decorated function.
The RPython decorator @unroll_safe specifies that the decorated function
should always be unrolled. On the other hand, @dont_look_inside specifies
that RPython should produce a call to the function not trace the inside of the
function. Note that @dont_look_inside executes the body of the decorated
function to trace the successors of the function.

Accessing runtime information RPython provides several functions to al-
low us that access runtime or tracing-time information. These functions are
useful when the user wants to describe behavior in the interpreter that will
be executed in specific situations, such as during tracing or after compila-
tion. The function we_are_jitted returns True after tracing and translation
to C, and False during interpreter execution. Similarly, we_are_translated
returns True after translation and False otherwise.

25

Chapter 3

Motivation and Proposal

Contents
3.1 Scope of Compiling a Source Program 25

3.2 Level of Compiling a Source Program 27

3.3 Dilemma: Hard to Extend Generated VMs from a Meta-
JIT Compiler Framework . 29

3.4 Proposal: Multi-Role Meta-Tracing JIT Compilation 30

3.4.1 System Overview: Multi-Role Meta-Tracing JIT
Compiler Framework 32

3.4.2 Underlying Techniques for Multi-Scope Compilation 33

3.4.3 Underlying Techniques for Multilevel Compilation . 35

The goal of the present dissertation is to realize multi-role meta-tracing compi-
lation. The multi-role meta-tracing JIT compiler can support multiple scopes
of compilation targets and multiple levels of compilation. In addition, the
multi-role compilation is performed on top of a meta-tracing JIT compiler
framework, so it is possible to generate a multi-role JIT compiler by writing
an interpreter.

This chapter illustrates the motivation behind creating multi-role JIT compi-
lation. First, this chapter discusses the major JIT compilation policies in terms
of the scope of the compilation in Section 3.1 and the level of the compilation
in Section 3.2. Then, Section 3.3 describes the problem of realizing multi-
role meta-tracing JIT compilation. Finally, the chapter provides a high-level
overview of the multi-role meta-tracing JIT compiler in Section 3.4.

3.1 Scope of Compiling a Source Program

There is a wide range of compilation policies in JIT compilers, and they
can be classified around the compilation scope. To begin, a method-based
compilation, which configures its compilation scope as a method, is the
most traditional and well-studied policy. This policy has been adopted in
Smalltalk [Deutsch and Schiffman, 1984], Java [Paleczny, Vick, and Click,
2001], and other VMs. Furthermore, a trace-based compilation, which sets its

26 Chapter 3. Motivation and Proposal

scope as the execution path in a source program, has been studied since the
later half of the 2000s. The concept of trace-based compilation is proposed
by Dynamo [Bala, Duesterwald, and Banerjia, 2000], and it has been used
in some real-world VMs such as PyPy [Rigo and Pedroni, 2006], TraceMon-
key [Gal et al., 2009], and LuaJIT [Pall, 2005]. As mentioned in Sections 2.2.1
and 2.2.2, the two scopes are used in the JIT compilation system of the cur-
rent meta-JIT compiler frameworks. However, these policies have their own
advantages and disadvantages, so it is difficult to pinpoint one or the other as
the clear winner. Given this context, compilation policies using the region of
a program as a compilation scope, called region-based compilation, is attract-
ing attention recently. This policy is commercially used in HHVM [Ottoni,
2018], which is a VM for PHP and Hack languages built by Meta.

The following paragraphs describe the features, advantages, and disadvan-
tages of each of the compiled scopes in a heavyweight JIT compilation.

Method-based Compilation Policy Method-based compilation [Deutsch
and Schiffman, 1984; Paleczny, Vick, and Click, 2001; “The IBM J9 Java Vir-
tual Machine for Java 6” 2009; Ungar and Smith, 1987], or simply speaking
method JIT, is a compilation policy that specializes the scope of a frequently
executed method and translates it into machine code at runtime. This pol-
icy has been a well-researched traditional approach since the 1980s. The ad-
vantage of method-based compilation is that it can share many optimization
techniques that are used in traditional static compilers. Therefore, it can per-
form efficient optimizations, including inlining, control flow analysis, loop
unrolling and peeling [Paleczny, Vick, and Click, 2001], escape analysis [Choi
et al., 1999b], and data flow analysis, and it exhibits good performance on av-
erage.

However, careful management of the compilation target is necessary be-
cause the compilation unit could cover code parts that are rarely executed.
It has the risk of leading to a code size blow-up if attention is not paid to it.
When aggressive inlining is applied to a method with deeply nested function
calls, the compiled code size increases, leading to a longer compilation time.
Therefore, this requires well-planned inlining to a method for reducing the
overhead of a method call.1

Trace-Based Compilation Policy Trace-based compilation targets the
“trace” of the executed code. It can target a larger scope of compilation than
method-based JIT compilation, because it is capable of automatically inlin-
ing a function call (or method invocation) [Bolz et al., 2011b; Gal et al., 2009].
Because of the compilation of linear execution paths, the trace-based JIT
compiler can aggressively apply optimization techniques, including constant
subexpression elimination, dead code elimination, constant folding, and reg-
ister allocation removal [Bolz et al., 2011a]. Thus, this policy obtains better

1To avoid this problem, the developers of JVMs tune their threshold to start JIT compi-
lation by using well-designed benchmark suites such as SPECjvm2 and DaCapo [Blackburn
et al., 2006].

3.2. Level of Compiling a Source Program 27

results with specific programs with branching possibilities or loops [Bauman
et al., 2015; Huang, Masuhara, and Aotani, 2016]. Moreover, it can execute
aggressive function inlining at a low cost, because a trace-based JIT compiler
tracks and records the execution of a program so that a resulting trace will in-
clude an inlined function call [Gal, Probst, and Franz, 2006]. This reduces the
overhead of a function call, creating opportunities for further optimization.

However, when a trace-based JIT compiler traces a complex control flow, the
obtained trace will not be useful since the control cannot stay on the trace for
long periods of time, and many deoptimizations occur, which means escap-
ing from an interpreter to a trace in the context of tracing JIT compilation, and
it leads to bad runtime performance. This problem is called path-divergence
problem [Hayashizaki et al., 2011; Huang, Masuhara, and Aotani, 2016]. In-
oue et al. [Inoue et al., 2011] reported that their trace-based JIT compilation
outperformed the method-based JIT compilation in three benchmarks, while
it became slower in seven benchmarks in DaCapo. The ratio ranges from 20
% slower to 25 % faster than the method-based JIT compilation.

Region-Based Compilation Policy Region-based JIT compilation has been
recently adopted in the second generation of HHVM, which is a produc-
tion level VM for the PHP and Hack languages. [Ottoni, 2018] argues that
a region-based compilation policy is good for dynamic languages. Because
its compilation unit is not restricted to entire method bodies, single basic
blocks, or straight-line traces, it can provide the flexibility that is important
for compilation time and code size. Furthermore, [Suganuma, Yasue, and
Nakatani, 2006] stated that region-based compilation can avoid frequent side
exists3 that affect basic block- and trace-based policies.

As described above, each policy has its own advantages and disadvan-
tages. In particular, a multi-scope approach such as region-based compila-
tion is promising because it can take advantage of the two popular compila-
tion scopes–method-based and trace-based. However, the meta-JIT compiler
frameworks do not support multi-scope compilation. The reason for this is
described in Section 3.3.

3.2 Level of Compiling a Source Program

Real-world applications are divided into sections that are executed fre-
quently, slightly, and not at all. In the present dissertation, frequently exe-
cuted and slightly executed sections are called hot spots and warm spots, re-
spectively. Real-world managed VMs, such as Hotspot, V8, JavaScriptCore,
have multiple levels of compilation consisting of lightweight and heavy-
weight compilers. The motivation to support multiple levels of compila-
tion is to use lightweight compilers for programs with short execution times
and to apply heavy-weight compilers to programs with long execution times.
Heavyweight JIT compilers such as the C2 [Paleczny, Vick, and Click, 2001]

3It means a costly fallback to interpreter execution from machine code execution.

28 Chapter 3. Motivation and Proposal

managed VM

JIT compilerexec.

legend

Source Bytecode Target Selector,
Profiler

Interpreter

IR Translator

Optimizer

Machine code

input data internal data
structure

manageable component

data flow control flow

FIGURE 3.1: Simplified overview of a managed VM.

in Hotspot, the Turbofan compiler [Google, 2015a] in V8 [Google, 2015b],
and the FTL compiler [Pizlo, 2014] in JavaScriptCore [Pizlo, 2020] produce
fast machine code and consume compilation time because they use expen-
sive optimization techniques. They are usually applied to hot spots because
performance improvement can be expected, even if the cost of the compile
time is paid. However, if a heavyweight JIT compiler is used for warm spots,
the cost of the compile time is inevitable, because warm spots are executed
less often than hot spots. Therefore, warm spots are compiled by lightweight
JIT compilers. A lightweight JIT compiler, such as the C1 [Kotzmann et
al., 2008] in Hotspot, the Ignition compiler [Google, 2016] in V8, the DFG
compiler [Barati, 2022] in JavaScriptCore, quickly generates machine code
with inexpensive optimizations. In the DaCapo benchmark that simulates a
real-world workload of Java applications, [Blackburn et al., 2006] stated that
about 30% of declared methods are compiled by lightweight compilation and
10% of methods compiled by heavyweight compilation.

In contrast to the managed VMs described above, there have been few stud-
ies on multilevel compilation on a meta-JIT compiler framework. The two
meta-JIT compiler frameworks—RPython and Truffle/Graal—have a limited
option to customize their compilation levels. As mentioned in Sections 2.2.1
and 2.2.2, they provide a hint instruction, which allows language developers
to customize the behavior of their compiler and the code compiled. However,
the latter is currently used for ad hoc optimization. The reason and approach
for the present dissertation are discussed in Section 3.3.

3.3. Dilemma: Hard to Extend Generated VMs from a Meta-JIT Compiler
Framework 29

generated VM

JIT compiler
exec.

legend

Source
Bytecode
(or AST)

Target Selector,
Profiler

Interpreter

IR Translator

Optimizer

Machine code

input data internal
data structure

manageable
component

provided
component

provided
data structure

data flow control flow

FIGURE 3.2: Simplified overview of a generated VM from a
meta-JIT compiler framework.

3.3 Dilemma: Hard to Extend Generated VMs
from a Meta-JIT Compiler Framework

Normally, the components of a VM are managed by the developer (espe-
cially, it is called a managed VM here). In other words, the addition of a
new functionality can be achieved by making changes to the components of
the managed VM or by adding new components. Figure 3.1 shows the sim-
plified overview of the components of a managed VM. For example, when
developers create a new JIT compiler with a different compilation scope than
the existing one, they modify a target selector/profiler, design a new inter-
mediate representation (IR), and create a new optimizer and translator. In
addition, if they add a feature about multilevel compilation, they add a new
lightweight compiler in the JIT compiler of a VM. This addition and modifi-
cation are possible because all components of a VM are manageable.

In contrast to the case of a managed VM, it is difficult to easily add a
new compilation, such as multi-scope compilation, to the meta-JIT compiler
framework. The dilemma is that it is difficult to add a new feature to the VM
generated by the meta-JIT compiler framework that would be possible in a
managed VM. This is because, as shown in Figure 3.2, almost all the com-
ponents of a generated VM are provided by the framework and cannot be
freely modified. If developers using a meta-JIT framework tried to add new
features to their VMs, they would have to rewrite the framework itself. This
approach is not realistic because the implementation costs are too high.

The only component that the developer can freely implement and extend
is the interpreter. The meta-JIT compiler frameworks provide hint instruc-
tions, such as the elidable decorator in RPython, to pass information about

30 Chapter 3. Motivation and Proposal

the variables or functions to the meta-JIT compiler for further optimization,
but they are not currently considered as being useful in implementing a new
compilation behavior. If they are organized in a unified way to generate a
new compilation behavior along with the existing one, it not only eases the
user’s implementation burden, but it also allows for the pursuit of perfor-
mance in the implementing language.

3.4 Proposal: Multi-Role Meta-Tracing JIT Compi-
lation

As in the discussions in Sections 3.1, the two major JIT compilation policies—
method- and trace-based compilation policies—have their own advantages
and disadvantages. In summary, method-based JIT compilation can perform
well on average, but it needs careful management of the compilation code
size to avoid code bloat. On the other hand, trace-based JIT compilation can
emit highly optimized code by keeping the code size small compared with
method-based JIT compilation. However, the performance becomes worse
when tracing a program with complex control flow, which is called the path-
divergence problem. A region-based compilation policy can have the bene-
fits of both policies and is the focus here.

In addition, as explained in Section 3.2, today’s managed VMs support
multilevel compilation to achieve optimal performance in all situations. In
other words, they have lightweight and heavyweight compilers and use
lightweight compilation for short-running scripts and heavyweight compi-
lation for long-running applications.

The goal of the present dissertation is to realize multi-role meta-tracing JIT
compilation. However, according to the description in Section 3.3, it is diffi-
cult adding new features to generated VMs from a meta-JIT compiler frame-
work because generated VMs have no choice but to use VM components pro-
vided by the framework. Therefore, if the development method of the man-
aged VM is changed, it is necessary to create a new meta-JIT compiler frame-
work or make major changes to the existing framework to achieve multi-role
compilation. Not only may the implementation cost increase, but if the exist-
ing framework is extended, the introduction of new intermediate represen-
tations will cause the existing optimizers and transformers to be rewritten.

In order to achieve multi-role meta-tracing JIT compilation, the present dis-
sertation proposes a hint instruction-based approach. In the context of multi-
role meta-tracing JIT compilation, the hint instruction is a pseudo-function
that is inserted into an interpreter. The hint instruction affects the behav-
ior of the meta-tracing JIT compiler by inserting it into an interpreter to be
traced. Depending on the definition of hint instructions in an interpreter, the
meta-tracing JIT compiler can generate code at multi-compilation-scope and
multi-compilation-level.

3.4. Proposal: Multi-Role Meta-Tracing JIT Compilation 31

generated VM

Multilevel Compilation:
Multilevel RPython

(Real World)

Multi-Scope Compilation:
BacCaml (Proof of Concept)

load
runtim

e

gen.

runtime gen.

runtimegen.

Interpreter

Hint in-
structions

Multi-Role Meta-Tracing JIT

Interpreter w/
hint instructions

VM generation

Runtime

Multi-Role JIT

Bytecode
Method based Trace based

Threaded code
+ inline caching

Compilation Scope

O
pt

im
iz

at
io

n
le

ve
l

FIGURE 3.3: Overview of a multi-role meta-tracing JIT compiler
framework.

The advantage of this approach in working toward the realization of multi-
role meta-tracing JIT compilation is that it can be achieved without drasti-
cally modifying a meta-JIT compiler framework itself. The multi-role com-
piler is achieved by using the characteristics of meta-tracing JIT compilation.
In other words, a meta-tracing JIT compiler executes a bytecode interpreter
that is written by the user during the tracing, and with this, it is possible
to change the behavior of the tracer and the form of the compiled code it
generates, here depending on the hint instructions that are inserted into the
interpreter.

The multi-role JIT compilation has two aspects: multi-scope compilation and
multilevel compilation. Multi-scope compilation can take multiple compi-
lation scopes when it performs JIT compilation. In summary, it can apply
method-based compilation to a function f and trace-based compilation to
a function g. The method-based compilation is realized by (meta-)trace-
based compilation with hint instructions. As a proof of concept, this dis-
sertation proposes the hint instructions and interpreter design for multi-
scope compilation and BacCaml framework [Izawa and Masuhara, 2020] in
Chapter 4. Furthermore, the other aspect is that multilevel compilation
has multiple compilation levels: lightweight and heavyweight. The mul-
tilevel compilation is implemented in RPython, a real-world meta-tracing

32 Chapter 3. Motivation and Proposal

JIT compiler framework. It supports method-based threaded code genera-
tion [Izawa et al., 2022] as lightweight compilation and trace-based compi-
lation as heavyweight compilation. Chapter 5 describes the details of Mul-
tilevel RPython, which supports such multilevel compilation. In particular,
the chapter introduces a way to implement an optimization technique called
inline caching [Deutsch and Schiffman, 1984] by using hint instructions for
lightweight compilation in Section 5.4.

3.4.1 System Overview: Multi-Role Meta-Tracing JIT Com-
piler Framework

This section provides an overview of the hint instruction-based approach to
multi-role meta-tracing JIT compilation based on Figure 3.3. First, the user
generates a VM with multi-role JIT compiler from a written interpreter in-
strumented with the hint instructions. At runtime, different compilations
with different compilation scopes are applied to different parts of a program
when the hint instructions tell the multi-role JIT compiler to perform a multi-
scope compilation (the details are described in Chapter 4). In the same way,
when the hint instructions tell the multi-role JIT compiler to perform a mul-
tilevel compilation, it will use a lightweight and a heavyweight compilation
(details are shown in Chapter 5).

To switch compilation scopes and levels, the present dissertation implements
two strategies: one based on annotation and one on profiling. BacCaml,
which is described in Chapter 4, uses the annotation-based strategy, and
Multilevel RPython, which is described in Chapter 5, uses the profiling-
based strategy. Figure 3.4 illustrates both strategies using pseudocode. The
multi-scope compiler generated by BacCaml decides the compilation scope
depending on the annotation specified in a function. Figure 3.4a shows
the example. The multi-scope compiler performs method-based compila-
tion when the hint instruction can_enter_method_jit defined in the inter-
preter is called. Similarly, it performs trace-based compilation when the
can_enter_tracing_jit hint is called. Multilevel RPython, on the other
hand, uses a profiling-based strategy. Figure 3.4b shows an example us-
ing pseudocode. There are two types of JIT drivers: threaded_driver for
lightweight compilation and tracing_driver for heavyweight compilation.
The threaded_driver.can_enter_jit(..) hint is placed at the start of an
interpreter definition, and the tracing_driver.can_enter_jit(..) hint is
placed at the point where a back-edge jump occurs. Each hint instruction
tracks the number of times it is called, and JIT compilation occurs when a
threshold has been exceeded. The threshold can be set by the user of the
multi-role meta-tracing JIT compiler framework.

3.4. Proposal: Multi-Role Meta-Tracing JIT Compilation 33

(* Compiling this function
* with method-based JIT *)

let%mj rec fib n =
if n <= 1 then n
else fib (n-1) + fib (n-2)

(* Compiling this function
* with trace-based JIT *)

let%tj rec sum n =
if n <= 1 then n
else n + sum (n-1)

(A.1) Source program.

(* compiled bytecode *)
fib:

METHOD_COMP
DUP
CONST_INT 0
LT
...

sum:
TRACING_COMP
DUP
CONST_INT 0
LT
...

(A.2) Compiled bytecode.

(* interpreter *)
let rec interp stack sp bytecode pc =

let instr = bytecode.(pc) in
if instr = METHOD_COMP then

can_enter_method_jit (..)
interp stack sp bytecode (pc+1)

else if instr = TRACING_COMP then
can_enter_tracing_jit (..)
interp stack sp bytecode (pc+1)

else if ...

(A) Annotation-based approach to specify a JIT compilation policy.

threaded_driver = JitDriver(threaded_code_gen=True, ..)
tracing_driver = JitDriver(..)

def interp(bytecode):
pc = 0, stack = []
threaded_driver.can_enter_jit(..)
while True:

instr = bytecode[pc++]
if instr == JUMP_BACKWARD:

target = bytecode[pc++]
pc = target
tracing_driver.can_enter_jit(..)

elif ...

(B) Profiling-based approach to specify a JIT compilation policy.

FIGURE 3.4: Two approaches to a specify JIT compilation policy
in BacCaml and Multilevel RPython.

3.4.2 Underlying Techniques for Multi-Scope Compilation

To achieve multi-scope compilation in meta-tracing JIT compilation, it should
establish a way to perform method-based compilation though (meta-)trace-
based compilation. This section proposes the hint instructions that enable

34 Chapter 3. Motivation and Proposal

multi-scope compilation on top of a meta-tracing JIT compiler framework.
This approach does not build a new compiler from scratch, but instead, it
guides the tracer of a meta-tracing JIT compiler through the use of the hint
instructions.

Hint Instructions and Compilation Overview

This section briefly shows the hint instructions and compilation overview of
method-based compilation when using a meta-tracing JIT compiler, namely
Method JIT by Tracing. BacCaml and Multilevel RPython differ in the way
Method JIT by Tracing is implemented: BacCaml is implemented by modi-
fying the compiler, whereas Multilevel RPython is implemented by using a
new data structure called traverse_stack.

The Method JIT by Tracing traces all possible paths of a target method at once
with the help of hint instructions.

Hint Instructions The hint instructions that enable a meta-tracing JIT com-
piler to perform method-based compilation are as follows:

• traverse_if(cond, other_dest): indicates the point where the trace
should traverse both sides.

• traverse_JUMP(dest) and traverse_RET(value): tell the meta-tracing
JIT compiler to backtrack.

• dont_look_inside: tells the tracer not to inline this method call.

In addition, these hint instructions are inserted in an interpreter like Listing 1.
By using this interpreter definition, a multi-role meta-tracing JIT compiler
performs Method JIT by Tracing. The compilation overview is explained be-
low.

Compilation Overview The overview of Method JIT by Tracing’s compila-
tion flow is shown in Figure 3.5. Taking the bytecode-formatted method f
and the interpreter shown in Listing 1 as an example:

1. First, the tracer traces INT 10000 and LT.

2. When tracing JUMP_IF L1, the tracer executes traverse_if. At this
point, the tracer saves its state (this state will be rewound later) and
trace one side.

3. Next, the tracer traces INC.

4. When tracing JUMP_BACK L0, the tracer executes
traverse_JUMP(target).

(a) The tracer leaves the jump instruction to target, which corre-
sponds to L0 in bytecode, hence resulting in the trace.

(b) Then, it backtracks to JUMP_IF L1 and rewinds the saved states.

3.4. Proposal: Multi-Role Meta-Tracing JIT Compilation 35

while True:
instr = bytecode[pc++]
if instr == JUMP_IF:

target = bytecode[pc++]
traverse_if(stack.pop(), pc+2):

pc = target
elif inst == JUMP:

target = bytecode[pc++]
traverse_JUMP(target)

elif instr == CALL:
r = dont_look_inside(interp(..))
stack.push(r)

elif instr == RET:
v = stack.pop()
traverse_RET(v)

elif instr == INT:
n = bytecode[pc++]
stack.push(n)

elif instr == INC:
x = stack.pop()
stack.push(x + 1)

elif instr == LT:
y, x = stack.pop(), stack.pop()
if x < y:

stack.push(True)
else:

stack.push(False)

LISTING 1: Brief example of an interpreter instrumented with
the hint instructions for Method JIT by Tracing.

5. When tracing CALL "g", the tracer executes dont_look_inside. Then,
it does not track the call destination but leaves a call instruction to the
function g.

6. Finally, when tracing RET, the tracer executes traverse_RET(v). Then,
it emits return v to the resulting trace and finishes the trace.

The temporal output trace does not retain the original control flow be-
cause the tracer jumps back to JUMP_IF L1 at JUMP_BACK. Thus, the compiler
cuts/stitches the temporal output and restores the original control flow. In
BacCaml, this is done during tracing, but in Multilevel RPython, it is done
after traversing a method (this is called trace-stitching).

3.4.3 Underlying Techniques for Multilevel Compilation

As described in Section 3.4.2, it is possible to create a new compilation behav-
ior by instrumenting an interpreter with hint instructions. The key idea be-
hind implementing multilevel compilation is to prepare different interpreters
with different hint instructions. For example, if you want to implement a JIT
compiler with two levels of compilation, you need to instrument one inter-
preter with hint instructions for lightweight compilation and one interpreter

36 Chapter 3. Motivation and Proposal

Method f
L0:

INT 10000
LT
JUMP_IF L1
INC

L1:
CALL "g"
RET

(A) Source program as a
bytecode format.

INT 10000

LT

JUMP_IF L1

INC

JUMP_BACK L0

CALL "g"

RET

ba
ck

tr
ac

k

Restore the con-
trol flow

jump(L0) return

jum
p

ca
ll

trace control flow

(B) Overview of how Method JIT by Tracing works on the
example. The tracer first traverses all possible paths of the
method f. Then, the compiler restores the original control flow.

FIGURE 3.5: Compilation Overview of Method JIT by Tracing.

Bytecode
L0:

INT 10000
JUMP_IF L1
INC
JUMP L0

L1:
CALL "g"
RET

Interpreter

Hint instrs

Trace styled w/
threaded code
L0:

call(INT)
guard_false(.., L1)
call(INC)
jump(L0)

L1:
call(CALL("g"))
finish(..)

Asm output
L0:

call INT
jnz L1
call INC
jmp L0

L1:
call CALL
ret

Method-based

@enable_shallow_tracing
and traversal_stack

FIGURE 3.6: Compilation overview of lightweight compilation
in Multilevel RPython.

with hint instructions for heavyweight compilation. The hinting for heavy-
weight compilation is already provided by RPython, the question is how to
achieve lightweight compilation with hinting.

To achieve multilevel compilation in a multi-role meta-tracing JIT compiler
framework, the present dissertation proposes the hint instruction called
@enable_shallow_tracing for lightweight compilation. With the help of
@enable_shallow_tracing, the multi-role meta-tracing JIT compiler can emit
threaded code [Bell, 1973]. Figure 3.6 shows the compilation overview of
lightweight compilation in Multilevel RPython, and Listing 2 illustrates the
interpreter definition instrumented using @enable_shallow_tracing. Note
that @enable_shallow_tracing decorates every handler so that it emits
threaded code. In addition, with the help of traverse_stack, which is de-
scribed in Section 5.2.3, the scope of the output trace is method-based. The
technical details are described in Chapter 5.

3.4. Proposal: Multi-Role Meta-Tracing JIT Compilation 37

Interpreter for lightweight compilation
while True:

instr = bytecode[pc++]
if instr == INC:

handler_INC(stack)
elif instr == CALL:

handler_CALL(stack)
elif ...

...

instrumented with the hint instructions
@enable_shallow_tracing
def handler_INC(stack):

x = stack[sp--]
z = add(x, 1)
stack[sp++] = z

@enable_shallow_tracing
def handler_CALL(stack):

r = interp(stack, ..)
push(r)

LISTING 2: Brief example of interpreter definition for
lightweight compilation.

39

Chapter 4

BacCaml – a Proof-of-Concept
Multi-Scope Meta-Tracing JIT
Compiler

Contents
4.1 Introduction . 39

4.2 Mixing The Two Compilation Strategies in Meta-Level . . 41

4.2.1 Method-Based Compilation by Tracing 41

4.3 Stack Hybridization . 46

4.3.1 Combination Problem 46

4.3.2 Bridging Native Code with Different Calling Con-
ventions . 48

4.4 Evaluation . 49

4.4.1 Setup . 50

4.4.2 Standalone JIT Microbenchmark 51

4.4.3 Multi-Scope JIT Experiment 53

4.5 Related Work . 55

4.6 Conclusion . 57

4.1 Introduction

This chapter evaluates the performance of BacCaml’s trace-based and
method-based compilations. It first briefly introduces the current status of
BacCaml, and how we took the data of microbenchmark programs. Next,
it shows the results of evaluation for BacCaml by running microbenchmark
programs.

The basic idea of achieving multi-scope compilation is realizing method-
based compilation by extending a (meta-) tracing compiler and mixing them.
Since a trace has no control flow and inlines a function, we create our
method-based compilation by customizing the tracing JIT compilers’ features

40 Chapter 4. BacCaml – a Proof-of-Concept Multi-Scope Meta-Tracing JIT
Compiler

Interpreter
built with the
BacCaml framework

Multi-Scope
JIT Compiler

interpreter...

virtual machine

BacCamlOur framework

generate

...

...

...

...

...

language
developer

Tracing
+

Method

(A) A virtual machine generation with a multi-scope meta-tracing JIT compiler framework.

method-JITtrace-JIT

Multi-Scope
Meta-Tracing JIT Compiler

Interpreter Interpreter

JIT Compilation

Machine
Code

Stack Hybridizationbase-program

Execution
Multi-
Scope

JIT

(B) A runtime overview of a generated multi-scope JIT compiler.

FIGURE 4.1: The overviews of a multi-scope meta-tracing JIT
compiler framework.

to cover all the paths in a method. Therefore, the multi-scope meta-tracing JIT
compiler framework shares almost all its implementations between the two
trace- and method-based compilers. Details are explained in Section 4.2.1.

In addition to the leverage strength of the two JIT compilation strategies, a
multi-scope compilation aims to resolve the path-divergence problem by se-
lectively applying method-based compilation to the functions that cause the
problem, and applying trace compilation to the other parts of a program.
Since this proposal focus es on combining the different two strategies, dy-
namically selecting a suitable strategy depending on target programs’ struc-
ture is left as future work.

The basic idea of achieving multi-scope compilation is realizing method-
based compilation by extending a (meta-) tracing compiler and mixing them.
Since a trace has no control flow and inlines a function, we create our

4.2. Mixing The Two Compilation Strategies in Meta-Level 41

method-based compilation by customizing the tracing JIT compilers’ features
to cover all the paths in a method. Therefore, our multi-scope meta-tracing
JIT compiler framework shares its implementations between the two trace-
and method-based compilers. Details are explained in Section 4.2.1.

In addition to the leverage strength of the two JIT compilation strategies, we
aim to resolve the path-divergence problem by selectively applying method-
based compilation to the functions that cause the problem trace compilation
to the other parts of a program. Since this proposal focuses on combining the
different two strategies, dynamically selecting a suitable strategy depending
on target programs’ structure is left as future work.

Figure 4.1 gives an overview of our multi-scope meta-tracing JIT compiler
framework. As shown in Figure 4.1a, when a language developer writes in-
terpreter definition with the framework, the framework can generate a VM
with a multi-scope JIT compiler. Figure 4.1b overviews our multi-scope com-
pilation and runtime by our framework. At runtime, the generated multi-
scope JIT compiler applies different strategies to different parts of a source
program. Further, machine codes generated from different strategies can
move back and forth with each other by Stack Hybridization, which is illus-
trated in Section 4.3.

4.2 Mixing The Two Compilation Strategies in
Meta-Level

In this section, we first describe how to construct method-based compilation
based on (meta-) trace-based compilation. We then explain how to cooperate
with them in a meta JIT compiler framework. In this work, we merely aim at
achieving simple method compilation; i.e., advanced optimization techniques
used in existing method JIT compilers are left for future work.

4.2.1 Method-Based Compilation by Tracing

To construct method-based compilation by utilizing a trace-based compila-
tion, we have to cover all paths of a function. In other words, we need to
determine the true path and decrease the number of guard failures that occur
to solve the path-divergence problem when applying trace-based compila-
tion.

This dissertation proposes method JIT by tracing by customizing the follow-
ing features of trace-based compilation: (1) trace entry/exit points, (2) con-
ditional branches (3) loops, (4) function calls. In the following paragraphs,
the author explain in detail how to “trace” a method by modifying these
features. Note that method JIT by tracing is more naive than other state-of-
the-art method-based JIT compilers, since this method-based compilation is
designed for applying for programs with complex control flow, which causes

42 Chapter 4. BacCaml – a Proof-of-Concept Multi-Scope Meta-Tracing JIT
Compiler

Algorithm 3: JitMetaMethod(rep, states, residue)
input : Representations of an interpreter itself.
input : States (e.g., virtual registers and memories) of an interpreter

itself.
input : An array data structure that records an executed instruction.
output: The trace of a target method in a source program
if op = method_entry then

residue← [];
do

if op = conditional branch then
TraceCond (rep, states, residue);

else if op = loop entry then
TraceLoop (rep, states, residue);

else if op = function call to f then
TraceFunction (rep, states, residue);

else
eval(op, states, residue);

op← rep.get_next(op);
while op != return;
return residue;

else
return;

performance degradation problem in a trace-based compilation, and we ap-
ply a trace-based compilation for other programs. Thus, the trace-based
compiler is the primary compiler, and the method-based compiler is the sec-
ondary compiler in our system.

Trace entry/exit points Trace-based JIT compilers [Gal, Probst, and Franz,
2006; Gal et al., 2009] generally compile loops in the source program; there-
fore, they start to trace at the top of a loop and end when the execution re-
turns to the entry point. To assemble the entire body of a function, we modify
this behavior to trace from the top of a method body until a return instruc-
tion is reached (see Algorithm 3).

Conditional branches When handling a conditional branch, trace-based
JIT compilers convert a conditional branch into a guard instruction and col-
lects instructions that are executed. When execution method-based compi-
lation, however, we must compile both sides of conditional branches. To
achieve this, a tracer that records executed instructions must return to the
branch point and restart tracing the other side as well. As shown in Algo-
rithm 4, the tracer in our constructed method-based JIT compiler has to trace
both then and else sides so that it backtracks to the beginning of a conditional
branch when it reaches the end of one side and continues to trace the other
side. Before starting to trace one side, the tracer stores its states (e.g., the data

4.2. Mixing The Two Compilation Strategies in Meta-Level 43

Algorithm 4: TraceCond(rep, states, residue)
regs, mems← [], [];
do

regs.store(states.get_reg());
mems.store(states.get_mem());
trace_then← JITMETAMETHOD(states);
states.restore(regs, mems);
trace_else← JITMETAMETHOD(states);
// construct if exp including trace_then and trace_else
trace_ifexp← begin

if op.const_fold(states) then
trace_then;

else
trace_else

residue.append(trace_ifexp);
op← rep.next_of(op);

while op != return;

stored in the tracer’s virtual registers and memories) in already prepared ar-
rays. For just backtracking, the tracer restores those states and continues to
the other side.

Figure 4.2a shows an example describing how the tracer for method-based
compilation works. On the left side, node A is the method entry, nodes B –
C – D form a conditional branch, and node E is the end of this method. The
tracer starts to trace at A. On reaching a conditional branch (B), the tracer
then stores its state and follows one side (B – C – E – G – H). On reaching
return instruction (H), the tracer finally backtracks to B and resumes to trace
the other side (B – D – F – G – H) by restoring the already saved data.

There is a risk of an exponential blow-up of compiled code when tracing a
program that has many nested conditionals. To avoid generating too big na-
tive code, when the compiler detects too many branches in a target program
part, our system stops the method-based compiler to trace. Instead, our sys-
tem switches to apply trace-based compilation for such a program.

Loops Our method-based compiler does not handle loops specially. While
a trace-based compiler compiles loops as a straight-line path, our method-
based compiler compiles not only the body a target loop, but also the succes-
sors of it.

Algorithm 5 illustrates how the tracer for method-based compilation traces a
loop. When the tracer finds the entry point, it starts to analyze the body of a
function to find a back-edge and loop-exit instruction. When the tracer traces
a back-edge, as with a trace-based compilation, leaves an instruction to jump
to the entry. When the tracer leaves a loop-exit instruction, it also traces the

44 Chapter 4. BacCaml – a Proof-of-Concept Multi-Scope Meta-Tracing JIT
Compiler

A

entry

B

C D

E F

G

H
return

tr.1

A

entry

B

C D

E F

G G’

H
return

H’
return

(A) Handling of a conditional branch. In this pro-
gram, A represents a method entry, and B – C – D

represents a conditional branch.

A

entry

B

C

D

E

F
return

tr.1

tr.2

tr.3

A

entry

B

C

D

E

F
return

(B) Handling of a loop. In this pro-
gram, B – C – D represent a loop, and
E – F is a successor of the loop B – C

– D.

other fun.

A

entry

B

C

D
return

E

F

ca
ll

return

tr.1

other fun.

A

entry

B

C

D
return

E

F

ca
ll

return

(C) Handling of a function call. A – B – C – D and E – F are functions. In this program, (A –
B – C – D) calls (E – F) at C. Note that only target function (A – B – C –D) is compiled.

FIGURE 4.2: Examples how our method-based compilation
works. Each left-hand side is the control-flow of a target source
program that represents one method, and each right-hand side
is a result. “entry” and “return” means the entry point and exit

poitn of a target method, respectively.

destination of a loop-exit instruction and leaves a jump instruction to go to
the outside of this loop.

Figure 4.2b shows an example of how to handle a loop. In this example, our
method-based compiler compiles a single loop into three trace parts. The
first one (tr.1) is up to the loop entry, the second one is the loop itself (tr.2) of
the loop, and the third one is the successor of the loop (tr.3).

4.2. Mixing The Two Compilation Strategies in Meta-Level 45

Algorithm 5: TraceLoop(rep, states, residue)
op← rep.get_op();
do

if op = back-edge to the entry then
residue.append(jump to entry);

else if op = loop-exit then
loop_after_state← rep.next_of(op).get_states();
loop_after_trace← JITMETAMETHOD(rep, loop_after_state);
residue.append(jump to loop_after_trace);
residue_loop_after.append(loop_after_trace);

else
eval(op, states, residue);

op← rep.next_of(op);
while op!= return;
residue.append(residue_loop_after)

Algorithm 6: TraceFunction(rep, states, residue)
do

if op = function call to f then
residue.append(call to f) ; // not following but leaving the
instruction “call f”

// continue to trace successors

while op != return;

Function calls Whereas a trace-based JIT compiler will inline function calls,
our method-based JIT compiler will not inline, but emit a call instruction
code and continue tracing. We don’t inline function because our method-
based compilation is designed to apply only for programs with the path-
divergence problem. If a target program needs inlining, we will apply trace-
based compilation for it, since trace-based compilation can automatically
perform function inlining. Thus, our method-based compilation is so naive
that it is not equivalent to other method-based JIT compilers.

To remain a function call in a resulting trace, we have to inform which part
is represented to a source program function call in an interpreter definition.
Therefore, we need to implement the specific interpreter style shown in the
left-hand side of Figure 4.3 (we call this style host-stack style here). By writing
in host-stack style, the tracer can detect which part is a source program’s
method invocation and leave a call instruction in a resulting trace. Figure 4.2c
shows how the tracer compiles a function call. In this example, the tracer
eventually generates one trace, including a call instruction (tr.1).

In trace-based compilation, however, a meta-tracing JIT compiler can work
efficiently in a specific way as shown in the right-hand side of Figure 4.3 (we
call this user-stack style here).

46 Chapter 4. BacCaml – a Proof-of-Concept Multi-Scope Meta-Tracing JIT
Compiler

if opcode == CALL:
addr = self.bytecode[pc]
call the `interp'
recursively
res = self.interp(addr)
user_stack.push(res)
pc += 1

elif opcode == RETURN:
return a top of
`user-stack'
return user_stack.pop()

(A) Example interpreter written in host-
stack style.

if opcode == CALL:
addr = self.bytecode[pc]
pc += 1
push a return addr to
`user-stack'
ret_addr = W_IntObject(pc)
user_stack.push(ret_addr)
if addr < pc:

can_enter_jit(..)
jump to a callee function
pc = t

elif opcode == RETURN:
v = user_stack.pop()
restore already pushed
return addr
addr = user_stack.pop()
user_stack.push(v)
if addr < pc:

can_enter_jit(..)
jump back to the caller
function
pc = addr

(B) Example interpreter written in user-
stack style.

FIGURE 4.3: Interpreter definition styles. For managing a re-
turn address/value, left-hand side style uses a host-language’s
(system provided) stack, but right-hand side uses a developer-

prepared stack data structurpe.

In the next section, we organize why we need the two different two stack
styles.

4.3 Stack Hybridization

4.3.1 Combination Problem

The reason why the author cannot naively combine them is the following:
the two compilations require different interpreter implementation styles in
function calls. Trace-based compilation requires the user-stack style, while
method-based compilation requires the host-stack style. In other words, dif-
ferent types of compilations use different stack frames for optimizing func-
tion calls. Because of this gap, the runtime cannot call back and forth be-
tween native codes generated from the two compilations. Trace-based com-
pilation inlines a function call; therefore, there is no function call instruction
in the resulting trace. Whereas method-based compilation “leaves” a func-
tion call instruction in the resulting trace. We explain this problem by using
Figure 4.4. Figure 4.4a shows an example that a method-compiled function
calls a trace-compiled function, and Figure 4.4b shows an example that a
method-compiled function calls a trace-compiled function.

4.3. Stack Hybridization 47

def sum(n) {

}

def fib_s(n) {

}

...
call sum
...

call

return (jump)

return_addr

return_val

compiled by method-JIT compiled by trace-JIT

Runtime cannot find
the return address
at returning

user-stack

host-stack

(A) Calling a trace-compiled code from a method-compiled function.

def sum_f(n) {

}

def fib(n) {

}

...
call fib(n-1)
...
call fib(n-2)
...
return

return

return_val

return_addr

compiled by method-JITcompiled by trace-JIT

user-stack

host-stack

call (jump)

return_addr

user-stack

Runtime cannot find
the return address
at returning

(B) Calling a method-compiled function from a trace-compiled code.

FIGURE 4.4: Example of Combination Problem. Gray back-
ground code is compiled by method JIT, and blue lined code

is compiled by tracing JIT.

In the case that fib_s (compiled by method-based compilation) calls sum
(compiled by trace-based compilation) as shown in Figure 4.4, the runtime
puts a return address in the host-stack. In sum, the return value and return
address are stored in the user-stack. On returning from sum, since the seman-
tics of return is defined as shown in Figure 4.3, the runtime attempts to find
a return address from a user-stack. However, the return address is stored in
a host-stack, and the runtime cannot return to the correct place.

48 Chapter 4. BacCaml – a Proof-of-Concept Multi-Scope Meta-Tracing JIT
Compiler

In the case shown in Figure 4.4b, sum_f (compiled by trace-based compila-
tion) calls fib (compiled by method-based compilation), however the run-
time puts its return address in the user-stack. When runtime returns from
fib, it then attempts to find the return address from the host-stack, but it
fails to find the address and results in runtime-error because the return ad-
dress is pushed to the user-stack.

4.3.2 Bridging Native Code with Different Calling Conven-
tions

To overcome this problem, the author proposes Stack Hybridization, a mech-
anism to bridge the native code generated from different strategies. Stack
Hybridization manages different kinds of stack frames, and generates native
code that can be mutually executed in trace-JIT and method-JIT contexts. To
use Stack Hybridization, a language developer needs to write an interpreter
in the specific way: (1) For executing a call instruction in the base language,
developers put a special flag to indicate which stack frame is used in a self-
prepared stack data structure. (2) For executing a return, they have to branch
to the return instruction of the base language corresponding to the call by
checking the already pushed flag.

Roughly speaking, the interpreter handles the call and return operations in
the following ways:

When it calls a function under the trace-based compilation, it uses the
user-stack; i.e., it saves the context information in the stack data
structure, and iterates the interpreter loop. Additionally, it leaves a
flag “user-stack” in the user-stack.

When it calls a function under the method-based compilation, it uses the
host-stack; i.e., it calls the interpreter function in the host language.
Additionally, it leaves a flag “host-stack” in the user-stack.

When it returns from a function, it first checks a flag in the user-stack. If
the flag is “user-stack”, it restores the context information from the
user-stack. Otherwise, it returns from the interpreter function using
the host-stack.

To support behaviors, the author introduces an interpreter implementation
style, which enables to embed both styles into a single interpreter and switch
its behavior depending on the flag. Figure 4.5 shows a sketch of special
syntax to support Stack Hybridization. The important syntaxes are is_mj
pseudo function, and US/HS special flags. US means a flag “user-stack”, and
HS means a flag “host-stack”.

is_mj is used for selecting suitable CALL definitions at compilation time. This
pseudo function returns true under method-based compilation context, oth-
erwise false. The host-stack styled definition should be placed in the then
branch, and the user-stack styled definition is placed in the else branch as

4.4. Evaluation 49

if instr == CALL:
addr = bytecode[pc]
branch considering by
a JIT ctx.
if is_mj():
push JIT flag (HS) to
``user-stack''
user_stack.push(HS)
ret_val = interp(addr)
user_stack.push(ret_value)

else:
push JIT flag (US) to
``user-stack''
user_stack.push(US)
user_stack.push(pc+1)
pc = addr

elif instr == RETURN:
ret_val = user_stack.pop()
get JIT ctx. flag from
``user-stack''
JIT_flg = user_stack.pop()
check the JIT ctx. and branch
if JIT_flg == HS:
return ret_val

else:
ret_addr = user_stack.pop()
user_stack.push(ret_val)
pc = ret_addr

FIGURE 4.5: A sketch of a interpreter definition with Stack
Hybridization. Some hint functions (e.g., can_enter_jit and
jit_merge_point), and other definitions are omitted for sim-
plicity. US and HS represents user-stack and host-stack, respec-

tively.

shown in the left of Figure 4.5. Then, the multi-scope meta-tracing JIT com-
piler traces the then branch in the context of trace-based compilation, but
traces the else branch under method-based compilation context.

US and HS mean trace- and method-based compilation contexts, respectively.
These special variables are used for detecting JIT compilation context dynam-
ically when executing RETURN at runtime (not compilation time).

When defining CALL in an interpreter, US or HS is placed at the top of a user-
stack when language developers define CALL instruction. At compilation
time, these flags are treated as red variable, so an instruction pushing US or
HS flag is left in a resulting trace. The compiler also leaves the branching in-
struction (if JIT_flg == HS: ... else: ...) in a resulting trace when
tracing RET. This enables to find a JIT compilation context, and cooperate re-
sulting traces made from the different two strategies at runtime.

For example, there are two traces, one (A) is made from trace-based compi-
lation and the other (B) is from method-based compilation. When a function
call from A to B is occurred, a flag US is pushed to a user-defined stack. When
executing a RET instruction in B, the control executes a suitable definition by
writing as shown in the right of Figure 4.5.

4.4 Evaluation

The author implemented the BacCaml multi-scope meta-tracing JIT compiler
framework based on the MinCaml compiler [Sumii, 2005]. MinCaml is a
small ML compiler designed for education-purpose. MinCaml can generate

50 Chapter 4. BacCaml – a Proof-of-Concept Multi-Scope Meta-Tracing JIT
Compiler

native code almost as fast as other notable compilers such as GCC or OCam-
lOpt. The author did not extend RPython itself because the implementation
of RPython is too huge to comprehend. As an initial step, the author created
a subset of RPython on a compiler with reasonable implementation size 1.

4.4.1 Setup

To assess the performance of our BacCaml framework, we executed two
kinds of benchmarks. The first one, namely standalone JIT microbench-
mark, is for evaluating the performance of BacCaml’s trace-based compila-
tion and method-based compilation, respectively. The second one, namely
multi-scope JIT microbenchmark, is for evaluationg the quality of our multi-
scope JIT compilation strategy.

Target language: MinCaml−− The author also created a small functional
programming language, namely MinCaml−−, with the BacCaml framework
for taking microbenchmark. It is almost same to MinCaml, but limited to
unit, boolean and integer variables 2.

Methodology

The author attempted to run all of MinCaml’s test programs 3 and shootout 4

benchmark suite by MinCaml−− and BacCaml before taking microbench-
mark. Then, we selected all programs that can be successfully worked in
them. The names of microbenchmark programs are shown in the X-axis of
Figure 4.6.

When taking microbenchmark, a threshold for starting JIT compilation is set
at a lower-than-normal value to simplify the situation. Basically, it sets 100 as
a threshold to determine whether starting JIT compilation or not. Therefore,
this microbenchmark can arrive at a steady-state by attempting at most 50
iterations. Thus, it ran each program 150 times, and the first 50 trials were
ignored to exclude the warm-up.

Since BacCaml is a prototype, it converts a resulting trace to Assembly by us-
ing by GCC at the compilation phase. The compiler then dispatches the con-
trol to the machine code by using dynamic loading in the execution phase.
Particularly, trace-generation and compilation processes consume much time
(approximately 80 % of a warm-up phase), so using a JIT native code genera-
tion framework such as libgccjit 5 or GNU Lightning 6 is left as future work.

1BacCaml itself is written in OCaml, and its implementation can be accessed at
GitHub (https://github.com/prg-titech/BacCaml)

2MinCaml−− is also available at GitHub (https://github.com/prg-titech/MinCaml)
3https://github.com/esumii/min-caml/tree/master/test
4https://dada.perl.it/shootout/
5https://gcc.gnu.org/onlinedocs/jit/
6https://www.gnu.org/software/lightning/

https://github.com/prg-titech/BacCaml
https://github.com/prg-titech/MinCaml
https://github.com/esumii/min-caml/tree/master/test
https://dada.perl.it/shootout/
https://gcc.gnu.org/onlinedocs/jit/
https://www.gnu.org/software/lightning/

4.4. Evaluation 51

It ran all the microbenchmarks on Manjaro Linux with Linux kernel version
5.6.16-1-MANJARO and dedicated hardware with the following modules;
CPU: AMD Ryzen 5 3600 6-Core Processor; Memory: 32 GB DDR4 2666Mhz
PC4-21300.

In the Figure 4.6a and Figure 4.6b, means BacCaml’s tracing JIT, means
BacCaml’s method JIT, means BacCaml’s interpreter-only execution,
means MinCaml (AOT), and means BacCaml’s multi-scope JIT (mixing
tracing and method JIT).

Threats to Validity

There are the following threats to validity in our evaluation (including the
experiment in the next section). The method-based compilation in Bac-
Caml is naive, then the inference which trace-based compilation is faster
than method-based compilation has a possibility to be overturned by a
full-fledged method-based compilers. This is actually true not only to our
method-based compiler, but also for our trace-based compiler when com-
pared against the state-of-the-art trace-based compilers like PyPy.

4.4.2 Standalone JIT Microbenchmark

For comparing the standalone performance of trace- and method-based
compilation strategies, the author first applied both strategies separately
for programs written in MinCaml−−, and compared the performances of
MinCaml−− with JIT with an interpreter-only execution of MinCaml−− and
the MinCaml ahead-of-time compiler.

Before showing data, it explains the limitations of our method-based compi-
lation. Compared to other state-of-the-art method JIT compilers, BacCaml’s
method-based compilation does not inline them. It is because our method-
based compilation is designed to be applied to only programs with the path-
divergence problem. In other words, it is a fallback strategy when trace-
based compilation does not work well.

The results are shown in Figure 4.6a and 4.6b. Note that Figure 4.6a is nor-
malized to the MinCaml (lower is better), but Figure 4.6b is to the interpreter-
only execution (higher is better).

Figure 4.6a illustrates the performances of the two JIT compilations compar-
ing to the elapsed time of MinCaml−− (AOT). In these results, our trace-
based compilation () was from 1.12 to 12.4x slower than MinCaml (AOT)
() in programs which have straight-forwarded control flow (fib-tail, sum,
sum-tail, square, square-tail, fact, ary, prefix_sum). BacCaml’s trace-based
compilation was effective on such programs since almost all executions are
run on compiled straight-line traces. However, it performs from 38.5 to 42.1x
slower than other strategies in programs with complex control flow (fib, ack,
tak, sieve), since these programs cause the path-divergence problem. In Fig-
ure 4.6b, BacCaml’s trace-based compilation was from 6.02 to 31.92x faster

52 Chapter 4. BacCaml – a Proof-of-Concept Multi-Scope Meta-Tracing JIT
Compiler

fib

fib-tail
sum

sum
-tail

square

square-tail
fact

ack
tak

ary

prefix
sum

random
sieve

0

10 20 30

Elapsed time relative to the MinCaml (AOT).

B
a
cC

am
l

(tra
cin

g
J
IT

)

B
a
cC

am
l

(m
eth

o
d

J
IT

)

M
in

C
a
m

l
(A

O
T

)

(A) Elapsed time relative to the MinCaml
(AOT) for each target program. Lower is

better.

fib

fib-tail
sum

sum
-tail

square

square-tail
fact

ack
tak

ary

prefix
sum

random
sieve

0

1
0

2
0

3
0

Speedup ratio comparing to the interpreter.

B
acC

am
l

(tra
cin

g
J
IT

)

B
acC

am
l

(m
eth

o
d

J
IT

)

B
acC

am
l

(in
terp

.)

(B) Speedup ratio of JITs comparing to the
interpreter-only execution for each target

program. Higher is better.

FIGURE 4.6: Results of standalone JIT microbenchmarking. The
five programs on the left have a complex control flow, and the
remaining programs have a straight control flow. The error bars

represent the standard deviations.

than interpreter-only in programs with straight-line control flow. However,
it was still from 1.44 to 2.68x faster than interpreter-only in programs with
the path-divergence problem, since most of the execution was done on the

4.4. Evaluation 53

interpreter.

On the other hand, our method-based compilation () was from 1.16 to
6.52x slower than MinCaml (AOT) in Figure 4.6a. Besides, from Figure 4.6b,
our method-based compilation also performs from 15.04 to 37.8x faster than
interpreter-only. From these results, most execution ran on a resulting trace.
Our strategy prevented the path-divergence problem since our method-
based compilation covered the entire body of a method.

Overall, our trace-based compilation was about 1.10x faster in programs with
straight-line control flow but about 11.8x slower in programs with complex
control flow than our method-based compilation. According to those results,
we can say that trace-based compilation’s performance depends on the con-
trol flow of a target program (when fitted to trace-based strategy, its perfor-
mance was better than method-based strategy). Still, a method-based strat-
egy works well on average. Therefore, we argue that combining the two
strategies is vital for further speedup on JIT compilation.

4.4.3 Multi-Scope JIT Experiment

In this section, we demonstrate the result of an experiment for a multi-scope
JIT compilation strategy. This experiment aims to confirm if there are pro-
grams that are faster with a multi-scope strategy than standalone strategies.
This experiment was also performed by the same implementations used in
Section 4.4.2.

Methodology

We first synthesized two types of functions, one is suitable for trace-based
compilation, and the other is for method-based compilation according to the
result shown in Section 4.4.2. Then, we applied multi-scope JIT compilation
for them; trace-based compilation is applied for a program with straight-
line control flow, and method-based compilation is applied for a program
with complex control flow. Finally, we compared the performance with stan-
dalone JIT strategies (tracing JIT only and method JIT only) and BacCaml’s
interpreter-only execution.

According to the result shown in Section 4.4.2, we chose sum, fib, and tak
from the microbenchmark programs. It is because sum is faster in trace-based
compilation than in method-based compilation, and fib and tak are faster in
method-based compilation than a trace-based compilation. Then we manu-
ally synthesized those functions for preparing test programs, namely sum-
fib, fib-sum, sum-tak and tak-sum, that shown in Figure 4.7.

For taking data, we used the same implementations and hardware employed
in Section 4.4.2. We also took 150 iterations and ignored the first 50 trials to
exclude warm-up.

54 Chapter 4. BacCaml – a Proof-of-Concept Multi-Scope Meta-Tracing JIT
Compiler

let rec fib n =
if n <= 1 then 1 else

fib (n-1) + fib (n-2) in

let rec sum i n =
if i <= 1 then n else
let m = fib 10 in

sum (i-1) (n+m) in

print_int (sum 1000 0)

(A) sum-fib

let rec sum acc n =
if n <= 1 then acc else

sum (acc+n) (n-1) in

let rec fib n =
if n <= 2 then sum 0 1000
else

fib (n-1) + fib (n-2) in

print_int (fib 20)

(B) fib-sum

let rec tak x y z =
if x <= y then z else

tak (tak (x-1) y z)
(tak (y-1) z x)
(tak (z-1) x y) in

let rec sum i n =
if i <= 1 then n else
let m = tak 12 6 4 in

sum (i-1) (n + m) in

print_int (sum 100 0)

(C) sum-tak

let rec sum i n =
if i <= 1 then n else

sum (i-1) (n+i) in

let rec tak x y z =
if x <= y then sum 1000 0
else

tak (tak (x-1) y z)
(tak (y-1) z x)
(tak (z-1) x y) in

print_int (tak 8 4 2)

(D) tak-sum

FIGURE 4.7: Target programs written in MinCaml−− used for
the multi-scope JIT experiment.

Since the algorithm that decides to apply which compilation strategy to
which part of a program is left for future work, we manually decided the pro-
gram parts’ strategies. In a multi-scope JIT compilation strategy, we applied
trace-based compilation to sum, and method-based compilation to fib and
tak manually. Despite this, in other strategies, we used only a single strat-
egy for those test programs. Specifically, we applied trace-based compilation
to sum, fib and tak in a tracing JIT only strategy, and applied method-based
compilation for them in a method JIT only strategy.

Results of Multi-Scope JIT Experiment

The results of the multi-scope JIT experiment are shown in Figure 4.8. Over-
all, our multi-scope compilation strategy () was from 1.01 to 2.17x faster than
our method-based compilation-only. Our multi-scope JIT strategy avoided
the overhead of recursive function calls in sum when executing the native
code generated from sum, since the recursive call part was inlined by trace-
based compilation.

In contrast, our multi-scope strategy was from 1.01 to 1.59x faster than the
trace-based compilation-only in fib-sum and tak-sum. Moreover, our multi-
scope strategy was about 20x faster in sum-fib and sum-tak. This difference
was caused by the structure of the target program’s control flow. In fib-sum
and tak-sum, fib and tak can be connected to the sum’s recursive call and
return parts. Otherwise, in sum-fib and sum-tak, sum cannot be connected

4.5. Related Work 55

su
m
-fi
b

fib
-s
um

su
m
-t
ak

ta
k-
su
m

0

10

20

30

40

50

BacCaml (multi-scope JIT) BacCaml (tracing JIT only)

BacCaml (method JIT only) BacCaml (interp. only)

FIGURE 4.8: Results of multi-scope JIT microbenchmarking. X-
axis represents the name of a target program, and Y-axis rep-
resents speedup ratio relative to the interpreter-only execution.
Higher is better. The error bars represent the standard devia-

tions.

to entire fib and tak, since our trace-based compiler cannot cover entire body
of fib and tak functions by the path-divergence problem.

From the results, we can report that there are programs that can be run faster
by the multi-scope compilation strategy.

4.5 Related Work

Self-optimizing Abstract-syntax-tree interpreter. Self-optimizing abstract-
syntax-tree interpreter [Würthinger et al., 2012] also enables language de-
velopers to implement effective virtual machines. The framework and the
compiler are called Truffle and Graal, respectively. The difference from our
system is the basic compilation unit. Our system is based on a meta-tracing
compiler, so the compilation unit is a trace. In contrust, Truffle/Graal applies
partial evaluation for an AST-based interpreter of an interpreter at execution
time. By profiling the runtime types and values, it can optimize a source
program and run it efficiently.

GraalSqueak. GraalSqueak [Niephaus, Felgentreff, and Hirschfeld, 2018]
is a Squeak/Smalltalk VM implementation written in Truffle framework.
In [Niephaus, Felgentreff, and Hirschfeld, 2018], Niephaus et al. provided an

56 Chapter 4. BacCaml – a Proof-of-Concept Multi-Scope Meta-Tracing JIT
Compiler

efficient way to compile a bytecode-formatted program; that is, they showed
a way to apply trace-based compilation with an AST-rewriting interpreter
strategy.

We extend the meta-tracing JIT compilation framework to support method-
based compilation, but their approach involves creating an interpreter to en-
able trace-based compilation on a partial evaluation-based meta-JIT compiler
framework. Their idea is to implement an interpreter with some specific hint
annotations to expand the loop of an application program. Sulong has al-
ready demonstrated the same idea [Rigger et al., 2016], and it was applied
for implementing Squeak/Smalltalk VM.

Region-based JIT compiler. HHVM [Ottoni, 2018] is a high-performance
VM for PHP and Hack programming languages. An important aspect of
HHVM 2nd generation is its region-based JIT compiler. A region-based com-
piler [Hank, Hwu, and Rau, 1995] is not restricted to compile the entire body
of methods, basic blocks, or straight-line traces; it can compile a combination
of several program areas. Their compilation strategy is more flexible than
our multi-scope compilation strategy, because an HHVM region-based com-
piler can compile basic blocks, the entire body of methods, loops, and any
combination of them. However, their approach is limited to a specific lan-
guage system; we aim to provide some flexibility of compilation as a meta
JIT compiler framework.

Lazy basic block versioning. Lazy basic block versioning [Chevalier-
Boisvert and Feeley, 2015, 2016] is a JIT compilation technique based on ba-
sic blocks. This strategy combines type specialization and code duplication
to remove redundant type checking, and it can generate effective machine
code. Moreover, as well as HHVM’s region-based JIT compiler, it can com-
pile straight-line code paths and the entire method bodies by constructing
basic blocks. Chevalier-Boisvert and Feely implemented lazy basic block ver-
sioning on Higgs, a research-oriented JavaScript VM 7. Their method-based
compilation is similar to ours; tracing both sides of conditional branches, not
inlining functions, and not handle loops specially. The difference is that our
method-based compilation is not based on basic blocks, but on traces. More-
over, our multi-scope compilation can be applied not only for specific, but
also for any languages.

HPS: High Performance Smalltalk. High Performance Smalltalk (HPS) is
a virtual machine used in VisualWorks Smalltalk [Miranda, 1999]. HPS
achieves efficient performance by well-planned stack frame management. In
HPS, the key technique for efficient implementation of contexts is mapping
(closure or method) activations to stack frames in runtime. HPS has three
context representaions. (1) Volatile contexts: precedure activations which
have yet to be accessed as context objects. (2) Stable contexts: the normal

7https://github.com/higgsjs/Higgs

https://github.com/higgsjs/Higgs

4.6. Conclusion 57

object form of procedures. (3) Multi-Scope contexts: a pair of a context ob-
ject and its associated activation. By preparing extra slots for multi-scope
contexts in the stack frames, HPS can distinguish between multi-scope and
volatile contexts. This technique is similar to our stack hybridization. Stack
hybridization also has the two contexts, which represent tracing and method
JIT, respectively. Moreover, the stack hybridization checks the return pc by a
flag in an user-defined array structure as well as HPS manages the context in
a separate array object. To avoid impacting the garbage collector, the header
of a multi-scope context is spotted as an object including raw bits rather than
object pointers. However, stack hybridization is so naive that it currently
does not consider the impact of garbage collector.

4.6 Conclusion

This chapter proposed a multi-scope meta-tracing JIT compiler framework
to take advantage of trace- and method-based compilation strategies as a
multilingual approach. For supporting the idea, it chose a meta-tracing JIT
compiler as the foundation and extended it to perform method-based com-
pilation using tracing. By customizing the following features, it realized it:
(1) trace entry/exit points, (2) conditional branches, (3) function calls, and (4)
loops. The chapter also proposed Stack Hybridization: an interpreter design
to enable connecting native code generated from different strategies. The
key concept of Stack Hybridization is (1) embedding two types of interpreter
implementation styles into a single definition, (2) selecting an appropriate
style at just-in-time compilation time, and (3) putting a flag on the stack data
structure to indicate whether it is under trace- or method-based compilation.

For implementation, the chapter proposes a prototype of a multi-scope meta-
tracing JIT compiler framework called BacCaml as a proof-of-concept. It
created a small meta-tracing JIT compiler on the MinCaml compiler, and
supported method-based compilation by extending trace-based compilation,
and achieved Stack Hybridization on it.

Through the evaluation the basic performance of BacCaml’s trace- and
method-based compilers, the results showed that our trace-based compiler
ran from 6.02 to 31.92x faster than interpreter-only execution in programs
with straight-line control flow, but 1.44 to 2.68x faster in programs with com-
plex control flow. Its method-based compiler ran 15.04 to 37.8x faster than
interpreter-only execution in all types of programs. It finally executed a syn-
thetic experiment to confirm the usefulness of the multi-scope strategy, and
reported that there are example programs that are faster with the multi-scope
strategy.

59

Chapter 5

Threaded Code Generation with a
Real-World Meta-Tracing JIT
Compiler

Contents
5.1 Introduction . 60

5.2 Threaded Code Generation 60

5.2.1 Threaded Code . 61

5.2.2 The Compilation Principle 61

5.2.3 Method-traversal Interpreter 64

5.2.4 Trace Stitching . 67

5.2.5 Shallow Tracing . 69

5.3 Runtime Techniques for Multilevel Compilation 70

5.3.1 Implementaiton Details 71

5.4 Optimization for Threaded Code Generation with Inter-
preter in the Meta-Tracing JIT Compiler 72

5.4.1 Inline Caching in Method-Traversal Interpreter . . . 72

5.5 Preliminary Evaluation Using Simulated Threaded Code
Generation . 74

5.5.1 Simulated Threaded Code Generation (STCG) in PyPy 75

5.5.2 Setup . 76

5.5.3 Results of Experiment 1: The Overhead of Our STCG 77

5.5.4 Results of Experiment 2: The Stable Speed 78

5.5.5 Discussion . 78

5.6 Evaluation and Experiments in PySOM and Multilevel
RPython . 79

5.6.1 Microbenchmark Evaluation 79

5.6.2 Multilevel JIT Experiment 83

5.7 Related work . 85

5.7.1 Improving an Interpreter’s Performance 85

60 Chapter 5. Threaded Code Gen. with a Real-World Meta-Tracing ..

5.7.2 Template JIT Compilation 85

5.7.3 Ahead-of-Time Compilation 86

5.7.4 Introducing a New Behavior into a Meta-JIT Compiler 86

5.8 Conclusion . 86

5.1 Introduction

This chapter proposes Multilevel RPython, which supports multilevel JIT
compilation, combining method-based lightweight JIT compilation and
trace-based heavyweight JIT compilation in a real-world meta-tracing JIT
compiler.

Multilevel RPython can use the two compilation policies: method-based
lightweight and trace-based heavyweight compilations. The overview of
Multilevel RPython is shown in Figure 5.1. First, the user of Multilevel
RPython writes an interpreter and inserts hint instructions into it. Then,
Multilevel RPython generates a VM using the multilevel JIT compiler, and
the written interpreter is divided into two interpreters: one is for method-
based lightweight compilation and the other is for trace-based heavyweight
compilation. The lightweight compilation is based on threaded code gen-
eration [Izawa et al., 2022], by taming an interpreter with hint hint in-
structions. The techniques for lightweight compilation is described in Sec-
tions 5.2.3, 5.2.4, and 5.2.5.

To switch the compilation level, Multilevel RPython adopts a profiling-based
strategy. At runtime, the two are connected by using RPython’s exception as
global jumps, allowing for two different compilation policies to be used at
runtime. This interpreter shifting technique is illustrated in Section 5.3.

5.2 Threaded Code Generation

This section presents how to realize method-based lightweight JIT policy on
top of RPython. It is realized not by creating different compilers from scratch,
but by allowing meta-tracing JIT compilation to behave differently with the
use of taming an interpreter that is given to RPython.

The purpose of introducing threaded code generation is to improve the over-
all performance of the application by using it in conjunction with a tracing
JIT in Multilevel RPython1. The hot spots are handled by the tracing JIT,
which can generate high-quality code, even though this takes compile time,
and the other warm spots are handled by threaded code generation, which

1An alternative approach to improve warm-up performance is to improve the dispatch-
ing mechanism of an interpreter, e.g., by using threaded jumps. It would not be easy to
realize such approaches in RPython, because it currently assumes more straightforwardly
written interpreters

5.2. Threaded Code Generation 61

can generate moderate quality code quickly. In general, a tracing JIT com-
piler automatically inlines function calls and applies several optimizations
to a trace. The longer the trace and better native code intended for genera-
tion, the longer the compilation time will need to be. In contrast, threaded
code generation only leaves the call instruction to a subroutine, so tracing
does not consume much time. It is possible to balance code quality and com-
pilation speed when the two policies have different optimization levels and
different compilation units.

5.2.1 Threaded Code

Before showing the compilation principle of threaded code generation, this
section gives a brief overview of the fundamental technique called threaded
code.

Threaded code [Bell, 1973; Hong, 1992] is a technique to improve the per-
formance of a bytecode interpreter. The interpreter separately defines han-
dler functions for all bytecode instructions, as shown on the right-hand side
of Figure 5.2. A program is a sequence of call instructions to handlers, as
shown on the left-hand side of the figure. Executing a threaded code-based
program reduces the number of indirect branching that significantly pose a
performance penalty at runtime because of branch mispredictions [Ertl and
Gregg, 2003].

5.2.2 The Compilation Principle

Threaded code generation is achieved by taming an interpreter given to Mul-
tilevel RPython, which is instrumented to control the RPython’s meta-tracing
compiler and reconstructing the control flow from the resulted trace. Here,
the method-traversal interpreter and trace stitching techniques achieve these. In
the following, the approach is explained by comparing with a typical JIT
compilation process in RPython.

When Multilevel RPython compiles a source program executed by an inter-
preter, it

starts compiling at the beginning of a loop, which is dynamically detected:

for each operation in the base program, it follows into the respective han-
dler body in the interpreter, which effectively eliminates “interpreta-
tion” (i.e., code dispatching and operand manipulation) by the inter-
preter:

at a function call in the base program, it follows into the body of the callee
function, which effectively achieves function inlining:

at a conditional expression in the base program, it follows only one of the
branch by emitting a guard failure2 for the other branches: and

2A guard failure is a runtime check to ensure the correctness of the generated trace.

62 Chapter 5. Threaded Code Gen. with a Real-World Meta-Tracing ..

at a conditional branch in the handler (including selection of an arithmetic
operation based on operands’ runtime types), it traces only one of the
branch to achieve effective type specialization:

finishes compiling at the end of the loop.

Threaded code generation control the RPython compiler so that it

starts compiling at the beginning of a method/function in the source-
program3:

for each operation in the base-program, it follows the code dispatching
part of the interpreter, but it does not trace into the handler body but
emits a call instruction to the respective handler;

at a function call in the base-program, emits a call instruction and contin-
ues tracing of the operations after the functional call;

at a conditional expression in the base-program, follows all branches;

at a conditional branch in the handler, this will not happen since the com-
piler does not trace the inside of handlers: and

finishes compiling at the end of the method/function.

To control the RPython’s meta-tracing JIT compiler like that, the proposal
consists of the following three techniques:

The method-traversal interpreter technique. Write an interpreter to let the
tracing mechanism of RPython traverse all execution paths in a source
program’s method/function. This is achieved by inserting hint instruc-
tions into an interpreter.

The trace stitching technique. Reconstruct the original control flow of a
base-program function/method from a recorded trace. Since the
method-traversal interpreter technique will yield a straight-line trace
that covers all the execution paths, this technique will split the trace
into basic blocks and then connect them together by using branch and
jump instructions. This is achieved by adding a post-processing mod-
ule to the RPython tracer.

The shallow tracing technique. Naively applying a method-traversal inter-
preter to a meta-tracing compiler causes runtime inconsistency. A
(meta-)tracing compiler executes the source program during tracing.
Because threaded code generation traces paths that are not the actual
execution path, it may make the interpreter’s state (like operand stack)
inconsistent, which will result in incorrect compiled code. To avoid this
problem, this technique allows the tracer to follow the code without
also executing it.

3Whether the system uses threaded code generation or not is an open issue that the
author will consider in the future. For the time being, we merely assume that the threaded
code generator is invoked for a particular base-program method/function.

5.2. Threaded Code Generation 63

@dont_look_inside
def tla_ADD(self, pc):

x, y = self.pop(), self.pop()
self.push(y.add(x))
return pc

@dont_look_inside
def tla_CONST_INT(self, pc):

arg = ord(self.bytecode[pc])
self.push(W_IntObject(int(arg)))
return pc + 1

threaded_driver = JitDriver(
threaded_code_gen=True,
reds=['self'],
greens=['pc','bytecode','traverse_stack'])

def interp(self, pc, traverse_stack):
threaded_driver.can_enter_jit(

bytecode=self.bytecode,pc=pc,self=self,
traverse_stack=traverse_stack)

while True:
threaded_driver.jit_merge_point(

bytecode=self.bytecode,pc=pc,self=self,
traverse_stack=traverse_stack)

opcode = ord(self.bytecode[pc])
pc += 1
if opcode == ADD:

pc = self.tla_ADD(pc)
elif opcode == JUMP:

...
elif opcode == RET:

...
elif opcode == JUMP_IF:

...

LISTING 3: Skeleton of method-traversal interpreter and sub-
routines decorated with dont_look_inside.

Figure 5.3 shows a high-level example of threaded code generation. The left-
hand side of Figure 5.3 represents the control flow of a target function. B –
C – E is a conditional branch, D is a back-edge instruction, and F is a return.
The compiler finally generates a trace tree 4, which covers a function body as
shown on the right-hand side of Figure 5.3. In contrast to trace-based com-
pilation, it keeps the original control flow so that it leaves the call instruction
to a function are left in the resulting trace.

To produce such a trace tree keeping the original control flow, the tracer must
sew and stitch the generated traces. Technically speaking, the compiler traces
a special instrumented interpreter called the method-traversal interpreter. Be-
cause the trace obtained from the method-traversal interpreter ignores the

4Each trace has a linear control flow, but they are compiled as a bridge.

64 Chapter 5. Threaded Code Gen. with a Real-World Meta-Tracing ..

DUP,
CONST_INT, 1,
GT,
JUMP_IF, 10,
CONST_INT, 1
SUB,
JUMP, 0
CALL, 23,
EXIT,

LISTING 4: An example bytecode with the control flow shown
in Figure 5.4.

while True:
if x > 1:

x -= 1
else:

x = call g(x)
return x

LISTING 5: An example program corresponding to Listing 4

original control flow, it needs to restore it. To rebuild the original control
flow, in the next phase, the lightweight JIT compiler stitches the generated
trace. This technique is called trace stitching. The following sections explain
the method-traversal interpreter and trace stitching, respectively.

5.2.3 Method-traversal Interpreter

The method-traversal interpreter allows a meta-tracing JIT compiler to be-
have in ways other than trace-based heavyweight compilation. In threaded
code generation, the method-traversal interpreter allows it to emit method-
based threaded code.

The skeleton of the method-traversal interpreter is shown in Listing 3. All
handlers that are shown at the top of the listing, are decorated with the
dont_look_inside hint instruction that tells the tracer not to trace the func-
tion body. Furthermore, specific areas are written in the then block of
we_are_jitted. This hint function returns True after entering the trace.
Therefore, the resulting trace has only call instructions to subroutines.

Figure 5.4 shows the how the method-traversal interpreter traverses a func-
tion body with respect to the bytecode, as denoted in Listing 4 and 5. In
Figure 5.4, the gray-colored dotted line indicates a generated trace with the
method-traversal interpreter. Normally, a tracing JIT only follows an exe-
cuted side of the conditional branch. On the contrary, the tracer of threaded
code generation follows both sides. To enable this, the method-traversal in-
terpreter manages a hint called traverse_stack, which is represented as a
stack data structure. It only stores program counters, so it is marked as green
and finally removed from the resulting trace.

5.2. Threaded Code Generation 65

if opcode == JUMP_IF:
target = ord(self.bytecode[pc])
e = self.pop()
if self._is_true(e):

if we_are_jitted():
pc += 1
save another direction
traverse_stack = t_push(pc, traverse_stack)

else:
pc = target

else:
if we_are_jitted():

save another direction
traverse_stack = t_push(target, traverse_stack)

pc += 1

LISTING 6: Definition of JUMP_IF.

@dont_look_inside
def traverse_JUMP(self, pc):

"A pseudo function for trace stitching"
return pc

if opcode == JUMP:
t = ord(self.bytecode[pc])
if we_are_jitted():

if t_is_empty(traverse_stack):
pc = t

else:
pc, traverse_stack = traverse_stack.t_pop()
call pseudo function
traverse_JUMP(pc)

else:
pc = t

LISTING 7: Definition of JUMP.

The behavior of the method-traversal interpreter can be explained with re-
spect to the examples. The differences from a normal tracing JIT compiler
are: (1) conditional branch, (2) back-edge instruction, (3) function call, and
(4) function return.

Conditional branch

The tracer follows both sides of a conditional branch, first, tracing the then
branch, and tracing else branch next.

When tracing a conditional branch 1 in Figure 5.4, it saves the pro-
gram counter that goes to another direction of a conditional branch to the
traverse_stack. Listing 6 shows the handler for the JUMP_IF. Here, the
traversal stack saves the another directions in lines 8 and 19.

66 Chapter 5. Threaded Code Gen. with a Real-World Meta-Tracing ..

@dont_look_inside
def traverse_RET(self,v):

"A pseudo function for trace stitching"
return v

if opcode == RET:
if we_are_jitted():

if t_is_empty(traverse_stack):
return self.tla_RET(pc)

else:
pc, traverse_stack = traverse_stack.t_pop()
traverse_RET(self.tla_RET(pc))

else:
return self.tla_RET(pc)

LISTING 8: Definition of RET.

Back-edge instruction

Upon a back-edge instruction, the tracer jumps to one of the remaining
branches. It originally follows a back-edge instruction and finishes tracing
when it reaches the beginning of tracing. Threaded code generation modi-
fies such a behavior using the interpreter definition instrumented with hint
instructions: it does not finish tracing until the tracer reaches the end of a
target method and visits all its paths.

When tracing a back-edge instruction at 2 , it does not follow the jump
target. Instead, at 3 , it pops a program counter from the traversal stack
and goes to the other branch, which is an unfollowed branch of a previous
conditional jump (E in Figure 5.3).

Seeing the implementation of JUMP in Listing 7, before jumping somewhere,
it checks whether the traversal stack is empty or not. If empty, the tracer
normally executes JUMP. Otherwise, it restores the saved program counter
from the traversal stack and goes to that place. To tell the place of a back-
edge instruction, we have to call the hint instructions traverse_JUMP and
traverse_RET. The hint instructions are used in trace-stitching to restore the
original control flow.

Function call

To reduce the compilation code size, threaded code generation does not in-
line a function call.

When tracing CALL instruction at 4 , it does not follow the destination
of CALL but emits a call instruction because subroutines are decorated with
dont_look_inside.

5.2. Threaded Code Generation 67

[p0]
i1 = call_i(ConstClass(tla_DUP, p0))
i2 = call_i(ConstClass(tla_CONST_INT, p0, 1))
i3 = call_i(ConstClass(tla_GT, p0, 2))
i4 = call_i(ConstClass(_is_true, p0, 4))
guard_true(i4) [p0]
i5 = call_i(ConstClass(tla_CONST_INT, p0, 7))
i6 = call_i(ConstClass(tla_SUB, p0))
i7 = call_i(ConstClass(traverse_JUMP, p0))
i8 = call_i(ConstClass(tla_CALL, p0, 10))
i9 = call_i(ConstClass(tla_RET, p0, i8))
leave_portal_frame(0)
finish(i9)

LISTING 9: The trace generated temporarily from a method-
transverse interpreter.

Function return

When tracing RET at 5 , first, the tracer checks whether the
traverse_stack is empty or not. If it is not empty, it restores a saved
program counter and continues to trace. Otherwise, it executes RET instruc-
tion. The implementation is shown in Listing 8, and the behavior is almost
the same as for JUMP.

Finally, the trace is obtained as shown in Listing 9. Note that it is still linear,
so it will cut and stitch the generated trace to restore the original control flow.

5.2.4 Trace Stitching

The trace obtained by tracing the method-traversal interpreter is a linear exe-
cution path, because the tracer is led to track all paths by the interpreter. The
trace-stitching technique enables for a correct execution by reconstructing the
original control flow.

Figure 5.5 shows how trace stitching works and 1 – 5 indicate its working
flow.

1 : the stitcher cuts where cut_here indicates to handle each branch as a
separate trace. In Figure 5.5, the stitcher cuts the node B that the hint
instruction traverse_JUMP points to:

2 : the stitcher restores the conditional branch by compiling the trace E –
F as a bridge. When compiling as a bridge, the stitcher emits a label L
and rewrites the definition of an original guard failure placed at B:

3 : the stitcher restores JUMP instruction at the bottom of D. After that,

4 : it copies variables and instructions that are not in the scope of the
branch B – E – F for run-time correctness. Finally,

68 Chapter 5. Threaded Code Gen. with a Real-World Meta-Tracing ..

Loop 1, token number is 13458300
[p0]
i1 = call_i(ConstClass(tla_DUP, p0))
i2 = call_i(ConstClass(tla_CONST_INT, p0, 1))
i3 = call_i(ConstClass(tla_GT, p0, 2))
i4 = call_i(ConstClass(_is_true, p0, 4))
guard_true(i4) [p0] # pointing to Bridge 1
i5 = call_i(ConstClass(tla_CONST_INT, p0, 7))
i6 = call_i(ConstClass(tla_SUB, p0))
targeting to its own top
jump(p0, descr=TargetToken(13458300))

Bridge 1, token number is 1345340
[p0]
i8 = call_i(ConstClass(tla_CALL, p0, 10))
i9 = call_i(ConstClass(tla_RET, p0, i8))
leave_portal_frame(0)
finish(i9)

LISTING 10: Stitched traces. One linear trace is converted into
one trace and one bridge, and are connected to a guard failure.

5 : the tailor folds or removes constants or unused variables/instructions,
respectively.

As a result, the trace tree is obtained, as shown on the right-most side of
Figure 5.5. Within Multilevel RPython, the trace tree is represented as two
traces, as shown in Listing 10. There is no linear trace, but one trace and a
bridge are connected to a guard failure. If guard_true(i4) fails, the control
goes to Bridge 1 and executes it.

Guard Patching in Trace Stitching

To successfully patch guard failures, the stitcher needs information on which
guard failure goes to which bridges. Because the method-traversal inter-
preter depth first traverses an entire method, the relation between the guard
failure and bridge can be resolved using a first-in-last-out method. Intend-
ing to resolve the relations between guards and bridges, guard failure stack is
useful for managing each guard failure. Because the method-traversal inter-
preter manages the relation of branches by the stack data structure, the rela-
tions between the original loop and bridges are first-in-last-out. The guard
failure stack saves guard failures in each guard operation and pops them at
the start of a bridge, that is, right after the hint instructions emit_JUMP and
emit_RET that indicate a cut-here line.

Figure 5.6 gives a high-level overview of how to resolve the connections be-
tween guard failures and bridges. When the resolver begins to stitch the
trace, as shown in Figure 5.6, we sequentially read the operations from the
trace. In node B, it picks up the guard guard failure (g1) and pushes it to
the guard failure stack. In node C, it does the same thing in the case of node
B. Next, in node E, it finishes reading an operation, before then starting to

5.2. Threaded Code Generation 69

cut the current trace. During cutting the trace, it pops a guard failure and
connects it to the bridge. In node F, it does the same thing as in the case of
node F. In node D, it finally finishes reading and produces one trace and two
bridges. The connections are illustrated as red arrows in Figure 5.6.

5.2.5 Shallow Tracing

When the threaded code generation technique is naively applied to a inter-
preter, the inconsistency problem, in which the tracer makes the interpreter’s
and global states inconsistent after tracing, will occur. This is caused by the
nature of the tracer that executes the program during tracing. It is not a
problem when the tracing compiler only follows the trace in actual program
execution. However, with the threaded code generation technique, the be-
havior of the tracer is modified to pass through all paths, including those
paths that are not executed, by a hint instruction in the method-traversal
interpreter. This makes the interpreter’s and global state (like the operand
stack and heap) inconsistent, which will result in incorrectly compiled code.
The problem is even worse when the interpreter performs global side effects,
such as I/O operations and function calls.

The shallow tracing technique can avoid the problem. Shallow tracing allows
the tracer to follow the code without also executing an interpreter. This tech-
nique is enabled by the hint decorator enable_shallow_tracing. This decorator
lets the tracer not run it by transforming an interpreter definition. During
interpreter transformation, the decorator adds a dummy flag to the last argu-
ment of each bytecode handler. The value of this flag is set to True during
tracing, but after the trace has been recorded, it is rewritten to False in the
trace.

This technique is explained by showing the example of an interpreter,
as shown in the Listing 11. On the right-hand side, all handlers (ex-
cept for CALL, JUMP, and RET) are defined as a method decorated with
enable_shallow_tracing. On the right-hand side, all handlers and the in-
terpreter are the results transformed by enable_shallow_tracing. Looking
into the ADD handler, an extra flag dummy is inserted. Furthermore, in the
fetch-decode-dispatch loop, the dummy is turned on when we_are_jitted is
true. This dummy flag works as follows: during the tracing, it turned into True
to do nothing but leave only a call instruction to the handler. Otherwise,
dummy is False to run normally.

Next, the dummy flags should be turned off to make the resulting trace
runnable. Listings 12 briefly explains the mechanism by which the code
is changed. First, the Multilevel RPython tracer shallowly traverses all the
paths of the function f, which is displayed at the top of Listing 12. Then, the
trace is obtained as shown on the left side of the Listing 12 is obtained. Next,
all additional flags dummy are deactivated to make the trace runnable. Since
the positions of those flags are known, Multilevel RPython can automatically
turn them off. Finally, the executable traces are obtained as shown on the
right-hand side of Listing 12.

70 Chapter 5. Threaded Code Gen. with a Real-World Meta-Tracing ..

@enable_shallow_tracing
def ADD(stack):

w_y = stack.pop()
w_x = stack.pop()
stack.push(w_x.add(w_y))

@enable_shallow_tracing
def CONST_INT(pc):

n = bytecode[pc]
stack.push(W_IntObj(n))

def interp(stack):
pc = 0
while True:

bytecode = bytecodes[pc]
pc += 1
if bytecode == ADD:

ADD(stack)
elif bytecode == CONST_INT:

CONST_INT(pc)

@dont_look_inside # RPython
primitive↪→

def ADD(stack, dummy):
if dummy flag is turned on:
if dummy:

do noting
return

otherwise, do stuff
w_y = stack.pop()
w_x = stack.pop()
stack.push(w_x.add(w_y))

@dont_look_inside
def CONST_INT(stack, pc, dummy):

if dummy:
return

n = bytecode[pc]
stack.push(W_IntObj(n))

def interp(stack):
pc = 0
while True:

bytecode = bytecodes[pc]
pc += 1
if bytecode == ADD:

if we_are_jitted():
ADD(stack, dummy=True)

else:
ADD(stack, dummy=False)

elif bytecode == CONST_INT:
if we_are_jitted():

CONST_INT(pc, dummy=True)
else:

CONST_INT(pc, dummy=False)

co
nv

er
t

co
nver

t

convert

convert

LISTING 11: Overview of how the decorator
enable_shallow_tracing works. The left-hand side is an
interpreter that a language developer writes. The right-hand
side is the actual executable interpreter after expanding

enable_shallow_tracing.

5.3 Runtime Techniques for Multilevel Compila-
tion

This section provides explanations for runtime techniques used in Multilevel
RPython. First, the section provides the overview of how Multilevel RPython
changes its compilation level at runtime. Second, the section details the tam-
ing of interpreters to realize the mechanism of changing a compilation level.

Multilevel RPython makes it possible to define the rule of a compilation level
transition in an interpreter definition. Figure 5.7 provides and overview

5.3. Runtime Techniques for Multilevel Compilation 71

def f(x):
if x < 1:

return x + 1
return g(x)

Just after shallow tracing.
Flags are still activated.

Loop 0
call_n(ConstClass('DUP'), p0, 1)
call_n(Const('CONST_I, 1'), p0, 1)
i0 = call_n(Const('LT'), p0, 1)
guard_true(i0) [p0]
call_n(ConstClass('CALL'), p0, 'g', 1)
p31 = call_n(Const('RET'), p0, 1)
finish(p31)

Bridge 0
call_n(ConstClass('CONST_I, 1'), p0, 1)
call_n(ConstClass('ADD'), p0, 1)
p31 = call_n(ConstClass('RET'), p0, 1)
finish(p31)

Just after deactivating flags.

Loop 0
call_n(ConstClass('DUP'), p0, 0)
call_n(ConstClass('CONST_I, 1'), p0, 0)
i0 = call_n(ConstClass('LT'), p0, 0)
guard_true(i0) [p0]
call_n(ConstClass('CALL'), p0, 'g', 0)
p31 = call_n(ConstClass('RET'), p0, 0)
finish(p31)

Bridge 0
call_n(ConstClass('CONST_I, 1'), p0, 0)
call_n(ConstClass('ADD'), p0, 0)
p31 = call_n(ConstClass('RET'), p0, 0)
finish(p31)

LISTING 12: Before and after applying shallow tracing to the
function f are shown on the right-hand side of the Listing 11.
During shallow tracing, all flags are activated (left side), but

they are finally deactivated in the resulting trace (right side).

of the techniques to achieve multilevel compilation. The idea is to intro-
duce a mechanism for the management of the lightweight and heavyweight
compile interpreters. The mechanism is called interpreter shifting. The in-
terpreter shifting defines the transition rule between each compilation level.
The implementation of a transition is realized by the exception provided by
RPython.

5.3.1 Implementaiton Details

Multilevel RPython uses a profiling-based approach to perform JIT compi-
lation. The hint instructions for that purpose are threaded_driver, which
is used for lightweight compilation, and tracing_driver, which is used for
heavyweight compilation. The counter is incremented internally each time
the can_enter_jit hint instruction provided by the respective driver is ex-
ecuted. When the threshold is exceeded, JIT compilation is initiated. The
definition of both drivers are given in Listing 13.

Listing 14 shows how the transition of a compilation level can be im-
plemented. In this example, the logic for the compilation level transi-
tion is implemented in the JUMP_BACKWARD instruction. To prepare, an ar-
ray named counts is defined as a member in the bytecode class. This
array is used to globally manage the counters in each pc. The thresh-
old for transitioning to another level can also be defined by hand: in
interpret_threaded, when the dispatch to JUMP_BACKWARD exceeds the de-
fined threshold, ContinueInTracingJIT is thrown and the control moves on
to interpret_tracing according to the programmed interpreter transition

72 Chapter 5. Threaded Code Gen. with a Real-World Meta-Tracing ..

threaded_driver = JitDriver(threaded_code_gen=True,
reds=["stack"], greens=["bytecode", "pc"])

tracing_driver = JitDriver(reds=["stack"], greens=["bytecode", "pc"])

def interpet_threaded(..)
tracing_driver.can_enter_jit(bytecode=bytecode,stack=stack,pc=pc)
while True:
opcode = bytecode[pc]; pc += 1
if opcode == JUMP_BACKWARD:

if bytecode.counts[pc] >= THRESHOLD:
raise ContinueInTracingJIT(pc)

bytecode.counts[pc] += 1
..

elif ..

def interpet_tracing(..)
while True:
opcode = bytecode[pc++]
if opcode == JUMP_BACKWARD:

if bytecode.counts[pc] < THRESHOLD:
raise ContinueInThreadedJIT(pc)

pc = target
tracing_driver.can_enter_jit(bytecode=bytecode,stack=stack,pc=pc)

elif ..

LISTING 13: Overview of interpreters for lightweight and
heavyweight compilation.

loop. Similarly, if ContinueInThreadedJIT is thrown in interpret_tracing,
a transition to interpret_threaded occurs based on the written rules.

5.4 Optimization for Threaded Code Generation
with Interpreter in the Meta-Tracing JIT Com-
piler

As well as adding a new compilation level to a meta-tracing JIT compiler,
it is possible to implement optimization for the added compilation behav-
ior by using an interpreter. To optimize threaded code generation, inline
caching [Deutsch and Schiffman, 1984] is implemented. This section explains
how to implement this technique on the method-traversal interpreter.

5.4.1 Inline Caching in Method-Traversal Interpreter

Inline caching [Deutsch and Schiffman, 1984] is an optimization technique
that was first developed for Smalltalk. The goal of inline caching is to realize
a fast method lookup at runtime by remembering the class of a callee, which
is a receiver in the context of Smalltalk, at every call site.

5.4. Optimization for Threaded Code Generation with Interpreter in the
Meta-Tracing JIT Compiler 73

user-defined threshold to shiftup the compilation level
THRESHOLD = 1539

class ContinueInTracingJIT(Exception):
def __init__(self, pc):

self.pc = pc

class ContinueInThreadedJIT(Exception):
def __init__(self, pc):

self.pc = pc

def interpreter(..):
pc = 0
while True:

try:
w_r = interpret_threaded(pc, ..)
return w_r

except ContinueInTracingJIT as e:
pc = e.pc

try:
w_r = interpret_tracing(pc, ..)
return w_r

except ContinueInThreadedJIT as e:
pc = e.pc

LISTING 14: Overview of the interpreter shifting mechanism.
The left-hand and right-hand sides show the definitions of JIT
policy-shifting exceptions and the interpreter shifting loop, re-

spectively.

In general, calling a dynamically bound method takes longer time than call-
ing a statically-bound method because a system needs to look up a correct
method by using the runtime class of a callee method. A same kind of
problem occurs in threaded code generation. For example, there is the case
in which a method invocation to the compiled method f belonging to the
class A is going to be performed. As shown in Figure 5.8, at the point of
calling a method from a compiled trace, the control is transferred from the
trace to the interpreter through the handler_CALL method. In the interpreter,
jit_merge_point looks up the correct callee trace and let the control transfer
to it. Because this method invocation needs at least these steps, it becomes
overhead compared with directly calling a compiled method.

An inline caching technique helps the system look up a correct callee method
faster, even in the case of threaded code generation. Inline caching stores the
looked-up callee method address at the call site, for example by overwriting
the call instruction. The type of a looked-up callee method could be changed:
it should check the runtime just before directly jumping to the compiled code
(and if the test fails, the control should call the looked-up method) [Hölzle,
Chambers, and Ungar, 1991].

74 Chapter 5. Threaded Code Gen. with a Real-World Meta-Tracing ..

def interp(method, stack, ..):
while True:

jit_merge_point(..)
opcode = bytecode[pc++]
if opcode == CALL:

handler_CALL(stack, ..)

def handler_CALL(stack, ..):
method = pop(stack)
r = interp(method, stack, ..)
push(r, stack)

LISTING 15: Interpreter definition of a dispatch loop and a han-
dler for CALL.

...
call(hanlder_CALL, ...)
...

LISTING 16: Produced trace at tracing CALL instruction with
the interpreter shown in Listing 15.

In threaded code generation, it is possible to realizing the inline caching tech-
nique by using hint instructions inserted into an interpreter. If handler_CALL
is naively implemented, it will be written as in Listing 15. The generated
trace, which is shown in Listing 16, always calls the interpreter and en-
ters the method lookup routine to perform method invocation. To improve
this routine through the use of inline caching, the hint instructions called
record_type, check_type, and call_assembler are used. The overview and
example of an interpreter definition and resulting traces are shown in Fig-
ure 5.9 and Listings 17 and 18. At interpreting, record_type records the run-
time type of a looked-up callee method. At tracing, when the meta-tracing JIT
compiler traces the virtual instruction, the compiler emits two traces: fast and
slow paths. The fast path trace directly calls a compiled method, but the slow
path calls handler_CALL. In the slow path, the control goes back to the merge
point placed just after the fast path. check_type validates that the runtime
type of a callee method equals the stored type by record_type. If the vali-
dation fails, the control goes to the slow path. check_type is compiled into
guard_ptr_eq, as shown in the left-hand side of Listing 18. call_assembler
is compiled into the direct call instruction in the fast path, as shown on the
left-hand side of Listing 18.

5.5 Preliminary Evaluation Using Simulated
Threaded Code Generation

This section experimentally evaluates the potential performance of our
threaded code generation by simulating the behavior with PyPy. Here, it

5.5. Preliminary Evaluation Using Simulated Threaded Code Generation 75

def interp(method, stack, ..):
while True:

jit_merge_point(..)
opcode = bytecode[pc++]
if opcode == CALL:

check whether the runtime type of this method
equals to the recorded runtime type
if check_type(method, pc):

method = pop(stack)
if it matches, calling the method with call_assembler
call_assembler(interp(method, stack, ..))

else:
otherwise, call handler_CALL
handler_CALL(stack, ..)

def handler_CALL(stack, ..):
method = pop(stack)
if not we_are_jitted():

during interpreting (not jitted),
record runtime method types at pc
record_type(pc, method.type)

r = interp(method, stack, ..)
push(r, stack)

LISTING 17: Interpreter definition, which is based on Listing 15,
instrumented to enable inline caching.

...
guard_ptr_eq(method, A)
fast path
call_assembler(f)
... # merge point

slow path
call(handler_CALL, ..)

guard fail

merge

LISTING 18: Produced traces at tracing CALL instruction with
virtual instructions to enable inline caching.

compares the performance of threaded code generation with the interpreter.

Section 5.2 describes threaded code generation that enables a lightweight
compilation with a meta-tracing JIT compiler. The question arises of whether
the technique is effective at runtime or not. To answer the question, this sec-
tion measured JIT compilation time and code size of traces of PyPy’s tracing
JIT compiler and our simulated threaded code generation (SMTG), respec-
tively. In addition, the section compared the potential performance of the
two following executions: PyPy 3.7 with SMTG and interpreter-only execu-
tion.

5.5.1 Simulated Threaded Code Generation (STCG) in PyPy

To measure the potential performance of our threaded code generation, it is
needed to reproduce its behavior on PyPy. The brief ideas of the simulated

76 Chapter 5. Threaded Code Gen. with a Real-World Meta-Tracing ..

threaded code generation (STCG) are;

Idea 1. All subroutines are not inlined, but call instructions to subroutines
are left.

Idea 2. Tracing all paths of a target program area at once.

Idea 1 can be easily reproduced by manually adding dont_look_inside to
the PyPy interpreter manually. The problem is how to reproduce idea 2. The
current PyPy does not have such a function, but it has a guard failure. When
the number of failing a guard surpasses a threshold, a tracing JIT starts to
trace the destination of a guard and connects the original trace and the gen-
erated trace from a guard. Then, if it runs programs with enough time, all
runtime paths are eventually traced by a guard failure. Therefore, it is possi-
ble to reproduce the behavior of idea 2 by running the benchmarks for a long
time.

5.5.2 Setup

This section explains the environment and how the preliminary experiments
were performed.

System

The evaluation and experiment are conducted the preliminary benchmark
on the following environment; CPU: Ryzen 9 5950X, Mem: 32GB DDR4-
3200MHz, OS: Ubuntu 20.04.3 LTS with a 64-bit Linux kernel 5.11.0-34-
generic.

Implementation

The original PyPy 3.7 versioned 7.3.55 is used, and the STCG6 is also imple-
mented with the PyPy implementation.

Programs for Experiments

You can find all benchmark programs here7. All benchmarks that can be
executed without any other libraries are chosen. Especially, fib and tak are
programs causing the path-divergence problem.

Methodology

Two experiments are conducted on PyPy’s original micro-benchmark suite
plus our original ones;

5https://downloads.python.org/pypy/pypy3.7-v7.3.5-linux64.tar.bz2
6https://foss.heptapod.net/pypy/pypy/-/tree/branch/py3.

7-hack-measure-bytecode-dispatch
7https://foss.heptapod.net/pypy/benchmarks/-/tree/topic/python3_

benchmarks/bitbucket-pr-5

https://downloads.python.org/pypy/pypy3.7-v7.3.5-linux64.tar.bz2
https://foss.heptapod.net/pypy/pypy/-/tree/branch/py3.7-hack-measure-bytecode-dispatch
https://foss.heptapod.net/pypy/pypy/-/tree/branch/py3.7-hack-measure-bytecode-dispatch
https://foss.heptapod.net/pypy/benchmarks/-/tree/topic/python3_benchmarks/bitbucket-pr-5
https://foss.heptapod.net/pypy/benchmarks/-/tree/topic/python3_benchmarks/bitbucket-pr-5

5.5. Preliminary Evaluation Using Simulated Threaded Code Generation 77

Experiment 1. Measuring the overhead of tracing and compilation in our
STCG.

Experiment 2. Measuring the stable speeds of our STCG.

Experiment 1. To measure the overhead of tracing and compilation, PyPy
3.7–7.3.5 with a tracing JIT and our STCG is used. Their compilation time and
the size of the traces to compile are measured, and they are normalized to
PyPy with a tracing JIT. The compilation time includes the tracing. Note that
the implementation of our full-fledged threaded code generation on PyPy is
ongoing, so the behavior is simulated (Section 5.5.1 describes how to do it).
The results are shown in Figure 5.10.

Experiment 2. Comparison of stable speeds between the STCG on PyPy 3.7
with the interpreter-only execution. Interpreter-only execution means that
JIT compilation is turned off by passing --jit off when running scripts.
The averages and standard deviations of the STCG normalized to interpreter-
only execution are calculated. The results are shown in Figure 5.11.

The maximum iteration count is 100 from the results that plot the related
speed-up ratio in the STCG and PyPy’s tracing JIT as shown in Figure 5.12.
From these results in the STCG, it is confirmed that almost all programs ex-
cept those reach their stable state after the fifth iteration. In addition, PyPy’s
tracing JIT reaches its stable speed after the 30th iteration. Experiment 1 re-
quires a number of operations and times for compilation, and experiment 2
needs STCG’s stable speed; in this context, we decide that the max iteration
count 100 is enough to reach the stable speed. Thus, in experiment 2, the first
five iterations are excluded for calculating the average value of the stable
speed of every program.

5.5.3 Results of Experiment 1: The Overhead of Our STCG

The objective of this experiment is to potentially evaluate the start-up time
of simulated threaded code generation. The results are shown in Figure 5.10.
On average, in the case of trace sizes to compile, PyPy 3.7 with STCG is about
78% smaller than PyPy 3.7–7.3.5 with a tracing JIT, and 13 of 17 programs are
about 50% smaller than PyPy’s tracing JIT. Furthermore, in the case of com-
pilation time, PyPy 3.7 with STCG is about 60 % shorter than PyPy 3.7–7.3.5
with a tracing JIT. Here, 13 of 17 programs, which are the same as in the case
of the size of traces to compile, are 60 % shorter than PyPy’s tracing JIT. How-
ever, PyPy 3.7 with STCG size of traces and the compilation time on nbody is
almost the same as that of PyPy’s tracing JIT. This program computes the N-
body simulation with a matrix calculation. This calculation is implemented
as a big for loop, so there is less of an effect on performing threaded code
generation than full-optimized tracing.

78 Chapter 5. Threaded Code Gen. with a Real-World Meta-Tracing ..

5.5.4 Results of Experiment 2: The Stable Speed

The results are summarized in Figure 5.11 (their values in every iteration are
shown in Figure 5.12). The results of the PyPy 3.7 simulated threaded code
generation are normalized to interpreter-only execution. On average, STCG
is 7% faster than the interpreter only. PyPy 3.7 with STCG is over 4% faster
in 9 of the 17 benchmarks, and ± 3% faster in 8 of the 17 benchmarks. In
particular, meteorcontest and nqueens are about 27% to 34% faster than the
interpreter.

5.5.5 Discussion

In experiment 1, there is a relation between the size of the traces and compi-
lation time. Simulated threaded code generation can reduce the size of the
traces and compilation time, so we can use it to reduce the warm-up time.

Furthermore, programs with the path-divergence problem (fib and tak) are
at least 96% smaller and 80% faster in trace size and compilation time, respec-
tively. In general, when the path-divergence problem occurs, retracing often
occurs, and too many traces overlap each other and lead to high overhead
in run-time performance. However, the result shows that the STCG traces
and compiles only a primary hot function, so the trace sizes and compilation
time are much smaller and shorter than a tracing JIT. Thus, a method-based
threaded code can reduce the trace size and compilation time.

From both experiments, it can be inferred that our method-based threaded
code generation will bring some benefits to startup performance. To make
the technique more effective, it is necessary to select functions that have a
structure similar to meteorcontes and nqueens as well as programs with the
path-divergence problem. In those programs, much part of one primary
solver function with complex conditional branches is executed inside the
main loop, but the other functions are not. In other words, during solving
conditions, instead of running a single main region over and over, some re-
gions are sometimes run randomly. This execution model potentially causes
the path-divergence problem. Thus, method-based threaded code generation
can work effectively on such programs. To enhance the effectiveness of our
method-based threaded code generation with this assumption, we need to
select programs with complex conditional branches inside a long iteration in
addition to programs that indeed cause the path-divergence problem.

Limitation of Threaded Code Generation. Threaded code generation is
placed at the initial compilation level, so the compilation limits further op-
timizations. For example, because the compilation does not inline an in-
struction handler but leaves the call instruction. There are gaps between
this lightweight JIT compilation and the tracing JIT that RPython provides.
Thus, this gap suggests that several optimizations are needed between the
lightweight and the tracing JITs.

5.6. Evaluation and Experiments in PySOM and Multilevel RPython 79

To allow for further optimizations such as allocation removal, implementing
higher levels of lightweight JIT compilation is a good plan. For example,
the level-2 lightweight JIT just inlines a stack manipulation, but other op-
erations do not. The level-3 lightweight JIT inlines auxiliary methods, but
others are not. We are able to realize these levels at low cost by placing
dont_look_inside into each method header.

5.6 Evaluation and Experiments in PySOM and
Multilevel RPython

The question of whether the mixture of different JIT compilation levels is
effective in improving the performance of real-world applications remains
to be solved. To address the question, this section evaluates and examines
the effectiveness of multilevel JIT compilation in large-scale benchmark pro-
grams in initial performance. Evaluation and experiment take two-level com-
pilation, where threaded code generation is used as lightweight JIT compi-
lation and the (meta-)tracing JIT compiler is responsible for heavyweight JIT
compilation.

This section first evaluates the performance of threaded code generation by
using tiny and microbenchmark programs. The performance characteristics
of threaded code generation are discussed in its compilation time and code
speed on a steady state, compared to tracing JIT and interpreter execution in
Section 5.6.1.

Next, this section has an experiment for the two-level multilevel JIT compila-
tion. Unlike the micro-benchmark evaluation, it uses large-scale programs to
address realistic workloads. Because PySOM does not support to read image
files generated by other Smalltalk implementations and the entire Smalltalk
instruction set, it is difficult to run a real-world application on PySOM. Given
this context, the experiment simulates an application that has a real-world
workload by combining larger benchmark programs such as the classic con-
stant solver, simulation of an operating kernel system, or Json parsing. Sec-
tion 5.6.2 discusses the performance and capability for large-scale applica-
tions of multilevel JIT compilation.

Threat to validity The tested language PySOM is originally well imple-
mented and capable of running non-trivial applications, but the results may
change if tested on production-level languages like PyPy.

5.6.1 Microbenchmark Evaluation

The objective of this evaluation is to discuss if threaded code generation,
which is useful as lightweight JIT compilation alongside heavyweight trac-
ing JIT compilation. This section presents the results and discussion obtained
from this experiment.

80 Chapter 5. Threaded Code Gen. with a Real-World Meta-Tracing ..

The microbenchmark evaluates the compilation time and peak performance
in a steady state of threaded code generation and tracing JIT compilation
in Multilevel RPython. To begin with, by comparing the compilation time
of threaded code generation with tracing JIT, it is possible not only to un-
derstand the characteristics of compilation, but also to discuss how much
runtime overhead caused by dynamic compilation can be reduced using
lightweight compilation. In addition, a peak performance measurement is
needed to measure the benefit of compiling with threaded code generation.
By combining these two metrics, it is possible to discuss the benefit and cost
of performing threaded code generation as lightweight JIT compilation.

Setup

PySOM8 is used as the target language. PySOM is an implementation of a
Smalltalk dialect called Simple Object Machine (SOM) [Haupt et al., 2010] by
RPython. PySOM is a language implementation consisting of about 14,000
lines of Python source code, and it is suited for demonstrating the effec-
tiveness of our proposal with a realistic benchmark set. As shown in one
study [Marr, Daloze, and Mössenböck, 2016], SOM can run as complex pro-
grams as other languages such as Ruby or Java.

The generation of threaded code and multilevel JIT compilation are imple-
mented in the PySOM interpreter. The number of lines of source code re-
quired for the implementation is about 2400 lines.

The experiments are run on a single-socket 16-physical core Ryzen 9 5950X
CPU at 3.4 GHz, running the Ubuntu 22.04 operating system. The benchmark
machine has 32 GB RAM, which is enough to prevent memory swapping.
Experiments are performed with ReBench [Marr, 2018], which is a tool to
run and report benchmark experiments. Using ReBench allows not only to
reproduce experiments and documenting all benchmark parameters, but also
to minimize noise caused by system interference.

Methodology

To evaluate threaded code generation, the peak performance at steady state
is measured using microbenchmark programs. To perform this evaluation,
each microbenchmark program was run for 2000 times as one set. Here, 2000
iterations can be considered a long enough number that the compilation time
is negligible in determining the steady-state velocity. This set was iterated
30 times. After calculating the geometric mean for each iteration of the 30
sets, the overall geometric mean was calculated at the end. Furthermore, to
measure the compilation time of threaded code generation and tracing JIT
compilation, the PyPy logging system is used that can report how much time
is consumed to tracing and compiling traces.

The benchmark programs were collected from Are We Fast Yet? benchmark
and SOM’s original benchmark programs. They can be classified into tiny,

8https://github.com/SOM-st/PySOM

https://github.com/SOM-st/PySOM

5.6. Evaluation and Experiments in PySOM and Multilevel RPython 81

Type Benchmark Description

Macro

CD Simulation of an airplane collision detector. Based on WebKit’s JavaScript CDjs
Richards Classic benchmark simulating an operating system kernel
DeltaBlue Classic constraint solver used to tune, e.g., Smalltalk, Java and JavaScript VMs.
Json JSON string parsing benchmark

Micro

Fannkuch Program defined by programs in [Anderson and Rettig, 1994]
Bounce Simulating a ball bouncing within a box
Permute Generating permutations of an array
Queens Solving the eight queens problem
List Recursively creating and traversing lists.
Storage Creates and verifies a tree of arrays to stress the GC
Sieve Finding prime numbers based on the sieve of Eratosthenes
BubbleSort Sorting algorithm that repeatedly swaps adjacent elements
QuickSort Sorting algorithm classified into divide-and-conquer algorithm
TreeSort Sorting algorithm that builds a sorted binary tree and traverses it
Mandelbrot Calculating Mandelbrot set

Tiny

Fibonacci Calculating a fibonacci number
Dispatch Repeatedly invoking one tiny method
Loop Repeatedly counting up a number
Recurse Repeatedly invoking a method recursively
Sum Calculating the sum from 1 to a given number

TABLE 5.1: Benchmark descriptions.

micro-, and macro-benchmarks according to the size of the application. In
this micro-benchmark evaluation, tiny and microbenchmarks are used. The
descriptions of these benchmark programs are shown in Table 5.1.

Code Sizes and Compilation Times

Figure 5.13 shows the graph plotting the bytecode sizes and the compilation
times consumed. Table 5.2 shows the bytecode sizes of micro-benchmark
programs. The results show that threaded code generation increases the
compilation time linearly based on bytecode size. Meanwhile, tracing JIT
has spikes in List and QuickSort. Regression lines are calculated as follows:

ythreaded code = 0.0044× x + 0.31 (R2 = 0.7087) (5.1)

ytracing JIT = 0.411x + 5.0 (R2 = 0.118) (5.2)

Given each R2 in their regression lines (0.7087 in threaded code, 0.118 in trac-
ing JIT), there is a correlation between compilation time and code size for
threaded code generation, but tracing JIT shows unstable characteristics be-
tween the compilation time and code size. Furthermore, the slope of the
regression line for threaded code generation (4.42× 10−3) is lower than that
for JIT trace (0.411).

These results indicate that using threaded code generation for warm spots,
which are executed less frequently than hot spots, is likely to have negligi-
ble compile overhead. However, small functions or code fragments that are

82 Chapter 5. Threaded Code Gen. with a Real-World Meta-Tracing ..

Micro Benchmark Size (byte)

Dispatch 56
Fibonacci 59
Sum 86
Recurse 111
Loop 112
Sieve 138
List 246
Storage 272
Queens 285
Mandelbrot 422
Fannkuch 474
Bounce 488
BubbleSort 600
TreeSort 702
QuickSort 749

TABLE 5.2: Micro benchmark programs and their bytecode
sizes. Standard libraries of the PySOM system is excluded.

executed only a few times with an execution speed of less than 0.3 ms incur
compile overhead and should be executed by an interpreter. That being said,
tracing JIT is difficult to predict the compile cost, and even if the code size
is small, as in List and QuickSort, the compile cost is very large compared
with threaded code generation. Therefore, it is necessary for multilevel com-
pilation to be compiled only for hot spots (or hot loops) that are frequently
executed.

Peak Performance at Steady State

Figure 5.14 shows the peak performance in steady state. In general, threaded
code generation is 5% faster than interpreter execution, but 94% slower than
tracing JIT execution. The reason why threaded code is much slower than
the tracing JIT is that it does not perform many optimizations for the ob-
tained traces, because the trace consists of only essentially call instructions
to handlers. It is trade-off because the cost of the compile time is so small
compared to tracing JIT.

Next, the characteristics of threaded code generation are discussed based on
the nature of each benchmark. In particular, recursive call-intensive pro-
grams such as Fibonacci, Recurse, and Sum are from 10% to 24% faster than
the interpreter execution. This is because recursive call instructions are con-
verted into direct calls due to inline caching optimization. In addition, for
call intensive programs, TreeSort performs 5% better in threaded code gen-
eration than interpreter execution, but other programs like Bounce, Queens,
QuickSort and Storage are about 10% slower than interpreter execution.
This is because inline caching works in TreeSort but not effectively in the

5.6. Evaluation and Experiments in PySOM and Multilevel RPython 83

others. Here, Bounce, Queens, QuickSort and Storage have failed to apply in-
line caching to all function calls. As a result, some function calls have become
slow function calls. Furthermore, loop-intensive programs like BubblerSort,
Fannkuch, Loop, Mandelbrot, and Sieve are from 5% to 17% better than inter-
preter execution.

According to these results, to use threaded code generation as a lightweight
JIT compilation, it should be applied to call intensive, especially recursive
call intensive, programs. Threaded code generation would also benefit from
being applied to warm, but not hot, loops.

5.6.2 Multilevel JIT Experiment

Generally, warm-up time is considered a bottleneck in many real-world ap-
plications. For example, when considering a client application, the applica-
tion is often initialized first and then, the main routines are executed. In this
case, if heavyweight JIT compilation is performed at the initialization stage,
it is a waste to perform heavyweight JIT compilation because the initializa-
tion part is not used in subsequent executions. Instead, it is more beneficial
to do lightweight compilation such as threaded code generation. This section
validates whether multilevel JIT compilation, which combines threaded code
generation and tracing JIT, works effectively for large benchmark programs
and applications with realistic workloads.

Setup

The same machine and PySOM implementation with Multilevel RPython is
used, as shown in Section 5.6.1, but the difference is that the multilevel JIT
compilation feature is enabled on it.

Methodology

The multilevel JIT experiment evaluates the startup performance and peak
performance in multilevel JIT compilation using threaded code generation
as lightweight compilation and tracing JIT compilation as heavyweight com-
pilation. In multilevel compilation, threaded code generation is performed
first, and tracing JIT is performed later.

To simulate a real-world workload using benchmark programs, macro-
benchmark programs originally prepared in PySOM were combined.
Richards, Json, Deltablue, and CD were used for this simulated real-world
workload application. Figure 5.15 shows the summarized number of method
invocations in each macro benchmark program. The simulated application
has a long tail distribution of the number of method invocations. This exper-
iment was conducted on the application. The experiment was iterated once
in one set, and the set was iterated 2,000 times.

Given the result in Section 5.6.1, the author sets up a model where heavy-
weight tracing JIT could be applied to hot loops and lightweight threaded

84 Chapter 5. Threaded Code Gen. with a Real-World Meta-Tracing ..

Strategy Threshold for Loop Threshold for Function Call

Multilevel 1539 2003
Tracing Only 1039 1697
Threaded Only 1539 2003

TABLE 5.3: The threshold for the multilevel JIT experiment.

code generation is applied to method invocation intensives as a compilation
strategy in multilevel JIT compilation. The numbers used in the experiment
are shown in Table 5.3, and the visualization of which methods are compiled
at which level according to the threshold set. in Figure 5.16. These num-
bers are determined based on the heuristics that when looking at the distri-
bution of method calls, heavyweight tracing JIT compiles about 20% of the
total, and lightweight threaded code generation compiles 30%. The percent-
age was determined by reference to the results of the paper about DaCapo
benchmark [Blackburn et al., 2006], where approximately 30% of all defined
functions were compiled in lightweight and 10 % in heavyweight. Visualiza-
tion is shown in Figure 5.16.

In Table 5.3, the values for tracing only is the default numbers already set by
the PyPy developers. In addition to multilevel JIT execution, tracing JIT-only,
tracing JIT-only (the thresholds are the same as for multilevel JIT execution),
threaded code generation-only, and interpreter-only executions can be used
for comparing performance.

Results of the Experiment and Discussion

Figure 5.17 shows the results of this experiment on the simulated real-world
workload application. Overall, multilevel JIT compilation is about 14% faster
than tracing JIT only execution and about 7% faster than tracing JIT execu-
tion, the threshold of which is the same as multilevel JIT execution.

From these results, to speed up an application where the distribution of
method calls is long-tailed, it is not enough to raise or lower the tracing JIT
threshold: rather, new lightweight JIT compilation such as threaded code
generation needs to be added. However, threaded code execution is about
3% slower than interpreter-only execution. This means that the optimization
currently implemented, which is inline caching, for threaded code generation
is not enough to make lightweight JIT compilation more effective. Imple-
menting techniques such as superinstructions [Ertl et al., 2002] for threaded
code generation could be implemented, but this is left for future work.

5.7. Related work 85

5.7 Related work

There are many techniques that can be used to improve the warm-up perfor-
mance in a VM. Similar approaches to our work include improving the run-
time performance of an interpreter and implementing a lightweight JIT com-
piler in a VM. In contrast, another approaches have tried to realize an ahead-
of-time (AOT) compilation for managed language runtimes such as Java to
improve its startup performance. Also, regarding the attempt to add new
behaviors to the meta-JIT compiler , the work on Eclipse OMR and RPython
is close to our approach.

5.7.1 Improving an Interpreter’s Performance

The continuation passing style (CPS) [Steele, 1977] is a technique to improve
an interpreter’s performance. Whereas threaded code generation removes
conditional jumps, CPS can perform tail-call optimization that converts func-
tion calls into jumps because all calls are tail-calls in CPS, which has the ad-
vantage of not increasing the stack in an interpreter.

The superinstruction [Casey et al., 2003] allows us to reduce the number of
indirect jumps by extending the VM instruction set with a superinstruction
that corresponds to the work done by multiple instructions in a single in-
struction. Threaded code generation can be applied to an interpreter writ-
ten in RPython without modifying VM instruction sets, but superinstruction
has a limitation because the VM instruction encoding may not allow for the
modification, and the optimal instruction sets can be combined as superin-
struction may be changed depending on the workload.

5.7.2 Template JIT Compilation

Using a lightweight JIT compiler is effective when improving the warm=up
performance in a VM. A lightweight JIT compiler only applies optimizations
that do not take a significant amount of time to compile and do not increase
the binary size too much.

Although the threaded code generations produces threaded code based on
traces at runtime, template JIT compilers [Iliasov, 2003; Wimmer et al., 2013]
use a heavyweight compiler to emit machine code by aggregating machine
code parts that are generated at build-time. They always produce the same
machine code for a given input. The threaded code technique is also used in
template JIT compilers [Ertl and Gregg, 2003; Piumarta and Riccardi, 1998].

In recent years, several template-based JIT compilers [Coffin et al., 2020; Xu
and Kjolstad, 2021] have been proposed. Micro JIT [Coffin et al., 2020] is
a template JIT compiler for resource constrained environments like the In-
ternet of Things (IoT). Micro JIT is built on Ecplipse OpenJ9 [Eclipse Founda-
tion, 2017], alongside its JIT compilers. Copy-and-patch compilation [Xu and

86 Chapter 5. Threaded Code Gen. with a Real-World Meta-Tracing ..

Kjolstad, 2021] is also based on a template-based approach, and its unique-
ness is its fast compilation time compared with LLVM -O0 and the Lifoff,
which is a lightweight WebAssembly JIT compiler made by Google.

5.7.3 Ahead-of-Time Compilation

Another approach to achieve fast startup performance is to use ahead-of-
time (AOT) compilation for managed language runtimes [Krylov et al., 2021;
Wimmer et al., 2019]. GraalVM Native Image [Wimmer et al., 2019], which is
a part of the GraalVM project, is capable of compiling Java programs into ma-
chine code at build time. It can achieve a performance improvement of up
to two orders of magnitude compared with Java HotSpot VM while main-
taining good peak performance. Eclipse OMR also has an AOT compiler for
WebAsembly [Krylov et al., 2021], hence showing competitive performance
compared with the performance of the V8 engine.

5.7.4 Introducing a New Behavior into a Meta-JIT Compiler

Some studies have allowed to realize a new optimization behavior in a meta-
JIT compiler. In contrast to our approach that introduces a new compila-
tion/optimization behavior, [Nanjekye, Bremner, and Micic, 2021] proposed
an Eclipse OMR-based approach that introduces a new GC for RPython.
Eclipse OMR [Eclipse Foundation, 2019] is a reliable component that includes
a heavyweight JIT compiler and a dedicated GC for building language run-
times. To prove its reusability, Ruby+OMR, SOM++ Smalltalk and an exper-
imental version of CPython have been built by using Eclipse OMR compo-
nents.

5.8 Conclusion

This chapter has introduced Multilevel RPython, which can generate a sin-
gle compiler that can behave as a method-based lightweight and trace-based
heavyweight JIT compilers, and both. The original RPython performs (meta-
)tracing compilation, but its other behavior as threaded code generation is
achieved by controlling the behavior of a meta-tracing compiler by the hint
instructions inserted in an interpreter.

In the preliminary evaluation for threaded code generation, the experiments
conducted in PyPy has shown that threaded code can reduce the size of traces
and the compilation time by approximately 80% and 60%, respectively. It
can run 7% faster than the interpreter-only execution in when there is stable
speed.

In the evaluation of the effectiveness of multilevel JIT compilation in warm-
up performance, the experiments show that using threaded code generation
as an initial compiler improves the overall performance about 14% in the
application simulating a real-world workload.

5.8. Conclusion 87

Interpreter w/
hint instructions

Multilevel
RPython

Lightweight JIT
interp. w/ hints

Heavyweight JIT
interp. w/ hints

Source
program

Native Native

Interp.
shift

Exception

tracing-JIT-suitable
hot spot found

method-
based

trace-
based

VM generation time

run-time

data flow
exec. flow

Multilevel JIT Compiler

FIGURE 5.1: Overview of Multilevel RPython: there exists two
different interpreters in the generated VM. At VM generation
time, Multilevel RPython generates a VM from an interpreter
instrumented with hint instructions used for multilevel com-
pilation. At runtime, the different two interpreters are used
for lightweight and heavyweight compilations. First, a source
program is run on the interpreter for lightweight compilation.
When hot spots are detected, the execution is switched to the in-
terpreter for heavyweight compilation from one for lightweight
compilation. This transition is performed by the interpreter

shifting technique described in Section 5.3.

88 Chapter 5. Threaded Code Gen. with a Real-World Meta-Tracing ..

FIGURE 5.2: An overview of how threaded code works.

ca
ll

RETJUMP

ca
ll

A

B

C

Target function Resulting trace tree

D F

E

Shallowly tracing
method-traversal
interpreter

Stitching the
generated trace

[p1]
i28 = call_i(ConstClass(tla_CALL, p1, 8))
���
i32 = call_i(ConstClass(tla_RET, p1, 12))
leave_portal_frame(0)
f�nish(i32)

[p0]
i7 = call_i(ConstClass(tla_DUP, p0, 1))
i12 = call_i(ConstClass(tla_CONST_INT, p0, 2))
i16 = call_i(ConstClass(tla_LT, p0, 4))
���

bridge

FIGURE 5.3: A sketch of how RPython method-based
lightweight JIT compiler works. From the target function in
the left-hand side, it generates the trace tree shown in the right-

hand side.

RETJUMP

ca
ll

1

2

3

4

5

A

B

C

D F

E

FIGURE 5.4: Tracing the entire of a function with method-
traversal interpreter.

5.8. Conclusion 89

RETJUMP

ca
ll

A

B

C

D F

E

4

ca
ll5

RETJUMP

ca
ll

A

B

C

D F

E

2

RETJUMP

ca
ll

A

B

C

D F

E

3

RETJUMP

ca
ll

A

B

C

D F

E

11

FIGURE 5.5: The working flow of trace stitching.

A

start

B

C

E

emit_X

F

emit_Y

D

end

pc (B→ D)

traverse stack
push

pc (C→ F)

pc (B→ D)

push

pc (C→ F)

pc (B→ D)

pop

pc (B→ D)

pop

A

B

C

E

F

D

resulting trace

A start

B guard 1

C guard 2

E emit_X

F emit_Y

D end

guard failure (g1)

guard failure stack

guard failure (g2)

guard failure (g1)

push

push guard failure (g2)

guard failure (g1)
pop

guard failure (g1)
poploop body

bridge

FIGURE 5.6: Overview of trace-stitching. This shows how we
resolve the relations between guard failures and bridges.

90 Chapter 5. Threaded Code Gen. with a Real-World Meta-Tracing ..

def interp_threaded(pc)�

 threaded_driver.can_enter_jit(��)
 while True:
 instr �� bytecode[pc��]
 if instr �� JUMP_BACKWARD�

 if bytecode.counts[pc] > THRESHOLD�
 raise ContinueInTracing(pc)
 bytecode.couts[pc] += 1
 pc = bytecode[pc��]
 elif ��

Interpreter for threaded code generation

Interpreter for tracing JIT compilation

def interp(��)
 while True:
 try:
 result = interp_threaded(pc)
 catch ContinueInTracing as e:
 pc = e.pc

 try:
 result = interp_tracing(pc)
 catch ContinueInThreaded as e:
 pc = e.pc

def interp_tracing(pc)�
 while True:
 instr �� bytecode[pc��]
 if instr �� JUMP_BACKWARD�

 if bytecode.counts[pc] �� THRESHOLD�
 raise ContinueInThreaded(pc)
 bytecode.couts[pc] += 1
 pc = bytecode[pc��]

 tracing_driver.can_enter_jit(��)
 elif ��

level up
level down

Profiles the exec.
if exceeds threshold:
 start lightweight compilation

Interpreter Shifter

en
tr
y

Profiles the exec.
if exceeds threshold:
 start heavyweight compilation

FIGURE 5.7: Overview of the runtime techniques for multilevel
compilation. The interpreter shifting defines the strategy for
transitioning between compilation levels. Note that each inter-
preter shown on the right-hand side corresponds to each com-
pilation level. For each interpreter, the drivers profile the execu-
tion and starts JIT compilation when the threshold is exceeded.

def interp(method, stack, ���)�
 ���
 while True:
 jit_merge_point(��)
 ���
 if opcode �� CALL�
 handler_CALL(��)

class A�
 def f

���
call(handler_CALL, ��)
���

trace
lookup

compiled trace
calling a method

compiled trace
of method f

def handler_CALL(��)�
 method = pop(stack)
 r = interp(method, stack, ��)
 ���

FIGURE 5.8: Calling a compiled method w/o inline caching.

5.8. Conclusion 91

def interp(method, stack, ���)�
 ���
 while True:
 jit_merge_point(��)
 ���
 if opcode �� CALL�
 if check_type(method, pc)�
 method = pop(stack)
 call_assembler(
 interp(method, stack, ��))
 else:
 handler_CALL(��)

class A�
 def f

���
guard_ptr_eq(f, A)
call_assembler(f)
���

guard
fail

trace CALL

compiled trace
of method f

def handler_CALL(��)�
 method = pop(stack)
 if not we_are_jitted()�
 record_type(method, pc)

 r = interp(method, stack, ��)
 ���

call(handler_CALL, ��)

interpreter instrumented for inline caching

fast path

slow path

FIGURE 5.9: Overview of inline caching in threaded code gen-
eration.

92 Chapter 5. Threaded Code Gen. with a Real-World Meta-Tracing ..

binarytrees

chaos

cryptopyaes

fannkuch

fib

float

go

jsondumpv2

meteorcontest

nbody

nqueens

pidigits

raytrace

richards

spectralnorm

tak

telco

Program

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

PyPy 3.7 w/ STCG's relative num
ber of ops (Level 1)

geo_mean

binarytrees

chaos

cryptopyaes

fannkuch

fib

float

go

jsondumpv2

meteorcontest

nbody

nqueens

pidigits

raytrace

richards

spectralnorm

tak

telco

Program

0.0

0.2

0.4

0.6

0.8

1.0

PyPy 3.7 w/ STCG's relative com
pilation tim

e (Level 1)

geo_mean

FIGURE 5.10: The results of the size of traces to compile and
compilation time including tracing. In all results the Y-axis
means PyPy 3.7 with our simulated threaded code generation
(STCG)’s relative value to PyPy 3.7–7.3.5’s tracing JIT compiler.
The X-axis stands for the name of every program. The left-hand
side shows the relative trace size, and the right-hand size is the

relative compilation time. Lower is better.

5.8. Conclusion 93

binarytrees

chaos

cryptopyaes

fannkuch

fib

float

go

jsondumpv2

meteorcontest

nbody

nqueens

pidigits

raytrace

richards

spectralnorm

tak

telco

Program

0.4

0.6

0.8

1.0

1.2

1.4

Speed up ratio (standardized on an interp. execution)

1.0
1.06

1.13
1.05

1.0
1.11

1.01
1.14

1.27
1.15

1.34

1.01
0.97

1.0
1.04

0.98
1.0

PyPy 3.7 w/ Sim
ulated Threaded Code Generation (STCG)

geo_mean

1.07

FIGURE 5.11: The results of a preliminary benchmark exper-
iment. In all results the Y-axis means speed up ratio of the
threaded code generation compared with the interpreter-only
execution, and the X-axis stands for the name of every program.

The error bars mean standard deviations. Higher is better.

94 Chapter 5. Threaded Code Gen. with a Real-World Meta-Tracing ..

0.8

1.0

1.2

1.4

0 20 40 60 80

0.8

1.0

1.2

1.4

Speed-up ratio of Simulated Threaded Code Generation

#Iteration

Re
la

te
d

sp
ee

d
to

 in
te

rp
. e

xe
cu

tio
n

0

50

100

150

200 binarytrees
chaos
cryptopyaes
fannkuch
fib
float
go
jsondumpv2

0 20 40 60 80
0

50

100

150

200 meteorcontest
nbody
nqueens
pidigits
raytrace
richards
spectralnorm
tak
telco

Speed-up ratio of PyPy 3.7's tracing JIT

#Iteration

Re
la

te
d

sp
ee

d
to

 in
te

rp
. e

xe
cu

tio
n

FIGURE 5.12: Speed-up ratio of STCG (left-hand side) and
PyPy’s tracing JIT compiler (right-hand side) related to the in-
terpreter. They are executed on PyPy’s original micro bench-
mark suite plus our original ones. X-axis and Y-axis mean every
iteration and speed-up ratio standardized to interpreter execu-

tion, respectively. Dots are plotted every five iterations.

5.8. Conclusion 95

100 200 300 400 500 600 700
Bytecode size (byte)

0

20

40

60

80

Co
m

pi
la

tio
n

tim
e

(m
s)

Di
sp

at
ch

Fib
on

ac
ci

Su
m

Re
cu

rs
e

Lo
op

Si
ev

e

Lis
t

St
or

ag
e

Qu
ee

ns

M
an

de
lb

ro
t

Fa
nn

ku
ch

Bo
un

ce

Bu
bb

le
So

rt

Tr
ee

So
rt

Qu
ick

So
rt

y = 0.0411 x + 5.0 R2=0.118

y = 0.0044 x + 0.31 R2=0.7087

FIGURE 5.13: Compilation times and code sizes on micro-
benchmark programs. The x-axis and y-axis mean a bytecode
size (byte) and consumed compilation time (ms), respectively.

Fib
on

ac
ci

M
an

de
lb

ro
t

Re
cu

rs
e

Su
m

Lo
op

Di
sp

at
ch

Si
ev

e

Bu
bb

le
So

rt

Tr
ee

So
rt

Fa
nn

ku
ch Lis

t

Pe
rm

ut
e

Qu
ee

ns

Qu
ick

So
rt

Bo
un

ce

St
or

ag
e

m
ea

n

Benchmark

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Pe
ak

 p
er

fo
rm

an
ce

 (n
or

m
. t

o
in

te
rp

)

Threaded code Threaded code (no IC) Tracing JIT

FIGURE 5.14: Peak performance of threaded code generation,
tracing JIT and interpreter execution. Relative elapsed times
normalized to interpreter execution. The blue and red lines
mean threaded code generation and tracing JIT, respectively.

Lower is better.

96 Chapter 5. Threaded Code Gen. with a Real-World Meta-Tracing ..

#s
ub

st
rin

gF
ro

m
:to

:
a

Jso
nP

ar
se

r#
re

ad
#i

fN
il:

#c
ha

rA
t:

a
Jso

nP
ar

se
r#

re
ad

Ch
ar

:
a

Jso
nP

ar
se

r#
sk

ip
W

hi
te

Sp
ac

e
a

Jso
nP

ar
se

r#
isW

hi
te

Sp
ac

e
a

Ve
ct

or
#a

pp
en

d:
a

Jso
nP

ar
se

r#
re

ad
Va

lu
e

a
Jso

nP
ar

se
r#

re
ad

Ar
ra

yE
le

m
en

t:
a

Jso
nA

rra
y#

ad
d:

a
Jso

nP
ar

se
r#

st
ar

tC
ap

tu
re

a
Jso

nP
ar

se
r#

en
dC

ap
tu

re
a

Jso
nP

ar
se

r#
re

ad
Di

gi
t

a
Jso

nP
ar

se
r#

isD
ig

it
a

Jso
nP

ar
se

r#
re

ad
St

rin
gI

nt
er

na
l

a
Jso

nP
ar

se
r#

re
ad

Re
qu

ire
dC

ha
r:

a
Jso

nP
ar

se
r#

re
ad

St
rin

g
Cl

as
s(

Jso
nS

tri
ng

)#
ne

w:
a

Jso
nS

tri
ng

#i
ni

tia
liz

eW
ith

:
a

Jso
nS

tri
ng

#i
fN

il:
Cl

as
s(

Ve
ct

or
)#

ne
w:

a
Ve

ct
or

#i
ni

tia
liz

e:
Cl

as
s(

Ve
ct

or
)#

ne
w

a
Jso

nP
ar

se
r#

re
ad

Nu
m

be
r

a
Jso

nP
ar

se
r#

re
ad

Fr
ac

tio
n

a
Jso

nP
ar

se
r#

re
ad

Ex
po

ne
nt

Cl
as

s(
Jso

nN
um

be
r)#

ne
w:

a
Jso

nN
um

be
r#

in
iti

al
ize

W
ith

:
a

Jso
nN

um
be

r#
ifN

il:
a

Jso
nL

ite
ra

l#
ifN

il:
a

Ha
sh

In
de

xT
ab

le
#h

as
hS

lo
tF

or
:

a
Ve

ct
or

#s
ize

a
Jso

nP
ar

se
r#

re
ad

Ob
je

ct
Ke

yV
al

ue
Pa

ir:
a

Jso
nP

ar
se

r#
re

ad
Na

m
e

a
Jso

nO
bj

ec
t#

ad
d:

wi
th

:
a

Ha
sh

In
de

xT
ab

le
#a

t:p
ut

:
a

Jso
nP

ar
se

r#
re

ad
Nu

ll
Cl

as
s(

Jso
nL

ite
ra

l)#
NU

LL
a

Jso
nP

ar
se

r#
re

ad
Ar

ra
y

Cl
as

s(
Jso

nA
rra

y)
#n

ew
a

Jso
nA

rra
y#

in
iti

al
ize

a
Jso

nA
rra

y#
ifN

il:
2#

<>
1#

<>
a

Jso
nP

ar
se

r#
re

ad
Ob

je
ct

Cl
as

s(
Jso

nO
bj

ec
t)#

ne
w

a
Jso

nO
bj

ec
t#

in
iti

al
ize

Cl
as

s(
Ha

sh
In

de
xT

ab
le

)#
ne

w
a

Ha
sh

In
de

xT
ab

le
#i

ni
tia

liz
e

Cl
as

s(
Ar

ra
y)

#n
ew

:w
ith

Al
l:

a
Jso

nO
bj

ec
t#

ifN
il:

pa
re

nt
#i

fN
il:

in
de

x#
ifN

il:
25

5#
ifN

il:
te

xt
s#

ifN
il:

ce
llB

ac
kg

ro
un

ds
#i

fN
il:

6#
<>

25
2#

ifN
il:

4#
<>

62
#i

fN
il:

17
5#

ifN
il:

5#
<>

17
3#

ifN
il:

12
7#

ifN
il:

16
8#

ifN
il:

a
Jso

nP
ar

se
r#

re
ad

Tr
ue

Cl
as

s(
Jso

nL
ite

ra
l)#

TR
UE

23
8#

ifN
il:

0#
<>

0#
ifN

il:
3#

<>
9#

<>
7#

<>
15

9#
ifN

il:
41

#i
fN

il:
23

3#
ifN

il:
50

#i
fN

il:
8#

<>
23

6#
ifN

il:
st

yl
e#

ifN
il:

10
#i

fN
il:

te
xt

#i
fN

il:
52

#i
fN

il:
Se

le
ct

io
n#

ifN
il:

bo
un

ds
#i

fN
il:

ta
bI

nd
ex

#i
fN

il:
11

4#
ifN

il:
-1

#i
fN

il:
a

Va
ria

bl
e#

va
lu

e
a

Va
ria

bl
e#

va
lu

e:
a

Eq
ua

lit
yC

on
st

ra
in

t#
ex

ec
ut

e
a

Or
de

re
dC

ol
le

ct
io

n#
isE

m
pt

y
a

Va
ria

bl
e#

st
ay

a
Va

ria
bl

e#
m

ar
k

a
Sc

al
eC

on
st

ra
in

t#
ex

ec
ut

e
a

Or
de

re
dC

ol
le

ct
io

n#
ap

pe
nd

:
a

Va
ria

bl
e#

de
te

rm
in

ed
By

a
Va

ria
bl

e#
wa

lk
St

re
ng

th
a

Or
de

re
dC

ol
le

ct
io

n#
do

:
a

St
re

ng
th

#a
rit

hm
et

icV
al

ue
a

Va
ria

bl
e#

co
ns

tra
in

ts
#f

or
wa

rd
#n

ot
Ni

l
a

Va
ria

bl
e#

m
ar

k:
a

Or
de

re
dC

ol
le

ct
io

n#
ad

d:
a

Pa
ir#

ke
y

a
Eq

ua
lit

yC
on

st
ra

in
t#

ou
tp

ut
a

Sc
al

eC
on

st
ra

in
t#

ou
tp

ut
a

Or
de

re
dC

ol
le

ct
io

n#
re

m
ov

eF
irs

t
a

St
re

ng
th

#w
ea

ke
r:

a
Va

ria
bl

e#
wa

lk
St

re
ng

th
:

a
Va

ria
bl

e#
st

ay
:

a
Pl

an
ne

r#
ad

dC
on

st
ra

in
ts

Co
ns

um
in

g:
to

:
a

Sc
al

eC
on

st
ra

in
t#

isS
at

isf
ie

d
a

Eq
ua

lit
yC

on
st

ra
in

t#
isS

at
isf

ie
d

Cl
as

s(
Or

de
re

dC
ol

le
ct

io
n)

#n
ew

:
a

Or
de

re
dC

ol
le

ct
io

n#
in

iti
al

ize
:

a
St

re
ng

th
#w

ea
ke

st
:

Cl
as

s(
Pl

an
ne

r)#
cu

rre
nt

a
Va

ria
bl

e#
ad

dC
on

st
ra

in
t:

a
Pl

an
#e

xe
cu

te
a

Pl
an

#d
o:

a
Ed

itC
on

st
ra

in
t#

ex
ec

ut
e

a
Va

ria
bl

e#
de

te
rm

in
ed

By
:

Cl
as

s(
Or

de
re

dC
ol

le
ct

io
n)

#w
ith

:
a

St
re

ng
th

#s
tro

ng
er

:
a

Pl
an

ne
r#

ad
dP

ro
pa

ga
te

:m
ar

k:
a

Ve
ct

or
#d

o:
a

Sc
al

eC
on

st
ra

in
t#

re
ca

lcu
la

te
a

Ar
ra

y#
la

st
a

Ar
ra

y#
fir

st
a

Eq
ua

lit
yC

on
st

ra
in

t#
in

pu
ts

Do
:

a
Eq

ua
lit

yC
on

st
ra

in
t#

re
ca

lcu
la

te
a

Se
t#

do
:

a
Eq

ua
lit

yC
on

st
ra

in
t#

sa
tis

fy
:

a
Eq

ua
lit

yC
on

st
ra

in
t#

ch
oo

se
M

et
ho

d:
a

Di
ct

io
na

ry
#a

t:
a

Pa
ir#

va
lu

e
a

Pl
an

ne
r#

ne
wM

ar
k

a
St

ay
Co

ns
tra

in
t#

ou
tp

ut
Cl

as
s(

St
re

ng
th

)#
of

:
a

Pl
an

ne
r#

in
cr

em
en

ta
lA

dd
:

Cl
as

s(
St

re
ng

th
)#

ab
so

lu
te

W
ea

ke
st

a
Pl

an
#a

dd
La

st
:

a
Pl

an
#a

pp
en

d:
a

Pl
an

ne
r#

co
ns

tra
in

ts
Co

ns
um

in
g:

do
:

a
Sc

al
eC

on
st

ra
in

t#
in

pu
ts

Do
:

a
Va

ria
bl

e#
in

iti
al

ize
ni

l#
no

tN
il

a
Eq

ua
lit

yC
on

st
ra

in
t#

m
ar

kU
ns

at
isf

ie
d

#b
ac

kw
ar

d#
no

tN
il

Cl
as

s(
Va

ria
bl

e)
#v

al
ue

:
a

Sc
al

eC
on

st
ra

in
t#

in
pu

ts
Kn

ow
n:

a
St

ay
Co

ns
tra

in
t#

isS
at

isf
ie

d
a

Or
de

re
dC

ol
le

ct
io

n#
at

:
a

Or
de

re
dC

ol
le

ct
io

n#
ch

ec
kI

nd
ex

:if
Va

lid
:

a
Ed

itC
on

st
ra

in
t#

ou
tp

ut
a

Ve
ct

or
#a

pp
en

d:
a

St
ay

Co
ns

tra
in

t#
sa

tis
fy

:
a

St
ay

Co
ns

tra
in

t#
ch

oo
se

M
et

ho
d:

a
St

ay
Co

ns
tra

in
t#

in
pu

ts
Do

:
a

St
ay

Co
ns

tra
in

t#
re

ca
lcu

la
te

a
St

ay
Co

ns
tra

in
t#

isI
np

ut
a

St
ay

Co
ns

tra
in

t#
ex

ec
ut

e
a

Sc
al

eC
on

st
ra

in
t#

sa
tis

fy
:

a
Sc

al
eC

on
st

ra
in

t#
ch

oo
se

M
et

ho
d:

Cl
as

s(
Va

ria
bl

e)
#n

ew
Cl

as
s(

St
ay

Co
ns

tra
in

t)#
va

r:s
tre

ng
th

:
a

St
ay

Co
ns

tra
in

t#
va

r:s
tre

ng
th

:
a

St
ay

Co
ns

tra
in

t#
ad

dC
on

st
ra

in
t

a
St

ay
Co

ns
tra

in
t#

ad
dT

oG
ra

ph
Cl

as
s(

Eq
ua

lit
yC

on
st

ra
in

t)#
va

r:v
ar

:s
tre

ng
th

:
a

Eq
ua

lit
yC

on
st

ra
in

t#
va

r:v
ar

:s
tre

ng
th

:
a

Eq
ua

lit
yC

on
st

ra
in

t#
ad

dC
on

st
ra

in
t

a
Eq

ua
lit

yC
on

st
ra

in
t#

ad
dT

oG
ra

ph
a

Eq
ua

lit
yC

on
st

ra
in

t#
in

pu
ts

Kn
ow

n:
Cl

as
s(

Sc
al

eC
on

st
ra

in
t)#

va
r:v

ar
:v

ar
:v

ar
:s

tre
ng

th
:

a
Sc

al
eC

on
st

ra
in

t#
sr

c:
sc

al
e:

of
fs

et
:d

st
:s

tre
ng

th
:

Cl
as

s(
Ve

ct
or

)#
ne

w:
a

Ve
ct

or
#i

ni
tia

liz
e:

Cl
as

s(
Ve

ct
or

)#
ne

w
a

Ve
ct

or
#f

or
Ea

ch
:

a
Ve

ct
or

#s
ize

a
Re

dB
la

ck
Tr

ee
#f

or
Ea

ch
:

ni
l#

isN
il

a
Si

m
ul

at
or

#s
im

ul
at

e:
a

Co
llis

io
nD

et
ec

to
r#

ha
nd

le
Ne

wF
ra

m
e:

a
Co

llis
io

nD
et

ec
to

r#
re

du
ce

Co
llis

io
nS

et
:

a
Ve

ct
or

#a
pp

en
d:

a
CD

#n
am

e
us

#p
rin

t
CD

#p
rin

t
us

#p
rin

tln
a

CD
#i

nn
er

Be
nc

hm
ar

kL
oo

p:
a

CD
#b

en
ch

m
ar

k:
Cl

as
s(

Si
m

ul
at

or
)#

ne
w:

a
Si

m
ul

at
or

#i
ni

t:
Cl

as
s(

Ca
llS

ig
n)

#n
ew

:
a

Ca
llS

ig
n#

in
it:

Cl
as

s(
Co

llis
io

nD
et

ec
to

r)#
ne

w
a

Co
llis

io
nD

et
ec

to
r#

in
iti

al
ize

a
CD

#v
er

ify
:re

su
ltF

or
:

a
Be

nc
hm

ar
kH

ar
ne

ss
#p

rin
t:r

un
:

: i
te

ra
tio

ns
=1

 ru
nt

im
e:

 #
pr

in
t

a
Sy

st
em

#r
es

ol
ve

:
a

Ve
ct

or
#r

em
ov

eF
irs

t
a

Ve
ct

or
#i

sE
m

pt
y

Cl
as

s(
Co

ns
ta

nt
s)

#G
oo

dV
ox

el
Si

ze
Cl

as
s(

Ve
ct

or
2D

)#
x:

y:
a

Ve
ct

or
2D

#i
ni

tX
:y

:
a

Be
nc

hm
ar

kH
ar

ne
ss

#r
es

po
nd

sT
o:

Cl
as

s(
Be

nc
hm

ar
kH

ar
ne

ss
)#

ha
sM

et
ho

d:
a

Be
nc

hm
ar

kH
ar

ne
ss

#r
un

:
a

Be
nc

hm
ar

kH
ar

ne
ss

#i
ni

tia
liz

e
a

Be
nc

hm
ar

kH
ar

ne
ss

#p
ro

ce
ss

Ar
gu

m
en

ts
:

a
Ve

ct
or

#a
pp

en
dA

ll:
a

Be
nc

hm
ar

kH
ar

ne
ss

#l
oa

dB
en

ch
m

ar
kC

la
ss

:
Cl

as
s(

CD
)#

ifN
il:

10
#a

sIn
te

ge
r

a
Be

nc
hm

ar
kH

ar
ne

ss
#r

un
Be

nc
hm

ar
k

Cl
as

s(
CD

)#
ne

w
Cl

as
s(

Co
ns

ta
nt

s)
#i

ni
tia

liz
e

a
CD

#o
ne

Ti
m

eS
et

up
St

ar
tin

g
#+

CD
#a

sS
tri

ng
St

ar
tin

g
CD

#+
be

nc
hm

ar
k.

#a
sS

tri
ng

St
ar

tin
g

CD
 b

en
ch

m
ar

k.
#p

rin
tln

St
ar

tin
g

CD
 b

en
ch

m
ar

k.
#p

rin
t

a
Be

nc
hm

ar
kH

ar
ne

ss
#d

oR
un

s:
64

93
59

#p
rin

t
64

93
59

#p
rin

t
89

14
7#

pr
in

t
89

14
7#

pr
in

t
23

67
0#

pr
in

t
23

67
0#

pr
in

t
18

73
2#

pr
in

t
18

73
2#

pr
in

t
18

82
5#

pr
in

t
18

82
5#

pr
in

t
18

85
5#

pr
in

t
18

85
5#

pr
in

t
18

88
2#

pr
in

t
18

88
2#

pr
in

t
18

74
8#

pr
in

t
18

74
8#

pr
in

t
18

66
6#

pr
in

t
18

66
6#

pr
in

t
35

64
3#

pr
in

t
35

64
3#

pr
in

t
a

Be
nc

hm
ar

kH
ar

ne
ss

#r
ep

or
tB

en
ch

m
ar

k:
re

su
lt:

: i
te

ra
tio

ns
=#

pr
in

t
10

#p
rin

t
10

#p
rin

t
av

er
ag

e:
 #

pr
in

t
91

05
2#

pr
in

t
91

05
2#

pr
in

t
to

ta
l:

#p
rin

t
91

05
27

#p
rin

t
91

05
27

#p
rin

t
#p

rin
tln

#p
rin

t
a

Be
nc

hm
ar

kH
ar

ne
ss

#p
rin

tTo
ta

l

Method

0

50000

100000

150000

200000

250000

300000

#i
nv

ok
e

#invoke

FIGURE 5.15: Number of method invocations in the simulated
real-world workload application.

#s
ub

st
rin

gF
ro

m
:to

:
a

Jso
nP

ar
se

r#
re

ad
#i

fN
il:

#c
ha

rA
t:

a
Jso

nP
ar

se
r#

re
ad

Ch
ar

:
a

Jso
nP

ar
se

r#
sk

ip
W

hi
te

Sp
ac

e
a

Jso
nP

ar
se

r#
isW

hi
te

Sp
ac

e
a

Ve
ct

or
#a

pp
en

d:
a

Jso
nP

ar
se

r#
re

ad
Va

lu
e

a
Jso

nP
ar

se
r#

re
ad

Ar
ra

yE
le

m
en

t:
a

Jso
nA

rra
y#

ad
d:

a
Jso

nP
ar

se
r#

st
ar

tC
ap

tu
re

a
Jso

nP
ar

se
r#

en
dC

ap
tu

re
a

Jso
nP

ar
se

r#
re

ad
Di

gi
t

a
Jso

nP
ar

se
r#

isD
ig

it
a

Jso
nP

ar
se

r#
re

ad
St

rin
gI

nt
er

na
l

a
Jso

nP
ar

se
r#

re
ad

Re
qu

ire
dC

ha
r:

a
Jso

nP
ar

se
r#

re
ad

St
rin

g
Cl

as
s(

Jso
nS

tri
ng

)#
ne

w:
a

Jso
nS

tri
ng

#i
ni

tia
liz

eW
ith

:
a

Jso
nS

tri
ng

#i
fN

il:
Cl

as
s(

Ve
ct

or
)#

ne
w:

a
Ve

ct
or

#i
ni

tia
liz

e:
Cl

as
s(

Ve
ct

or
)#

ne
w

a
Jso

nP
ar

se
r#

re
ad

Nu
m

be
r

a
Jso

nP
ar

se
r#

re
ad

Fr
ac

tio
n

a
Jso

nP
ar

se
r#

re
ad

Ex
po

ne
nt

Cl
as

s(
Jso

nN
um

be
r)#

ne
w:

a
Jso

nN
um

be
r#

in
iti

al
ize

W
ith

:
a

Jso
nN

um
be

r#
ifN

il:
a

Jso
nL

ite
ra

l#
ifN

il:
a

Ha
sh

In
de

xT
ab

le
#h

as
hS

lo
tF

or
:

a
Ve

ct
or

#s
ize

a
Jso

nP
ar

se
r#

re
ad

Ob
je

ct
Ke

yV
al

ue
Pa

ir:
a

Jso
nP

ar
se

r#
re

ad
Na

m
e

a
Jso

nO
bj

ec
t#

ad
d:

wi
th

:
a

Ha
sh

In
de

xT
ab

le
#a

t:p
ut

:
a

Jso
nP

ar
se

r#
re

ad
Nu

ll
Cl

as
s(

Jso
nL

ite
ra

l)#
NU

LL
a

Jso
nP

ar
se

r#
re

ad
Ar

ra
y

Cl
as

s(
Jso

nA
rra

y)
#n

ew
a

Jso
nA

rra
y#

in
iti

al
ize

a
Jso

nA
rra

y#
ifN

il:
2#

<>
1#

<>
a

Jso
nP

ar
se

r#
re

ad
Ob

je
ct

Cl
as

s(
Jso

nO
bj

ec
t)#

ne
w

a
Jso

nO
bj

ec
t#

in
iti

al
ize

Cl
as

s(
Ha

sh
In

de
xT

ab
le

)#
ne

w
a

Ha
sh

In
de

xT
ab

le
#i

ni
tia

liz
e

Cl
as

s(
Ar

ra
y)

#n
ew

:w
ith

Al
l:

a
Jso

nO
bj

ec
t#

ifN
il:

pa
re

nt
#i

fN
il:

in
de

x#
ifN

il:
25

5#
ifN

il:
te

xt
s#

ifN
il:

ce
llB

ac
kg

ro
un

ds
#i

fN
il:

6#
<>

25
2#

ifN
il:

4#
<>

62
#i

fN
il:

17
5#

ifN
il:

5#
<>

17
3#

ifN
il:

12
7#

ifN
il:

16
8#

ifN
il:

a
Jso

nP
ar

se
r#

re
ad

Tr
ue

Cl
as

s(
Jso

nL
ite

ra
l)#

TR
UE

23
8#

ifN
il:

0#
<>

0#
ifN

il:
3#

<>
9#

<>
7#

<>
15

9#
ifN

il:
41

#i
fN

il:
23

3#
ifN

il:
50

#i
fN

il:
8#

<>
23

6#
ifN

il:
st

yl
e#

ifN
il:

10
#i

fN
il:

te
xt

#i
fN

il:
52

#i
fN

il:
Se

le
ct

io
n#

ifN
il:

bo
un

ds
#i

fN
il:

ta
bI

nd
ex

#i
fN

il:
11

4#
ifN

il:
-1

#i
fN

il:
a

Va
ria

bl
e#

va
lu

e
a

Va
ria

bl
e#

va
lu

e:
a

Eq
ua

lit
yC

on
st

ra
in

t#
ex

ec
ut

e
a

Or
de

re
dC

ol
le

ct
io

n#
isE

m
pt

y
a

Va
ria

bl
e#

st
ay

a
Va

ria
bl

e#
m

ar
k

a
Sc

al
eC

on
st

ra
in

t#
ex

ec
ut

e
a

Or
de

re
dC

ol
le

ct
io

n#
ap

pe
nd

:
a

Va
ria

bl
e#

de
te

rm
in

ed
By

a
Va

ria
bl

e#
wa

lk
St

re
ng

th
a

Or
de

re
dC

ol
le

ct
io

n#
do

:
a

St
re

ng
th

#a
rit

hm
et

icV
al

ue
a

Va
ria

bl
e#

co
ns

tra
in

ts
#f

or
wa

rd
#n

ot
Ni

l
a

Va
ria

bl
e#

m
ar

k:
a

Or
de

re
dC

ol
le

ct
io

n#
ad

d:
a

Pa
ir#

ke
y

a
Eq

ua
lit

yC
on

st
ra

in
t#

ou
tp

ut
a

Sc
al

eC
on

st
ra

in
t#

ou
tp

ut
a

Or
de

re
dC

ol
le

ct
io

n#
re

m
ov

eF
irs

t
a

St
re

ng
th

#w
ea

ke
r:

a
Va

ria
bl

e#
wa

lk
St

re
ng

th
:

a
Va

ria
bl

e#
st

ay
:

a
Pl

an
ne

r#
ad

dC
on

st
ra

in
ts

Co
ns

um
in

g:
to

:
a

Sc
al

eC
on

st
ra

in
t#

isS
at

isf
ie

d
a

Eq
ua

lit
yC

on
st

ra
in

t#
isS

at
isf

ie
d

Cl
as

s(
Or

de
re

dC
ol

le
ct

io
n)

#n
ew

:
a

Or
de

re
dC

ol
le

ct
io

n#
in

iti
al

ize
:

a
St

re
ng

th
#w

ea
ke

st
:

Cl
as

s(
Pl

an
ne

r)#
cu

rre
nt

a
Va

ria
bl

e#
ad

dC
on

st
ra

in
t:

a
Pl

an
#e

xe
cu

te
a

Pl
an

#d
o:

a
Ed

itC
on

st
ra

in
t#

ex
ec

ut
e

a
Va

ria
bl

e#
de

te
rm

in
ed

By
:

Cl
as

s(
Or

de
re

dC
ol

le
ct

io
n)

#w
ith

:
a

St
re

ng
th

#s
tro

ng
er

:
a

Pl
an

ne
r#

ad
dP

ro
pa

ga
te

:m
ar

k:
a

Ve
ct

or
#d

o:
a

Sc
al

eC
on

st
ra

in
t#

re
ca

lcu
la

te
a

Ar
ra

y#
la

st
a

Ar
ra

y#
fir

st
a

Eq
ua

lit
yC

on
st

ra
in

t#
in

pu
ts

Do
:

a
Eq

ua
lit

yC
on

st
ra

in
t#

re
ca

lcu
la

te
a

Se
t#

do
:

a
Eq

ua
lit

yC
on

st
ra

in
t#

sa
tis

fy
:

a
Eq

ua
lit

yC
on

st
ra

in
t#

ch
oo

se
M

et
ho

d:
a

Di
ct

io
na

ry
#a

t:
a

Pa
ir#

va
lu

e
a

Pl
an

ne
r#

ne
wM

ar
k

a
St

ay
Co

ns
tra

in
t#

ou
tp

ut
Cl

as
s(

St
re

ng
th

)#
of

:
a

Pl
an

ne
r#

in
cr

em
en

ta
lA

dd
:

Cl
as

s(
St

re
ng

th
)#

ab
so

lu
te

W
ea

ke
st

a
Pl

an
#a

dd
La

st
:

a
Pl

an
#a

pp
en

d:
a

Pl
an

ne
r#

co
ns

tra
in

ts
Co

ns
um

in
g:

do
:

a
Sc

al
eC

on
st

ra
in

t#
in

pu
ts

Do
:

a
Va

ria
bl

e#
in

iti
al

ize
ni

l#
no

tN
il

a
Eq

ua
lit

yC
on

st
ra

in
t#

m
ar

kU
ns

at
isf

ie
d

#b
ac

kw
ar

d#
no

tN
il

Cl
as

s(
Va

ria
bl

e)
#v

al
ue

:
a

Sc
al

eC
on

st
ra

in
t#

in
pu

ts
Kn

ow
n:

a
St

ay
Co

ns
tra

in
t#

isS
at

isf
ie

d
a

Or
de

re
dC

ol
le

ct
io

n#
at

:
a

Or
de

re
dC

ol
le

ct
io

n#
ch

ec
kI

nd
ex

:if
Va

lid
:

a
Ed

itC
on

st
ra

in
t#

ou
tp

ut
a

Ve
ct

or
#a

pp
en

d:
a

St
ay

Co
ns

tra
in

t#
sa

tis
fy

:
a

St
ay

Co
ns

tra
in

t#
ch

oo
se

M
et

ho
d:

a
St

ay
Co

ns
tra

in
t#

in
pu

ts
Do

:
a

St
ay

Co
ns

tra
in

t#
re

ca
lcu

la
te

a
St

ay
Co

ns
tra

in
t#

isI
np

ut
a

St
ay

Co
ns

tra
in

t#
ex

ec
ut

e
a

Sc
al

eC
on

st
ra

in
t#

sa
tis

fy
:

a
Sc

al
eC

on
st

ra
in

t#
ch

oo
se

M
et

ho
d:

Cl
as

s(
Va

ria
bl

e)
#n

ew
Cl

as
s(

St
ay

Co
ns

tra
in

t)#
va

r:s
tre

ng
th

:
a

St
ay

Co
ns

tra
in

t#
va

r:s
tre

ng
th

:
a

St
ay

Co
ns

tra
in

t#
ad

dC
on

st
ra

in
t

a
St

ay
Co

ns
tra

in
t#

ad
dT

oG
ra

ph
Cl

as
s(

Eq
ua

lit
yC

on
st

ra
in

t)#
va

r:v
ar

:s
tre

ng
th

:
a

Eq
ua

lit
yC

on
st

ra
in

t#
va

r:v
ar

:s
tre

ng
th

:
a

Eq
ua

lit
yC

on
st

ra
in

t#
ad

dC
on

st
ra

in
t

a
Eq

ua
lit

yC
on

st
ra

in
t#

ad
dT

oG
ra

ph
a

Eq
ua

lit
yC

on
st

ra
in

t#
in

pu
ts

Kn
ow

n:
Cl

as
s(

Sc
al

eC
on

st
ra

in
t)#

va
r:v

ar
:v

ar
:v

ar
:s

tre
ng

th
:

a
Sc

al
eC

on
st

ra
in

t#
sr

c:
sc

al
e:

of
fs

et
:d

st
:s

tre
ng

th
:

Cl
as

s(
Ve

ct
or

)#
ne

w:
a

Ve
ct

or
#i

ni
tia

liz
e:

Cl
as

s(
Ve

ct
or

)#
ne

w
a

Ve
ct

or
#f

or
Ea

ch
:

a
Ve

ct
or

#s
ize

a
Re

dB
la

ck
Tr

ee
#f

or
Ea

ch
:

ni
l#

isN
il

a
Si

m
ul

at
or

#s
im

ul
at

e:
a

Co
llis

io
nD

et
ec

to
r#

ha
nd

le
Ne

wF
ra

m
e:

a
Co

llis
io

nD
et

ec
to

r#
re

du
ce

Co
llis

io
nS

et
:

a
Ve

ct
or

#a
pp

en
d:

a
CD

#n
am

e
us

#p
rin

t
CD

#p
rin

t
us

#p
rin

tln
a

CD
#i

nn
er

Be
nc

hm
ar

kL
oo

p:
a

CD
#b

en
ch

m
ar

k:
Cl

as
s(

Si
m

ul
at

or
)#

ne
w:

a
Si

m
ul

at
or

#i
ni

t:
Cl

as
s(

Ca
llS

ig
n)

#n
ew

:
a

Ca
llS

ig
n#

in
it:

Cl
as

s(
Co

llis
io

nD
et

ec
to

r)#
ne

w
a

Co
llis

io
nD

et
ec

to
r#

in
iti

al
ize

a
CD

#v
er

ify
:re

su
ltF

or
:

a
Be

nc
hm

ar
kH

ar
ne

ss
#p

rin
t:r

un
:

: i
te

ra
tio

ns
=1

 ru
nt

im
e:

 #
pr

in
t

a
Sy

st
em

#r
es

ol
ve

:
a

Ve
ct

or
#r

em
ov

eF
irs

t
a

Ve
ct

or
#i

sE
m

pt
y

Cl
as

s(
Co

ns
ta

nt
s)

#G
oo

dV
ox

el
Si

ze
Cl

as
s(

Ve
ct

or
2D

)#
x:

y:
a

Ve
ct

or
2D

#i
ni

tX
:y

:
a

Be
nc

hm
ar

kH
ar

ne
ss

#r
es

po
nd

sT
o:

Cl
as

s(
Be

nc
hm

ar
kH

ar
ne

ss
)#

ha
sM

et
ho

d:
a

Be
nc

hm
ar

kH
ar

ne
ss

#r
un

:
a

Be
nc

hm
ar

kH
ar

ne
ss

#i
ni

tia
liz

e
a

Be
nc

hm
ar

kH
ar

ne
ss

#p
ro

ce
ss

Ar
gu

m
en

ts
:

a
Ve

ct
or

#a
pp

en
dA

ll:
a

Be
nc

hm
ar

kH
ar

ne
ss

#l
oa

dB
en

ch
m

ar
kC

la
ss

:
Cl

as
s(

CD
)#

ifN
il:

10
#a

sIn
te

ge
r

a
Be

nc
hm

ar
kH

ar
ne

ss
#r

un
Be

nc
hm

ar
k

Cl
as

s(
CD

)#
ne

w
Cl

as
s(

Co
ns

ta
nt

s)
#i

ni
tia

liz
e

a
CD

#o
ne

Ti
m

eS
et

up
St

ar
tin

g
#+

CD
#a

sS
tri

ng
St

ar
tin

g
CD

#+
be

nc
hm

ar
k.

#a
sS

tri
ng

St
ar

tin
g

CD
 b

en
ch

m
ar

k.
#p

rin
tln

St
ar

tin
g

CD
 b

en
ch

m
ar

k.
#p

rin
t

a
Be

nc
hm

ar
kH

ar
ne

ss
#d

oR
un

s:
64

93
59

#p
rin

t
64

93
59

#p
rin

t
89

14
7#

pr
in

t
89

14
7#

pr
in

t
23

67
0#

pr
in

t
23

67
0#

pr
in

t
18

73
2#

pr
in

t
18

73
2#

pr
in

t
18

82
5#

pr
in

t
18

82
5#

pr
in

t
18

85
5#

pr
in

t
18

85
5#

pr
in

t
18

88
2#

pr
in

t
18

88
2#

pr
in

t
18

74
8#

pr
in

t
18

74
8#

pr
in

t
18

66
6#

pr
in

t
18

66
6#

pr
in

t
35

64
3#

pr
in

t
35

64
3#

pr
in

t
a

Be
nc

hm
ar

kH
ar

ne
ss

#r
ep

or
tB

en
ch

m
ar

k:
re

su
lt:

: i
te

ra
tio

ns
=#

pr
in

t
10

#p
rin

t
10

#p
rin

t
av

er
ag

e:
 #

pr
in

t
91

05
2#

pr
in

t
91

05
2#

pr
in

t
to

ta
l:

#p
rin

t
91

05
27

#p
rin

t
91

05
27

#p
rin

t
#p

rin
tln

#p
rin

t
a

Be
nc

hm
ar

kH
ar

ne
ss

#p
rin

tTo
ta

l

Method

0

10000

20000

30000

40000

50000

#i
nv

ok
e

(o
m

itt
ed

 a
fte

r 5
00

00
)

2000 Threaded

Tracing

#invoke

FIGURE 5.16: Visualization of which methods compile at which
level by defined thresholds using Figure 5.15.

5.8. Conclusion 97

geo_mean
Experiment

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rfo

rm
an

ce
 (n

or
m

al
ize

d
to

 in
te

rp
)

Multilevel
Tracing
Tracing (threshold = multilevel)
Threaded

FIGURE 5.17: Results of the experiment in the simulated real-
world workload application.

99

Chapter 6

Conclusion

A meta-tracing JIT compiler makes it easier to write a dynamic language
without having to create a JIT compiler from scratch. This technique is
achieved by generating a VM with a tracing JIT compiler from an interpreter
definition. There is a wide range of JIT compilation policies, such as method
based, trace based, region based, and so forth, but there is no clear winner
between them. To further improve the performance of the JIT compiler, it
is necessary to implement a multi-role compilation method that combines
multiple JIT compilation scopes and optimization levels.

The goal of present dissertation has been to realize a multi-role meta-tracing
compilation. To achieve this goal, the author had to show the possibility of
realizing a mechanism that can change a compilation unit and an optimiza-
tion level in a meta-tracing JIT compiler framework. To achieve this goal, this
dissertation followed two steps: adding (1) a new compilation policy with a
different compilation scope (multi-scope) and (2) a new compilation/opti-
mization behavior (multilevel) to a meta-tracing JIT compiler.

This dissertation first showed the mechanism to mix method- and trace-
based heavyweight compilers in a meta-tracing JIT compiler framework. The
proof-of-concept implementation based on the MinCaml compiler, namely
BacCaml, was also proposed. The evaluation of BacCaml found that there
existed a program that ran faster with multi-scope JIT compilation by up to
59% against a single JIT compilation policy.

The second part of this dissertation proposed Multilevel RPython, which
mixes method-based lightweight and trace-based heavyweight JIT compila-
tions in a real-world meta-tracing JIT compiler. This approach is achieved by
inserting new hint instructions into an interpreter, where instructions give
the compiler that does the meta-tracing a “different behavior” instead of
building a compiler from scratch. The reason for mixing the method-based
lightweight compilation was to improve the overall performance in conjunc-
tion with trace-based heavyweight compilation by applying heavyweight
compilation to hot spots and lightweight compilation to warm spots. In
the evaluation and experiment of the Smalltalk implementation subset called
PySOM, it was confirmed that the overall performance was 14% faster with
multilevel execution than tracing JIT-only execution.

100 Chapter 6. Conclusion

Considering the applicability of multi-role compilation to another meta-
JIT compiler framework called Truffle/Graal is left for future work. Truf-
fle/Graal specializes an AST interpreter written in the Truffle framework.
For achieving multi-role compilation for the AST-specializing system, it
could be done by generating another node for trace-based compilation. The
generated AST nodes are instrumented by annotations to limit the compila-
tion scope to being linear.

In addition, the author plans to realize a method-based heavyweight JIT com-
pilation on Multilevel RPython in future work. The limitation of the current
version of Multilevel RPython is not having another choice of method-based
compilation, so it would be worth creating this on RPython. This plan would
be extended to realize a new meta-compiler with several optimization levels
and different compilation units. It can be possible to investigate if adaptive
compilation using interpreters is interesting in the future, which adaptively
transitions between those compiler/optimization levels with various charac-
teristics. This is needed to implement a profiler and more dedicated strategy
to switch optimization levels in an interpreter. Finally, the author would like
to introduce this research into PyPy to verify whether this research would
also be effective for applications with workload characteristics found in real
software development. We hope this helps all developers in the field of soft-
ware development.

101

Bibliography

Anderson, Kenneth R. and Duane Rettig (Oct. 1994). “Performing Lisp Anal-
ysis of the FANNKUCH Benchmark”. In: SIGPLAN Lisp Pointers VII.4,
pp. 2–12. ISSN: 1045-3563. DOI: 10 . 1145 / 382109 . 382124. URL: https :
//doi.org/10.1145/382109.382124.

Arnold, Matthew et al. (2000). “Adaptive Optimization in the Jalapeño JVM”.
In: Proceedings of the 15th ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications. OOPSLA ’00. Minneapolis,
Minnesota, USA: Association for Computing Machinery, pp. 47–65. ISBN:
158113200X. DOI: 10.1145/353171.353175. URL: https://doi.org/10.
1145/353171.353175.

Aycock, John (June 2003). “A Brief History of Just-in-Time”. In: ACM Comput.
Surv. 35.2, pp. 97–113. ISSN: 0360-0300. DOI: 10.1145/857076.857077.

Bala, Vasanth, Evelyn Duesterwald, and Sanjeev Banerjia (2000). “Dynamo:
a Transparent Dynamic Optimization System”. In: Proceedings of the ACM
SIGPLAN 2000 Conference on Programming Language Design and Implementa-
tion. ISBN: 1-58113-199-2. DOI: 10.1145/349299.349303. eprint: 1003.4074.

Barati, Saam (2022). A design overview of JavaScriptCore’s DFG IR. Presentation
at ICOOOLPS’22: Workshop on Implementation, Compilation, Optimiza-
tion of OO Languages, Programs and Systems.

Bauman, Spenser et al. (2015). “Pycket: A Tracing JIT for a Functional Lan-
guage”. In: Proceedings of the 20th ACM SIGPLAN International Conference on
Functional Programming. ICFP 2015. Vancouver, BC, Canada: ACM, pp. 22–
34. ISBN: 978-1-4503-3669-7. DOI: 10.1145/2784731.2784740.

Bebenita, Michael et al. (2010). “SPUR: A Trace-based JIT Compiler for CIL”.
In: Proceedings of the ACM International Conference on Object Oriented Pro-
gramming Systems Languages and Applications. OOPSLA ’10. Reno/Tahoe,
Nevada, USA: ACM, pp. 708–725. ISBN: 978-1-4503-0203-6. DOI: 10.1145/
1869459.1869517.

Bell, James R. (June 1973). “Threaded Code”. In: Commun. ACM 16.6, pp. 370–
372. ISSN: 0001-0782. DOI: 10.1145/362248.362270.

Bellard, Fabrice (2005). “QEMU, a Fast and Portable Dynamic Translator”. In:
Proceedings of the Annual Conference on USENIX Annual Technical Conference.
ATEC ’05. Anaheim, CA: USENIX Association, p. 41.

Blackburn, Stephen M. et al. (2006). “The DaCapo Benchmarks: Java Bench-
marking Development and Analysis”. In: Proceedings of the 21st Annual
ACM SIGPLAN Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications. OOPSLA ’06. Portland, Oregon, USA: Association
for Computing Machinery, pp. 169–190. ISBN: 1595933484. DOI: 10.1145/
1167473.1167488. URL: https://doi.org/10.1145/1167473.1167488.

https://doi.org/10.1145/382109.382124
https://doi.org/10.1145/382109.382124
https://doi.org/10.1145/382109.382124
https://doi.org/10.1145/353171.353175
https://doi.org/10.1145/353171.353175
https://doi.org/10.1145/353171.353175
https://doi.org/10.1145/857076.857077
https://doi.org/10.1145/349299.349303
1003.4074
https://doi.org/10.1145/2784731.2784740
https://doi.org/10.1145/1869459.1869517
https://doi.org/10.1145/1869459.1869517
https://doi.org/10.1145/362248.362270
https://doi.org/10.1145/1167473.1167488
https://doi.org/10.1145/1167473.1167488
https://doi.org/10.1145/1167473.1167488

102 Bibliography

Bolz, Carl Friedrich, Lukas Diekmann, and Laurence Tratt (2013). “Storage
Strategies for Collections in Dynamically Typed Languages”. In: Proceed-
ings of the 2013 ACM SIGPLAN International Conference on Object Oriented
Programming Systems Languages & Applications. OOPSLA ’13. Indianapolis,
Indiana, USA: Association for Computing Machinery, pp. 167–182. ISBN:
9781450323741. DOI: 10.1145/2509136.2509531. URL: https://doi.org/
10.1145/2509136.2509531.

Bolz, Carl Friedrich et al. (2009). “Tracing the Meta-level: PyPy’s Tracing JIT
Compiler”. In: Proceedings of the 4th Workshop on the Implementation, Compi-
lation, Optimization of Object-Oriented Languages and Programming Systems.
Genova, Italy: ACM, pp. 18–25. ISBN: 978-1-60558-541-3. DOI: 10 . 1145 /
1565824.1565827.

Bolz, Carl Friedrich et al. (2011a). “Allocation Removal by Partial Evaluation
in a Tracing JIT”. In: Proceedings of the 20th ACM SIGPLAN Workshop on
Partial Evaluation and Program Manipulation. PEPM ’11. Austin, Texas, USA:
ACM, pp. 43–52. ISBN: 978-1-4503-0485-6. DOI: 10.1145/1929501.1929508.

– (2011b). “Runtime Feedback in a Meta-tracing JIT for Efficient Dynamic
Languages”. In: Proceedings of the 6th Workshop on Implementation, Com-
pilation, Optimization of Object-Oriented Languages, Programs and Systems.
ICOOOLPS ’11. Lancaster, United Kingdom: ACM, 9:1–9:8. ISBN: 978-1-
4503-0894-6. DOI: 10.1145/2069172.2069181.

Budimlic, Zoran and Ken Kennedy (June 1997). “Optimizing Java: theory and
practice”. en. In: Concurrency Practice and Experience 9.6, pp. 445–463. ISSN:
1040-3108, 1096-9128. DOI: 10.1002/(sici)1096-9128(199706)9:6<445::
aid-cpe301>3.0.co;2-l.

Casey, Kevin et al. (2003). “Towards Superinstructions for Java Interpreters”.
In: Software and Compilers for Embedded Systems. Springer Berlin Heidelberg,
pp. 329–343. DOI: 10.1007/978-3-540-39920-9_23.

Chevalier-Boisvert, Maxime and Marc Feeley (2015). “Simple and Effective
Type Check Removal through Lazy Basic Block Versioning”. In: 29th Euro-
pean Conference on Object-Oriented Programming (ECOOP15). Ed. by John
Tang Boyland. Vol. 37. Leibniz International Proceedings in Informatics
(LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer In-
formatik, pp. 101–123. ISBN: 978-3-939897-86-6. DOI: 10 . 4230 / LIPIcs .
ECOOP.2015.101.

– (2016). “Interprocedural Type Specialization of JavaScript Programs With-
out Type Analysis”. In: 30th European Conference on Object-Oriented Pro-
gramming (ECOOP 2016). Ed. by Shriram Krishnamurthi and Benjamin S.
Lerner. Vol. 56. Leibniz International Proceedings in Informatics (LIPIcs).
Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
7:1–7:24. ISBN: 978-3-95977-014-9. DOI: 10.4230/LIPIcs.ECOOP.2016.7.

Chevalier-Boisvert, Maxime et al. (Oct. 2021). “YJIT: a basic block version-
ing JIT compiler for CRuby”. In: Proceedings of the 13th ACM SIGPLAN In-
ternational Workshop on Virtual Machines and Intermediate Languages. New
York, NY, USA: Association for Computing Machinery, pp. 25–32. ISBN:
9781450391092. DOI: 10.1145/3486606.3486781.

https://doi.org/10.1145/2509136.2509531
https://doi.org/10.1145/2509136.2509531
https://doi.org/10.1145/2509136.2509531
https://doi.org/10.1145/1565824.1565827
https://doi.org/10.1145/1565824.1565827
https://doi.org/10.1145/1929501.1929508
https://doi.org/10.1145/2069172.2069181
https://doi.org/10.1002/(sici)1096-9128(199706)9:6<445::aid-cpe301>3.0.co;2-l
https://doi.org/10.1002/(sici)1096-9128(199706)9:6<445::aid-cpe301>3.0.co;2-l
https://doi.org/10.1007/978-3-540-39920-9_23
https://doi.org/10.4230/LIPIcs.ECOOP.2015.101
https://doi.org/10.4230/LIPIcs.ECOOP.2015.101
https://doi.org/10.4230/LIPIcs.ECOOP.2016.7
https://doi.org/10.1145/3486606.3486781

Bibliography 103

Choi, Jong-Deok et al. (1999b). “Escape Analysis for Java”. In: Proceedings
of the 14th ACM SIGPLAN Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications. OOPSLA ’99. Denver, Colorado, USA: As-
sociation for Computing Machinery, pp. 1–19. ISBN: 1581132387. DOI: 10.
1145/320384.320386. URL: https://doi.org/10.1145/320384.320386.

Choi, Jong-Deok et al. (Oct. 1999a). “Escape analysis for Java”. In: SIGPLAN
Not. 34.10, pp. 1–19. ISSN: 0362-1340. DOI: 10.1145/320385.320386.

Coffin, Eric et al. (2020). “MicroJIT: A Case for Templated Just-in-Time Com-
pilation in Constrained Environments”. In: Proceedings of the 30th Annual
International Conference on Computer Science and Software Engineering. CAS-
CON ’20. Toronto, Ontario, Canada: IBM Corp., pp. 179–188.

Deutsch, L. Peter and Allan M. Schiffman (1984). “Efficient Implementa-
tion of the Smalltalk-80 System”. In: Proceedings of the 11th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages. POPL ’84. Salt
Lake City, Utah, USA: Association for Computing Machinery, pp. 297–302.
ISBN: 0897911253. DOI: 10.1145/800017.800542.

Eclipse Foundation (2017). URL: https://www.eclipse.org/openj9/.
– (2019). Eclipse OMRTM Cross platform components for building reliable, high

performance language runtimes. URL: https://www.eclipse.org/omr/.
Ertl, M Anton and David Gregg (2003). “Implementation Issues for Superin-

structions in Gforth”. In: Proceedings of EuroForth.
Ertl, M. Anton and David Gregg (2003). “The Structure and Performance of

Efficient Interpreters.” In: Journal of Instruction-level Parallelism 5.
Ertl, M Anton et al. (Mar. 2002). “Vmgen: a generator of efficient virtual ma-

chine interpreters”. In: Software: practice & experience 32.3, pp. 265–294. ISSN:
0038-0644. DOI: 10.1002/spe.434.

Felgentreff, Tim et al. (2016). “How to Build a High-Performance VM for
Squeak/Smalltalk in Your Spare Time: An Experience Report of Using
the RPython Toolchain”. In: Proceedings of the 11th Edition of the Interna-
tional Workshop on Smalltalk Technologies. IWST ’16. Prague, Czech Repub-
lic: ACM, 21:1–21:10. ISBN: 978-1-4503-4524-8. DOI: 10 . 1145 / 2991041 .
2991062.

Gal, Andreas, Christian W. Probst, and Michael Franz (2006). “HotpathVM:
An Effective JIT Compiler for Resource-Constrained Devices”. In: Proceed-
ings of the 2nd International Conference on Virtual Execution Environments.
VEE ’06. Ottawa, Ontario, Canada: Association for Computing Machinery,
pp. 144–153. ISBN: 1595933328. DOI: 10.1145/1134760.1134780.

Gal, Andreas et al. (2009). “Trace-Based Just-in-Time Type Specialization
for Dynamic Languages”. In: Proceedings of the 30th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation. PLDI ’09.
Dublin, Ireland: Association for Computing Machinery, pp. 465–478. ISBN:
9781605583921. DOI: 10.1145/1542476.1542528. URL: https://doi.org/
10.1145/1542476.1542528.

Gaynor, Alex et al. (2013). A high performance ruby, written in RPython. URL:
http://docs.topazruby.com/en/latest/.

Google (2015a). Digging into the TurboFan JIT. URL: https://v8.dev/blog/
turbofan-jit.

https://doi.org/10.1145/320384.320386
https://doi.org/10.1145/320384.320386
https://doi.org/10.1145/320384.320386
https://doi.org/10.1145/320385.320386
https://doi.org/10.1145/800017.800542
https://www.eclipse.org/openj9/
https://www.eclipse.org/omr/
https://doi.org/10.1002/spe.434
https://doi.org/10.1145/2991041.2991062
https://doi.org/10.1145/2991041.2991062
https://doi.org/10.1145/1134760.1134780
https://doi.org/10.1145/1542476.1542528
https://doi.org/10.1145/1542476.1542528
https://doi.org/10.1145/1542476.1542528
http://docs.topazruby.com/en/latest/
https://v8.dev/blog/turbofan-jit
https://v8.dev/blog/turbofan-jit

104 Bibliography

Google (2015b). Googles High-performance Open Source JavaScript and We-
bAssembly Engine. URL: https://v8.dev/.

– (2016). Firing up the Ignition interpreter. URL: https : / / v8 . dev / blog /
ignition-interpreter.

Hank, Richard E., Wen-Mei W. Hwu, and B. Ramakrishna Rau (1995).
“Region-Based Compilation: An Introduction and Motivation”. In: Proceed-
ings of the 28th Annual International Symposium on Microarchitecture. MICRO
28. Ann Arbor, Michigan, USA: IEEE Computer Society Press, pp. 158–168.
ISBN: 0818673494.

Haupt, Michael et al. (2010). “The SOM Family: Virtual Machines for Teach-
ing and Research”. In: Proceedings of the Fifteenth Annual Conference on In-
novation and Technology in Computer Science Education. ITiCSE ’10. Bilkent,
Ankara, Turkey: ACM, pp. 18–22. ISBN: 978-1-60558-820-9. DOI: 10.1145/
1822090.1822098.

Hayashizaki, Hiroshige et al. (2011). “Improving the Performance of Trace-
based Systems by False Loop Filtering”. In: Proceedings of the Sixteenth In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems. ASPLOS XVI. Newport Beach, California, USA: ACM,
pp. 405–418. ISBN: 978-1-4503-0266-1. DOI: 10.1145/1950365.1950412.

Hong, P. Joseph (Oct. 1992). “Threaded Code Designs for Forth Interpreters”.
In: SIGFORTH Newsl. 4.2, pp. 11–16. ISSN: 1047-4544. DOI: 10 . 1145 /
146559.146561.

Huang, Ruochen, Hidehiko Masuhara, and Tomoyuki Aotani (2016). “Im-
proving Sequential Performance of Erlang Based on a Meta-tracing Just-
In-Time Compiler”. In: International Symposium on Trends in Functional Pro-
gramming. Springer, pp. 44–58.

Hölzle, Urs, Craig Chambers, and David Ungar (1991). “Optimizing
dynamically-typed object-oriented languages with polymorphic inline
caches”. In: ECOOP’91 European Conference on Object-Oriented Programming.
Ed. by Pierre America. Berlin, Heidelberg: Springer Berlin Heidelberg,
pp. 21–38. ISBN: 978-3-540-47537-8.

Iliasov, Alex (Aug. 2003). “Templates-Based Portable Just-in-Time Compiler”.
In: SIGPLAN Not. 38.8, pp. 37–43. ISSN: 0362-1340. DOI: 10.1145/944579.
944588. URL: https://doi.org/10.1145/944579.944588.

Inoue, Hiroshi et al. (2011). “A trace-based Java JIT Compiler Retrofitted from
a Method-based Compiler”. In: pp. 246–256. ISBN: 9781612843551. DOI: 10.
1109/CGO.2011.5764692.

Ishizaki, Kazuaki et al. (June 1999). “Design, implementation, and evaluation
of optimizations in a just-in-time compiler”. In: Proceedings of the ACM 1999
conference on Java Grande. JAVA ’99. San Francisco, California, USA: Asso-
ciation for Computing Machinery, pp. 119–128. ISBN: 9781581131611. DOI:
10.1145/304065.304111.

Izawa, Yusuke and Hidehiko Masuhara (2020). “Amalgamating Different JIT
Compilations in a Meta-Tracing JIT Compiler Framework”. In: Proceedings
of the 16th ACM SIGPLAN International Symposium on Dynamic Languages.
DLS ’20. Virtual, USA: Association for Computing Machinery, pp. 1–15.
ISBN: 9781450381758. DOI: 10.1145/3426422.3426977.

https://v8.dev/
https://v8.dev/blog/ignition-interpreter
https://v8.dev/blog/ignition-interpreter
https://doi.org/10.1145/1822090.1822098
https://doi.org/10.1145/1822090.1822098
https://doi.org/10.1145/1950365.1950412
https://doi.org/10.1145/146559.146561
https://doi.org/10.1145/146559.146561
https://doi.org/10.1145/944579.944588
https://doi.org/10.1145/944579.944588
https://doi.org/10.1145/944579.944588
https://doi.org/10.1109/CGO.2011.5764692
https://doi.org/10.1109/CGO.2011.5764692
https://doi.org/10.1145/304065.304111
https://doi.org/10.1145/3426422.3426977

Bibliography 105

Izawa, Yusuke et al. (2022). “Threaded Code Generation with a Meta-Tracing
JIT Compiler”. In: Journal of Object Technology 21.2, a1. DOI: 10.5381/jot.
2022.21.2.a1.

Kotzmann, Thomas et al. (May 2008). “Design of the Java HotSpot™ Client
Compiler for Java 6”. In: ACM Trans. Archit. Code Optim. 5.1. ISSN: 1544-
3566. DOI: 10.1145/1369396.1370017. URL: https://doi.org/10.1145/
1369396.1370017.

Krylov, Georgiy et al. (2021). “Ahead-of-Time Compilation in Eclipse OMR
on Example of WebAssembly”. In: Proceedings of the 31st Annual Interna-
tional Conference on Computer Science and Software Engineering. CASCON ’21.
Toronto, Canada: IBM Corp., pp. 237–243.

Marr, Stefan (2018). ReBench: Execute and Document Benchmarks Reproducibly.
Version 1.0. DOI: 10.5281/zenodo.1311762.

Marr, Stefan, Benoit Daloze, and Hanspeter Mössenböck (Nov. 2016). “Cross-
Language Compiler Benchmarking: Are We Fast Yet?” In: SIGPLAN Not.
52.2, pp. 120–131. ISSN: 0362-1340. DOI: 10.1145/3093334.2989232. URL:
https://doi.org/10.1145/3093334.2989232.

Miranda, Eliot (Nov. 1999). “Context Management in VisualWorks 5i”. In:
OOPSLA’99 Workshop on Simplicity, Performance and Portability in Virtual
Machine Design. Denver, CO. URL: http://www.esug.org/data/Articles/
misc/oopsla99-contexts.pdf.

Nanjekye, Joannah, David Bremner, and Aleksandar Micic (2021). “Eclipse
OMR Garbage Collection for Tracing JIT-Based Virtual Machines”. In: Pro-
ceedings of the 31st Annual International Conference on Computer Science and
Software Engineering. CASCON ’21. Toronto, Canada: IBM Corp., pp. 244–
249.

Niephaus, Fabio, Tim Felgentreff, and Robert Hirschfeld (2018). “Graal-
Squeak: A Fast Smalltalk Bytecode Interpreter Written in an AST Inter-
preter Framework”. In: Proceedings of the 13th Workshop on Implementation,
Compilation, Optimization of Object-Oriented Languages, Programs and Sys-
tems. ICOOOLPS ’18. Amsterdam, Netherlands: ACM, pp. 30–35. ISBN:
978-1-4503-5804-0. DOI: 10.1145/3242947.3242948.

– (2019). “GraalSqueak: Toward a Smalltalk-based Tooling Platform for Poly-
glot Programming”. In: Proceedings of the 16th ACM SIGPLAN International
Conference on Managed Programming Languages and Runtimes. MPLR ’19.
Athens, Greece: ACM, pp. 14–26. ISBN: 978-1-4503-6977-0. DOI: 10.1145/
3357390.3361024.

Ocacle Lab. (2019). A ECMAScript 2019 compliant Javascript implementation
built on GraalVM. With polyglot language interoperability support. URL: https:
//github.com/graalvm/graaljs.

Oracle Lab. (2013). A high performance implementation of the Ruby programming
language. URL: https://github.com/oracle/truffleruby.

– (2015). A high-performance implementation of the R programming language,
built on GraalVM. URL: https://github.com/oracle/fastr.

– (2022). Host Compilation for Interpreter Java code. URL: https://github.com/
oracle/graal/blob/master/truffle/docs/HostCompilation.md#host-
inlining.

https://doi.org/10.5381/jot.2022.21.2.a1
https://doi.org/10.5381/jot.2022.21.2.a1
https://doi.org/10.1145/1369396.1370017
https://doi.org/10.1145/1369396.1370017
https://doi.org/10.1145/1369396.1370017
https://doi.org/10.5281/zenodo.1311762
https://doi.org/10.1145/3093334.2989232
https://doi.org/10.1145/3093334.2989232
http://www.esug.org/data/Articles/misc/oopsla99-contexts.pdf
http://www.esug.org/data/Articles/misc/oopsla99-contexts.pdf
https://doi.org/10.1145/3242947.3242948
https://doi.org/10.1145/3357390.3361024
https://doi.org/10.1145/3357390.3361024
https://github.com/graalvm/graaljs
https://github.com/graalvm/graaljs
https://github.com/oracle/truffleruby
https://github.com/oracle/fastr
https://github.com/oracle/graal/blob/master/truffle/docs/HostCompilation.md#host-inlining
https://github.com/oracle/graal/blob/master/truffle/docs/HostCompilation.md#host-inlining
https://github.com/oracle/graal/blob/master/truffle/docs/HostCompilation.md#host-inlining

106 Bibliography

Ottoni, Guilherme (June 2018). “HHVM JIT: A Profile-Guided, Region-Based
Compiler for PHP and Hack”. In: SIGPLAN Not. 53.4, pp. 151–165. ISSN:
0362-1340. DOI: 10.1145/3296979.3192374. URL: https://doi.org/10.
1145/3296979.3192374.

Paleczny, Michael, Christopher Vick, and Cliff Click (2001). “The Java
Hotspot™ Server Compiler”. In: Proceedings of the 2001 Symposium on Ja-
vaTM Virtual Machine Research and Technology Symposium - Volume 1. JVM
’01. Monterey, California: USENIX Association, p. 1.

Pall, Mike (2005). A Just-in-time Compiler for Lua Programming Language. URL:
http://luajit.org/index.html.

Piumarta, Ian and Fabio Riccardi (1998). “Optimizing Direct Threaded Code
by Selective Inlining”. In: Proceedings of the ACM SIGPLAN 1998 Confer-
ence on Programming Language Design and Implementation. PLDI ’98. Mon-
treal, Quebec, Canada: Association for Computing Machinery, pp. 291–300.
ISBN: 0897919874. DOI: 10.1145/277650.277743.

Pizlo, Fillip (2014). Introducing the WebKit FTL JIT. URL: https://webkit.
org/blog/3362/introducing-the-webkit-ftl-jit/.

– (2020). Speculation in JavaScriptCore. URL: https : / / webkit . org / blog /
10308/speculation-in-javascriptcore/.

Rigger, Manuel et al. (2016). “Bringing Low-level Languages to the JVM: Ef-
ficient Execution of LLVM IR on Truffle”. In: Proceedings of the 8th Interna-
tional Workshop on Virtual Machines and Intermediate Languages. VMIL ’16.
Amsterdam, Netherlands: ACM, pp. 6–15. ISBN: 978-1-4503-4645-0. DOI:
10.1145/2998415.2998416.

Rigo, Armin and Samuele Pedroni (2006). “PyPys Approach to Virtual Ma-
chine Construction”. In: Companion to the 21st ACM SIGPLAN Symposium
on Object-Oriented Programming Systems, Languages, and Applications. OOP-
SLA ’06. Portland, Oregon, USA: Association for Computing Machinery,
pp. 944–953. ISBN: 159593491X. DOI: 10.1145/1176617.1176753.

Steele, Guy Lewis (1977). “Debunking the Expensive Procedure Call Myth or,
Procedure Call Implementations Considered Harmful or, LAMBDA: The
Ultimate GOTO”. In: Proceedings of the 1977 Annual Conference. ACM ’77.
Seattle, Washington: Association for Computing Machinery, pp. 153–162.
ISBN: 9781450339216. DOI: 10.1145/800179.810196. URL: https://doi.
org/10.1145/800179.810196.

Suganuma, Toshio, Toshiaki Yasue, and Toshio Nakatani (Jan. 2006). “A
Region-Based Compilation Technique for Dynamic Compilers”. In: vol. 28.
1. New York, NY, USA: Association for Computing Machinery, pp. 134–
174. DOI: 10.1145/1111596.1111600.

Sumii, Eijiro (2005). “MinCaml: A Simple and Efficient Compiler for a Mini-
mal Functional Language”. In: pp. 27–38. ISBN: 1595930671. DOI: 10.1145/
1085114.1085122.

Team, PyPy JS (2015). PyPy compiled into JavaScript. URL: https://github.
com/pypyjs/pypyjs.

https://doi.org/10.1145/3296979.3192374
https://doi.org/10.1145/3296979.3192374
https://doi.org/10.1145/3296979.3192374
http://luajit.org/index.html
https://doi.org/10.1145/277650.277743
https://webkit.org/blog/3362/introducing-the-webkit-ftl-jit/
https://webkit.org/blog/3362/introducing-the-webkit-ftl-jit/
https://webkit.org/blog/10308/speculation-in-javascriptcore/
https://webkit.org/blog/10308/speculation-in-javascriptcore/
https://doi.org/10.1145/2998415.2998416
https://doi.org/10.1145/1176617.1176753
https://doi.org/10.1145/800179.810196
https://doi.org/10.1145/800179.810196
https://doi.org/10.1145/800179.810196
https://doi.org/10.1145/1111596.1111600
https://doi.org/10.1145/1085114.1085122
https://doi.org/10.1145/1085114.1085122
https://github.com/pypyjs/pypyjs
https://github.com/pypyjs/pypyjs

Bibliography 107

“The IBM J9 Java Virtual Machine for Java 6” (2009). In: Pro IBMő WebSphereő
Application Server 7 Internals. Berkeley, CA: Apress, pp. 15–34. ISBN: 978-1-
4302-1959-0. DOI: 10.1007/978-1-4302-1959-0_2. URL: https://doi.org/
10.1007/978-1-4302-1959-0_2.

Ungar, David and Randall B. Smith (1987). “Self: The Power of Simplic-
ity”. In: Conference Proceedings on Object-Oriented Programming Systems, Lan-
guages and Applications. OOPSLA ’87. Orlando, Florida, USA: Association
for Computing Machinery, pp. 227–242. ISBN: 0897912470. DOI: 10.1145/
38765.38828. URL: https://doi.org/10.1145/38765.38828.

Venners, Bill (1998). “The java virtual machine”. In: Java and the Java virtual
machine: definition, verification, validation.

Wimmer, Christian et al. (Jan. 2013). “Maxine: An Approachable Virtual Ma-
chine for, and in, Java”. In: ACM Trans. Archit. Code Optim. 9.4. ISSN: 1544-
3566. DOI: 10.1145/2400682.2400689. URL: https://doi.org/10.1145/
2400682.2400689.

Wimmer, Christian et al. (Oct. 2019). “Initialize Once, Start Fast: Application
Initialization at Build Time”. In: Proc. ACM Program. Lang. 3.OOPSLA. DOI:
10.1145/3360610. URL: https://doi.org/10.1145/3360610.

Würthinger, Thomas et al. (2012). “Self-Optimizing AST Interpreters”. In:
Proceedings of the 8th Symposium on Dynamic Languages. DLS ’12. Tucson,
Arizona, USA: Association for Computing Machinery, pp. 73–82. ISBN:
9781450315647. DOI: 10.1145/2384577.2384587.

Würthinger, Thomas et al. (2017). “Practical Partial Evaluation for High-
performance Dynamic Language Runtimes”. In: Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation. PLDI 2017. Barcelona, Spain: ACM, pp. 662–676. ISBN: 978-1-4503-
4988-8. DOI: 10.1145/3062341.3062381.

Xu, Haoran and Fredrik Kjolstad (Oct. 2021). “Copy-and-Patch Compilation:
A Fast Compilation Algorithm for High-Level Languages and Bytecode”.
In: Proc. ACM Program. Lang. 5.OOPSLA. DOI: 10 . 1145 / 3485513. URL:
https://doi.org/10.1145/3485513.

https://doi.org/10.1007/978-1-4302-1959-0_2
https://doi.org/10.1007/978-1-4302-1959-0_2
https://doi.org/10.1007/978-1-4302-1959-0_2
https://doi.org/10.1145/38765.38828
https://doi.org/10.1145/38765.38828
https://doi.org/10.1145/38765.38828
https://doi.org/10.1145/2400682.2400689
https://doi.org/10.1145/2400682.2400689
https://doi.org/10.1145/2400682.2400689
https://doi.org/10.1145/3360610
https://doi.org/10.1145/3360610
https://doi.org/10.1145/2384577.2384587
https://doi.org/10.1145/3062341.3062381
https://doi.org/10.1145/3485513
https://doi.org/10.1145/3485513

	Introduction
	Research Context
	Problem Statement
	Research Goals and Outlines

	Background
	JIT Compilation
	JIT Compilation Strategies
	Method-Based JIT Compilation
	Trace-Based JIT Compilation

	Meta-JIT Compiler Framework
	Self-Optimizing Interpreter
	Interpreter Definition in a Self-Optimizing Interpreter
	Meta-Compilation in Self-Optimizing Interpreter
	Hint Instructions in Truffle
	Truffle Host Inlining

	Meta-Tracing JIT Compiler
	Interpreter Definition in a Meta-Tracing JIT Compiler
	Meta-Compilation in Meta-Tracing JIT Compiler
	Hint Instructions in RPython

	Motivation and Proposal
	Scope of Compiling a Source Program
	Level of Compiling a Source Program
	Dilemma: Hard to Extend Generated VMs from a Meta-JIT Compiler Framework
	Proposal: Multi-Role Meta-Tracing JIT Compilation
	System Overview: Multi-Role Meta-Tracing JIT Compiler Framework
	Underlying Techniques for Multi-Scope Compilation
	Hint Instructions and Compilation Overview

	Underlying Techniques for Multilevel Compilation

	BacCaml – a Proof-of-Concept Multi-Scope Meta-Tracing JIT Compiler
	Introduction
	Mixing The Two Compilation Strategies in Meta-Level
	Method-Based Compilation by Tracing

	Stack Hybridization
	Combination Problem
	Bridging Native Code with Different Calling Conventions

	Evaluation
	Setup
	Methodology
	Threats to Validity

	Standalone JIT Microbenchmark
	Multi-Scope JIT Experiment
	Methodology
	Results of Multi-Scope JIT Experiment

	Related Work
	Conclusion

	Threaded Code Gen. with a Real-World Meta-Tracing ..
	Introduction
	Threaded Code Generation
	Threaded Code
	The Compilation Principle
	Method-traversal Interpreter
	Conditional branch
	Back-edge instruction
	Function call
	Function return

	Trace Stitching
	Guard Patching in Trace Stitching

	Shallow Tracing

	Runtime Techniques for Multilevel Compilation
	Implementaiton Details

	Optimization for Threaded Code Generation with Interpreter in the Meta-Tracing JIT Compiler
	Inline Caching in Method-Traversal Interpreter

	Preliminary Evaluation Using Simulated Threaded Code Generation
	Simulated Threaded Code Generation (STCG) in PyPy
	Setup
	System
	Implementation
	Programs for Experiments
	Methodology

	Results of Experiment 1: The Overhead of Our STCG
	Results of Experiment 2: The Stable Speed
	Discussion

	Evaluation and Experiments in PySOM and Multilevel RPython
	Microbenchmark Evaluation
	Setup
	Methodology
	Code Sizes and Compilation Times
	Peak Performance at Steady State

	Multilevel JIT Experiment
	Setup
	Methodology
	Results of the Experiment and Discussion

	Related work
	Improving an Interpreter's Performance
	Template JIT Compilation
	Ahead-of-Time Compilation
	Introducing a New Behavior into a Meta-JIT Compiler

	Conclusion

	Conclusion
	Bibliography

