
TOKYO INSTITUTE OF TECHNOLOGY

MASTER’S THESIS

Adding User-Definable Representation
Conversion to Debugger State

Visualization

Author:
Rifqi Adlan APRIYADI

Student Number:
21M38030

Supervisor:
Prof. Hidehiko MASUHARA

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

in the

Programming Research Group
Department of Mathematical and Computing Science

August 29, 2023

https://www.titech.ac.jp/english
http://www.johnsmith.com
http://www.jamessmith.com
https://prg.is.titech.ac.jp/
https://educ.titech.ac.jp/is/eng/




iii

Declaration of Authorship
I, Rifqi Adlan APRIYADI, declare that this thesis titled, “Adding User-Definable Rep-
resentation Conversion to Debugger State Visualization” and the work presented in
it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:





v

“Debugging is like being the detective in a crime movie where you’re also the murderer.”
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Adding User-Definable Representation Conversion to Debugger State
Visualization

by Rifqi Adlan APRIYADI

Trees, the most commonly used data structure to display debugger states for im-
perative programming languages, have issues where the accuracy of the debugger
state shown is limited by trees’ properties. Because graphs have a non-hierarchical
structure and are also the superset of trees, graphical visual debuggers alleviate
these issues by allowing them to show debugger state information that cannot be
shown in trees.

In doing so, however, they become prone to visual clutter when representing
larger debugger states due to the increase in objects and references to display. Ad-
ditionally, gaps in abstraction are likely to occur between the debugger state rep-
resentation and its conceptual abstraction on paper. Both these problems hinder
the effectiveness of using visualizations and instead make behavior comprehension
more unwieldy.

This study proposes user-definable representation conversion which allows users
to convert concrete representations of debugger states to their more focused and ab-
stracted conceptual versions. It is believed that this feature could mitigate the two
previously mentioned problems by allowing users to choose which and how infor-
mation is displayed, allowing them to focus on information relevant to their current
circumstances. It is also believed that this feature can assist users in distinct steps
of the debugging process. To provide control and versatility, a domain-specific lan-
guage is included in the feature with which users can specify conversions to ma-
nipulate displayed nodes and edges based on object types, references, values, or
debugger halt locations. A prototype for this concept has also been developed to
help debug Java programs.
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Chapter 1

Introduction

Conventional debuggers for imperative programming languages — where debug-
ger states are directly manipulated by the programmer’s statements — show these
states by means of a tree. Each node represents a runtime object, an object of the run-
ning debuggee, and expanding the node reveals the nodes of the object’s referenced
objects. This allows for a hierarchical representation of variables.

However, runtime objects and references are not hierarchical as different objects
can have references to the same object, and circular references can occur. Analo-
gously, each node in trees can only have at most one parent and cannot have a child
that is also its ancestor. Multiple nodes need to be shown for the same runtime ob-
ject if that object is referenced by multiple others. Furthermore, the method by which
these debuggers show circular references is to allow the infinite expansion of nodes
if the nodes of the objects in the circular reference continue to be expanded. These
flaws illustrate the counterintuitiveness of using a tree structure to display debugger
states.

Changing the structure used in displaying the debugger state is an intuitive so-
lution to solve this problem. Graphical visual debuggers, which show variables by
representing runtime objects as nodes and references between objects as edges be-
tween their nodes, display graphs to represent the debugger state as opposed to
trees. Graphs can show debugger states non-hierarchically and, due to being the
superset of trees, can show information trees cannot.

Figure 1.1 shows a sample subgraph of Java Interactive Visualization Environ-
ment’s (JIVE) [Lessa, Czyz, and Jayaraman, 2010] object diagram view of a Monopoly
program. In this subgraph, there are three runtime objects, each an instance of dif-
ferent classes: PropertySet, PropertyCard, and StreetProperty. A solid black edge
represents the object of the source node having reference to the object of the target
node. For example, the PropertyCard object has a reference to the StreetProperty
object.

FIGURE 1.1: Subgraph of JIVE’s object diagram of a Monopoly pro-
gram.
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With graphs, multiple edges can target the same node, meaning that each object
can be represented by only one node, and referencing objects can be derived by the
source nodes of incoming edges. Circular references are also displayed accurately
due to graphs being allowed to have cycles. The two-dimensionality of a graph as
a visualization also better displays the debugger state, further enhancing the intu-
itiveness of the displayed information.

In Figure 1.1, the StreetProperty object’s node has two incoming edges — rep-
resenting that there are two objects with reference to itself — while retaining only
one node instead of adding a node for each reference to it. The StreetProperty ob-
ject also has a circular reference with the PropertySet object indicated by the two
directed edges between their nodes targeting each other. Figure 1.2 — taken from
Visual Studio Code (VSCode)1 — shows how the same debugger state is shown in a
tree-based debugger (TBD) where the same highlight color indicates the same run-
time object.

(A) Object StreetProperty@10 has multiple
nodes from multiple incoming references.

(B) Objects StreetProperty@10 and
PropertySet@9 have a circular reference,

allowing infinite expanding descent.

FIGURE 1.2: The TBD version of Figure 1.1.

Previous visual debuggers utilized this type of visualization to assist educators in
teaching beginner programmers the behavior of objects and references correspond-
ing to the statements they wrote. They allow beginners to more intuitively extract
the debugger state by showing what TBDs cannot. For example, the fact that each
runtime object corresponds to only one node despite the number of objects referenc-
ing it gives a more correct intuition of how references work. This is especially helpful
to teach the concept of reference semantics of different programming languages. On
the other hand, representing the same information in TBDs where multiple nodes
are displayed to represent the same object gives the opposite intuition that they are
different objects, as demonstrated in Figure 1.2a.

Additionally, graphical visual debuggers could also be helpful to experienced
programmers in finding bugs [Torchiano et al., 2017]. Though experienced pro-
grammers are likely to already understand the concept of objects, references, and
reference semantics, its explicit visualization helps in interpreting it. In contrast,
TBDs do not make this information as accessible. Moreover, the general advantages
of visualization are also present, including pattern and inconsistency recognition,
which allow for faster bug identification.

However, experienced programmers might not feel as though these advantages
are provided to them and that using these tools for visualization is more trouble than
it is worth due to the following reasons:

1https://code.visualstudio.com/
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Visual Clutter Programs that experienced programmers write are typically sizeable
with a large number of objects and references, consequently adding visual clut-
ter to their representations [Holy et al., 2012].

Abstraction Gap Experienced programmers frequently implement concepts into code
differently from how they are commonly imagined — often trading simplicity
for efficiency — creating an abstraction gap that lags the translation time from
reading the representation on a program level to creating an image of how it
looks on a conceptual level [Alhumaidan and Zafar, 2014]. For example, visual
debuggers display arrays as a sequence of objects and a developer might need
it to be represented as a binary tree.

(A) Visual clutter in displaying the Monopoly program using JIVE.

(B) Concrete debugger state representation after filtering (left) vs. how the programmer would like it
being represented (right).

FIGURE 1.3: Examples of visual clutter and abstraction gap in the
Monopoly program.

Figure 1.3 shows examples of these problems. The full representation of the
Monopoly program can be seen in Figure 1.3a where nodes and edges are in abun-
dance, causing clutter and difficulty in understanding the debugger state. But even
if the representation can be filtered to show only certain parts of the state, how the
information is presented remains unchanged. Figure 1.3b shows that even after us-
ing a sort of filter feature, there is still a gap between how the concrete representation
of the debugger state looks and how the programmer imagines its information. The
left part of the figure remains a one-to-one representation of that specific part of the
debugger state. This creates a lag from reading the representation to extracting the
information users actually need.
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In large or complex projects, these hindrances ought to be overcome for the
above-mentioned benefits to be accessible through the graph representations of de-
bugger states in the visualization and help in accelerating behavior and bug com-
prehension.

This thesis presents a novel feature for debugger state visualizers that mitigates
the detriments of size and complexity of debugged programs in their graphical rep-
resentations. Chapter 2 details the design and intended benefits of the feature, along
with the external domain-specific language (DSL) users use to control the feature.
Chapter 3 describes the prototype made in this study, its architecture, and its im-
plementation. Chapter 4 evaluates the feature’s hypothetical effectiveness through a
comprehensive exploration of a fictional case study. Chapter 5 discusses prior work
done with the same goal or the same methods, as well as work that supports ideas of
graphical visualizations of debugger states. Chapters 6 and 7 address future work
that can be done for this research and the outlined summary of this research, re-
spectively. Finally, Appendix A contains the full grammar of the DSL that has been
designed and implemented in this study.
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Chapter 2

Proposal

2.1 Overview

2.1.1 User-Definable Representation Conversion (UDRC)

To solve the problem mentioned in Chapter 1, the addition of user-definable represen-
tation conversion (UDRC) to debugger state visualizer tools is proposed. This feature
would allow users to convert the structure of the debugger state representation — in
other words, altering information in nodes and edges — by defining the conversion’s
behavior. In other words, the same debugger state can be made to be represented
in a different manner with a differently structured object diagram. The purpose of
this feature is to assist the comprehension of the debugger state by altering what
and how the debugger state representation is displayed to allow users to focus on
information relevant to their current circumstances.

To define the behavior of the representation conversion, a DSL is provided that
users can write with. The DSL allows users to imperatively declare behavior with
commonly-used programming language constructs. The DSL would also provide
metaprogramming features that supply information regarding the debuggee for con-
text when applying conversions.

In terms of what users can do to the displayed representation, all structural parts
of the graph can be customized. The graph components and their applicable conver-
sions are:

• Nodes: omission and addition

– Node Titles: replacement

– Node Rows: removal and addition

• Edges: omission and addition

– Edge Labels: replacement

For example, Figure 2.1 is a screenshot of the unconverted graphical represen-
tation of a Monopoly program’s current debugger state. In other words, the nodes
correspond one-to-one with non-string non-primitive objects and the edges also cor-
respond one-to-one with all references in the current debugger state. If currently the
user is faced with a bug relating to which Player owns which of the game’s Properties,
then all other information that the user is certain does not concern the issue can be
considered visual noise.

To eliminate the noise, the user can define the conversion of this representation
as in Listing 2.1. It should be noted that in this particular Monopoly program, Players
do not have a set of owned properties but instead have a set of owned Cards, most of
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FIGURE 2.1: Unconverted Monopoly debugger state representation.

1 omitAll;
2 show c:Player;
3 show c:Player.f:cards;
4 show childrenOf c:Player.f:cards;
5 show (childrenOf c:Player.f:cards).f:property;

LISTING 2.1: CD to remove clutter from Figure 2.1

which are PropertyCards, which are associated to Properties. For the sake of simplic-
ity, this conversion assumes that all owned cards are PropertyCards. The behavior
declared in this conversion definition (CD) line-by-line is as follows:

1. Omit all nodes from the graph (ergo all edges as well)

2. Show all Players’ node representations

3. Show the nodes representing the sets containing these players’ cards

4. Show the nodes representing references made by these sets (i.e. the cards con-
tained in the sets)

5. Show the nodes representing the property fields of these cards (which are as-
sumed to be PropertyCards).

The representation of the same debugger state represented in Figure 2.1 con-
verted using the definition in Listing 2.1 is shown in Figure 2.2. The visual clutter
from the previous representation has been omitted from the view, leaving the user
with only the relevant parts.

However, perhaps the user would find it easier to read this debugger state if it
was represented differently: by further converting it to represent the same amount of
information in a different manner. In other words, the next step would be to convert
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FIGURE 2.2: Uncluttered representation of Figure 2.1 using the con-
version defined in Listing 2.1.

how it is represented instead of which of it is. For example, using the CD in Listing
2.2 which converts the representation of the same debugger state to resemble that of
Figure 2.3.

Listing 2.2 further converts the representation in Figure 2.2 by replacing the con-
version defined in Listing 2.1 and do the following:

1. Showing all Player nodes and changing their titles to the names of the players
(Lines 2 - 5).

2. If a Player has an owner (Line 7), show its node (Line 11), a new edge from the
player to this node (Line 12), omit the opposite edge (Line 13), and set the title
of the Property node to the name of that property.

The representation now only shows nodes of players and the properties that
they own with direct edges from the former to the latter. Although this does not
accurately represent the concrete debugger state in terms of the actual references
that exist, users can better comprehend the information regarding "who owns which
properties" in each state. If the user is faced with a bug concerning this information,
this is one possible representation the user might arrive at.

Given how representation conversion works and what it can be used for, the
concept is language-agnostic for imperative programming languages. In the imper-
ative programming paradigm, users write statements that are executed one after
another that change the program’s state. Visualization of these states in debugging
is merely a more enhanced way of displaying debugger states compared to TBDs,
whose concept is itself language-agnostic. Therefore, the feature of UDRC is only as
language-agnostic as the visualizer it is a part of.
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FIGURE 2.3: A more readable representation of that shown in Figure
2.2.

2.1.2 Representation Conversion Effects

The goal of UDRC is to alleviate the obstacles mentioned in Chapter 1, as also exem-
plified by the above example:

Visual Clutter Representations can be converted to omit information irrelevant to
the current bug.

Abstraction Gap Representations can be converted to portray different levels of ab-
straction of the same information. This can be to make it more readable and/or
to closer resemble the program’s conceptual abstraction on paper (i.e. how the
concept looks on paper).

With these obstacles accounted for, the advantages of visualizations are once
more made available to the user. They include pattern and inconsistency recogni-
tion [Sadiku et al., 2016], and more explicit representations, which allow for faster
bug identification [Strobelt et al., 2018]. The behavior of the program with regard to
the debugger state can also clearly be seen between steps, especially when it involves
reference semantics and changes in references. For developers new to a codebase,
using the visualizer with converted representations should allow for a more compre-
hensive and intuitive process in understanding the program’s behavior [Torchiano,
2004].

A design problem of this feature is the way in which users define their conver-
sions to control their behaviors. The biggest part of this problem is the endlessness
of possible scenarios that users can face. There are seemingly infinite concepts or
tasks that can be programmed, each with infinite approaches that can be taken for
its design. In a particular program, bugs can appear anywhere in any nature, whose
visible side-effects can be anywhere in the program depending on the chosen design.
To solve these bugs, various possible parts of the code can be relevant information
with different possible ways they could be represented.
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1 omitAll;
2 c:Player {
3 show here;
4 (nodeOf here). setTitle(valueOf f:name);
5 }
6 c:Property {
7 if (!( isNull f:owner)) {
8 Node propNode = nodeOf here;
9 Node ownerNode = nodeOf f:owner;

10
11 show propNode;
12 show newEdge ownerNode propNode;
13 omit edgesOf propNode ownerNode;
14 propNode.setTitle(valueOf f:name);
15 }
16 }

LISTING 2.2: CD to make Figure 2.2 more readable.

For example, from an infinite number of possible concepts to write programs of,
one may choose to write a program for a board game. This choice already implies
that the program would probably have one central Board and/or Game object that
keeps track of relevant objects and dictates the flow of the game. Other parts of the
program can be differently designed. Properties can be separated from their Cards, or
one may exist but not the other. Game actions can have their own classes or not at
all. Additionally, a bug can occur caused by any part of the code. If a bug where a
Player that owns a full PropertySet is not detected correctly, it can cause problems in
the Property and/or Card classes in terms of mortgaging, buying houses, and other
players paying rent. It can also have other impacts depending on the chosen design
of the program.

2.1.3 User Control

Considering all these possibilities, users need a medium with sufficient expressive-
ness to capture even the small details of their infinitely possible CDs and one that
is focused enough to minimize its learning and usage overhead. For this purpose, a
DSL ought to fit the description [Mernik, Heering, and Sloane, 2005] for these rea-
sons:

Expressiveness DSLs can be designed to have as much expressiveness as it needs.
In this case, the DSL would need to be capable of expressing different object
types, metaprogramming features and values, representation conversion state-
ments, and constructs that bridge them all together.

Focus DSLs can also be designed to not have features they do not need, hence the
name Domain-Specific Language: They should be designed to fulfill specific
purposes. In this case, the features present in the DSL should only be those nec-
essary to view the debuggee’s debugger state and convert its representation.
For example, concurrency would not be a necessary feature for representation
conversion.
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Users need fine-grained control over the behavior of their conversions so that
they could represent their debugger states as necessary. This detailedness goes as
far as defining conversions statement-by-statement in the hopes to provide the most
conversions definable to accommodate virtually infinite program possibilities.

Although providing user control through the graphical user interface (GUI) would
be an intuitive approach for a tool like this, it was not deemed sufficient. Simple
conversions, which are mostly those that mitigate visual clutter, such as omitting all
nodes of instances of a class, can be handled by GUI controls. However, more com-
plicated conversions, which are mostly occupied by those that alleviate abstraction
gaps, cannot as easily be captured. This is because CDs in the latter type are more
complex with sequential behaviors.

To be able to accommodate this, the GUI would have predefined conversions
or have a feature that allows users to define their own conversions. The former
has already been attempted in previous works [Lessa, Czyz, and Jayaraman, 2010,
Bennedsen and Schulte, 2010, Cazorla and Viejo, 2015] but they have proven that
they are not sufficient. If those features proved inadequate, one might question the
efficacy of incorporating more, as more possible requirements may arise. Imple-
menting the latter, however, would merely make the GUI a more cumbersome way
to write statements in this DSL.

For example, Listing 2.1 is a definition that alleviates visual clutter by omitting
everything but a few parts of the state. This can be easily done with a GUI control
feature. However, Listing 2.2 is more complex with an if-statement. It does not stop
other conversions to have more complex conditional branches or loops. With a GUI,
it would have to be able to capture these branches and loops, making it eerily similar
to writing a program.

2.2 Usage

FIGURE 2.4: Usage of the visualizer.

Figure 2.4 depicts how the visualizer can be used. The top part shows how con-
ventional debuggers are normally used: the user runs the debuggee in debug mode
and the debugger shows the debugger state information once it hits a breakpoint
using a TBD or graphical representation. With this visualizer, the difference is in the
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additional step of writing a CD. When the debugger is started, it reads and compiles
the CD which, combined with the debugger state data of the debuggee, displays a
converted representation of the state. Changes made to the CD can be reprocessed
in the middle of a debug session without having to restart the debugger. Doing so
would rerender the displayed representation to correspond with the updated CD.

Using a previous example, Figure 2.1 is a representation of a debugger state of a
Monopoly program with an empty CD, meaning no conversion is applied to the rep-
resentation of the debugger state. Without restarting the debugger, the user writes
a CD as in Listing 2.1 based on their needs and triggers a recompilation of the used
definition, rerendering the same debugger state to look like Figure 2.2.

As an added benefit, considering that a CD is only a file, it becomes readily share-
able with colleagues, students, or online platforms, thereby promoting collaborative
use and knowledge dissemination. Consequently, this would significantly curtail
the resources allocated to writing CDs.

2.2.1 Practicality in Debugging

In the debugging process, representation conversion can be useful in its steps that
involve behavior and bug comprehension. The conversion would most likely be
incremental between steps, which is supported by the tool by facilitating the repro-
cessing of CD changes without restarting the debugger. The related debugging steps
are as follows:

Bug Localization: Omitting representations of parts of the code that users are cer-
tain are unrelated to the bug can help identify its general vicinity.

Cause Identification: With a representation that is localized to where the bug might
be, the specific cause of the bug can be pinpointed by further narrowing down
shown representations and/or displaying levels of abstraction of the debugger
state.

Solution Implementation: To validate the correctness of their solution for the bug,
users can either continue to use their previous CD or update it to better expose
the effects of their solution if the previous definition was not enough.

Consider an example of a bug where a Player loses one of their properties without
making a trade. The user would like to see the behavior of the program by stepping
through it, but the unconverted representation of the debugger state for each step
would look like Figure 2.1, which is cluttered with irrelevant information. To better
localize the bug, the user omits representations from parts they know for certain are
not related to it, such as DeckCards, which are either Community Chest and Chance
cards, or the arrays listing rent prices of Properties. The CD for these purposes is
as seen in Listing 2.3 and an example of its resulting representation can be seen in
Figure 2.5.

With the more focused view of Figure 2.5, the user discovers that when a Player
loses a property without trading, its ownership is actually transferred to another
Player that just landed on the square of the property. Apparently, the latter could
purchase the Property of the Square which would usually only be possible if it was
unowned. To identify the specific cause of this bug, the user can further refine the
conversion to help identify its precise cause. Since the ownership of Properties is still
correctly given to Players after purchase, the representations of unowned Properties
do not need to be shown. Narrowing down the representation to only the Players and
their owned Properties will allow the user to see exactly when the flaw occurs while
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1 omit c:DeckCard;
2 omit c:DeckCard.f:effect;
3 omit c:BailCard;
4 omit c:DeckCardType;
5
6 omit c:MonopolyGame;
7 omit c:MonopolyGame.f:squares;
8
9 omit c:Property.f:rents;

LISTING 2.3: CD to help localize the property loss bug.

FIGURE 2.5: Converted representation of the Monopoly program to
help localize the property loss bug.

stepping through the program, which is when a property is offered for purchase for
the second time. Using the same CD as Listing 2.1, the view shown in Figure 2.6 is
shown after ownership has been passed from the first owner to the next Player to
land on the same Square.

By stepping through the relevant parts of the code while examining changes
made to the debugger state representation as shown in Figure 2.6, the user inves-
tigates the exact cause of the bug. Figure 2.6a shows the expected state after the first
Player lands on the Property and buys it. Figure 2.6b shows the state after the second
Player lands on that same Property. The user here can see that the card associated
with the Property is an element of two different sets of cards each Player owns, which
should not be possible. Note that this same information would not be very clear
when shown in a TBD. Finally, Figure 2.6c shows that the Property is now owned
by the second Player. The user finds that these two operations are done because no
check is made to see if the Property of a Square is already owned and will be offered
to whoever lands on it despite already being owned. This is confirmed by how both
Players have exactly 1400 money each, which means 100 has been deducted from
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both of them, which is the price of the Property they bought.

(A) First player lands on the property.

(B) Card of property owned by the second player as well.
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(C) Ownership of the property changes to the second player.

FIGURE 2.6: Snapshots of the representation while stepping through
the code for cause identification.

The graphical representation changing between steps means that it is not static
in time in what is called Dynamic Graph Visualization (DGV) [Bach, 2016, Beck et al.,
2017]. Proper implementation to support this ought to significantly facilitate users
in seeing differences in the representation at different steps. Note that the prototype
used for the snapshots in Figure 2.6 has not yet implemented this correctly. For
example, Figure 2.6b and 2.6c may not look too different at a glance but the position
of the two Players nodes have been swapped due to the transfer in the Property’s
ownership. Proper support for DGV would have clearly shown these differences.

After fixing the bug by adding a check of ownership of a Property upon landing
on one, the user further adds to the CD to confirm the correctness of this solution.
Specifically, the user will change the titles of Player nodes to their names and the
money they have to ease reading relevant information from them. Listing 2.4 is an
additional definition to Listing 2.1 that conveys this conversion and Figure 2.7 is the
resulting representation.

6 // ...
7 c:Player {
8 (nodeOf here). setTitle (( valueOf f:name) +
9 ": " + (valueOf f:ownedMoney ));

10 }

LISTING 2.4: Additional CD to the one used for cause identification.

Figure 2.7 shows that after both Players have landed on the same Square, the
owner of the Property has 1406 money while the other has 1494. This implies that the
owner spent 100 money to buy the Property, and their opponent paid the 6 money
rent to its owner upon landing on it after it has been purchased. This confirms that
the solution to the bug is correct.
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FIGURE 2.7: The converted representation to verify the solution.

Solving bugs in this way would most likely be incremental in that CDs can be
written over time. For this, a feature that allows CDs to be reprocessed based on their
changes during the debugging process without having to restart the debugger and
the visualizer would save a substantial amount of time in the debugging process.

2.3 DSL Design

An external DSL is used for the current iteration of the prototype. Although the
concept of UDRC is meant to be language-agnostic for imperative programming
languages, the DSL described in this section was designed with class-based object-
oriented programming languages in mind; where everything, including the main
method, needs to be in a class, as in Java or C#. However, most of these design
principles would still apply to other object-oriented imperative languages with only
a few differences from their unique features. Although there may be a way to design
the DSL in a way that covers all imperative languages, the time constraints of this
study limit the capabilities of the design.

This section uses Listing 2.5 as a sample CD of the design principles discussed.
For each StreetProperty of the debuggee:

1. If the owner field is null, omit the StreetProperty node from the representation
(Line 3).

2. Otherwise, omit the edge from the Property to the owner and make a new one
the other way around, instead (Lines 6-7).

3. Omit the node of the array of rent prices the Property has (Line 11).

The full grammar of the language has been written in Appendix A.
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1 c:StreetProperty {
2 Node thisNode = nodeOf here;
3 if (isNull f:owner) omit thisNode;
4 else {
5 node ownerNode = nodeOf f:owner;
6 omit edgesOf thisNode ownerNode;
7 show newNode ownerNode thisNode;
8 thisNode.setTitle(valueOf f:name);
9 }

10
11 f:houseRents { omit nodeOf here; }
12 }

LISTING 2.5: CD to demonstrate DSL design choices.

2.3.1 Imperativeness

The language follows an imperative design where statements are sequentially exe-
cuted, much like writing a new sequential program. This program written using the
DSL is executed every time the debugger halts, which is when the debugger state
is updated and the representation needs to be recalibrated and rerendered. Given
this imperativeness, the statement types in the DSL include those that are com-
monly present in most imperative languages, such as variable assignment, if-else
statements, and while/for loops. But given that it is a DSL with the primary focus
on representation conversion, features not relevant to it are also excluded, such as
concurrency and polymorphism, to remove unnecessary complexities.

The imperative design was chosen for the DSL for two reasons:

Familiarity: Users of the targeted imperative languages ought to already be familiar
with the concept and mechanisms of the imperative design. Using a similar
design for the DSL should minimize the effort users would need to spend to
use the language.

Control: The DSL must provide users with detailed control such that users can de-
fine the comprehensive behaviors of their conversions. This is important as
users would want specific conversions in a space of virtually infinite possible
conversions. With imperativeness, users can better identify and specify CDs
using intuitive sequential logic.

Listing 2.5 shows this characteristic. Lines 2 - 11 are sequentially executed for
each StreetProperty in the debuggee. It also looks like a small program in itself.

2.3.2 Subjects

The DSL has a metaprogramming feature which is a new type called Subject. A
Subject refers to an object in the debuggee. Its role is as a token to retrieve metapro-
gramming information about other objects related to the referred runtime object and
to retrieve data about its representation. As Subjects represent runtime objects in the
debuggee, they can also be chained in a way that mirrors property chaining in most
languages.

In Listing 2.5, here is a Subject keyword which refers to the object of the current
encompassing location (more explanation in Section 2.3.4). On Line 2, here refers to
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the StreetProperty whose representation is currently being converted. On that same
line, the here Subject expression is being used to retrieve the node representing the
StreetProperty. Similarly, on Line 11, here refers to the array object in the houseRents
field of the current StreetProperty.

On Line 3, f:owner refers to the object that is the owner reference of the current
StreetProperty. The expression in the condition checks if the current StreetProperty
has the value null in the owner field, essentially checking if the property is owned.
Additionally, the owner’s node is retrieved on Line 5 and is used for the conversions
on Lines 6 and 7. Finally, Line 8 uses the Subject of the property’s name reference to
get the value of the reference in the form of a string and set it as its node’s title.

2.3.3 Nodes, Edges, show, and omit

The two main components of the diagram subject to conversion are nodes and edges.
Without no conversion applied, the diagram displays all nodes and edges, reflecting
the current state of the program one-to-one. However, new nodes and edges can be
created using the newNode and newEdge keywords, respectively.

Additionally, nodes and edges themselves have representation elements that
they encapsulate. Each node has a title and any number of rows. Edges have op-
tional labels. These sub-elements can be retrieved and changed through their encap-
sulating elements.

The two main command keywords for conversion of nodes and edges are show
omit. When an element is omitted, it is removed from the representation but not
deleted. This means that the object of the element still persists. Though, it can still
be accessed and be made to show. When an element is shown, it is displayed in the
diagram. If an element is both shown and omitted, the last command called on the
element is applied in the rendered representation.

The command and expression keywords relating to representations and their
conversions are explained in detail in Table 2.1.

Line 3 in Listing 2.5 shows the omit command being used to omit the node of
StreetProperties if they are unowned. Line 6 omits all edges from the StreetProperty
node to the node of its owner and Line 7 shows a new node in the opposite direction.
Finally, the command in Line 8 changes the title of the StreetProperty node to the
value of the property’s name string.

2.3.4 Location

The DSL has a component called locations whose role is to represent different com-
ponents of the target language where conversions can be applied and from which
context can be extracted. A location can be written as a block, indicating that encom-
passed expressions and statements, including other locations, are in its namespace
which corresponds to the same namespace in the debuggee. It can also be written as
an expression to refer to the object(s) of the target language that the location repre-
sents. In the proof-of-concept made in this research, the types of locations and their
semantics are as seen in Table 2.2.

In Listing 2.5, the scope opened in Line 1 is a class location for the StreetPrpperty
class of the debuggee. Lines 2 - 11 are repeated for each StreetProperty. Therefore,
each iteration is associated with a different StreetProperty, and the metaprogramming
context of the iteration corresponds to the associated object. If among all StreetProp-
erties are two — where a has an owner and b does not — then Lines 5 - 8 will be
executed in the iteration of a while only Line 3 is executed in the iteration of b.
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TABLE 2.1: Conversion commands and expressions and their seman-
tics.

Keyword Parameters Returns Explanation

show Node | Node[]
| Edge | Edge[]
| Subject |
Subject[]

- Shows the given conversion objects or the
nodes of the given Subjects.

omit Node | Node[]
| Edge | Edge[]
| Subject |
Subject[]

- Omits the given conversion objects or the
nodes of the given Subjects.

nodeOf Subject Node Gets the node associated to the Subjects.
nodesOf Subject[] Node[] Gets the nodes associated to the Subjects.
edgesOf Subject | Node,

Subject | Node
Edge[] Gets the edges between the source and

target nodes or those of the given Subjects.
newNode string Node Creates a new initially omitted node with

the given title.
newEdge Node | Subject,

Node | Subject,
string?

Edge Creates a new initially omitted edge with
an optional label between the source and
target nodes or the nodes of the given Sub-
jects.

TABLE 2.2: Location types and their semantics.

Location
Type

Block Semantic Subject Semantic

Class c Encompassed statements are ap-
plied for all objects of class c.
Only valid as a top-most location.

An array of all debuggee objects
that are instances of class c. Has
no usage restriction.

Field f Encompassed statements are ap-
plied for all f references of ob-
jects of the enclosing class or field
block. Can be used in class or
field location blocks.

The debuggee object that is the f
reference of the debuggee object
of the enclosing location block.
Can be used in class or field lo-
cation blocks.

Method
m

Encompassed statements are ex-
ecuted when the runtime is cur-
rently halted inside method m of
the class of the enclosing class
location. Only valid directly in
class locations.

Undefined

Local
Variable
l

Encompassed statements are ap-
plied for the local variable l.
Valid as top-most location or in
method locations.

The debuggee object with the
same variable name in the current
scope. Has no usage restriction.
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Line 11 contains a field location for the houseRents field of the StreetProperty
class. Inside the scope of the field location, the metaprogramming context is in
the context of whatever object is the houseRents reference of the StreetProperty in
the current iteration of the enclosing StreetProperty location. Consequently, the
here keyword in Line 10 refers not to the StreetProperty, but rather to its array in its
houseRents field.
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Chapter 3

Prototype Implementation

A prototype for the concept of UDRC has been implemented as a Visual Studio Code
(VSCode extension called JIGSAW1 with Java as the target language for the programs
subject to be debugged. Although this concept is language-agnostic for imperative
programming languages as Chapter 2 and Section 2.3 mention, limitations in time
only allow the prototype to work for only one target language.

3.1 The Prototype

Using JIGSAW, users would need to create a file called spec.jig at the top level of
the project as a file where CDs can be written in.

To use JIGSAW while debugging, users would need to open the JIGSAW View
window. Though writing a definition is optional, if the written definition includes
errors during compilation, the view will not open and the error message will be
shown. This ensures that the view has a valid CD that it follows, even if it is an
empty CD.

After the view is opened, running the debugger will show the debugger state
representation converted by the CD once the debugger hits a breakpoint and halts.
In this view, nodes can be moved around by the user when needed. Continuing the
execution of the debuggee until the next halt — such as stepping in, stepping out,
stepping over, or resuming the program until another breakpoint is hit — causes the
representation in the view to be rerendered based on the updated debugger state.

While JIGSAW and the debugger are still running, users can also update the CD
and trigger JIGSAW to rerender the representation based on its updated version.
Therefore, users do not need to restart JIGSAW and rerun the debugger every time
changes are made to the CD, reducing the time needed to write them.

However, if the updated CD has an error during its compilation following the
user’s trigger, the definition will not be accepted and the error message will be dis-
played. Therefore, given how a valid definition is also required when initially open-
ing JIGSAW, JIGSAW views always have valid CDs that they use in the process of
displaying debugger state representations.

3.2 The Implementation

The implementation of JIGSAW is split into two main parts: the back end and the
front end. The overview of the architecture and implementation can be seen in Fig-
ure 3.1.

1https://github.com/adilrifqi/jigsaw
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FIGURE 3.1: JIGSAW’s Architecture.

3.2.1 The Back End

JIGSAW’s back end also consists of retrieving two models: the debugger state model
and the conversion model.

Debugger State Model Retrieval

Since the debugger state is updated every time the debugger halts — either by step-
ping in, stepping out, stepping over, or hitting a breakpoint in the execution of the
debuggee — the back end needs to retrieve the updated debugger state at each halt.

VSCode has a protocol called the Debug Adapter Protocol (DAP)2, where clients
can be implemented for different programming languages that will communicate
debug information to VSCode. Using this protocol, the VSCode debugger user in-
terface (UI) can be used for all languages. Implementations of a language’s DAP
client are usually provided in the form of VSCode extensions. A DAP client for Java
is provided in a VSCode extension called Debugger for Java3.

At every halt, VSCode and the DAP client send each other messages as requests
and responses. JIGSAW’s back end uses VSCode’s DebugAdapterTracker4, to track
their communications and eventually extract a debugger state model, which is then
passed to the processor of the back end.

Conversion Model Retrieval

Unlike the debugger state model retrieval, retrieving the conversion model does not
need to happen at every debugger halt. The main task of this part of the back end
is to parse the CD written by the user and compile it into an internal model. Thus,

2https://microsoft.github.io/debug-adapter-protocol/
3https://marketplace.visualstudio.com/items?itemName=vscjava.vscode-java-debug
4https://code.visualstudio.com/api/references/vscode-api#DebugAdapterTracker
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this operation only happens on the user’s command. This operation is part of the
process of opening a JIGSAW view. It is also done when users trigger rerenders
during debugging.

During this process, the string of the CD is passed to the parser generated using
ANTLR5. The parser generates a parse tree which is then walked to generate the
conversion model. Every time the conversion model is retrieved, it is passed to the
processor of JIGSAW’s back end.

Debugger State Model and Conversion Model Processing

Using the debugger state and conversion models passed on to it, JIGSAW’s processor
first generates the graph data of the nodes and edges that represent the debugger
state. They represent the debugger state one-to-one.

The graph data is then processed further using the conversion model, essentially
executing the CD "program" the user has written. The result from this process is
then passed on to JIGSAW’s front end.

3.2.2 The Front End

The front end receives the graph data from the back end. This is then used to gen-
erate the actual graph that will be rendered to the view, giving its nodes and edges
dimensions.

The nodes of the graph are then laid out using elkjs6 by providing it the gener-
ated graph. This gives each node a position that does not overlap with other nodes
using an algorithm that makes the layout of the graph look organized.

Finally, React Flow7 is used to render the graph and provide tools for navigating
through and interacting with the debugger state visualizer.

5https://www.antlr.org/
6https://github.com/kieler/elkjs
7https://reactflow.dev/
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Chapter 4

Case Study

For tools like this, user tests are evidently required to prove the effectiveness of the
proposed feature. In doing user tests for this feature, however, the target metric
would be the duration in which users debug programs because that is the intended
goal of the feature’s addition. Furthermore, this duration also includes the time it
takes to understand the program, understand the effect of the bug, and the entirety
of the debugging process. Even when these stages are compartmentalized to reduce
variance in the measurements, numerous variables would still add noise to them.

To verify that the proposed feature makes a difference, a controlled experiment
is required such that there is a control group that the experiment group is compared
to. As such, two groups need to be determined. One consideration is the difficulty
in balancing the two groups in terms of levels of expertise. As the tool is not par-
ticularly aimed toward novices, which are easier to balance, the variability in this
aspect is substantial. Furthermore, experienced programmers most likely have a do-
main that they are more proficient in, which adds variance in terms of the time it
would take to understand the buggy program participants are tested with. And fi-
nally, as the proposed feature aims to address size and complexity, not only would
these large and complex programs need to be prepared, but it also adds complexity
to how participants are to take the test. This final variable also exacerbates the first
two as they may also affect the ways these programs are understood by participants.

Due to limitations in time and the complexity of doing user tests for this type of
tool, this study provides fictional case studies to illustrate where, when, and for who
the concept of UDRC is beneficial or not. This case study is also meant to illustrate
the need for further research and real-world testing to validate the effectiveness and
usability of the proposed concept.

The cases chosen in this case study involve personas with different expertise lev-
els, backgrounds, and scenarios, which draws more robust and generalizable con-
clusions and avoids bias. Each case includes the decision-making process of the
persona and a discussion of the conclusion that can be drawn from the case.

4.1 Novice Programmer Nancy

4.1.1 Scenario

Nancy is a first-year undergraduate Computer Science student. She is currently
studying programming and debugging and is struggling to understand the concept
of reference semantics, and thus is also having difficulty understanding the unex-
pected behavior of her code. She uses a debugger state visualizer to help herself
understand which also happens to have user-definable representation conversion
features.
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1 public class Sorter {
2 private int[] arr;
3 public Sorter(int[] arr) {this.arr = arr;}
4
5 public void sort() {Arrays.sort(this.arr);}
6 public int[] getArray () {return this.arr;}
7
8 public static void main(String [] args) {
9 int[] initialArray = {7, 4, 2};

10
11 Sorter sorter = new Sorter(initialArray );
12 sorter.sort ();
13
14 System.out.println (" Initial array: "
15 + Arrays.toString(initialArray ));
16 System.out.println (" Sorted array: "
17 + Arrays.toString(sorter.getArray ()));
18 }
19 }

LISTING 4.1: Nancy’s simple sorter program.

Nancy is working on a simple Java program written in Listing 4.1. She does not
understand why the string printed by Line 14 includes the sorted array instead of
the initial unsorted array, even though she never sorted the initialArray variable.

FIGURE 4.1: The representation of Nancy’s sorter program when
halted at line 12 of Listing 4.1.

Nancy uses the visualizer to better understand changes made to the debugger
state while stepping through the program. Due to her program’s small size and
simplicity, she has no trouble seeing the entire state as in Figure 4.1 and the changes
that happen. She discovers that the array in sorter has in its arr field points to the
same array as what initialArray stores. She sees that after stepping over Line 5,
the array both variables refer to are sorted. She concludes that both print statements
in Lines 14 - 17 are printing the same array object.
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She continues to write larger programs and continues to use the visualizer to
help her understand her programs’ behaviors, but she feels like there is now more
information visualized at once. She recalls that the visualizer has a feature that helps
with large and complex programs. But as the feature involves a DSL, which requires
time and effort to understand on top of the language she is currently using the visu-
alizer to learn, she stops using the visualizer for this program.

Nancy was able to understand Java mechanisms, her own code, and program-
ming concepts better with the help of debugger state visualizations. She thinks that
the representations in graph form are more accurate and explicit than what TBDs
can show. She feels that it is not clear in TBDs when two variables refer to the same
object. But she was intimidated by the complexity of the representation conversion
features and the time she would need to invest in learning how to use them.

Nancy’s feedback for the tool is that even though she finds the visualization fea-
ture helpful, she feels like the representation conversion feature could be simplified.
Because she somewhat understands Java, she wishes to use Java or some other sim-
ilar language instead of a separate external DSL for representation conversion. She
also wishes to alternatively be able to use this feature interactively.

4.1.2 Discussion

This case demonstrates how novice programmers are non-target when it comes to
using the user-definable representation conversion features, most prominently due
to the DSL used to control them. Though she may only need to simply omit parts
of her debugger state representations, it is likely intimidating to see a different lan-
guage whose mechanisms she would need to understand to understand another
language she is currently learning. A possible solution might be to change the DSL
to one that does not require as much time and effort to learn and use, either by sim-
plifying it or by utilizing knowledge its users already have.

4.2 Technical Lead Tina

4.2.1 Scenario

Tina is an experienced software developer and the team lead of her software devel-
opment team. They are currently working on a project and need to ensure good
code quality and collaboration between team members. She is interested in using
the visualizer to aid in code reviews and communication.

Tina’s team is currently working on an application that involves user members,
their friends, and friend groups. Members (another word for users) can befriend
other members. Members can also join groups, and this would automatically mutu-
ally befriend everyone else in that group. This means that any member of a group is
friends with any other member of that group.

Before the meeting, Tina briefly checks the code of the preliminary Member and
FriendGroup models. She suspects incorrectness in the model and would like to dis-
cuss it with the team. The preliminary model can be seen in Listing 4.2. Unfortu-
nately, the data structure is not visualized well due to the abundance of nodes and
edges representing friend relations between members, as seen in Figure 4.2. How-
ever, she was at least able to confirm her suspicion that Dave and Eve are not friends
with each other despite being in the same FriendGroup.

As a very experienced programmer, she quickly became familiar with the repre-
sentation conversion features and how to use them. She finds the documentation to
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1 class Member {
2 String name; Set <Member > friends;
3 public Member(String name) {
4 this.name = name;
5 this.friends = new HashSet <>();
6 }
7 public void addFriends(Member ... newFriends) {
8 this.friends.addAll(Arrays.asList(newFriends ));
9 }

10 }
11
12 public class FriendGroup {
13 String name; Set <Member > members;
14 public FriendGroup(String name) {
15 this.name = name;
16 this.members = new HashSet <>();
17 }
18
19 public void addMembers(Member ... newMembers) {
20 for (Member newMember : newMembers) {
21 for (Member existingMember : members) {
22 existingMember.addFriends(newMember );
23 newMember.addFriends(existingMember );
24 }
25 }
26
27 members.addAll(Arrays.asList(newMembers ));
28 }
29
30 public static void main(String [] args) {
31 Member alice = new Member ("Alice ");
32 Member bob = new Member ("Bob");
33 Member charlie = new Member (" Charlie ");
34
35 alice.addFriends(bob , charlie );
36 bob.addFriends(alice , charlie );
37 charlie.addFriends(alice , bob);
38 FriendGroup group = new FriendGroup ("");
39 group.addMembers(alice , bob , charlie );
40
41 Member dave = new Member ("Dave ");
42 Member eve = new Member ("Eve");
43
44 group.addMembers(dave , eve);
45 }
46 }

LISTING 4.2: Tina’s team’s preliminary model.
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FIGURE 4.2: The representation of Tina’s team’s preliminary model.

1 c:Member {
2 omit f:friends;
3 for (Subject friend : childrenOf f:friends)
4 show newEdge here friend;
5 }
6
7 c:FriendGroup {
8 omit here; omit f:members;
9 for (Subject member : childrenOf f:members)

10 (nodeOf member ). addRow
11 (" Member of " + valueOf f:name);
12 }

LISTING 4.3: Tina’s CD.

be straightforward due to the familiarity she has with the imperative constructs in
the DSL and was able to grasp the representation conversion and metaprogramming
features of the DSL rather quickly due to her experience. For the code review, she
prepares a CD to help her discuss the code with her team. The CD she wrote can
be seen in Listing 4.3 and the converted representation of the same debugger state
shown in Figure 4.2 can be seen in Figure 4.3.

During the meeting, the converted representation helped Tina show that mem-
bers Dave and Eve are not friends with each other despite being in the same group.
By manually stepping through the code line-by-line they discover that the addMembers
method of the FriendGroup class mutually befriends each new member of the group
with each existing member of the group, but not to each other. Meaningful and
concise discussions were possible due to the elimination of distractions which may
consist of visual clutter or having to separately illustrate models and behaviors in
the meeting. Additionally, Tina also shared the CD in Listing 4.3 with her team
members for them to use while they do their own work.
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FIGURE 4.3: The representation of Tina’s team’s preliminary model
using the CD in Listing 4.3.

4.2.2 Discussion

This case demonstrates how the tool can be leveraged to facilitate collaboration and
communication among people with sufficient programming experience and knowl-
edge. In this case, Tina was able to manage a concise discussion as her conversion
allowed her team members to understand the debugger state more easily and what
it means in terms of the program’s behavior and flaws. This is due in large part to
the focus representation conversion provides.

Additionally, this case also highlights that the representation conversion feature
along with its current DSL design targets programmers with sufficient experience.
Here, Tina was able to grasp the concept of the DSL relatively quickly due to her
experience and expertise.

Furthermore, this case also emphasizes the advantages of both visualizations
and representation conversion. Only using a TBD for Tina’s code review would
have made it cumbersome to draw friend relationships on a whiteboard for the dis-
cussion, especially if they would need to redraw it at every halt of the debugger.
But even by using graphical representations such as the one shown in Figure 4.2,
reading the debugger state while stepping through the program would not be very
convenient for the meeting.

Finally, this case also shows one significant advantage of CDs, which is that they
can be shared with other people, such as coworkers, such that the time and effort
spent on writing them is minimized as others would only need to reuse the shared
CDs.

4.3 Multi-Language Programmer Max

4.3.1 Scenario

Max is a programmer who is enthusiastic about knowing about and working with
different programming languages. Max’s primary goal is to optimize his productiv-
ity as a multi-language programmer. He works on different projects that involve a
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mix of languages, and their debugging requirements can vary significantly based on
the specific language and the complexity of the codebase. Max is motivated to find a
tool that can seamlessly support debugging across different languages and provide
consistent and convertible representations of debugger states.

To better understand the differences if programming languages, he often prac-
tices by creating pet projects using languages he wishes to learn. He is currently
working on two different projects, each built using a different programming lan-
guage. Currently, his projects are a game called "Galactic Adventures" written in
Java, and a text auto-complete tool called "TextAutoComplete" written in Python.

Java Project - Galactic Adventures

"Galactic Adventures" is an action-packed 2D space shooter game developed using
Java. Players control a spaceship and navigate through various challenging levels,
battling alien invaders and asteroids.

Max finds a bug where projectiles meant for enemies are also affecting the player’s
spaceship, and vice versa. This leads to inaccurate targeting when using power-ups
that automatically target supposed enemies, unintended damage to players and en-
emies, and more.

Max initially suspects that there might be issues with team assignments. He
thinks that units, including the player’s and enemies’ spaceships and bullets fired
from them, might be assigned to incorrect teams, thus causing incorrect behavior
when colliding with other units. He investigates using the visualizer first without
any conversion to the representation as seen in Figure 4.4. For the purposes of this
case, as the entirety of the program can neither be explained nor written here, repre-
sentations of its simplified version will be shown instead.

Fortunately, as Max has had extensive experience in learning new programming
languages in the past, he rapidly understands the concept of the DSL the represen-
tation conversion feature of the visualizer requires, especially since it mostly uses
common language constructs. He creates a CD that omits nodes and edges irrel-
evant to him to see the issue. The converted representation can be seen in Figure
4.5.

He finds that the problem was that all ships, including the player’s and enemies’,
use the same bullet pool. This means all bullets fired by the player and enemy are
taken from the same pool. Each team was supposed to have different pools and each
pool was supposed to have a uniform bullet behavior. Max eventually fixes this bug.

Python Project - TextAutoComplete

"TextAutoComplete" is a Python-based text auto-completion tool. It helps users
quickly find and suggest word completions based on the input provided. As with
text prediction applications, this application heavily uses the trie data structure.

Max would find, however, that his application suggests a string that is neither a
valid word nor a valid term. He investigates using the same visualizer he used to
debug his Galactic Adventures game. Using his experience with using the tool, he
was able to quickly write a CD that he can use to help him understand the behavior
of his program without having to spend more time determining how to use a new
visualizer for a different language. He was able to quickly write his CD as seen in
Listing 4.4 to convert the representation as shown in Figure 4.6 to the one in Figure
4.7.
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FIGURE 4.4: The representation of Max’s simplified Galactic Adven-
tures program.

Even though Max added ie as a word, it is not suggested when i is typed. Instead,
ied, ien, iea, and iench are suggested. Figure 4.7 shows why this is the case. By halting
the execution for each word added to the trie while seeing changes made to its rep-
resentation, Max can investigate the incorrect behavior done to the trie. Figure 4.7a
shows the initial state of the trie, only containing its root node. Figure 4.7b shows
how the trie changes after a word is added with Figure 4.7c displaying how the trie
looks like after a few more words have been added without any incorrect behavior
yet observed. Differences between Figures 4.7c and 4.7d show the bug in how new
words are added. Apparently, while adding the word ie to the trie in the former
figure, it reuses a node wrapping the letter e that is already the child of another that
wraps the letter t instead of creating a new node for the letter, giving former node
an additional parent. Something similar happens in the addition of the word teach
with the c node.

4.3.2 Discussion

This case shows how beneficial the language-agnostic property of the design is. Due
to the unavoidability of having to learn how to use new tools, language-agnosticism
allows users to reduce the effort they have to exert as they can use the same visu-
alizer again for projects in different languages. After learning how to control the
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FIGURE 4.5: The converted representation of Max’s simplified Galac-
tic Adventures program.

FIGURE 4.6: The representation of Max’s simplified TextAutoCom-
plete program.

representation conversion feature once while debugging his Galactic Adventures
program, Max does not need to do it again for other projects written in other pro-
gramming languages.

This case also shows the versatility of the visualizer. It can be used to help under-
stand the behavior and identify bugs in programs of different natures and designs.
On top of the visualizer displaying debugger states as intuitive nodes and edges, this
versatility is also due in large part to the design choice of using a DSL for user con-
trol. It allows users to convert the representations of their program’s debugger states
unconstrained to the visualizer’s options and capabilities if it were a GUI-based tool.

However, Max finds that the visualization lacks proper support for DGV, mak-
ing it not very intuitive and easy to see relevant differences in the representations
between steps. In this case, he notices that the representation swaps the position
of the d and a nodes between the steps shown in Figures 4.7c and 4.7d. He wishes
that nodes remain the same as much as possible so that changes on them are as clear
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(A) Before any word has been added. (B) After the word t has been added.

(C) After more words have been added with-
out incorrect behavior.

(D) After the words ie and teach have been
added, showing incorrect behavior.

FIGURE 4.7: The converted representation of Max’s simplified Tex-
tAutoComplete program.

as possible. In this case, the position of the nodes ought to not change. Though
this did not affect his bug’s cause identification, he thinks that this would obstruct
the behavior comprehension process if it happened to have swapped the relevant
nodes.

4.4 Data Scientist Sarah

4.4.1 Scenario

Sarah is an experienced data scientist with a passion for exploring and analyzing
large datasets to derive valuable insights and make data-driven decisions. She works
on various projects involving data cleaning, feature engineering, model develop-
ment, and statistical analysis. As a data scientist, Sarah frequently uses Python and
specialized libraries like Pandas, NumPy, and scikit-learn to perform her data anal-
ysis tasks.

Sarah is currently working on a predictive maintenance project for a manufac-
turing company. The goal is to develop a machine-learning model that predicts
equipment failures and maintenance requirements based on sensor data collected
from the manufacturing process. The project involves preprocessing large volumes
of sensor data, engineering relevant features, building predictive models, and eval-
uating model performance.

However, she notices that the model’s accuracy varies significantly across dif-
ferent folds of the cross-validation process. Sarah is also familiar with the domain
of predictive maintenance and she notices discrepancies in the model’s predictions
compared to her knowledge and what she would expect.
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1 c:TrieNode {
2 omit f:childNodes;
3 for (Subject childTrieNode : childrenOf f:childNodes)
4 show newEdge here childTrieNode;
5
6 Node thisNode = nodeOf here;
7 bool isWord = valueOf f:isWord;
8
9 thisNode.clearRows ();

10 if (isWord) thisNode.addRow ("WORD ");
11 thisNode.setTitle(valueOf f:c);
12 }

LISTING 4.4: Max’s CD for his TextAutoComplete program.

Sarah decides to use the debugger state visualizer in the hopes that the repre-
sentation conversion feature can narrow down her focus to the relevant data and
expose the culprit of this behavior. Sarah first debugs her program without defining
a conversion to see what she will be working with. The representation of a debugger
state can be seen in Figure 4.8.

FIGURE 4.8: The representation of Sarah’s Predictive Maintenance
program.

From Figure 4.8, it is clear that debugger states would mostly contain numeri-
cal values. She finds the representation of objects and references to be insignificant
because her main concern is on these numerical values and changes made to them
and because her program doesn’t involve many references that she writes herself.
Nonetheless, Sarah tries to convert this the way debugger states are represented to
attempt to comprehend changes made to the model while stepping through her pro-
gram. However, she finds it difficult to display these values intuitively using nodes



36 Chapter 4. Case Study

and edges no matter what conversion she comes up with.
Normally, she would display these values using scatter plots or line plots such

that she can compare the original target variable values against the modified values
for each data point in the training data. These visualizations can provide a picture of
patterns or discrepancies that might indicate the presence of added noise or incorrect
operations.

As she sees no way to do this using the visualizer, she decides to stop trying to
use the visualizer to solve the bug in her program and use domain-specific tools and
libraries tailored to data science tasks instead to effectively debug, analyze, and gain
insights from her predictive maintenance project in manufacturing.

4.4.2 Discussion

Although the debugging tool with user-definable representation conversion proves
effective for traditional software development and general programming tasks, Sarah,
as a data scientist, finds that it does not align well with her specific data science
needs. The tool’s graphical representation of debugger states as nodes and edges
is not directly suited for the complexities of data analysis, model development, and
statistical evaluation, which are critical components of data science projects.

In other words, this case highlights that no matter what conversion is done on
graphical representations of debugger states, the representation would still be in the
form of a graph consisting of nodes and edges. Its strong point is displaying object
relations step-by-step to expose behavioral discrepancies to the user. It most of-
ten works well on programs whose states can be represented relationally, especially
commonly used data structures. But when the behavior and state of the program
are not optimally representable using nodes and edges, there is little representation
conversion can do. Consequently, this problem also applies to other domains, such
as natural language processing, image and video processing, etc.
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Related Work

5.1 UML Object Diagrams in Program Comprehension

Torchiano conducted an experiment [Torchiano, 2004] to verify whether using UML
diagrams improves program system comprehension. The experiment involved two
groups given the same set of tests with opposing permissions to use object diagrams
for each test. Using the standardized effect size, three out of four tests showed small
or medium-sized effects, implying the correctness of the hypothesis. His later work
[Torchiano et al., 2017] involves a family of four controlled experiments to assess
whether the use of UML object diagrams improves the comprehension of program
design when added to UML class diagrams. The results showed that this is only
mostly true for more experienced programmers. It implied that programming ex-
perience and UML familiarity should be considered in using object diagrams for
software modeling in program design comprehension.

Bach [Bach, 2016], Beck et al. [Beck et al., 2017] discuss DGV as the visualizing
graphs that can change over time. The former presented GraphDiaries which imple-
ments techniques to aid DGV. Animations are used to smoothly transition between
separate time intervals, all the while maintaining the entirety of the screen for both
the graph and its arrangement. Thumbnails are also used which possess inherent
compactness, which enables the display of multiple time intervals concurrently. The
latter study proposed a taxonomy to classify DGV techniques based on different
factors, including visualization approach, interaction techniques, and representa-
tion strategies. The paper discusses the challenges and trends in DGV and provides
insights into the strengths and limitations of different approaches. The visualizer
UDRC is integrated to still uses graphs for state representations, as with other vi-
sualizers, meaning it must show the representations and their changes over time.
DGV techniques are evidently aligned with the purposes of UDRC in the temporal
department and may be used in conjunction.

5.2 Scalability Features in Visual Debuggers

Java Interactive Visualization Environment (JIVE) [Lessa, Czyz, and Jayaraman, 2010]
offers interactive features to display how a Java program runs at various levels of
detail. Among its features is a debugger state visualizer in the form of an object
diagram. JIVE’s solutions to managing large executions are:

Exclusion Filters: Exclude representations of objects from packages, libraries, or
classes.

Code Interval Debugging: Only visualize representations of debugger states in an
interval of the program. Useful for the focused debugging of specific packages
or subsystems without visualizing the entire program execution.
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Dynamic Slicing: Changes to the selected object or variable will be isolated to focus
on a particular object of interest.

Though they may somewhat resolve visual clutter, it does not have the granularity
and control UDRC provides. With the proposed language, these solutions can also
be defined along with other conversions the user might need.

BlueJ [Bennedsen and Schulte, 2010] is a tool that is specifically designed for in-
structing individuals on the principles of object-oriented programming using the
Java language. A "class view" feature enables the visualization of the intercon-
nections between classes, while the "object dock" displays all initialized objects.
JAVAVIS [Cazorla and Viejo, 2015] is a tool that aids students in comprehending
Java programs through the use of dynamic object and sequence diagrams that de-
pict program executions. Though both of these tools provide different types of views
to understand different aspects of the program, they do not have features for visual
scalability as their intended use is for small and simple programs frequently made
for educational purposes.

5.3 Customization of Representations

Velázquez-Iturbide [Velázquez-Iturbide and Presa-Vázquez, 1999] proposed the in-
tegration of visualizations customization into WinHIPE [Pareja-Flores, Urquiza-Fuentes,
and Velázquez-Iturbide, 2007], which is the Windows version of a programming
environment for the functional programming language Hope [Burstall, MacQueen,
and Sannella, 1980]. This feature allows the programmer to customize the visualiza-
tion of intermediate expressions resulting during any evaluation. Customizations
users can choose are:

Text vs. Graphics: Intermediate expressions can be shown using a textual or binary
tree representation, or a mix of both.

Typographic Styles: Change how texts look; including their font, font style, font
size, and color coding.

Visualization Simplification: Visualizations are distorted to show the most rele-
vant parts and hide the less important ones using a technique called "fisheye
views".

This was a step closer to faster program comprehension and better visualization
readability. UDRC has a similar goal for imperative languages where visualizations
are of the debugger state. The proposed representation conversion is essentially
customizing what and how information is displayed, only on a more detailed and
larger scale.
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Future Work

6.1 DSL Improvement

Although the design of the language allows users to control the behavior of their
conversions with great detail, it is still far from ideal.

Although a substantial portion of the language’s statements and expressions
resemble those from regular general-purpose imperative languages, the most im-
portant constructs of the language are those that are not commonly found in them.
This mostly includes the location constructs and metaprogramming features. Users
would need to invest a significant amount of time to learn how the language is used.
Furthermore, the language has its own set of syntaxes, for which users would need
to constantly consult the language’s documentation.

Moreover, users would also be required to devote effort beyond what should be
necessary to specify the behavior of their conversions. This is apparent from the
listings that have previously been shown. For example, Listing 2.2 requires 16 lines
of code, and Listing 2.5 requires 12 lines of code for their relatively trivial conver-
sions. Needless to say, more specific or complex conversions, especially those that
considerably convert the abstraction of representations, would require more time
and effort to define.

Ultimately, the problems of the language can be summarized as its learning and
usage overhead. The rest of this section discusses current solution concepts to these
problems.

6.1.1 Shortcuts

An intuitive solution to the effort overhead in writing CDs is to provide shortcuts
to reduce them. Shortcuts are function-like constructs in the DSL that perform a
sequence of predefined conversions. The purpose of these constructs is to trivial-
ize commonly written conversions or those that will be written multiple times in
different parts of the definition.

An example of a possible shortcut would be one that inlines references to objects.
In other words, this shortcut would do the following:

• Omit the nodes of the targets.

• For each target, a new row would be added to the nodes of objects that refer-
ence the target containing its toString() representation.

Figure 6.1 shows the usage of this shortcut. Figure 6.1a shows a part of the
Monopoly program’s unconverted representation, where each property has a refer-
ence to a PropertySet (boxed in red), which is represented by a color. The information
of each PropertySet can be inlined to the nodes of objects that reference it. By includ-
ing inline c:PropertySet; in the CD, the same part of the same debugger state can
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(A) Without inline on PropertySet.
(B) With inline on

PropertySet.

FIGURE 6.1: Plain and inlined PropertySet.

instead be represented as in Figure 6.1b. Here, the rows boxed in red are the new
rows that inline the information of each property’s set reference.

Shortcuts can also do as much as completely change the representation of data
structures, such as representing lists as binary trees. Instinctively, this ought to re-
lieve the costs of writing in the language somewhat. To reinforce the concept of a
construct resembling a function, users should be able to define their own shortcuts
in addition to the preexisting ones. However, incorporating this feature could con-
siderably complicate the process of learning the language. Luckily, there may still
be a potential resolution to this issue.

6.1.2 Internal DSL

Transitioning to an internal DSL within a general-purpose programming language
should help reduce the learning curve associated with the language, particularly
when the host language and the debugger’s target language are one and the same.
Additionally, it would also lower the effort required for writing definitions since
users would have access to the host language’s existing capabilities and the support
provided by IDEs for that language.

Initially, the decision to provide an external DSL was based on the intention to
create a focused language with only essential features. However, subsequent it-
erations in the language’s development revealed that it increasingly resembled a
general-purpose language, especially after the inclusion of custom shortcuts. More-
over, one of the primary purposes of an external DSL is to serve as an intermediary
language between domain experts and developers, which, in this scenario, refers to
the same group of individuals.
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6.1.3 Implicit Statements

The present structure of the DSL intentionally distinguishes the metaprogramming
capabilities from the aspects related to converting representations. This distinction is
particularly noticeable in how subjects are distinct from their representation proper-
ties. This is in large part due to subjects being tokens used to retrieve both metapro-
gramming values and representation elements. Consequently, users are compelled
to compose distinct statements for establishing context and performing conversion
tasks. Using Listing 2.5 as an example, the user needs two separate explicit expres-
sions to check the nullity of f:owner in Line 3 and to retrieve its node representation
in Line 5.

By erasing this division and establishing implicit associations between the target
program and its representation, the act of defining conversions can be simplified
and made more intuitive. Consider the following preliminary illustration: assuming
there is a PropertyCard named pc that contains a reference to a Property named p,
writing pc.p.title = pc.p.name; in the CD would result in updating the node title
of p to match the value of its name string.

6.2 UI/UX Improvement

The UI of the prototype currently only allows users to do basic interactions, such as
zooming and moving nodes around. The experience in using the visualizer may be
significantly improved with more enhanced functionalities. This section discusses
improvement ideas that can be made to the front end.

6.2.1 Dynamic Graph Visualization

Currently, only static snapshots of the state’s representation are shown every time
the debugger halts without much indication of the changes made between halts.
Users need aid in DGV as seeing changes in between halts is part of the effectiveness
of these visualizers.

Nodes must only be moved as little as possible between halts such that users
can observe their changes. Furthermore, animations and thumbnails may also be
helpful in between halts to further expose these changes, as [Bach, 2016] describes. In
addition to this, it ought to also be useful to be able to view the state representations
of previous halts. Finally, visual cues that highlight changes, such as coloring, node
or row highlighting, which most conventional TBDs also employ, should be intuitive
additions for this purpose.

6.2.2 Text Search Feature

One example of a useful feature would be the ability to search nodes or edges using
text. This would further help users in navigating the view in addition to the help
their conversions have provided for them. Like most search functionalities, moving
between found items ought to pan the camera to those items. This would especially
be helpful if the user is interested in finding representations with unique names of
identifiers.
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6.2.3 Interactive Conversion

Currently, the only way to make changes to how debugger states are represented is
by changing the CD, no matter how small that change may be. Interactive conversion
consists of two parts: interactive representation changes and automatic definition
editing.

Interactively changing debugger state representations entails that users can make
basic changes to the representation by interacting directly with the GUI. For exam-
ple, users would be able to omit a node by right-clicking on it and selecting omit.
This functionality ought to also include the option to apply the change to other in-
stances of the same representation. For example, omitting a node of an instance of a
class would also provide the option to omit all other nodes of that class’s instances.
Though, the details of how this would work for node or edge addition are still un-
clear.

A complementary feature to this would be to have changes made interactively in
the GUI to automatically be written in the CD. For example, interactively omitting all
nodes of instances of the Property class would automatically add omit c:Property;
to the definition. But the details of how this would work have also not been in-
vestigated. Although, it is likely that this functionality would only mostly work
on simple conversions. Conversions that require more logic, like those that require
calculations, conditions, or loops, probably would still need to be defined manually.

With the addition of these features, users would be able to both interact with the
representation and also define its behavior through code.

6.3 User Tests

User tests in the form of a controlled experiment would eventually need to be con-
ducted to demonstrate the usefulness of representation conversion. Solutions to the
variables mentioned in Chapter 4 would first need to be thoroughly investigated to
conduct such an experiment.
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Chapter 7

Conclusion

Using the graph structure to represent debugger states mitigates the problems of
TBDs and also provides the benefits visualization brings. However, this solution it-
self brings forth the problem of visual clutter and abstraction gap in large or complex
programs, effectively nullifying the solution using the graph structure provides.

To solve these two problems, the feature user-definable representation conversion
is proposed for visualizers that use graphs as debugger state representations for
users to convert state representations. Depending on their circumstances, users can
convert these representations to choose which and how information of the debugger
state is displayed, such that they can focus on it as they step through the program.
The feature is foreseen to be useful for users during different steps of the debugging
process. For this purpose, user control and versatility are essential in defining the
behavior of conversions, for which a DSL is provided.

A major challenge of this work is in the design of this DSL as it should require
the minimum learning and usage overhead to make this feature a viable option in
debugging. The DSL is imperative to provide familiarity and control. It also has con-
textual features from which users can extract metaprogramming and representation
contexts.

A prototype for this concept has been developed as a VSCode extension called
JIGSAW, which currently only works for Java. JIGSAW tracks messages sent be-
tween VSCode and Java’s debugger extension to create a debugger state model and
compiles the user’s CD to generate the graph data to be displayed and passes it to
the front end to be rendered. JIGSAW has basic UI features such as zooming and
moving nodes but does not yet allow for interactive graph manipulation. CDs up-
dated in the middle of a debug session can be used without restarting the debugger
or visualizer.

For this study, a fictional case study is developed to consider how programmers
of different levels of expertise and fields interact and perceive the proposed feature.
Beginners may find visualization useful but may find it difficult to use representa-
tion conversion features. However, experienced programmers working on multiple
programming languages and projects may appreciate the language-agnosticism and
versatility of the feature. Furthermore, representation conversion is thought to be
useful for collaboration and communication. Although, representation conversion
for graphical representations may not be very helpful for domains that typically do
not consider object relations the primary part of their debugging focus, like data
science, for instance.

However, there are considerable tasks that still lie ahead for this study. Numer-
ous improvements can be implemented in both the representation conversion con-
cept and its prototype to reduce the required resources in learning and using the
feature. Furthermore, user tests are still necessary to concretely evaluate the effec-
tiveness of this feature in meeting its targeted purpose.
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Appendix A

DSL Grammar

⟨program⟩ ::= ⟨statement⟩*

⟨statement⟩ ::= ⟨location⟩ | ⟨command⟩

⟨location⟩ ::= ⟨loc-type⟩ ⟨ID⟩ (‘.’ ⟨loc-type⟩ ID)* ‘{’ ⟨statement⟩* ‘}’

⟨loc-type⟩ ::= (‘c:’ | ‘f:’ | ‘m:’ | ‘l:’)

⟨command⟩ ::= ⟨scope⟩ | ⟨if ⟩ | ⟨while⟩ | ⟨for⟩ | ⟨semiless⟩

⟨scope⟩ ::= ‘{’ ⟨command⟩* ‘}’

⟨if ⟩ ::= ‘if’ ⟨conditional⟩ (‘else’ ‘if’ ⟨conditional⟩)* (‘else’ ⟨command⟩)?

⟨while⟩ ::= ‘while’ ⟨conditional⟩

⟨for⟩ ::= ‘for’ ‘(’ ⟨semiless⟩? ‘;’ ⟨expr⟩? ‘;’ ⟨semiless⟩? ‘)’ ⟨command⟩ | ‘for’ ‘(’ ⟨type⟩
⟨ID⟩ ‘:’ ⟨expr⟩ ‘)’ ⟨command⟩

⟨semiless⟩ ::= ⟨type⟩ ⟨ID⟩ ‘=’ ⟨expr⟩ | ⟨expr⟩ ‘=’ ⟨expr⟩ | ⟨conversion⟩ | ⟨expr⟩

⟨conditional⟩ ::= ‘(’ ⟨expr⟩ ‘)’ ⟨command⟩

⟨conversion⟩ ::= ‘omitAll’ | ‘showAll’ | (‘show’ | ‘omit’) ⟨expr⟩

⟨expr⟩ ::= ⟨disjunction⟩

⟨disjunction⟩ ::= ⟨conjunction⟩ (‘||’ ⟨conjunction⟩)*;

⟨conjunction⟩ ::= ⟨comparison⟩ (‘&&’ ⟨comparison⟩)*;

⟨comparison⟩ ::= ⟨sum⟩ (‘<’ | ‘<=’ | ‘==’ | ‘!=’ | ‘>=’ | ‘>’) ⟨sum⟩ | ⟨sum⟩

⟨sum⟩ ::= ⟨sum⟩ (‘+’ | ‘-’) ⟨term⟩ | ⟨term⟩

⟨term⟩ ::= ⟨term⟩ (‘*’ | ‘/’ | ‘%’) ⟨negation⟩ | ⟨negation⟩

⟨negation⟩ ::= (‘-’ | ‘!’)? ⟨suffixed⟩

⟨suffixed⟩ ::= ⟨suff-prop⟩ | ⟨suff-arr⟩ | ⟨suff-fields⟩ | ⟨primary⟩

⟨suff-prop⟩ ::= ⟨suffixed⟩ ‘.’ ⟨ID⟩ ‘(’ (⟨expr⟩ (‘,’ ⟨expr⟩)*)? ‘)’

⟨suff-arr⟩ ::= ⟨suffixed⟩ ‘[’ ⟨expr⟩ ‘]’
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⟨suff-fields⟩ ::= ⟨suffixed⟩ (‘.’ ‘f:’ ⟨ID⟩)+

⟨primary⟩ ::= ⟨ID⟩ | ⟨diag-elem⟩ | ⟨subject-rule⟩ | ⟨value-of ⟩ | ⟨literal⟩ | ⟨par-expr⟩ |
⟨array-expr⟩ | ⟨parents-expr⟩ | ⟨is-null⟩ | ⟨new-map⟩ | ⟨inc⟩

⟨value-of ⟩ ::= ‘valueOf’ ⟨expr⟩

⟨array-expr⟩ ::= ‘[’ (⟨expr⟩ (‘,’ ⟨expr⟩)*)? ‘]’

⟨par-expr⟩ ::= ‘(’ ⟨expr⟩ ‘)’

⟨parents-expr⟩ ::= (‘parent’ ‘.’)+ ⟨ID⟩

⟨is-null⟩ ::= ‘isNull’ ⟨expr⟩

⟨new-map⟩ ::= ‘newMap’ ‘<’ ⟨type⟩ ‘,’ ⟨type⟩ ‘>’

⟨diag-elem⟩ ::= ⟨new-node⟩ | ⟨new-edge⟩ | ⟨node-of ⟩ | ⟨nodes-of ⟩ | ⟨edges-of ⟩

⟨new-node⟩ ::= ‘newNode’ ⟨expr⟩

⟨new-edge⟩ ::= ‘newEdge’ ⟨expr⟩ ⟨expr⟩ ⟨expr⟩?

⟨node-of ⟩ ::= ‘nodeOf’ ⟨expr⟩

⟨nodes-of ⟩ ::= ‘nodesOf’ ⟨expr⟩

⟨edges-of ⟩ ::= ‘edgesOf’ ⟨expr⟩ ⟨expr⟩

⟨subject-rule⟩ ::= ‘parents’ | ‘parentsOf’ ⟨expr⟩ | ‘here’ | ‘children’ | ‘childrenOf’
⟨expr⟩ | (‘c:’ | ‘f:’ | ‘l:’) ⟨ID⟩

⟨inc⟩ ::= (‘++’ | ‘–’) ⟨ID⟩ | ⟨ID⟩ (‘++’ | ‘–’)

⟨literal⟩ ::= ⟨num-lit⟩ | ⟨string-lit⟩ | ⟨bool-lit⟩

⟨num-lit⟩ ::= ((⟨nonzero⟩ ⟨digit⟩+) | ⟨digit⟩) (‘.’ ⟨digit⟩*)?

⟨string-lit⟩ ::= ‘"’ ⟨any-char⟩* ‘"’

⟨bool-lit⟩ ::= ‘true’ | ‘false’

⟨type⟩ ::= ⟨basic-type⟩ | ⟨type⟩ ‘[’ ‘]’ | ‘Map’ ‘<’ ⟨type⟩ ‘,’ ⟨type⟩ ‘>’

⟨basic-type⟩ ::= ‘num’ | ‘bool’ | ‘string’ | ‘Node’ | ‘Edge’ | ‘Subject’

⟨letter⟩ ::= [a-zA-Z]

⟨digit⟩ ::= [0-9]

⟨nonzero⟩ ::= [1-9]

⟨any-char⟩ ::= [a-zA-Z0-9!@#$%^&*()_+{}:"<>?,./;’[\]\\‘~ -]
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